peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/quantize.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import math | |
from deepspeed.utils import logger | |
from deepspeed.ops.quantizer import ds_quantizer | |
TWO_D_PARAMS = 6 | |
class Quantizer(object): | |
def __init__(self, | |
q_groups=1, | |
q_mixed_fp16=False, | |
q_change_ratio=0.01, | |
q_type=0, | |
q_rounding=0, | |
q_verbose=False, | |
q_eigenvalue=False, | |
use_quantizer_kernel=False, | |
layer_num=0): | |
self.q_groups = q_groups | |
self.q_mixed_fp16 = q_mixed_fp16 | |
self.q_change_ratio = q_change_ratio | |
self.q_type = q_type | |
self.qsteps = 0 | |
self.quantize_real_ratio = 1.000 | |
self.q_verbose = q_verbose | |
self.q_eigenvalue = q_eigenvalue | |
self.use_quantizer_kernel = use_quantizer_kernel | |
self.q_rounding = q_rounding | |
self.layer_num = layer_num | |
def any_precision_switch(self): | |
# Temporary disabled functionality | |
if self.layer_num == 0: | |
return True | |
result = False | |
for index in range(self.layer_num): | |
if self.q_start_bits[index] != self.q_target_bits: | |
next_step = self.qsteps + (TWO_D_PARAMS * (self.layer_num if self.layer_num != 0 else 1)) | |
if next_step >= self.q_period[index]: | |
result = True | |
return result | |
def quantize(self, parameter_group, overflow, eigenvalue_enabled, block_eigenvalue={}): | |
if overflow and not eigenvalue_enabled: | |
return | |
self.step() | |
self.update_fp16_ratio() | |
for i in range(len(parameter_group)): | |
for p in parameter_group[i]: | |
if len(p.size()) > 1 and hasattr(p, "start_bits") and p.start_bits: | |
param_id = id(p) | |
if block_eigenvalue is None: | |
eigenvalue, layer_id = None, 0 | |
else: | |
eigenvalue, layer_id = block_eigenvalue[param_id] if param_id in block_eigenvalue else (None, | |
0) | |
if eigenvalue is not None: | |
factor = 1 + math.floor(eigenvalue * 4) | |
p.data = self.compute_quantization(p.data, layer_id, factor) | |
else: | |
p.data = self.compute_quantization(p, layer_id) | |
def step(self): | |
self.qsteps += 1 | |
def quantize_highbit(self, inputs, num_bits): | |
q_range = 2**num_bits | |
input_flat = inputs.reshape(self.q_groups, -1) | |
g_min = input_flat.amin(dim=-1, keepdim=True) | |
g_max = input_flat.amax(dim=-1, keepdim=True) | |
# Random number generator (Uniform) | |
if self.q_rounding == 'nearest': | |
p = 0. | |
else: | |
p = input_flat.new(input_flat.shape).uniform_(-0.5, 0.5) | |
if self.q_type == 'symmetric': | |
scale = 2 * torch.max(torch.abs(g_min), torch.abs(g_max)) / q_range | |
zero_point = 0. | |
input_flat = (input_flat / scale + p).round().clamp(-(q_range >> 1), (q_range >> 1) - 1) * scale | |
elif self.q_type == 'asymmetric': | |
scale = (g_max - g_min) / q_range | |
zero_point = (g_min / scale).round() * scale | |
input_flat = ((input_flat - zero_point) / scale + p).round().clamp(0, (q_range - 1)) * scale + zero_point | |
output = input_flat.reshape(inputs.shape).contiguous() | |
return output | |
def quantize_tenary(self, inputs): | |
input_flat = inputs.reshape(self.q_groups, -1) | |
n = input_flat.shape[1] | |
m = input_flat.norm(p=1, dim=1).div(n) | |
thres = (0.7 * m).view(-1, 1) #.expand_as(input_flat) | |
pos = (input_flat > thres).type(inputs.type()) | |
neg = (input_flat < -thres).type(inputs.type()) | |
mask = (input_flat.abs() > thres).type(inputs.type()) | |
alpha = ((mask * input_flat).abs().sum(dim=1) / mask.sum(dim=1)).view(-1, 1) | |
output = alpha * pos - alpha * neg | |
output = output.reshape(inputs.shape).contiguous() | |
return output | |
def quantize_binary(self, inputs): | |
input_flat = inputs.reshape(self.q_groups, -1) | |
n = input_flat.shape[1] | |
m = input_flat.norm(p=1, dim=1, keepdim=True).div(n) | |
output = input_flat.sign().mul(m) | |
output = output.reshape(inputs.shape).contiguous() | |
return output | |
def mixed_fp16_quantize(self, input, input_q, index): | |
if self.q_mixed_fp16 and self.q_start_bits[index] >= (self.q_target_bits - 1): | |
input_q = input * self.quantize_real_ratio + (1 - self.quantize_real_ratio) * input_q | |
return input_q | |
return input_q | |
def compute_quantization(self, input, index=0, factor=1): | |
# fixing the quantization bits based on the training steps | |
# when reducing 1 bit at each period, we increase the period | |
# to go slowly toward the target quantization bits | |
# the period and starting bit can be configured | |
if input.start_bits != input.target_bits: | |
if self.qsteps >= input.q_period: | |
self.quantize_real_ratio = 1.0 | |
input.q_period <<= 1 | |
input.q_period *= factor | |
input.start_bits -= 1 | |
if self.q_verbose: | |
logger.info( | |
f'Quantization settings: current bit-precision = {input.start_bits}, step = {self.qsteps}, quantization period = {input.q_period}, index = {index}' | |
) | |
assert (input.start_bits >= input.target_bits), \ | |
'Quantization bit is lower than target precision bits!' | |
if self.use_quantizer_kernel: | |
if input.start_bits <= 2: | |
raise ValueError('Quantization bit is too low, please do it without quantization kernel!') | |
input_q = ds_quantizer(input.data.clone(), | |
self.q_groups, | |
input.start_bits, | |
asym=False if self.q_type == 'symmetric' else True, | |
sr=False if self.q_rounding == 'nearest_neighbor' else True) | |
else: | |
if input.start_bits >= 3: | |
input_flat = self.quantize_highbit(input.data, input.start_bits) | |
elif input.start_bits == 2: | |
assert self.q_type == 'symmetric', 'Quantization type is not symmetric!' | |
assert self.q_rounding == 'nearest', 'Quantization rounding is not nearest_neighbor!' | |
input_flat = self.quantize_tenary(input.data) | |
elif input.start_bits == 1: | |
assert self.q_type == 'symmetric', 'Quantization type is not symmetric!' | |
assert self.q_rounding == 'nearest', 'Quantization rounding is not nearest_neighbor!' | |
input_flat = self.quantize_binary(input.data) | |
if self.use_quantizer_kernel: | |
return self.mixed_fp16_quantize(input.data, input_q, index) | |
else: | |
if self.q_mixed_fp16 and input.start_bits >= input.target_bits - 1: | |
input_flat = self.quantize_real_ratio * input.data + \ | |
(1 - self.quantize_real_ratio) * input_flat | |
return input_flat | |
def update_fp16_ratio(self): | |
if self.q_mixed_fp16: | |
if self.quantize_real_ratio > 0: | |
self.quantize_real_ratio -= self.q_change_ratio | |
else: | |
self.quantize_real_ratio = 0.000 | |