applied-ai-018's picture
Add files using upload-large-folder tool
7a67bfc verified
raw
history blame
3.84 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import inspect
from deepspeed.utils import get_caller_func
def get_local_rank_from_launcher():
# DeepSpeed launcher will set it so get from there
rank = os.environ.get('LOCAL_RANK')
if rank is None:
rank = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK')
# Make it a single process job and set rank to 0
if rank is None:
rank = 0
return int(rank)
def get_world_rank_from_launcher():
# DeepSpeed launcher will set it so get from there
rank = os.environ.get('RANK')
if rank is None:
rank = os.environ.get('OMPI_COMM_WORLD_RANK')
# Make it a single process job and set rank to 0
if rank is None:
rank = 0
return int(rank)
def get_world_size_from_launcher():
# DeepSpeed launcher will set it so get from there
size = os.environ.get('WORLD_SIZE')
rank = os.environ.get('RANK')
if size is None:
size = os.environ.get('OMPI_COMM_WORLD_SIZE')
# Make it a single process job and set size to 1
if size is None:
size = 1
if rank == 0:
print(f"set world size to {size}")
return int(size)
def get_default_args(func):
signature = inspect.signature(func)
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
# We need this hacky function since torch doesn't consistently name or place the input tensor args
def get_tensor_position(func):
sig_params = inspect.signature(func).parameters
arg = None
# most colls
if 'tensor' in sig_params:
arg = 'tensor'
# all_reduce_coalesced coll
elif 'tensors' in sig_params:
arg = 'tensors'
# reduce scatter coll
elif 'input_list' in sig_params:
arg = 'input_list'
# all_to_all and torch multiGPU colls
elif 'input_tensor_list' in sig_params:
arg = 'input_tensor_list'
if arg is None:
return -1
else:
return list(sig_params).index(arg)
def get_tensor_kwarg(func, kwargs):
func_args = get_default_args(func)
func_args.update(kwargs)
arg = None
if 'tensor' in func_args:
arg = func_args['tensor']
elif 'tensors' in func_args:
arg = func_args['tensors']
elif 'input_list' in func_args:
arg = func_args['input_list']
elif 'input_tensor_list' in func_args:
arg = func_args['input_tensor_list']
return arg
def get_msg_size_from_args(func, *args, **kwargs):
# 3 cases:
# - tensor arg is in args
# - tensor arg is in kwargs
# - tensor arg is not present (e.g. barrier)
tensor_arg_position = -1
tensor_arg = None
# check if tensor arg is in args
if len(args) > 0:
tensor_arg_position = get_tensor_position(func)
if tensor_arg_position > -1:
tensor_arg = args[get_tensor_position(func)]
# check if tensor arg is in kwargs
if tensor_arg is None and len(kwargs) > 0:
tensor_arg = get_tensor_kwarg(func, kwargs)
# if tensor arg is not present, no data is being transmitted
if tensor_arg is None:
return 0
else:
# Sum of tensor sizes for list colls such as torch's all_to_all
# NOTE: msg_size for list colls will not be the actual size transmitted by a given MPI/NCCL call within the coll op. Instead, it's the total amount of data transmitted.
if type(tensor_arg) is list:
return sum(x.element_size() * x.nelement() for x in tensor_arg)
else:
return tensor_arg.element_size() * tensor_arg.nelement()
def get_debug_log_name(func_args, debug):
if debug:
return func_args['log_name'] + ' | [Caller Func: ' + get_caller_func() + ']'
else:
return func_args['log_name']