peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/eigenvalue.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from deepspeed.utils import log_dist | |
import numpy as np | |
import logging | |
class Eigenvalue(object): | |
def __init__(self, | |
verbose=False, | |
max_iter=100, | |
tol=1e-2, | |
stability=0, | |
gas_boundary_resolution=1, | |
layer_name='', | |
layer_num=0): | |
super().__init__() | |
self.verbose = verbose | |
self.max_iter = max_iter | |
self.tol = tol | |
self.stability = stability | |
self.gas_boundary_resolution = gas_boundary_resolution | |
self.layer_name = layer_name | |
self.layer_num = layer_num | |
assert len(self.layer_name) > 0 and layer_num > 0 | |
log_dist( | |
f'enabled eigenvalue with verbose={verbose}, max_iter={max_iter}, tol={tol}, stability={stability}, gas_boundary_resolution={gas_boundary_resolution}, layer_name={layer_name}, layer_num={layer_num}', | |
ranks=[0]) | |
# Replace all nan/pos-inf/neg-inf to zero | |
# TODO: Pytorch new version may add this function, replace this one by then. | |
def nan_to_num(self, x): | |
device = x.device | |
x = x.cpu().numpy() | |
x = np.nan_to_num(x=x, copy=False, nan=0.0, posinf=0.0, neginf=0.0) | |
return torch.from_numpy(x).to(device) | |
def normalize(self, v): | |
norm_squared = self.inner_product(v, v) | |
norm = norm_squared**0.5 + self.stability | |
normalized_vectors = [vector / norm for vector in v] | |
normalized_vectors = [self.nan_to_num(vector) for vector in normalized_vectors] | |
return normalized_vectors | |
def inner_product(self, xs, ys): | |
return sum([torch.sum(x * y) for (x, y) in zip(xs, ys)]) | |
def get_layers(self, module): | |
scope_names = self.layer_name.split('.') | |
assert len(scope_names) > 0 | |
m = module | |
for name in scope_names: | |
assert hasattr(m, name), "layer_name configuration is invalid." | |
m = getattr(m, name) | |
return m | |
def compute_eigenvalue(self, module, device=None, scale=1.0): | |
block_eigenvalue = [] | |
param_keys = [] | |
layers = self.get_layers(module) | |
for block in range(self.layer_num): | |
model_block = layers[block] | |
# We found this randn() has obvious accuracy impact in some cases, save/recover random state here. | |
rng_state = torch.random.get_rng_state() | |
if device is None: | |
v = [ | |
torch.randn(p.size()) for p in model_block.parameters() | |
if p.grad is not None and p.grad.grad_fn is not None | |
] | |
else: | |
v = [ | |
torch.randn(p.size(), device=device) for p in model_block.parameters() | |
if p.grad is not None and p.grad.grad_fn is not None | |
] | |
torch.random.set_rng_state(rng_state) | |
grads = [ | |
param.grad for param in model_block.parameters() | |
if param.grad is not None and param.grad.grad_fn is not None | |
] | |
params = [ | |
param for param in model_block.parameters() | |
if param.grad is not None and param.grad.grad_fn is not None | |
] | |
layer_keys = [id(p) for p in model_block.parameters()] | |
param_keys.append(layer_keys) | |
v = self.normalize(v) | |
# Disable eigenvalue if the model doesn't support second order gradients computation, | |
# e.g. when enabling DS transformer kernel. | |
if len(grads) == 0 or len(params) == 0: | |
log_dist(f'The model does NOT support eigenvalue computation.', ranks=[0], level=logging.WARNING) | |
return [] | |
i = 0 | |
eigenvalue_current, eigenvalue_previous = 1., 0. | |
while (i < self.max_iter) and abs(eigenvalue_current) > 0 and (abs( | |
(eigenvalue_current - eigenvalue_previous) / eigenvalue_current) >= | |
self.tol): # test convergence criteria | |
eigenvalue_previous = eigenvalue_current | |
Hv = torch.autograd.grad(grads, params, grad_outputs=v, only_inputs=True, retain_graph=True) | |
#Hv = [hv.float() for hv in Hv] | |
Hv = [self.nan_to_num(hv).float() for hv in Hv] | |
eigenvalue_current = self.inner_product(Hv, v).item() | |
v = self.normalize(Hv) | |
v = [x / scale for x in v] | |
i += 1 | |
eigenvalue_current *= scale | |
block_eigenvalue.append(eigenvalue_current) | |
if self.verbose: | |
log_dist(f'block: {block}, power iteration: {i}, eigenvalue: {eigenvalue_current}', ranks=[0]) | |
block_eigenvalue = self.post_process(block_eigenvalue) | |
if self.verbose: | |
log_dist(f'post processed block_eigenvalue: {block_eigenvalue}', ranks=[0]) | |
# {param_id: (eigenvalue, layer_id)} | |
ev_dict = {} | |
for i, (layer_keys, value) in enumerate(zip(param_keys, block_eigenvalue)): | |
ev_dict.update(dict.fromkeys(layer_keys, (value, i))) | |
return ev_dict | |
# 1. Map all eigenvalues to [0, 1.0]. | |
# 2. Some layers can't generate valid eigenvalues on fp16 precision, use 1.0 instead. | |
def post_process(self, value_list): | |
max_value = abs(max(value_list, key=abs)) | |
return [abs(v) / max_value if v != 0.0 else 1.0 for v in value_list] | |