applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
6.98 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.data_pipeline.data_sampling.data_sampler import DeepSpeedDataSampler
from deepspeed.runtime.data_pipeline.constants import CURRICULUM_LEARNING, \
DATA_EFFICIENCY, DATA_SAMPLING_NUM_WORKERS
from deepspeed.runtime.constants import GRADIENT_ACCUMULATION_STEPS, \
DATA_PARALLEL_GROUP, GLOBAL_RANK
class RepeatingLoader:
def __init__(self, loader):
"""Wraps an iterator to allow for infinite iteration. This is especially useful
for DataLoader types that we wish to automatically restart upon completion.
Args:
loader (iterator): The data loader to repeat.
"""
self.loader = loader
self.data_iter = iter(self.loader)
def __iter__(self):
return self
def __next__(self):
try:
batch = next(self.data_iter)
except StopIteration:
self.data_iter = iter(self.loader)
batch = next(self.data_iter)
return batch
class DeepSpeedDataLoader(object):
def __init__(self,
dataset,
batch_size,
pin_memory,
local_rank,
tput_timer,
collate_fn=None,
num_local_io_workers=None,
data_sampler=None,
data_parallel_world_size=None,
data_parallel_rank=None,
dataloader_drop_last=False,
deepspeed_dataloader_config={}):
self.deepspeed_dataloader_config = deepspeed_dataloader_config
self.tput_timer = tput_timer
self.batch_size = batch_size
self.curriculum_learning_enabled = False
if CURRICULUM_LEARNING in deepspeed_dataloader_config:
self.curriculum_learning_enabled = deepspeed_dataloader_config[CURRICULUM_LEARNING]
if self.curriculum_learning_enabled:
data_sampler = DeepSpeedDataSampler(self.deepspeed_dataloader_config[DATA_EFFICIENCY],
len(dataset),
self.batch_size,
data_parallel_rank,
data_parallel_world_size,
self.deepspeed_dataloader_config[DATA_PARALLEL_GROUP],
self.deepspeed_dataloader_config[GRADIENT_ACCUMULATION_STEPS],
self.deepspeed_dataloader_config[GLOBAL_RANK],
drop_last=dataloader_drop_last)
device_count = get_accelerator().device_count()
num_local_io_workers = self.deepspeed_dataloader_config[DATA_SAMPLING_NUM_WORKERS]
else:
if local_rank >= 0:
if data_sampler is None:
data_sampler = DistributedSampler(dataset=dataset,
num_replicas=data_parallel_world_size,
rank=data_parallel_rank)
device_count = 1
else:
if data_sampler is None:
data_sampler = RandomSampler(dataset)
device_count = get_accelerator().device_count()
batch_size *= device_count
if num_local_io_workers is None:
num_local_io_workers = 2 * device_count
self.num_local_io_workers = num_local_io_workers
self.data_sampler = data_sampler
self.dataset = dataset
self.collate_fn = collate_fn
self.device_count = device_count
self.batch_size = batch_size
self.pin_memory = pin_memory
self.data = None
self.dataloader_drop_last = dataloader_drop_last
self.post_process_func = None
if self.dataloader_drop_last:
self.len = len(self.data_sampler) // self.batch_size
else:
from math import ceil
self.len = ceil(len(self.data_sampler) / self.batch_size)
def __iter__(self):
self._create_dataloader()
return self
def __len__(self):
return self.len
def __next__(self):
if self.tput_timer:
self.tput_timer.start()
if self.curriculum_learning_enabled:
data = next(self.data_iterator)
if self.post_process_func is not None:
data = self.post_process_func(data, self.data_sampler.state_dict())
return data
else:
return next(self.data)
def _create_dataloader(self):
if self.curriculum_learning_enabled:
if self.collate_fn is None:
self.dataloader = DataLoader(self.dataset,
pin_memory=self.pin_memory,
batch_sampler=self.data_sampler,
num_workers=self.num_local_io_workers)
else:
self.dataloader = DataLoader(self.dataset,
pin_memory=self.pin_memory,
batch_sampler=self.data_sampler,
collate_fn=self.collate_fn,
num_workers=self.num_local_io_workers)
self.data_iterator = iter(self.dataloader)
return self.dataloader
else:
if self.collate_fn is None:
self.dataloader = DataLoader(self.dataset,
batch_size=self.batch_size,
pin_memory=self.pin_memory,
sampler=self.data_sampler,
num_workers=self.num_local_io_workers,
drop_last=self.dataloader_drop_last)
else:
self.dataloader = DataLoader(self.dataset,
batch_size=self.batch_size,
pin_memory=self.pin_memory,
sampler=self.data_sampler,
collate_fn=self.collate_fn,
num_workers=self.num_local_io_workers,
drop_last=self.dataloader_drop_last)
self.data = (x for x in self.dataloader)
return self.dataloader
# DataLoader([(torch.randn(3, 3), torch.tensor(i % 2)) for i in range(10)], batch_size=2))