peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/sparse_tensor.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
""" | |
Implementation of a compressed sparse tensor. Similar in | |
functionality to TensorFlow's IndexedSlices implementation. | |
""" | |
import torch | |
class SparseTensor(object): | |
""" Compressed Sparse Tensor """ | |
def __init__(self, dense_tensor=None): | |
self.orig_dense_tensor = dense_tensor | |
self.dtype = self.orig_dense_tensor.dtype | |
self.is_sparse = dense_tensor.is_sparse | |
if dense_tensor is not None: | |
if dense_tensor.is_sparse: | |
dense_tensor = dense_tensor.coalesce() | |
self.indices = dense_tensor.indices().flatten() | |
self.values = dense_tensor.values() | |
else: | |
result = torch.sum(dense_tensor, dim=1) | |
self.indices = result.nonzero().flatten() | |
self.values = dense_tensor[self.indices] | |
self.dense_size = list(dense_tensor.size()) | |
else: | |
self.indices = None | |
self.values = None | |
self.dense_size = None | |
def to_coo_tensor(self): | |
return torch.sparse_coo_tensor(self.indices.unsqueeze(0), self.values, self.dense_size) | |
def type(): | |
return "deepspeed.SparseTensor" | |
def to_dense(self): | |
it = self.indices.unsqueeze(1) | |
full_indices = torch.cat([it for _ in range(self.dense_size[1])], dim=1) | |
return self.values.new_zeros(self.dense_size).scatter_add_(0, full_indices, self.values) | |
def sparse_size(self): | |
index_size = list(self.indices.size()) | |
index_size = index_size[0] | |
value_size = list(self.values.size()) | |
value_size = value_size[0] * value_size[1] | |
dense_size = self.dense_size[0] * self.dense_size[1] | |
return index_size + value_size, dense_size | |
def add(self, b): | |
assert self.dense_size == b.dense_size | |
self.indices = torch.cat([self.indices, b.indices]) | |
self.values = torch.cat([self.values, b.values]) | |
def __str__(self): | |
sparse_size, dense_size = self.sparse_size() | |
return "DeepSpeed.SparseTensor(indices_size={}, values_size={}, " \ | |
"dense_size={}, device={}, reduction_factor={})".format( | |
self.indices.size(), self.values.size(), self.dense_size, | |
self.indices.get_device(), dense_size / sparse_size | |
) | |
def __repr__(self): | |
return self.__str__() | |