applied-ai-018's picture
Add files using upload-large-folder tool
734b6a1 verified
raw
history blame
22 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Copyright NVIDIA/apex
This file is adapted from FP16_Optimizer in NVIDIA/apex
"""
import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed.runtime.base_optimizer import DeepSpeedOptimizer
from deepspeed.runtime.utils import get_global_norm, get_flattened_grad_norm, CheckOverflow, get_weight_norm, get_norm_with_moe_layers, is_model_parallel_parameter
from deepspeed.runtime.fp16.loss_scaler import INITIAL_LOSS_SCALE, SCALE_WINDOW, MIN_LOSS_SCALE
from deepspeed.utils import logger, log_dist
from deepspeed.utils.torch import required_torch_version
from deepspeed.checkpoint.constants import OPTIMIZER_STATE_DICT, CLIP_GRAD
from deepspeed.accelerator import get_accelerator
from deepspeed.moe.utils import is_moe_param_group
from deepspeed.runtime.constants import PIPE_REPLICATED
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
OVERFLOW_CHECK_TIMER = 'overflow_check'
COMPUTE_NORM_TIMER = 'compute_norm'
UNSCALE_AND_CLIP_TIMER = 'unscale_and_clip'
BASIC_STEP_TIMER = 'basic_step'
UPDATE_FP16_TIMER = 'update_fp16'
OVERFLOW_TIMERS = [COMPUTE_NORM_TIMER, OVERFLOW_CHECK_TIMER]
STEP_TIMERS = OVERFLOW_TIMERS + [UNSCALE_AND_CLIP_TIMER, BASIC_STEP_TIMER, UPDATE_FP16_TIMER]
class FP16_Optimizer(DeepSpeedOptimizer):
"""
FP16 Optimizer for training fp16 models. Handles loss scaling.
For usage example please see, TODO: DeepSpeed V2 Tutorial
"""
def __init__(self,
init_optimizer,
deepspeed=None,
static_loss_scale=1.0,
dynamic_loss_scale=False,
initial_dynamic_scale=2**32,
dynamic_loss_args=None,
verbose=True,
mpu=None,
clip_grad=0.0,
fused_adam_legacy=False,
has_moe_layers=False,
timers=None):
self.fused_adam_legacy = fused_adam_legacy
self.timers = timers
self.deepspeed = deepspeed
self.has_moe_layers = has_moe_layers
self.using_pipeline = self.deepspeed.pipeline_parallelism
if not get_accelerator().is_available():
raise SystemError("Cannot use fp16 without accelerator.")
self.optimizer = init_optimizer
# param flattened by groups
self.fp16_groups = []
self.fp16_groups_flat = []
self.fp32_groups_flat = []
self.flatten_grad_norm_mask_list = []
self.has_executed_step = False
self._global_grad_norm = 0.
# loop to deal with groups
for i, param_group in enumerate(self.optimizer.param_groups):
# push this group to list before modify
self.fp16_groups.append(param_group['params'])
# init fp16 weight buffer, flattened
self.fp16_groups_flat.append(_flatten_dense_tensors([p.clone().detach() for p in self.fp16_groups[i]]))
# set model fp16 weight to slices of flattened buffer
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i], self.fp16_groups[i])
for p, q in zip(self.fp16_groups[i], updated_params):
p.data = q.data
# init master weight, flattened
self.fp32_groups_flat.append(self.fp16_groups_flat[i].clone().float().detach())
# modify optimizer of have flat master weight
self.fp32_groups_flat[i].requires_grad = True # keep this in case internal optimizer uses it
param_group['params'] = [self.fp32_groups_flat[i]]
# we may have a way of fusing dynamic scale. Do not support for now
if dynamic_loss_scale:
self.dynamic_loss_scale = True
self.cur_iter = 0
self.last_overflow_iter = -1
self.scale_factor = 2
if dynamic_loss_args is None:
self.cur_scale = initial_dynamic_scale
self.scale_window = 1000
self.min_loss_scale = 1
else:
self.cur_scale = dynamic_loss_args[INITIAL_LOSS_SCALE]
self.scale_window = dynamic_loss_args[SCALE_WINDOW]
self.min_loss_scale = dynamic_loss_args[MIN_LOSS_SCALE]
else:
self.dynamic_loss_scale = False
self.cur_iter = 0
self.cur_scale = static_loss_scale
self.verbose = verbose
self.custom_loss_scaler = False
self.external_loss_scale = None
self.clip_grad = clip_grad
self.norm_type = 2
if required_torch_version(max_version=0.4):
self.clip_grad_norm = torch.nn.utils.clip_grad_norm
else:
self.clip_grad_norm = torch.nn.utils.clip_grad_norm_
#model parallel object
self.mpu = mpu
self.overflow = False
self.overflow_checker = CheckOverflow(self.fp16_groups, mpu=self.mpu, deepspeed=deepspeed)
self.initialize_optimizer_states()
def initialize_optimizer_states(self):
for i, group in enumerate(self.fp16_groups):
self.fp32_groups_flat[i].grad = torch.zeros(self.fp32_groups_flat[i].size(),
device=self.fp32_groups_flat[i].device)
self.optimizer.step()
for i, group in enumerate(self.fp16_groups):
self.fp32_groups_flat[i].grad = None
return
def zero_grad(self, set_to_none=True):
"""
Zero FP16 parameter grads.
"""
# For speed, set model fp16 grad to None by default
for group in self.fp16_groups:
for p in group:
if set_to_none:
p.grad = None
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def step_fused_adam(self, closure=None):
"""
Not supporting closure.
"""
# First compute norm for all group so we know if there is overflow
grads_groups_flat = []
norm_groups = []
for i, group in enumerate(self.fp16_groups):
grads_groups_flat.append(
_flatten_dense_tensors([
torch.zeros(p.size(), dtype=p.dtype, device=p.device) if p.grad is None else p.grad for p in group
]))
norm_groups.append(get_weight_norm(grads_groups_flat[i], mpu=self.mpu))
self.overflow = self.overflow_checker.check_using_norm(norm_groups)
prev_scale = self.cur_scale
self._update_scale(self.overflow)
if self.overflow:
if self.verbose:
logger.info("[deepspeed] fp16 dynamic loss scale overflow! Skipping step. Attempted loss "
"scale: {}, reducing to {}".format(prev_scale, self.cur_scale))
return self.overflow
scaled_grad_norm = get_global_norm(norm_list=norm_groups)
combined_scale = self.unscale_and_clip_grads(grads_groups_flat, scaled_grad_norm, apply_scale=False)
# Stash unscaled gradient norm
self._global_grad_norm = scaled_grad_norm / self.cur_scale
# norm is in fact norm*cur_scale
self.optimizer.step(grads=[[g] for g in grads_groups_flat],
output_params=[[p] for p in self.fp16_groups_flat],
scale=combined_scale,
grad_norms=norm_groups)
# TODO: we probably don't need this? just to be safe
for i in range(len(norm_groups)):
updated_params = _unflatten_dense_tensors(self.fp16_groups_flat[i], self.fp16_groups[i])
for p, q in zip(self.fp16_groups[i], updated_params):
p.data = q.data
return self.overflow
def set_lr(self, lr):
"""Set the learning rate."""
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
def get_lr(self):
"""Return the current learning rate."""
return self.optimizer.param_groups[0]["lr"]
def override_loss_scale(self, loss_scale):
if loss_scale != self.external_loss_scale:
logger.info(f'[deepspeed] setting loss scale from {self.external_loss_scale} -> {loss_scale}')
self.custom_loss_scaler = True
self.external_loss_scale = loss_scale
def _require_avoid_recompute_norm(self, p, tensor_model_parallel_rank):
# for filtering replicated tensors from tensor
if hasattr(p, PIPE_REPLICATED) and p.ds_pipe_replicated:
return True
if (tensor_model_parallel_rank > 0) and not is_model_parallel_parameter(p):
return True
def _get_norm_mask_idx(self, group):
"""The function preserves the parallel information for norm
from unflattened gradients.
Args:
group (Iterable[Tensor] ): params group
Returns:
torch.Tensor: A 2D tensor containing index ranges for each group,
where each row represents a [start index, end index].
"""
group_mask_idx_list = []
grad_flat_st_idx = 0
grad_flat_en_idx = 0
for p in group:
grad_flat_en_idx = grad_flat_st_idx + p.numel()
if p.grad is not None and self._require_avoid_recompute_norm(p, bwc_tensor_model_parallel_rank(self.mpu)):
# merge range
if len(group_mask_idx_list) > 0 and grad_flat_st_idx == group_mask_idx_list[-1][-1]:
group_mask_idx_list[-1][-1] = grad_flat_en_idx
else:
group_mask_idx_list.append([grad_flat_st_idx, grad_flat_en_idx])
grad_flat_st_idx = grad_flat_en_idx
return torch.tensor(group_mask_idx_list, device=get_accelerator().current_device())
def step(self, closure=None):
"""
Not supporting closure.
"""
if self.fused_adam_legacy:
return self.step_fused_adam()
# First determine if there is overflow.
self.timers(OVERFLOW_CHECK_TIMER).start()
fp16_params = []
for i, group in enumerate(self.fp16_groups):
fp16_params.extend([p for p in group if p.grad is not None])
self.overflow = self.overflow_checker.has_overflow(fp16_params)
self.timers(OVERFLOW_CHECK_TIMER).stop()
prev_scale = self.cur_scale
self._update_scale(self.overflow)
if self.overflow:
if self.verbose:
log_dist(
"Overflow detected. Skipping step. Attempted loss "
f"scale: {prev_scale}, reducing to {self.cur_scale}",
ranks=[0])
# Clear gradients
for i, group in enumerate(self.fp16_groups):
for p in group:
p.grad = None
self.timers.log(OVERFLOW_TIMERS)
return self.overflow
grads_groups_flat = []
non_experts_grads_for_norm = []
expert_grads_for_norm = {}
assert len(self.fp16_groups) == len(self.optimizer.param_groups)
for i, group in enumerate(self.fp16_groups):
data_type = self.fp32_groups_flat[i].dtype
grads_groups_flat.append(
_flatten_dense_tensors([
torch.zeros(p.size(), dtype=data_type, device=p.device) if p.grad is None else p.grad.to(data_type)
for p in group
]))
self.fp32_groups_flat[i].grad = grads_groups_flat[i]
param_group = self.optimizer.param_groups[i]
# split expert and non_expert grads for norm
if self.has_moe_layers and is_moe_param_group(param_group):
if param_group['name'] not in expert_grads_for_norm:
expert_grads_for_norm[param_group['name']] = []
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_flat[i])
else:
# retrieves the required mask for calculating the norm of flat_grad
# perform this collect operation only once
if not self.has_executed_step:
cur_flat_grad_norm_mask = self._get_norm_mask_idx(group)
self.flatten_grad_norm_mask_list.append(cur_flat_grad_norm_mask)
non_experts_grads_for_norm.append(self.fp32_groups_flat[i])
for p in group:
p.grad = None
self.timers(COMPUTE_NORM_TIMER).start()
all_groups_norm = get_flattened_grad_norm(non_experts_grads_for_norm,
mpu=self.mpu,
grad_norm_mask=self.flatten_grad_norm_mask_list)
if self.has_moe_layers:
all_groups_norm = get_norm_with_moe_layers(all_groups_norm,
mpu=self.mpu,
expert_tensors=expert_grads_for_norm,
norm_type=self.norm_type)
scaled_global_grad_norm = get_global_norm(norm_list=[all_groups_norm])
self.timers(COMPUTE_NORM_TIMER).stop()
# Stash unscaled gradient norm
self._global_grad_norm = scaled_global_grad_norm / self.cur_scale
self.timers(UNSCALE_AND_CLIP_TIMER).start()
self.unscale_and_clip_grads(grads_groups_flat, scaled_global_grad_norm)
self.timers(UNSCALE_AND_CLIP_TIMER).stop()
self.timers(BASIC_STEP_TIMER).start()
self.optimizer.step()
self.timers(BASIC_STEP_TIMER).stop()
#get rid of the fp32 gradients. Not needed anymore
for group in self.fp32_groups_flat:
group.grad = None
self.timers(UPDATE_FP16_TIMER).start()
for i in range(len(self.fp16_groups)):
updated_params = _unflatten_dense_tensors(self.fp32_groups_flat[i], self.fp16_groups[i])
for p, q in zip(self.fp16_groups[i], updated_params):
p.data.copy_(q.data)
self.has_executed_step = True
self.timers(UPDATE_FP16_TIMER).stop()
self.timers.log(STEP_TIMERS)
return self.overflow
def unscale_and_clip_grads(self, grad_groups_flat, total_norm, apply_scale=True):
# compute combined scale factor for this group
combined_scale = self.cur_scale
if self.clip_grad > 0.:
# norm is in fact norm*scale
clip = ((total_norm / self.cur_scale) + 1e-6) / self.clip_grad
if clip > 1:
combined_scale = clip * self.cur_scale
if apply_scale:
for grad in grad_groups_flat:
grad.data.mul_(1. / combined_scale)
return combined_scale
def backward(self, loss, create_graph=False, retain_graph=False):
"""
:attr:`backward` performs the following steps:
1. fp32_loss = loss.float()
2. scaled_loss = fp32_loss*loss_scale
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
"""
if self.custom_loss_scaler:
scaled_loss = self.external_loss_scale * loss
scaled_loss.backward()
else:
scaled_loss = (loss.float()) * self.cur_scale
scaled_loss.backward(create_graph=create_graph, retain_graph=retain_graph)
def _update_scale(self, skip):
if self.dynamic_loss_scale:
prev_scale = self.cur_scale
if skip:
self.cur_scale = max(self.cur_scale / self.scale_factor, self.min_loss_scale)
self.last_overflow_iter = self.cur_iter
if self.verbose:
logger.info(f"\nGrad overflow on iteration {self.cur_iter}")
logger.info(f"Reducing dynamic loss scale from {prev_scale} to {self.cur_scale}")
else:
# Ensure self.scale_window updates since last overflow
stable_interval = (self.cur_iter - self.last_overflow_iter) - 1
if (stable_interval > 0) and (stable_interval % self.scale_window == 0):
self.cur_scale *= self.scale_factor
if self.verbose:
logger.info(f"No Grad overflow for {self.scale_window} iterations")
logger.info(f"Increasing dynamic loss scale from {prev_scale} to {self.cur_scale}")
else:
if skip:
logger.info("Grad overflow on iteration: %s", self.cur_iter)
logger.info("Using static loss scale of: %s", self.cur_scale)
self.cur_iter += 1
return
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['cur_scale'] = self.cur_scale
state_dict['cur_iter'] = self.cur_iter
if state_dict['dynamic_loss_scale']:
state_dict['last_overflow_iter'] = self.last_overflow_iter
state_dict['scale_factor'] = self.scale_factor
state_dict['scale_window'] = self.scale_window
state_dict[OPTIMIZER_STATE_DICT] = self.optimizer.state_dict()
state_dict['fp32_groups_flat'] = self.fp32_groups_flat
state_dict[CLIP_GRAD] = self.clip_grad
return state_dict
# Refresh fp32 master params from fp16 copies
def refresh_fp32_params(self):
for current, saved in zip(self.fp32_groups_flat, self.fp16_groups_flat):
current.data.copy_(saved.data)
def load_state_dict(self, state_dict, load_optimizer_states=True):
"""
Loads a state_dict created by an earlier call to state_dict().
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
whose parameters in turn came from ``model``, it is expected that the user
will call ``model.load_state_dict()`` before
``fp16_optimizer_instance.load_state_dict()`` is called.
Example::
model = torch.nn.Linear(D_in, D_out).to(get_accelerator().device_name()).half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
checkpoint = torch.load("saved.pth")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
"""
# I think it should actually be ok to reload the optimizer before the model.
self.dynamic_loss_scale = state_dict['dynamic_loss_scale']
self.cur_scale = state_dict['cur_scale']
self.cur_iter = state_dict['cur_iter']
if state_dict['dynamic_loss_scale']:
self.last_overflow_iter = state_dict['last_overflow_iter']
self.scale_factor = state_dict['scale_factor']
self.scale_window = state_dict['scale_window']
if load_optimizer_states:
self.optimizer.load_state_dict(state_dict[OPTIMIZER_STATE_DICT])
self.clip_grad = state_dict[CLIP_GRAD]
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
# The optimizer's hyperparameters and internal buffers are also up to date.
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
# out of date. There are two options.
# 1: Refresh the master params from the model's fp16 params.
# This requires less storage but incurs precision loss.
# 2: Save and restore the fp32 master copies separately.
# We choose option 2.
#
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
# of their associated parameters, because it's possible those buffers might not exist yet in
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
# constructed in the same way as the one whose state_dict we are loading, the same master params
# are guaranteed to exist, so we can just copy_() from the saved master params.
for current, saved in zip(self.fp32_groups_flat, state_dict['fp32_groups_flat']):
current.data.copy_(saved.data)
def __repr__(self):
return repr(self.optimizer)
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
def _get_loss_scale(self):
if self.custom_loss_scaler:
return self.external_loss_scale
else:
return self.cur_scale
def _set_loss_scale(self, value):
self.loss_scaler.cur_scale = value
loss_scale = property(_get_loss_scale, _set_loss_scale)