peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/comm
/utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import inspect | |
from deepspeed.utils import get_caller_func | |
def get_local_rank_from_launcher(): | |
# DeepSpeed launcher will set it so get from there | |
rank = os.environ.get('LOCAL_RANK') | |
if rank is None: | |
rank = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK') | |
# Make it a single process job and set rank to 0 | |
if rank is None: | |
rank = 0 | |
return int(rank) | |
def get_world_rank_from_launcher(): | |
# DeepSpeed launcher will set it so get from there | |
rank = os.environ.get('RANK') | |
if rank is None: | |
rank = os.environ.get('OMPI_COMM_WORLD_RANK') | |
# Make it a single process job and set rank to 0 | |
if rank is None: | |
rank = 0 | |
return int(rank) | |
def get_world_size_from_launcher(): | |
# DeepSpeed launcher will set it so get from there | |
size = os.environ.get('WORLD_SIZE') | |
rank = os.environ.get('RANK') | |
if size is None: | |
size = os.environ.get('OMPI_COMM_WORLD_SIZE') | |
# Make it a single process job and set size to 1 | |
if size is None: | |
size = 1 | |
if rank == 0: | |
print(f"set world size to {size}") | |
return int(size) | |
def get_default_args(func): | |
signature = inspect.signature(func) | |
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} | |
# We need this hacky function since torch doesn't consistently name or place the input tensor args | |
def get_tensor_position(func): | |
sig_params = inspect.signature(func).parameters | |
arg = None | |
# most colls | |
if 'tensor' in sig_params: | |
arg = 'tensor' | |
# all_reduce_coalesced coll | |
elif 'tensors' in sig_params: | |
arg = 'tensors' | |
# reduce scatter coll | |
elif 'input_list' in sig_params: | |
arg = 'input_list' | |
# all_to_all and torch multiGPU colls | |
elif 'input_tensor_list' in sig_params: | |
arg = 'input_tensor_list' | |
if arg is None: | |
return -1 | |
else: | |
return list(sig_params).index(arg) | |
def get_tensor_kwarg(func, kwargs): | |
func_args = get_default_args(func) | |
func_args.update(kwargs) | |
arg = None | |
if 'tensor' in func_args: | |
arg = func_args['tensor'] | |
elif 'tensors' in func_args: | |
arg = func_args['tensors'] | |
elif 'input_list' in func_args: | |
arg = func_args['input_list'] | |
elif 'input_tensor_list' in func_args: | |
arg = func_args['input_tensor_list'] | |
return arg | |
def get_msg_size_from_args(func, *args, **kwargs): | |
# 3 cases: | |
# - tensor arg is in args | |
# - tensor arg is in kwargs | |
# - tensor arg is not present (e.g. barrier) | |
tensor_arg_position = -1 | |
tensor_arg = None | |
# check if tensor arg is in args | |
if len(args) > 0: | |
tensor_arg_position = get_tensor_position(func) | |
if tensor_arg_position > -1: | |
tensor_arg = args[get_tensor_position(func)] | |
# check if tensor arg is in kwargs | |
if tensor_arg is None and len(kwargs) > 0: | |
tensor_arg = get_tensor_kwarg(func, kwargs) | |
# if tensor arg is not present, no data is being transmitted | |
if tensor_arg is None: | |
return 0 | |
else: | |
# Sum of tensor sizes for list colls such as torch's all_to_all | |
# NOTE: msg_size for list colls will not be the actual size transmitted by a given MPI/NCCL call within the coll op. Instead, it's the total amount of data transmitted. | |
if type(tensor_arg) is list: | |
return sum(x.element_size() * x.nelement() for x in tensor_arg) | |
else: | |
return tensor_arg.element_size() * tensor_arg.nelement() | |
def get_debug_log_name(func_args, debug): | |
if debug: | |
return func_args['log_name'] + ' | [Caller Func: ' + get_caller_func() + ']' | |
else: | |
return func_args['log_name'] | |