peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/dataloader.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from torch.utils.data import DataLoader, RandomSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.runtime.data_pipeline.data_sampling.data_sampler import DeepSpeedDataSampler | |
from deepspeed.runtime.data_pipeline.constants import CURRICULUM_LEARNING, \ | |
DATA_EFFICIENCY, DATA_SAMPLING_NUM_WORKERS | |
from deepspeed.runtime.constants import GRADIENT_ACCUMULATION_STEPS, \ | |
DATA_PARALLEL_GROUP, GLOBAL_RANK | |
class RepeatingLoader: | |
def __init__(self, loader): | |
"""Wraps an iterator to allow for infinite iteration. This is especially useful | |
for DataLoader types that we wish to automatically restart upon completion. | |
Args: | |
loader (iterator): The data loader to repeat. | |
""" | |
self.loader = loader | |
self.data_iter = iter(self.loader) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
try: | |
batch = next(self.data_iter) | |
except StopIteration: | |
self.data_iter = iter(self.loader) | |
batch = next(self.data_iter) | |
return batch | |
class DeepSpeedDataLoader(object): | |
def __init__(self, | |
dataset, | |
batch_size, | |
pin_memory, | |
local_rank, | |
tput_timer, | |
collate_fn=None, | |
num_local_io_workers=None, | |
data_sampler=None, | |
data_parallel_world_size=None, | |
data_parallel_rank=None, | |
dataloader_drop_last=False, | |
deepspeed_dataloader_config={}): | |
self.deepspeed_dataloader_config = deepspeed_dataloader_config | |
self.tput_timer = tput_timer | |
self.batch_size = batch_size | |
self.curriculum_learning_enabled = False | |
if CURRICULUM_LEARNING in deepspeed_dataloader_config: | |
self.curriculum_learning_enabled = deepspeed_dataloader_config[CURRICULUM_LEARNING] | |
if self.curriculum_learning_enabled: | |
data_sampler = DeepSpeedDataSampler(self.deepspeed_dataloader_config[DATA_EFFICIENCY], | |
len(dataset), | |
self.batch_size, | |
data_parallel_rank, | |
data_parallel_world_size, | |
self.deepspeed_dataloader_config[DATA_PARALLEL_GROUP], | |
self.deepspeed_dataloader_config[GRADIENT_ACCUMULATION_STEPS], | |
self.deepspeed_dataloader_config[GLOBAL_RANK], | |
drop_last=dataloader_drop_last) | |
device_count = get_accelerator().device_count() | |
num_local_io_workers = self.deepspeed_dataloader_config[DATA_SAMPLING_NUM_WORKERS] | |
else: | |
if local_rank >= 0: | |
if data_sampler is None: | |
data_sampler = DistributedSampler(dataset=dataset, | |
num_replicas=data_parallel_world_size, | |
rank=data_parallel_rank) | |
device_count = 1 | |
else: | |
if data_sampler is None: | |
data_sampler = RandomSampler(dataset) | |
device_count = get_accelerator().device_count() | |
batch_size *= device_count | |
if num_local_io_workers is None: | |
num_local_io_workers = 2 * device_count | |
self.num_local_io_workers = num_local_io_workers | |
self.data_sampler = data_sampler | |
self.dataset = dataset | |
self.collate_fn = collate_fn | |
self.device_count = device_count | |
self.batch_size = batch_size | |
self.pin_memory = pin_memory | |
self.data = None | |
self.dataloader_drop_last = dataloader_drop_last | |
self.post_process_func = None | |
if self.dataloader_drop_last: | |
self.len = len(self.data_sampler) // self.batch_size | |
else: | |
from math import ceil | |
self.len = ceil(len(self.data_sampler) / self.batch_size) | |
def __iter__(self): | |
self._create_dataloader() | |
return self | |
def __len__(self): | |
return self.len | |
def __next__(self): | |
if self.tput_timer: | |
self.tput_timer.start() | |
if self.curriculum_learning_enabled: | |
data = next(self.data_iterator) | |
if self.post_process_func is not None: | |
data = self.post_process_func(data, self.data_sampler.state_dict()) | |
return data | |
else: | |
return next(self.data) | |
def _create_dataloader(self): | |
if self.curriculum_learning_enabled: | |
if self.collate_fn is None: | |
self.dataloader = DataLoader(self.dataset, | |
pin_memory=self.pin_memory, | |
batch_sampler=self.data_sampler, | |
num_workers=self.num_local_io_workers) | |
else: | |
self.dataloader = DataLoader(self.dataset, | |
pin_memory=self.pin_memory, | |
batch_sampler=self.data_sampler, | |
collate_fn=self.collate_fn, | |
num_workers=self.num_local_io_workers) | |
self.data_iterator = iter(self.dataloader) | |
return self.dataloader | |
else: | |
if self.collate_fn is None: | |
self.dataloader = DataLoader(self.dataset, | |
batch_size=self.batch_size, | |
pin_memory=self.pin_memory, | |
sampler=self.data_sampler, | |
num_workers=self.num_local_io_workers, | |
drop_last=self.dataloader_drop_last) | |
else: | |
self.dataloader = DataLoader(self.dataset, | |
batch_size=self.batch_size, | |
pin_memory=self.pin_memory, | |
sampler=self.data_sampler, | |
collate_fn=self.collate_fn, | |
num_workers=self.num_local_io_workers, | |
drop_last=self.dataloader_drop_last) | |
self.data = (x for x in self.dataloader) | |
return self.dataloader | |
# DataLoader([(torch.randn(3, 3), torch.tensor(i % 2)) for i in range(10)], batch_size=2)) | |