peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/tokenizers
/implementations
/bert_wordpiece.py
from typing import Dict, Iterator, List, Optional, Union | |
from tokenizers import AddedToken, Tokenizer, decoders, trainers | |
from tokenizers.models import WordPiece | |
from tokenizers.normalizers import BertNormalizer | |
from tokenizers.pre_tokenizers import BertPreTokenizer | |
from tokenizers.processors import BertProcessing | |
from .base_tokenizer import BaseTokenizer | |
class BertWordPieceTokenizer(BaseTokenizer): | |
"""Bert WordPiece Tokenizer""" | |
def __init__( | |
self, | |
vocab: Optional[Union[str, Dict[str, int]]] = None, | |
unk_token: Union[str, AddedToken] = "[UNK]", | |
sep_token: Union[str, AddedToken] = "[SEP]", | |
cls_token: Union[str, AddedToken] = "[CLS]", | |
pad_token: Union[str, AddedToken] = "[PAD]", | |
mask_token: Union[str, AddedToken] = "[MASK]", | |
clean_text: bool = True, | |
handle_chinese_chars: bool = True, | |
strip_accents: Optional[bool] = None, | |
lowercase: bool = True, | |
wordpieces_prefix: str = "##", | |
): | |
if vocab is not None: | |
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token))) | |
else: | |
tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token))) | |
# Let the tokenizer know about special tokens if they are part of the vocab | |
if tokenizer.token_to_id(str(unk_token)) is not None: | |
tokenizer.add_special_tokens([str(unk_token)]) | |
if tokenizer.token_to_id(str(sep_token)) is not None: | |
tokenizer.add_special_tokens([str(sep_token)]) | |
if tokenizer.token_to_id(str(cls_token)) is not None: | |
tokenizer.add_special_tokens([str(cls_token)]) | |
if tokenizer.token_to_id(str(pad_token)) is not None: | |
tokenizer.add_special_tokens([str(pad_token)]) | |
if tokenizer.token_to_id(str(mask_token)) is not None: | |
tokenizer.add_special_tokens([str(mask_token)]) | |
tokenizer.normalizer = BertNormalizer( | |
clean_text=clean_text, | |
handle_chinese_chars=handle_chinese_chars, | |
strip_accents=strip_accents, | |
lowercase=lowercase, | |
) | |
tokenizer.pre_tokenizer = BertPreTokenizer() | |
if vocab is not None: | |
sep_token_id = tokenizer.token_to_id(str(sep_token)) | |
if sep_token_id is None: | |
raise TypeError("sep_token not found in the vocabulary") | |
cls_token_id = tokenizer.token_to_id(str(cls_token)) | |
if cls_token_id is None: | |
raise TypeError("cls_token not found in the vocabulary") | |
tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id)) | |
tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix) | |
parameters = { | |
"model": "BertWordPiece", | |
"unk_token": unk_token, | |
"sep_token": sep_token, | |
"cls_token": cls_token, | |
"pad_token": pad_token, | |
"mask_token": mask_token, | |
"clean_text": clean_text, | |
"handle_chinese_chars": handle_chinese_chars, | |
"strip_accents": strip_accents, | |
"lowercase": lowercase, | |
"wordpieces_prefix": wordpieces_prefix, | |
} | |
super().__init__(tokenizer, parameters) | |
def from_file(vocab: str, **kwargs): | |
vocab = WordPiece.read_file(vocab) | |
return BertWordPieceTokenizer(vocab, **kwargs) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
special_tokens: List[Union[str, AddedToken]] = [ | |
"[PAD]", | |
"[UNK]", | |
"[CLS]", | |
"[SEP]", | |
"[MASK]", | |
], | |
show_progress: bool = True, | |
wordpieces_prefix: str = "##", | |
): | |
"""Train the model using the given files""" | |
trainer = trainers.WordPieceTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
special_tokens=special_tokens, | |
show_progress=show_progress, | |
continuing_subword_prefix=wordpieces_prefix, | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 30000, | |
min_frequency: int = 2, | |
limit_alphabet: int = 1000, | |
initial_alphabet: List[str] = [], | |
special_tokens: List[Union[str, AddedToken]] = [ | |
"[PAD]", | |
"[UNK]", | |
"[CLS]", | |
"[SEP]", | |
"[MASK]", | |
], | |
show_progress: bool = True, | |
wordpieces_prefix: str = "##", | |
length: Optional[int] = None, | |
): | |
"""Train the model using the given iterator""" | |
trainer = trainers.WordPieceTrainer( | |
vocab_size=vocab_size, | |
min_frequency=min_frequency, | |
limit_alphabet=limit_alphabet, | |
initial_alphabet=initial_alphabet, | |
special_tokens=special_tokens, | |
show_progress=show_progress, | |
continuing_subword_prefix=wordpieces_prefix, | |
) | |
self._tokenizer.train_from_iterator( | |
iterator, | |
trainer=trainer, | |
length=length, | |
) | |