peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pyarrow
/_compute.pyx
# Licensed to the Apache Software Foundation (ASF) under one | |
# or more contributor license agreements. See the NOTICE file | |
# distributed with this work for additional information | |
# regarding copyright ownership. The ASF licenses this file | |
# to you under the Apache License, Version 2.0 (the | |
# "License"); you may not use this file except in compliance | |
# with the License. You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, | |
# software distributed under the License is distributed on an | |
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
# KIND, either express or implied. See the License for the | |
# specific language governing permissions and limitations | |
# under the License. | |
# cython: language_level = 3 | |
import sys | |
from cpython.object cimport Py_LT, Py_EQ, Py_GT, Py_LE, Py_NE, Py_GE | |
from cython.operator cimport dereference as deref | |
from collections import namedtuple | |
from pyarrow.lib import frombytes, tobytes, ArrowInvalid | |
from pyarrow.lib cimport * | |
from pyarrow.includes.common cimport * | |
from pyarrow.includes.libarrow cimport * | |
import pyarrow.lib as lib | |
from pyarrow.util import _DEPR_MSG | |
from libcpp cimport bool as c_bool | |
import inspect | |
import numpy as np | |
import warnings | |
__pas = None | |
_substrait_msg = ( | |
"The pyarrow installation is not built with support for Substrait." | |
) | |
def _pas(): | |
global __pas | |
if __pas is None: | |
try: | |
import pyarrow.substrait as pas | |
__pas = pas | |
except ImportError: | |
raise ImportError(_substrait_msg) | |
return __pas | |
def _forbid_instantiation(klass, subclasses_instead=True): | |
msg = '{} is an abstract class thus cannot be initialized.'.format( | |
klass.__name__ | |
) | |
if subclasses_instead: | |
subclasses = [cls.__name__ for cls in klass.__subclasses__] | |
msg += ' Use one of the subclasses instead: {}'.format( | |
', '.join(subclasses) | |
) | |
raise TypeError(msg) | |
cdef wrap_scalar_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ scalar Function in a ScalarFunction object. | |
""" | |
cdef ScalarFunction func = ScalarFunction.__new__(ScalarFunction) | |
func.init(sp_func) | |
return func | |
cdef wrap_vector_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ vector Function in a VectorFunction object. | |
""" | |
cdef VectorFunction func = VectorFunction.__new__(VectorFunction) | |
func.init(sp_func) | |
return func | |
cdef wrap_scalar_aggregate_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ aggregate Function in a ScalarAggregateFunction object. | |
""" | |
cdef ScalarAggregateFunction func = \ | |
ScalarAggregateFunction.__new__(ScalarAggregateFunction) | |
func.init(sp_func) | |
return func | |
cdef wrap_hash_aggregate_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ aggregate Function in a HashAggregateFunction object. | |
""" | |
cdef HashAggregateFunction func = \ | |
HashAggregateFunction.__new__(HashAggregateFunction) | |
func.init(sp_func) | |
return func | |
cdef wrap_meta_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ meta Function in a MetaFunction object. | |
""" | |
cdef MetaFunction func = MetaFunction.__new__(MetaFunction) | |
func.init(sp_func) | |
return func | |
cdef wrap_function(const shared_ptr[CFunction]& sp_func): | |
""" | |
Wrap a C++ Function in a Function object. | |
This dispatches to specialized wrappers depending on the function kind. | |
""" | |
if sp_func.get() == NULL: | |
raise ValueError("Function was NULL") | |
cdef FunctionKind c_kind = sp_func.get().kind() | |
if c_kind == FunctionKind_SCALAR: | |
return wrap_scalar_function(sp_func) | |
elif c_kind == FunctionKind_VECTOR: | |
return wrap_vector_function(sp_func) | |
elif c_kind == FunctionKind_SCALAR_AGGREGATE: | |
return wrap_scalar_aggregate_function(sp_func) | |
elif c_kind == FunctionKind_HASH_AGGREGATE: | |
return wrap_hash_aggregate_function(sp_func) | |
elif c_kind == FunctionKind_META: | |
return wrap_meta_function(sp_func) | |
else: | |
raise NotImplementedError("Unknown Function::Kind") | |
cdef wrap_scalar_kernel(const CScalarKernel* c_kernel): | |
if c_kernel == NULL: | |
raise ValueError("Kernel was NULL") | |
cdef ScalarKernel kernel = ScalarKernel.__new__(ScalarKernel) | |
kernel.init(c_kernel) | |
return kernel | |
cdef wrap_vector_kernel(const CVectorKernel* c_kernel): | |
if c_kernel == NULL: | |
raise ValueError("Kernel was NULL") | |
cdef VectorKernel kernel = VectorKernel.__new__(VectorKernel) | |
kernel.init(c_kernel) | |
return kernel | |
cdef wrap_scalar_aggregate_kernel(const CScalarAggregateKernel* c_kernel): | |
if c_kernel == NULL: | |
raise ValueError("Kernel was NULL") | |
cdef ScalarAggregateKernel kernel = \ | |
ScalarAggregateKernel.__new__(ScalarAggregateKernel) | |
kernel.init(c_kernel) | |
return kernel | |
cdef wrap_hash_aggregate_kernel(const CHashAggregateKernel* c_kernel): | |
if c_kernel == NULL: | |
raise ValueError("Kernel was NULL") | |
cdef HashAggregateKernel kernel = \ | |
HashAggregateKernel.__new__(HashAggregateKernel) | |
kernel.init(c_kernel) | |
return kernel | |
cdef class Kernel(_Weakrefable): | |
""" | |
A kernel object. | |
Kernels handle the execution of a Function for a certain signature. | |
""" | |
def __init__(self): | |
raise TypeError("Do not call {}'s constructor directly" | |
.format(self.__class__.__name__)) | |
cdef class ScalarKernel(Kernel): | |
cdef const CScalarKernel* kernel | |
cdef void init(self, const CScalarKernel* kernel) except *: | |
self.kernel = kernel | |
def __repr__(self): | |
return ("ScalarKernel<{}>" | |
.format(frombytes(self.kernel.signature.get().ToString()))) | |
cdef class VectorKernel(Kernel): | |
cdef const CVectorKernel* kernel | |
cdef void init(self, const CVectorKernel* kernel) except *: | |
self.kernel = kernel | |
def __repr__(self): | |
return ("VectorKernel<{}>" | |
.format(frombytes(self.kernel.signature.get().ToString()))) | |
cdef class ScalarAggregateKernel(Kernel): | |
cdef const CScalarAggregateKernel* kernel | |
cdef void init(self, const CScalarAggregateKernel* kernel) except *: | |
self.kernel = kernel | |
def __repr__(self): | |
return ("ScalarAggregateKernel<{}>" | |
.format(frombytes(self.kernel.signature.get().ToString()))) | |
cdef class HashAggregateKernel(Kernel): | |
cdef const CHashAggregateKernel* kernel | |
cdef void init(self, const CHashAggregateKernel* kernel) except *: | |
self.kernel = kernel | |
def __repr__(self): | |
return ("HashAggregateKernel<{}>" | |
.format(frombytes(self.kernel.signature.get().ToString()))) | |
FunctionDoc = namedtuple( | |
"FunctionDoc", | |
("summary", "description", "arg_names", "options_class", | |
"options_required")) | |
cdef class Function(_Weakrefable): | |
""" | |
A compute function. | |
A function implements a certain logical computation over a range of | |
possible input signatures. Each signature accepts a range of input | |
types and is implemented by a given Kernel. | |
Functions can be of different kinds: | |
* "scalar" functions apply an item-wise computation over all items | |
of their inputs. Each item in the output only depends on the values | |
of the inputs at the same position. Examples: addition, comparisons, | |
string predicates... | |
* "vector" functions apply a collection-wise computation, such that | |
each item in the output may depend on the values of several items | |
in each input. Examples: dictionary encoding, sorting, extracting | |
unique values... | |
* "scalar_aggregate" functions reduce the dimensionality of the inputs by | |
applying a reduction function. Examples: sum, min_max, mode... | |
* "hash_aggregate" functions apply a reduction function to an input | |
subdivided by grouping criteria. They may not be directly called. | |
Examples: hash_sum, hash_min_max... | |
* "meta" functions dispatch to other functions. | |
""" | |
cdef: | |
shared_ptr[CFunction] sp_func | |
CFunction* base_func | |
_kind_map = { | |
FunctionKind_SCALAR: "scalar", | |
FunctionKind_VECTOR: "vector", | |
FunctionKind_SCALAR_AGGREGATE: "scalar_aggregate", | |
FunctionKind_HASH_AGGREGATE: "hash_aggregate", | |
FunctionKind_META: "meta", | |
} | |
def __init__(self): | |
raise TypeError("Do not call {}'s constructor directly" | |
.format(self.__class__.__name__)) | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
self.sp_func = sp_func | |
self.base_func = sp_func.get() | |
def __repr__(self): | |
return ("arrow.compute.Function<name={}, kind={}, " | |
"arity={}, num_kernels={}>" | |
.format(self.name, self.kind, self.arity, self.num_kernels)) | |
def __reduce__(self): | |
# Reduction uses the global registry | |
return get_function, (self.name,) | |
def name(self): | |
""" | |
The function name. | |
""" | |
return frombytes(self.base_func.name()) | |
def arity(self): | |
""" | |
The function arity. | |
If Ellipsis (i.e. `...`) is returned, the function takes a variable | |
number of arguments. | |
""" | |
cdef CArity arity = self.base_func.arity() | |
if arity.is_varargs: | |
return ... | |
else: | |
return arity.num_args | |
def kind(self): | |
""" | |
The function kind. | |
""" | |
cdef FunctionKind c_kind = self.base_func.kind() | |
try: | |
return self._kind_map[c_kind] | |
except KeyError: | |
raise NotImplementedError("Unknown Function::Kind") | |
def _doc(self): | |
""" | |
The C++-like function documentation (for internal use). | |
""" | |
cdef CFunctionDoc c_doc = self.base_func.doc() | |
return FunctionDoc(frombytes(c_doc.summary), | |
frombytes(c_doc.description), | |
[frombytes(s) for s in c_doc.arg_names], | |
frombytes(c_doc.options_class), | |
c_doc.options_required) | |
def num_kernels(self): | |
""" | |
The number of kernels implementing this function. | |
""" | |
return self.base_func.num_kernels() | |
def call(self, args, FunctionOptions options=None, | |
MemoryPool memory_pool=None, length=None): | |
""" | |
Call the function on the given arguments. | |
Parameters | |
---------- | |
args : iterable | |
The arguments to pass to the function. Accepted types depend | |
on the specific function. | |
options : FunctionOptions, optional | |
Options instance for executing this function. This should have | |
the right concrete options type. | |
memory_pool : pyarrow.MemoryPool, optional | |
If not passed, will allocate memory from the default memory pool. | |
length : int, optional | |
Batch size for execution, for nullary (no argument) functions. If | |
not passed, will be inferred from passed data. | |
""" | |
cdef: | |
const CFunctionOptions* c_options = NULL | |
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool) | |
CExecContext c_exec_ctx = CExecContext(pool) | |
CExecBatch c_batch | |
CDatum result | |
_pack_compute_args(args, &c_batch.values) | |
if options is not None: | |
c_options = options.get_options() | |
if length is not None: | |
c_batch.length = length | |
with nogil: | |
result = GetResultValue( | |
self.base_func.Execute(c_batch, c_options, &c_exec_ctx) | |
) | |
else: | |
with nogil: | |
result = GetResultValue( | |
self.base_func.Execute(c_batch.values, c_options, | |
&c_exec_ctx) | |
) | |
return wrap_datum(result) | |
cdef class ScalarFunction(Function): | |
cdef const CScalarFunction* func | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
Function.init(self, sp_func) | |
self.func = <const CScalarFunction*> sp_func.get() | |
def kernels(self): | |
""" | |
The kernels implementing this function. | |
""" | |
cdef vector[const CScalarKernel*] kernels = self.func.kernels() | |
return [wrap_scalar_kernel(k) for k in kernels] | |
cdef class VectorFunction(Function): | |
cdef const CVectorFunction* func | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
Function.init(self, sp_func) | |
self.func = <const CVectorFunction*> sp_func.get() | |
def kernels(self): | |
""" | |
The kernels implementing this function. | |
""" | |
cdef vector[const CVectorKernel*] kernels = self.func.kernels() | |
return [wrap_vector_kernel(k) for k in kernels] | |
cdef class ScalarAggregateFunction(Function): | |
cdef const CScalarAggregateFunction* func | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
Function.init(self, sp_func) | |
self.func = <const CScalarAggregateFunction*> sp_func.get() | |
def kernels(self): | |
""" | |
The kernels implementing this function. | |
""" | |
cdef vector[const CScalarAggregateKernel*] kernels = \ | |
self.func.kernels() | |
return [wrap_scalar_aggregate_kernel(k) for k in kernels] | |
cdef class HashAggregateFunction(Function): | |
cdef const CHashAggregateFunction* func | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
Function.init(self, sp_func) | |
self.func = <const CHashAggregateFunction*> sp_func.get() | |
def kernels(self): | |
""" | |
The kernels implementing this function. | |
""" | |
cdef vector[const CHashAggregateKernel*] kernels = self.func.kernels() | |
return [wrap_hash_aggregate_kernel(k) for k in kernels] | |
cdef class MetaFunction(Function): | |
cdef const CMetaFunction* func | |
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *: | |
Function.init(self, sp_func) | |
self.func = <const CMetaFunction*> sp_func.get() | |
# Since num_kernels is exposed, also expose a kernels property | |
def kernels(self): | |
""" | |
The kernels implementing this function. | |
""" | |
return [] | |
cdef _pack_compute_args(object values, vector[CDatum]* out): | |
for val in values: | |
if isinstance(val, (list, np.ndarray)): | |
val = lib.asarray(val) | |
if isinstance(val, Array): | |
out.push_back(CDatum((<Array> val).sp_array)) | |
continue | |
elif isinstance(val, ChunkedArray): | |
out.push_back(CDatum((<ChunkedArray> val).sp_chunked_array)) | |
continue | |
elif isinstance(val, Scalar): | |
out.push_back(CDatum((<Scalar> val).unwrap())) | |
continue | |
elif isinstance(val, RecordBatch): | |
out.push_back(CDatum((<RecordBatch> val).sp_batch)) | |
continue | |
elif isinstance(val, Table): | |
out.push_back(CDatum((<Table> val).sp_table)) | |
continue | |
else: | |
# Is it a Python scalar? | |
try: | |
scal = lib.scalar(val) | |
except Exception: | |
# Raise dedicated error below | |
pass | |
else: | |
out.push_back(CDatum((<Scalar> scal).unwrap())) | |
continue | |
raise TypeError(f"Got unexpected argument type {type(val)} " | |
"for compute function") | |
cdef class FunctionRegistry(_Weakrefable): | |
cdef CFunctionRegistry* registry | |
def __init__(self): | |
self.registry = GetFunctionRegistry() | |
def list_functions(self): | |
""" | |
Return all function names in the registry. | |
""" | |
cdef vector[c_string] names = self.registry.GetFunctionNames() | |
return [frombytes(name) for name in names] | |
def get_function(self, name): | |
""" | |
Look up a function by name in the registry. | |
Parameters | |
---------- | |
name : str | |
The name of the function to lookup | |
""" | |
cdef: | |
c_string c_name = tobytes(name) | |
shared_ptr[CFunction] func | |
with nogil: | |
func = GetResultValue(self.registry.GetFunction(c_name)) | |
return wrap_function(func) | |
cdef FunctionRegistry _global_func_registry = FunctionRegistry() | |
def function_registry(): | |
return _global_func_registry | |
def get_function(name): | |
""" | |
Get a function by name. | |
The function is looked up in the global registry | |
(as returned by `function_registry()`). | |
Parameters | |
---------- | |
name : str | |
The name of the function to lookup | |
""" | |
return _global_func_registry.get_function(name) | |
def list_functions(): | |
""" | |
Return all function names in the global registry. | |
""" | |
return _global_func_registry.list_functions() | |
def call_function(name, args, options=None, memory_pool=None, length=None): | |
""" | |
Call a named function. | |
The function is looked up in the global registry | |
(as returned by `function_registry()`). | |
Parameters | |
---------- | |
name : str | |
The name of the function to call. | |
args : list | |
The arguments to the function. | |
options : optional | |
options provided to the function. | |
memory_pool : MemoryPool, optional | |
memory pool to use for allocations during function execution. | |
length : int, optional | |
Batch size for execution, for nullary (no argument) functions. If not | |
passed, inferred from data. | |
""" | |
func = _global_func_registry.get_function(name) | |
return func.call(args, options=options, memory_pool=memory_pool, | |
length=length) | |
cdef class FunctionOptions(_Weakrefable): | |
__slots__ = () # avoid mistakingly creating attributes | |
cdef const CFunctionOptions* get_options(self) except NULL: | |
return self.wrapped.get() | |
cdef void init(self, const shared_ptr[CFunctionOptions]& sp): | |
self.wrapped = sp | |
cdef inline shared_ptr[CFunctionOptions] unwrap(self): | |
return self.wrapped | |
def serialize(self): | |
cdef: | |
CResult[shared_ptr[CBuffer]] res = self.get_options().Serialize() | |
shared_ptr[CBuffer] c_buf = GetResultValue(res) | |
return pyarrow_wrap_buffer(c_buf) | |
def deserialize(buf): | |
""" | |
Deserialize options for a function. | |
Parameters | |
---------- | |
buf : Buffer | |
The buffer containing the data to deserialize. | |
""" | |
cdef: | |
shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf) | |
CResult[unique_ptr[CFunctionOptions]] maybe_options = \ | |
DeserializeFunctionOptions(deref(c_buf)) | |
shared_ptr[CFunctionOptions] c_options | |
c_options = to_shared(GetResultValue(move(maybe_options))) | |
type_name = frombytes(c_options.get().options_type().type_name()) | |
module = globals() | |
if type_name not in module: | |
raise ValueError(f'Cannot deserialize "{type_name}"') | |
klass = module[type_name] | |
options = klass.__new__(klass) | |
(<FunctionOptions> options).init(c_options) | |
return options | |
def __repr__(self): | |
type_name = self.__class__.__name__ | |
# Remove {} so we can use our own braces | |
string_repr = frombytes(self.get_options().ToString())[1:-1] | |
return f"{type_name}({string_repr})" | |
def __eq__(self, FunctionOptions other): | |
return self.get_options().Equals(deref(other.get_options())) | |
def _raise_invalid_function_option(value, description, *, | |
exception_class=ValueError): | |
raise exception_class(f"\"{value}\" is not a valid {description}") | |
# NOTE: | |
# To properly expose the constructor signature of FunctionOptions | |
# subclasses, we use a two-level inheritance: | |
# 1. a C extension class that implements option validation and setting | |
# (won't expose function signatures because of | |
# https://github.com/cython/cython/issues/3873) | |
# 2. a Python derived class that implements the constructor | |
cdef class _CastOptions(FunctionOptions): | |
cdef CCastOptions* options | |
cdef void init(self, const shared_ptr[CFunctionOptions]& sp): | |
FunctionOptions.init(self, sp) | |
self.options = <CCastOptions*> self.wrapped.get() | |
def _set_options(self, DataType target_type, allow_int_overflow, | |
allow_time_truncate, allow_time_overflow, | |
allow_decimal_truncate, allow_float_truncate, | |
allow_invalid_utf8): | |
cdef: | |
shared_ptr[CCastOptions] wrapped = make_shared[CCastOptions]() | |
self.init(<shared_ptr[CFunctionOptions]> wrapped) | |
self._set_type(target_type) | |
if allow_int_overflow is not None: | |
self.allow_int_overflow = allow_int_overflow | |
if allow_time_truncate is not None: | |
self.allow_time_truncate = allow_time_truncate | |
if allow_time_overflow is not None: | |
self.allow_time_overflow = allow_time_overflow | |
if allow_decimal_truncate is not None: | |
self.allow_decimal_truncate = allow_decimal_truncate | |
if allow_float_truncate is not None: | |
self.allow_float_truncate = allow_float_truncate | |
if allow_invalid_utf8 is not None: | |
self.allow_invalid_utf8 = allow_invalid_utf8 | |
def _set_type(self, target_type=None): | |
if target_type is not None: | |
deref(self.options).to_type = \ | |
(<DataType> ensure_type(target_type)).sp_type | |
def _set_safe(self): | |
self.init(shared_ptr[CFunctionOptions]( | |
new CCastOptions(CCastOptions.Safe()))) | |
def _set_unsafe(self): | |
self.init(shared_ptr[CFunctionOptions]( | |
new CCastOptions(CCastOptions.Unsafe()))) | |
def is_safe(self): | |
return not (deref(self.options).allow_int_overflow or | |
deref(self.options).allow_time_truncate or | |
deref(self.options).allow_time_overflow or | |
deref(self.options).allow_decimal_truncate or | |
deref(self.options).allow_float_truncate or | |
deref(self.options).allow_invalid_utf8) | |
def allow_int_overflow(self): | |
return deref(self.options).allow_int_overflow | |
def allow_int_overflow(self, c_bool flag): | |
deref(self.options).allow_int_overflow = flag | |
def allow_time_truncate(self): | |
return deref(self.options).allow_time_truncate | |
def allow_time_truncate(self, c_bool flag): | |
deref(self.options).allow_time_truncate = flag | |
def allow_time_overflow(self): | |
return deref(self.options).allow_time_overflow | |
def allow_time_overflow(self, c_bool flag): | |
deref(self.options).allow_time_overflow = flag | |
def allow_decimal_truncate(self): | |
return deref(self.options).allow_decimal_truncate | |
def allow_decimal_truncate(self, c_bool flag): | |
deref(self.options).allow_decimal_truncate = flag | |
def allow_float_truncate(self): | |
return deref(self.options).allow_float_truncate | |
def allow_float_truncate(self, c_bool flag): | |
deref(self.options).allow_float_truncate = flag | |
def allow_invalid_utf8(self): | |
return deref(self.options).allow_invalid_utf8 | |
def allow_invalid_utf8(self, c_bool flag): | |
deref(self.options).allow_invalid_utf8 = flag | |
class CastOptions(_CastOptions): | |
""" | |
Options for the `cast` function. | |
Parameters | |
---------- | |
target_type : DataType, optional | |
The PyArrow type to cast to. | |
allow_int_overflow : bool, default False | |
Whether integer overflow is allowed when casting. | |
allow_time_truncate : bool, default False | |
Whether time precision truncation is allowed when casting. | |
allow_time_overflow : bool, default False | |
Whether date/time range overflow is allowed when casting. | |
allow_decimal_truncate : bool, default False | |
Whether decimal precision truncation is allowed when casting. | |
allow_float_truncate : bool, default False | |
Whether floating-point precision truncation is allowed when casting. | |
allow_invalid_utf8 : bool, default False | |
Whether producing invalid utf8 data is allowed when casting. | |
""" | |
def __init__(self, target_type=None, *, allow_int_overflow=None, | |
allow_time_truncate=None, allow_time_overflow=None, | |
allow_decimal_truncate=None, allow_float_truncate=None, | |
allow_invalid_utf8=None): | |
self._set_options(target_type, allow_int_overflow, allow_time_truncate, | |
allow_time_overflow, allow_decimal_truncate, | |
allow_float_truncate, allow_invalid_utf8) | |
def safe(target_type=None): | |
"""" | |
Create a CastOptions for a safe cast. | |
Parameters | |
---------- | |
target_type : optional | |
Target cast type for the safe cast. | |
""" | |
self = CastOptions() | |
self._set_safe() | |
self._set_type(target_type) | |
return self | |
def unsafe(target_type=None): | |
"""" | |
Create a CastOptions for an unsafe cast. | |
Parameters | |
---------- | |
target_type : optional | |
Target cast type for the unsafe cast. | |
""" | |
self = CastOptions() | |
self._set_unsafe() | |
self._set_type(target_type) | |
return self | |
def _skip_nulls_doc(): | |
# (note the weird indent because of how the string is inserted | |
# by callers) | |
return """skip_nulls : bool, default True | |
Whether to skip (ignore) nulls in the input. | |
If False, any null in the input forces the output to null. | |
""" | |
def _min_count_doc(*, default): | |
return f"""min_count : int, default {default} | |
Minimum number of non-null values in the input. If the number | |
of non-null values is below `min_count`, the output is null. | |
""" | |
cdef class _ElementWiseAggregateOptions(FunctionOptions): | |
def _set_options(self, skip_nulls): | |
self.wrapped.reset(new CElementWiseAggregateOptions(skip_nulls)) | |
class ElementWiseAggregateOptions(_ElementWiseAggregateOptions): | |
__doc__ = f""" | |
Options for element-wise aggregate functions. | |
Parameters | |
---------- | |
{_skip_nulls_doc()} | |
""" | |
def __init__(self, *, skip_nulls=True): | |
self._set_options(skip_nulls) | |
cdef CRoundMode unwrap_round_mode(round_mode) except *: | |
if round_mode == "down": | |
return CRoundMode_DOWN | |
elif round_mode == "up": | |
return CRoundMode_UP | |
elif round_mode == "towards_zero": | |
return CRoundMode_TOWARDS_ZERO | |
elif round_mode == "towards_infinity": | |
return CRoundMode_TOWARDS_INFINITY | |
elif round_mode == "half_down": | |
return CRoundMode_HALF_DOWN | |
elif round_mode == "half_up": | |
return CRoundMode_HALF_UP | |
elif round_mode == "half_towards_zero": | |
return CRoundMode_HALF_TOWARDS_ZERO | |
elif round_mode == "half_towards_infinity": | |
return CRoundMode_HALF_TOWARDS_INFINITY | |
elif round_mode == "half_to_even": | |
return CRoundMode_HALF_TO_EVEN | |
elif round_mode == "half_to_odd": | |
return CRoundMode_HALF_TO_ODD | |
_raise_invalid_function_option(round_mode, "round mode") | |
cdef class _RoundOptions(FunctionOptions): | |
def _set_options(self, ndigits, round_mode): | |
self.wrapped.reset( | |
new CRoundOptions(ndigits, unwrap_round_mode(round_mode)) | |
) | |
class RoundOptions(_RoundOptions): | |
""" | |
Options for rounding numbers. | |
Parameters | |
---------- | |
ndigits : int, default 0 | |
Number of fractional digits to round to. | |
round_mode : str, default "half_to_even" | |
Rounding and tie-breaking mode. | |
Accepted values are "down", "up", "towards_zero", "towards_infinity", | |
"half_down", "half_up", "half_towards_zero", "half_towards_infinity", | |
"half_to_even", "half_to_odd". | |
""" | |
def __init__(self, ndigits=0, round_mode="half_to_even"): | |
self._set_options(ndigits, round_mode) | |
cdef class _RoundBinaryOptions(FunctionOptions): | |
def _set_options(self, round_mode): | |
self.wrapped.reset( | |
new CRoundBinaryOptions(unwrap_round_mode(round_mode)) | |
) | |
class RoundBinaryOptions(_RoundBinaryOptions): | |
""" | |
Options for rounding numbers when ndigits is provided by a second array | |
Parameters | |
---------- | |
round_mode : str, default "half_to_even" | |
Rounding and tie-breaking mode. | |
Accepted values are "down", "up", "towards_zero", "towards_infinity", | |
"half_down", "half_up", "half_towards_zero", "half_towards_infinity", | |
"half_to_even", "half_to_odd". | |
""" | |
def __init__(self, round_mode="half_to_even"): | |
self._set_options(round_mode) | |
cdef CCalendarUnit unwrap_round_temporal_unit(unit) except *: | |
if unit == "nanosecond": | |
return CCalendarUnit_NANOSECOND | |
elif unit == "microsecond": | |
return CCalendarUnit_MICROSECOND | |
elif unit == "millisecond": | |
return CCalendarUnit_MILLISECOND | |
elif unit == "second": | |
return CCalendarUnit_SECOND | |
elif unit == "minute": | |
return CCalendarUnit_MINUTE | |
elif unit == "hour": | |
return CCalendarUnit_HOUR | |
elif unit == "day": | |
return CCalendarUnit_DAY | |
elif unit == "week": | |
return CCalendarUnit_WEEK | |
elif unit == "month": | |
return CCalendarUnit_MONTH | |
elif unit == "quarter": | |
return CCalendarUnit_QUARTER | |
elif unit == "year": | |
return CCalendarUnit_YEAR | |
_raise_invalid_function_option(unit, "Calendar unit") | |
cdef class _RoundTemporalOptions(FunctionOptions): | |
def _set_options(self, multiple, unit, week_starts_monday, | |
ceil_is_strictly_greater, calendar_based_origin): | |
self.wrapped.reset( | |
new CRoundTemporalOptions( | |
multiple, unwrap_round_temporal_unit(unit), | |
week_starts_monday, ceil_is_strictly_greater, | |
calendar_based_origin) | |
) | |
class RoundTemporalOptions(_RoundTemporalOptions): | |
""" | |
Options for rounding temporal values. | |
Parameters | |
---------- | |
multiple : int, default 1 | |
Number of units to round to. | |
unit : str, default "day" | |
The unit in which `multiple` is expressed. | |
Accepted values are "year", "quarter", "month", "week", "day", | |
"hour", "minute", "second", "millisecond", "microsecond", | |
"nanosecond". | |
week_starts_monday : bool, default True | |
If True, weeks start on Monday; if False, on Sunday. | |
ceil_is_strictly_greater : bool, default False | |
If True, ceil returns a rounded value that is strictly greater than the | |
input. For example: ceiling 1970-01-01T00:00:00 to 3 hours would | |
yield 1970-01-01T03:00:00 if set to True and 1970-01-01T00:00:00 | |
if set to False. | |
This applies to the ceil_temporal function only. | |
calendar_based_origin : bool, default False | |
By default, the origin is 1970-01-01T00:00:00. By setting this to True, | |
rounding origin will be beginning of one less precise calendar unit. | |
E.g.: rounding to hours will use beginning of day as origin. | |
By default time is rounded to a multiple of units since | |
1970-01-01T00:00:00. By setting calendar_based_origin to true, | |
time will be rounded to number of units since the last greater | |
calendar unit. | |
For example: rounding to multiple of days since the beginning of the | |
month or to hours since the beginning of the day. | |
Exceptions: week and quarter are not used as greater units, | |
therefore days will be rounded to the beginning of the month not | |
week. Greater unit of week is a year. | |
Note that ceiling and rounding might change sorting order of an array | |
near greater unit change. For example rounding YYYY-mm-dd 23:00:00 to | |
5 hours will ceil and round to YYYY-mm-dd+1 01:00:00 and floor to | |
YYYY-mm-dd 20:00:00. On the other hand YYYY-mm-dd+1 00:00:00 will | |
ceil, round and floor to YYYY-mm-dd+1 00:00:00. This can break the | |
order of an already ordered array. | |
""" | |
def __init__(self, multiple=1, unit="day", *, week_starts_monday=True, | |
ceil_is_strictly_greater=False, | |
calendar_based_origin=False): | |
self._set_options(multiple, unit, week_starts_monday, | |
ceil_is_strictly_greater, | |
calendar_based_origin) | |
cdef class _RoundToMultipleOptions(FunctionOptions): | |
def _set_options(self, multiple, round_mode): | |
if not isinstance(multiple, Scalar): | |
try: | |
multiple = lib.scalar(multiple) | |
except Exception: | |
_raise_invalid_function_option( | |
multiple, "multiple type for RoundToMultipleOptions", | |
exception_class=TypeError) | |
self.wrapped.reset( | |
new CRoundToMultipleOptions( | |
pyarrow_unwrap_scalar(multiple), unwrap_round_mode(round_mode)) | |
) | |
class RoundToMultipleOptions(_RoundToMultipleOptions): | |
""" | |
Options for rounding numbers to a multiple. | |
Parameters | |
---------- | |
multiple : numeric scalar, default 1.0 | |
Multiple to round to. Should be a scalar of a type compatible | |
with the argument to be rounded. | |
round_mode : str, default "half_to_even" | |
Rounding and tie-breaking mode. | |
Accepted values are "down", "up", "towards_zero", "towards_infinity", | |
"half_down", "half_up", "half_towards_zero", "half_towards_infinity", | |
"half_to_even", "half_to_odd". | |
""" | |
def __init__(self, multiple=1.0, round_mode="half_to_even"): | |
self._set_options(multiple, round_mode) | |
cdef class _JoinOptions(FunctionOptions): | |
_null_handling_map = { | |
"emit_null": CJoinNullHandlingBehavior_EMIT_NULL, | |
"skip": CJoinNullHandlingBehavior_SKIP, | |
"replace": CJoinNullHandlingBehavior_REPLACE, | |
} | |
def _set_options(self, null_handling, null_replacement): | |
try: | |
self.wrapped.reset( | |
new CJoinOptions(self._null_handling_map[null_handling], | |
tobytes(null_replacement)) | |
) | |
except KeyError: | |
_raise_invalid_function_option(null_handling, "null handling") | |
class JoinOptions(_JoinOptions): | |
""" | |
Options for the `binary_join_element_wise` function. | |
Parameters | |
---------- | |
null_handling : str, default "emit_null" | |
How to handle null values in the inputs. | |
Accepted values are "emit_null", "skip", "replace". | |
null_replacement : str, default "" | |
Replacement string to emit for null inputs if `null_handling` | |
is "replace". | |
""" | |
def __init__(self, null_handling="emit_null", null_replacement=""): | |
self._set_options(null_handling, null_replacement) | |
cdef class _MatchSubstringOptions(FunctionOptions): | |
def _set_options(self, pattern, ignore_case): | |
self.wrapped.reset( | |
new CMatchSubstringOptions(tobytes(pattern), ignore_case) | |
) | |
class MatchSubstringOptions(_MatchSubstringOptions): | |
""" | |
Options for looking for a substring. | |
Parameters | |
---------- | |
pattern : str | |
Substring pattern to look for inside input values. | |
ignore_case : bool, default False | |
Whether to perform a case-insensitive match. | |
""" | |
def __init__(self, pattern, *, ignore_case=False): | |
self._set_options(pattern, ignore_case) | |
cdef class _PadOptions(FunctionOptions): | |
def _set_options(self, width, padding): | |
self.wrapped.reset(new CPadOptions(width, tobytes(padding))) | |
class PadOptions(_PadOptions): | |
""" | |
Options for padding strings. | |
Parameters | |
---------- | |
width : int | |
Desired string length. | |
padding : str, default " " | |
What to pad the string with. Should be one byte or codepoint. | |
""" | |
def __init__(self, width, padding=' '): | |
self._set_options(width, padding) | |
cdef class _TrimOptions(FunctionOptions): | |
def _set_options(self, characters): | |
self.wrapped.reset(new CTrimOptions(tobytes(characters))) | |
class TrimOptions(_TrimOptions): | |
""" | |
Options for trimming characters from strings. | |
Parameters | |
---------- | |
characters : str | |
Individual characters to be trimmed from the string. | |
""" | |
def __init__(self, characters): | |
self._set_options(tobytes(characters)) | |
cdef class _ReplaceSubstringOptions(FunctionOptions): | |
def _set_options(self, pattern, replacement, max_replacements): | |
self.wrapped.reset( | |
new CReplaceSubstringOptions(tobytes(pattern), | |
tobytes(replacement), | |
max_replacements) | |
) | |
class ReplaceSubstringOptions(_ReplaceSubstringOptions): | |
""" | |
Options for replacing matched substrings. | |
Parameters | |
---------- | |
pattern : str | |
Substring pattern to look for inside input values. | |
replacement : str | |
What to replace the pattern with. | |
max_replacements : int or None, default None | |
The maximum number of strings to replace in each | |
input value (unlimited if None). | |
""" | |
def __init__(self, pattern, replacement, *, max_replacements=None): | |
if max_replacements is None: | |
max_replacements = -1 | |
self._set_options(pattern, replacement, max_replacements) | |
cdef class _ExtractRegexOptions(FunctionOptions): | |
def _set_options(self, pattern): | |
self.wrapped.reset(new CExtractRegexOptions(tobytes(pattern))) | |
class ExtractRegexOptions(_ExtractRegexOptions): | |
""" | |
Options for the `extract_regex` function. | |
Parameters | |
---------- | |
pattern : str | |
Regular expression with named capture fields. | |
""" | |
def __init__(self, pattern): | |
self._set_options(pattern) | |
cdef class _SliceOptions(FunctionOptions): | |
def _set_options(self, start, stop, step): | |
self.wrapped.reset(new CSliceOptions(start, stop, step)) | |
class SliceOptions(_SliceOptions): | |
""" | |
Options for slicing. | |
Parameters | |
---------- | |
start : int | |
Index to start slicing at (inclusive). | |
stop : int or None, default None | |
If given, index to stop slicing at (exclusive). | |
If not given, slicing will stop at the end. | |
step : int, default 1 | |
Slice step. | |
""" | |
def __init__(self, start, stop=None, step=1): | |
if stop is None: | |
stop = sys.maxsize | |
if step < 0: | |
stop = -stop | |
self._set_options(start, stop, step) | |
cdef class _ListSliceOptions(FunctionOptions): | |
cpdef _set_options(self, start, stop=None, step=1, return_fixed_size_list=None): | |
cdef: | |
CListSliceOptions* opts | |
opts = new CListSliceOptions( | |
start, | |
<optional[int64_t]>nullopt if stop is None | |
else <optional[int64_t]>(<int64_t>stop), | |
step, | |
<optional[c_bool]>nullopt if return_fixed_size_list is None | |
else <optional[c_bool]>(<c_bool>return_fixed_size_list) | |
) | |
self.wrapped.reset(opts) | |
class ListSliceOptions(_ListSliceOptions): | |
""" | |
Options for list array slicing. | |
Parameters | |
---------- | |
start : int | |
Index to start slicing inner list elements (inclusive). | |
stop : Optional[int], default None | |
If given, index to stop slicing at (exclusive). | |
If not given, slicing will stop at the end. (NotImplemented) | |
step : int, default 1 | |
Slice step. | |
return_fixed_size_list : Optional[bool], default None | |
Whether to return a FixedSizeListArray. If true _and_ stop is after | |
a list element's length, nulls will be appended to create the | |
requested slice size. The default of `None` will return the same | |
type which was passed in. | |
""" | |
def __init__(self, start, stop=None, step=1, return_fixed_size_list=None): | |
self._set_options(start, stop, step, return_fixed_size_list) | |
cdef class _ReplaceSliceOptions(FunctionOptions): | |
def _set_options(self, start, stop, replacement): | |
self.wrapped.reset( | |
new CReplaceSliceOptions(start, stop, tobytes(replacement)) | |
) | |
class ReplaceSliceOptions(_ReplaceSliceOptions): | |
""" | |
Options for replacing slices. | |
Parameters | |
---------- | |
start : int | |
Index to start slicing at (inclusive). | |
stop : int | |
Index to stop slicing at (exclusive). | |
replacement : str | |
What to replace the slice with. | |
""" | |
def __init__(self, start, stop, replacement): | |
self._set_options(start, stop, replacement) | |
cdef class _FilterOptions(FunctionOptions): | |
_null_selection_map = { | |
"drop": CFilterNullSelectionBehavior_DROP, | |
"emit_null": CFilterNullSelectionBehavior_EMIT_NULL, | |
} | |
def _set_options(self, null_selection_behavior): | |
try: | |
self.wrapped.reset( | |
new CFilterOptions( | |
self._null_selection_map[null_selection_behavior] | |
) | |
) | |
except KeyError: | |
_raise_invalid_function_option(null_selection_behavior, | |
"null selection behavior") | |
class FilterOptions(_FilterOptions): | |
""" | |
Options for selecting with a boolean filter. | |
Parameters | |
---------- | |
null_selection_behavior : str, default "drop" | |
How to handle nulls in the selection filter. | |
Accepted values are "drop", "emit_null". | |
""" | |
def __init__(self, null_selection_behavior="drop"): | |
self._set_options(null_selection_behavior) | |
cdef class _DictionaryEncodeOptions(FunctionOptions): | |
_null_encoding_map = { | |
"encode": CDictionaryEncodeNullEncodingBehavior_ENCODE, | |
"mask": CDictionaryEncodeNullEncodingBehavior_MASK, | |
} | |
def _set_options(self, null_encoding): | |
try: | |
self.wrapped.reset( | |
new CDictionaryEncodeOptions( | |
self._null_encoding_map[null_encoding] | |
) | |
) | |
except KeyError: | |
_raise_invalid_function_option(null_encoding, "null encoding") | |
class DictionaryEncodeOptions(_DictionaryEncodeOptions): | |
""" | |
Options for dictionary encoding. | |
Parameters | |
---------- | |
null_encoding : str, default "mask" | |
How to encode nulls in the input. | |
Accepted values are "mask" (null inputs emit a null in the indices | |
array), "encode" (null inputs emit a non-null index pointing to | |
a null value in the dictionary array). | |
""" | |
def __init__(self, null_encoding="mask"): | |
self._set_options(null_encoding) | |
cdef class _RunEndEncodeOptions(FunctionOptions): | |
def _set_options(self, run_end_type): | |
run_end_ty = ensure_type(run_end_type) | |
self.wrapped.reset(new CRunEndEncodeOptions(pyarrow_unwrap_data_type(run_end_ty))) | |
class RunEndEncodeOptions(_RunEndEncodeOptions): | |
""" | |
Options for run-end encoding. | |
Parameters | |
---------- | |
run_end_type : DataType, default pyarrow.int32() | |
The data type of the run_ends array. | |
Accepted values are pyarrow.{int16(), int32(), int64()}. | |
""" | |
def __init__(self, run_end_type=lib.int32()): | |
self._set_options(run_end_type) | |
cdef class _TakeOptions(FunctionOptions): | |
def _set_options(self, boundscheck): | |
self.wrapped.reset(new CTakeOptions(boundscheck)) | |
class TakeOptions(_TakeOptions): | |
""" | |
Options for the `take` and `array_take` functions. | |
Parameters | |
---------- | |
boundscheck : boolean, default True | |
Whether to check indices are within bounds. If False and an | |
index is out of bounds, behavior is undefined (the process | |
may crash). | |
""" | |
def __init__(self, *, boundscheck=True): | |
self._set_options(boundscheck) | |
cdef class _MakeStructOptions(FunctionOptions): | |
def _set_options(self, field_names, field_nullability, field_metadata): | |
cdef: | |
vector[c_string] c_field_names | |
vector[shared_ptr[const CKeyValueMetadata]] c_field_metadata | |
for name in field_names: | |
c_field_names.push_back(tobytes(name)) | |
for metadata in field_metadata: | |
c_field_metadata.push_back(pyarrow_unwrap_metadata(metadata)) | |
self.wrapped.reset( | |
new CMakeStructOptions(c_field_names, field_nullability, | |
c_field_metadata) | |
) | |
class MakeStructOptions(_MakeStructOptions): | |
""" | |
Options for the `make_struct` function. | |
Parameters | |
---------- | |
field_names : sequence of str | |
Names of the struct fields to create. | |
field_nullability : sequence of bool, optional | |
Nullability information for each struct field. | |
If omitted, all fields are nullable. | |
field_metadata : sequence of KeyValueMetadata, optional | |
Metadata for each struct field. | |
""" | |
def __init__(self, field_names=(), *, field_nullability=None, | |
field_metadata=None): | |
if field_nullability is None: | |
field_nullability = [True] * len(field_names) | |
if field_metadata is None: | |
field_metadata = [None] * len(field_names) | |
self._set_options(field_names, field_nullability, field_metadata) | |
cdef CFieldRef _ensure_field_ref(value) except *: | |
cdef: | |
CFieldRef field_ref | |
const CFieldRef* field_ref_ptr | |
if isinstance(value, (list, tuple)): | |
value = Expression._nested_field(tuple(value)) | |
if isinstance(value, Expression): | |
field_ref_ptr = (<Expression>value).unwrap().field_ref() | |
if field_ref_ptr is NULL: | |
raise ValueError("Unable to get FieldRef from Expression") | |
field_ref = <CFieldRef>deref(field_ref_ptr) | |
elif isinstance(value, (bytes, str)): | |
if value.startswith(b'.' if isinstance(value, bytes) else '.'): | |
field_ref = GetResultValue( | |
CFieldRef.FromDotPath(<c_string>tobytes(value))) | |
else: | |
field_ref = CFieldRef(<c_string>tobytes(value)) | |
elif isinstance(value, int): | |
field_ref = CFieldRef(<int> value) | |
else: | |
raise TypeError("Expected a field reference as a str or int, list of " | |
f"str or int, or Expression. Got {type(value)} instead.") | |
return field_ref | |
cdef class _StructFieldOptions(FunctionOptions): | |
def _set_options(self, indices): | |
if isinstance(indices, (list, tuple)) and not len(indices): | |
# Allow empty indices; effectively return same array | |
self.wrapped.reset( | |
new CStructFieldOptions(<vector[int]>indices)) | |
return | |
cdef CFieldRef field_ref = _ensure_field_ref(indices) | |
self.wrapped.reset(new CStructFieldOptions(field_ref)) | |
class StructFieldOptions(_StructFieldOptions): | |
""" | |
Options for the `struct_field` function. | |
Parameters | |
---------- | |
indices : List[str], List[bytes], List[int], Expression, bytes, str, or int | |
List of indices for chained field lookup, for example `[4, 1]` | |
will look up the second nested field in the fifth outer field. | |
""" | |
def __init__(self, indices): | |
self._set_options(indices) | |
cdef class _ScalarAggregateOptions(FunctionOptions): | |
def _set_options(self, skip_nulls, min_count): | |
self.wrapped.reset(new CScalarAggregateOptions(skip_nulls, min_count)) | |
class ScalarAggregateOptions(_ScalarAggregateOptions): | |
__doc__ = f""" | |
Options for scalar aggregations. | |
Parameters | |
---------- | |
{_skip_nulls_doc()} | |
{_min_count_doc(default=1)} | |
""" | |
def __init__(self, *, skip_nulls=True, min_count=1): | |
self._set_options(skip_nulls, min_count) | |
cdef class _CountOptions(FunctionOptions): | |
_mode_map = { | |
"only_valid": CCountMode_ONLY_VALID, | |
"only_null": CCountMode_ONLY_NULL, | |
"all": CCountMode_ALL, | |
} | |
def _set_options(self, mode): | |
try: | |
self.wrapped.reset(new CCountOptions(self._mode_map[mode])) | |
except KeyError: | |
_raise_invalid_function_option(mode, "count mode") | |
class CountOptions(_CountOptions): | |
""" | |
Options for the `count` function. | |
Parameters | |
---------- | |
mode : str, default "only_valid" | |
Which values to count in the input. | |
Accepted values are "only_valid", "only_null", "all". | |
""" | |
def __init__(self, mode="only_valid"): | |
self._set_options(mode) | |
cdef class _IndexOptions(FunctionOptions): | |
def _set_options(self, scalar): | |
self.wrapped.reset(new CIndexOptions(pyarrow_unwrap_scalar(scalar))) | |
class IndexOptions(_IndexOptions): | |
""" | |
Options for the `index` function. | |
Parameters | |
---------- | |
value : Scalar | |
The value to search for. | |
""" | |
def __init__(self, value): | |
self._set_options(value) | |
cdef class _MapLookupOptions(FunctionOptions): | |
_occurrence_map = { | |
"all": CMapLookupOccurrence_ALL, | |
"first": CMapLookupOccurrence_FIRST, | |
"last": CMapLookupOccurrence_LAST, | |
} | |
def _set_options(self, query_key, occurrence): | |
try: | |
self.wrapped.reset( | |
new CMapLookupOptions( | |
pyarrow_unwrap_scalar(query_key), | |
self._occurrence_map[occurrence] | |
) | |
) | |
except KeyError: | |
_raise_invalid_function_option(occurrence, | |
"Should either be first, last, or all") | |
class MapLookupOptions(_MapLookupOptions): | |
""" | |
Options for the `map_lookup` function. | |
Parameters | |
---------- | |
query_key : Scalar or Object can be converted to Scalar | |
The key to search for. | |
occurrence : str | |
The occurrence(s) to return from the Map | |
Accepted values are "first", "last", or "all". | |
""" | |
def __init__(self, query_key, occurrence): | |
if not isinstance(query_key, lib.Scalar): | |
query_key = lib.scalar(query_key) | |
self._set_options(query_key, occurrence) | |
cdef class _ModeOptions(FunctionOptions): | |
def _set_options(self, n, skip_nulls, min_count): | |
self.wrapped.reset(new CModeOptions(n, skip_nulls, min_count)) | |
class ModeOptions(_ModeOptions): | |
__doc__ = f""" | |
Options for the `mode` function. | |
Parameters | |
---------- | |
n : int, default 1 | |
Number of distinct most-common values to return. | |
{_skip_nulls_doc()} | |
{_min_count_doc(default=0)} | |
""" | |
def __init__(self, n=1, *, skip_nulls=True, min_count=0): | |
self._set_options(n, skip_nulls, min_count) | |
cdef class _SetLookupOptions(FunctionOptions): | |
def _set_options(self, value_set, c_bool skip_nulls): | |
cdef unique_ptr[CDatum] valset | |
if isinstance(value_set, Array): | |
valset.reset(new CDatum((<Array> value_set).sp_array)) | |
elif isinstance(value_set, ChunkedArray): | |
valset.reset( | |
new CDatum((<ChunkedArray> value_set).sp_chunked_array) | |
) | |
elif isinstance(value_set, Scalar): | |
valset.reset(new CDatum((<Scalar> value_set).unwrap())) | |
else: | |
_raise_invalid_function_option(value_set, "value set", | |
exception_class=TypeError) | |
self.wrapped.reset(new CSetLookupOptions(deref(valset), skip_nulls)) | |
class SetLookupOptions(_SetLookupOptions): | |
""" | |
Options for the `is_in` and `index_in` functions. | |
Parameters | |
---------- | |
value_set : Array | |
Set of values to look for in the input. | |
skip_nulls : bool, default False | |
If False, nulls in the input are matched in the value_set just | |
like regular values. | |
If True, nulls in the input always fail matching. | |
""" | |
def __init__(self, value_set, *, skip_nulls=False): | |
self._set_options(value_set, skip_nulls) | |
cdef class _StrptimeOptions(FunctionOptions): | |
_unit_map = { | |
"s": TimeUnit_SECOND, | |
"ms": TimeUnit_MILLI, | |
"us": TimeUnit_MICRO, | |
"ns": TimeUnit_NANO, | |
} | |
def _set_options(self, format, unit, error_is_null): | |
try: | |
self.wrapped.reset( | |
new CStrptimeOptions(tobytes(format), self._unit_map[unit], | |
error_is_null) | |
) | |
except KeyError: | |
_raise_invalid_function_option(unit, "time unit") | |
class StrptimeOptions(_StrptimeOptions): | |
""" | |
Options for the `strptime` function. | |
Parameters | |
---------- | |
format : str | |
Pattern for parsing input strings as timestamps, such as "%Y/%m/%d". | |
Note that the semantics of the format follow the C/C++ strptime, not the Python one. | |
There are differences in behavior, for example how the "%y" placeholder | |
handles years with less than four digits. | |
unit : str | |
Timestamp unit of the output. | |
Accepted values are "s", "ms", "us", "ns". | |
error_is_null : boolean, default False | |
Return null on parsing errors if true or raise if false. | |
""" | |
def __init__(self, format, unit, error_is_null=False): | |
self._set_options(format, unit, error_is_null) | |
cdef class _StrftimeOptions(FunctionOptions): | |
def _set_options(self, format, locale): | |
self.wrapped.reset( | |
new CStrftimeOptions(tobytes(format), tobytes(locale)) | |
) | |
class StrftimeOptions(_StrftimeOptions): | |
""" | |
Options for the `strftime` function. | |
Parameters | |
---------- | |
format : str, default "%Y-%m-%dT%H:%M:%S" | |
Pattern for formatting input values. | |
locale : str, default "C" | |
Locale to use for locale-specific format specifiers. | |
""" | |
def __init__(self, format="%Y-%m-%dT%H:%M:%S", locale="C"): | |
self._set_options(format, locale) | |
cdef class _DayOfWeekOptions(FunctionOptions): | |
def _set_options(self, count_from_zero, week_start): | |
self.wrapped.reset( | |
new CDayOfWeekOptions(count_from_zero, week_start) | |
) | |
class DayOfWeekOptions(_DayOfWeekOptions): | |
""" | |
Options for the `day_of_week` function. | |
Parameters | |
---------- | |
count_from_zero : bool, default True | |
If True, number days from 0, otherwise from 1. | |
week_start : int, default 1 | |
Which day does the week start with (Monday=1, Sunday=7). | |
How this value is numbered is unaffected by `count_from_zero`. | |
""" | |
def __init__(self, *, count_from_zero=True, week_start=1): | |
self._set_options(count_from_zero, week_start) | |
cdef class _WeekOptions(FunctionOptions): | |
def _set_options(self, week_starts_monday, count_from_zero, | |
first_week_is_fully_in_year): | |
self.wrapped.reset( | |
new CWeekOptions(week_starts_monday, count_from_zero, | |
first_week_is_fully_in_year) | |
) | |
class WeekOptions(_WeekOptions): | |
""" | |
Options for the `week` function. | |
Parameters | |
---------- | |
week_starts_monday : bool, default True | |
If True, weeks start on Monday; if False, on Sunday. | |
count_from_zero : bool, default False | |
If True, dates at the start of a year that fall into the last week | |
of the previous year emit 0. | |
If False, they emit 52 or 53 (the week number of the last week | |
of the previous year). | |
first_week_is_fully_in_year : bool, default False | |
If True, week number 0 is fully in January. | |
If False, a week that begins on December 29, 30 or 31 is considered | |
to be week number 0 of the following year. | |
""" | |
def __init__(self, *, week_starts_monday=True, count_from_zero=False, | |
first_week_is_fully_in_year=False): | |
self._set_options(week_starts_monday, | |
count_from_zero, first_week_is_fully_in_year) | |
cdef class _AssumeTimezoneOptions(FunctionOptions): | |
_ambiguous_map = { | |
"raise": CAssumeTimezoneAmbiguous_AMBIGUOUS_RAISE, | |
"earliest": CAssumeTimezoneAmbiguous_AMBIGUOUS_EARLIEST, | |
"latest": CAssumeTimezoneAmbiguous_AMBIGUOUS_LATEST, | |
} | |
_nonexistent_map = { | |
"raise": CAssumeTimezoneNonexistent_NONEXISTENT_RAISE, | |
"earliest": CAssumeTimezoneNonexistent_NONEXISTENT_EARLIEST, | |
"latest": CAssumeTimezoneNonexistent_NONEXISTENT_LATEST, | |
} | |
def _set_options(self, timezone, ambiguous, nonexistent): | |
if ambiguous not in self._ambiguous_map: | |
_raise_invalid_function_option(ambiguous, | |
"'ambiguous' timestamp handling") | |
if nonexistent not in self._nonexistent_map: | |
_raise_invalid_function_option(nonexistent, | |
"'nonexistent' timestamp handling") | |
self.wrapped.reset( | |
new CAssumeTimezoneOptions(tobytes(timezone), | |
self._ambiguous_map[ambiguous], | |
self._nonexistent_map[nonexistent]) | |
) | |
class AssumeTimezoneOptions(_AssumeTimezoneOptions): | |
""" | |
Options for the `assume_timezone` function. | |
Parameters | |
---------- | |
timezone : str | |
Timezone to assume for the input. | |
ambiguous : str, default "raise" | |
How to handle timestamps that are ambiguous in the assumed timezone. | |
Accepted values are "raise", "earliest", "latest". | |
nonexistent : str, default "raise" | |
How to handle timestamps that don't exist in the assumed timezone. | |
Accepted values are "raise", "earliest", "latest". | |
""" | |
def __init__(self, timezone, *, ambiguous="raise", nonexistent="raise"): | |
self._set_options(timezone, ambiguous, nonexistent) | |
cdef class _NullOptions(FunctionOptions): | |
def _set_options(self, nan_is_null): | |
self.wrapped.reset(new CNullOptions(nan_is_null)) | |
class NullOptions(_NullOptions): | |
""" | |
Options for the `is_null` function. | |
Parameters | |
---------- | |
nan_is_null : bool, default False | |
Whether floating-point NaN values are considered null. | |
""" | |
def __init__(self, *, nan_is_null=False): | |
self._set_options(nan_is_null) | |
cdef class _VarianceOptions(FunctionOptions): | |
def _set_options(self, ddof, skip_nulls, min_count): | |
self.wrapped.reset(new CVarianceOptions(ddof, skip_nulls, min_count)) | |
class VarianceOptions(_VarianceOptions): | |
__doc__ = f""" | |
Options for the `variance` and `stddev` functions. | |
Parameters | |
---------- | |
ddof : int, default 0 | |
Number of degrees of freedom. | |
{_skip_nulls_doc()} | |
{_min_count_doc(default=0)} | |
""" | |
def __init__(self, *, ddof=0, skip_nulls=True, min_count=0): | |
self._set_options(ddof, skip_nulls, min_count) | |
cdef class _SplitOptions(FunctionOptions): | |
def _set_options(self, max_splits, reverse): | |
self.wrapped.reset(new CSplitOptions(max_splits, reverse)) | |
class SplitOptions(_SplitOptions): | |
""" | |
Options for splitting on whitespace. | |
Parameters | |
---------- | |
max_splits : int or None, default None | |
Maximum number of splits for each input value (unlimited if None). | |
reverse : bool, default False | |
Whether to start splitting from the end of each input value. | |
This only has an effect if `max_splits` is not None. | |
""" | |
def __init__(self, *, max_splits=None, reverse=False): | |
if max_splits is None: | |
max_splits = -1 | |
self._set_options(max_splits, reverse) | |
cdef class _SplitPatternOptions(FunctionOptions): | |
def _set_options(self, pattern, max_splits, reverse): | |
self.wrapped.reset( | |
new CSplitPatternOptions(tobytes(pattern), max_splits, reverse) | |
) | |
class SplitPatternOptions(_SplitPatternOptions): | |
""" | |
Options for splitting on a string pattern. | |
Parameters | |
---------- | |
pattern : str | |
String pattern to split on. | |
max_splits : int or None, default None | |
Maximum number of splits for each input value (unlimited if None). | |
reverse : bool, default False | |
Whether to start splitting from the end of each input value. | |
This only has an effect if `max_splits` is not None. | |
""" | |
def __init__(self, pattern, *, max_splits=None, reverse=False): | |
if max_splits is None: | |
max_splits = -1 | |
self._set_options(pattern, max_splits, reverse) | |
cdef CSortOrder unwrap_sort_order(order) except *: | |
if order == "ascending": | |
return CSortOrder_Ascending | |
elif order == "descending": | |
return CSortOrder_Descending | |
_raise_invalid_function_option(order, "sort order") | |
cdef CNullPlacement unwrap_null_placement(null_placement) except *: | |
if null_placement == "at_start": | |
return CNullPlacement_AtStart | |
elif null_placement == "at_end": | |
return CNullPlacement_AtEnd | |
_raise_invalid_function_option(null_placement, "null placement") | |
cdef class _PartitionNthOptions(FunctionOptions): | |
def _set_options(self, pivot, null_placement): | |
self.wrapped.reset(new CPartitionNthOptions( | |
pivot, unwrap_null_placement(null_placement))) | |
class PartitionNthOptions(_PartitionNthOptions): | |
""" | |
Options for the `partition_nth_indices` function. | |
Parameters | |
---------- | |
pivot : int | |
Index into the equivalent sorted array of the pivot element. | |
null_placement : str, default "at_end" | |
Where nulls in the input should be partitioned. | |
Accepted values are "at_start", "at_end". | |
""" | |
def __init__(self, pivot, *, null_placement="at_end"): | |
self._set_options(pivot, null_placement) | |
cdef class _CumulativeOptions(FunctionOptions): | |
def _set_options(self, start, skip_nulls): | |
if start is None: | |
self.wrapped.reset(new CCumulativeOptions(skip_nulls)) | |
elif isinstance(start, Scalar): | |
self.wrapped.reset(new CCumulativeOptions( | |
pyarrow_unwrap_scalar(start), skip_nulls)) | |
else: | |
try: | |
start = lib.scalar(start) | |
self.wrapped.reset(new CCumulativeOptions( | |
pyarrow_unwrap_scalar(start), skip_nulls)) | |
except Exception: | |
_raise_invalid_function_option( | |
start, "`start` type for CumulativeOptions", TypeError) | |
class CumulativeOptions(_CumulativeOptions): | |
""" | |
Options for `cumulative_*` functions. | |
- cumulative_sum | |
- cumulative_sum_checked | |
- cumulative_prod | |
- cumulative_prod_checked | |
- cumulative_max | |
- cumulative_min | |
Parameters | |
---------- | |
start : Scalar, default None | |
Starting value for the cumulative operation. If none is given, | |
a default value depending on the operation and input type is used. | |
skip_nulls : bool, default False | |
When false, the first encountered null is propagated. | |
""" | |
def __init__(self, start=None, *, skip_nulls=False): | |
self._set_options(start, skip_nulls) | |
class CumulativeSumOptions(_CumulativeOptions): | |
""" | |
Options for `cumulative_sum` function. | |
Parameters | |
---------- | |
start : Scalar, default None | |
Starting value for sum computation | |
skip_nulls : bool, default False | |
When false, the first encountered null is propagated. | |
""" | |
def __init__(self, start=None, *, skip_nulls=False): | |
warnings.warn( | |
_DEPR_MSG.format("CumulativeSumOptions", "14.0", "CumulativeOptions"), | |
FutureWarning, | |
stacklevel=2 | |
) | |
self._set_options(start, skip_nulls) | |
cdef class _PairwiseOptions(FunctionOptions): | |
def _set_options(self, period): | |
self.wrapped.reset(new CPairwiseOptions(period)) | |
class PairwiseOptions(_PairwiseOptions): | |
""" | |
Options for `pairwise` functions. | |
Parameters | |
---------- | |
period : int, default 1 | |
Period for applying the period function. | |
""" | |
def __init__(self, period=1): | |
self._set_options(period) | |
cdef class _ArraySortOptions(FunctionOptions): | |
def _set_options(self, order, null_placement): | |
self.wrapped.reset(new CArraySortOptions( | |
unwrap_sort_order(order), unwrap_null_placement(null_placement))) | |
class ArraySortOptions(_ArraySortOptions): | |
""" | |
Options for the `array_sort_indices` function. | |
Parameters | |
---------- | |
order : str, default "ascending" | |
Which order to sort values in. | |
Accepted values are "ascending", "descending". | |
null_placement : str, default "at_end" | |
Where nulls in the input should be sorted. | |
Accepted values are "at_start", "at_end". | |
""" | |
def __init__(self, order="ascending", *, null_placement="at_end"): | |
self._set_options(order, null_placement) | |
cdef class _SortOptions(FunctionOptions): | |
def _set_options(self, sort_keys, null_placement): | |
cdef vector[CSortKey] c_sort_keys | |
for name, order in sort_keys: | |
c_sort_keys.push_back( | |
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order)) | |
) | |
self.wrapped.reset(new CSortOptions( | |
c_sort_keys, unwrap_null_placement(null_placement))) | |
class SortOptions(_SortOptions): | |
""" | |
Options for the `sort_indices` function. | |
Parameters | |
---------- | |
sort_keys : sequence of (name, order) tuples | |
Names of field/column keys to sort the input on, | |
along with the order each field/column is sorted in. | |
Accepted values for `order` are "ascending", "descending". | |
The field name can be a string column name or expression. | |
null_placement : str, default "at_end" | |
Where nulls in input should be sorted, only applying to | |
columns/fields mentioned in `sort_keys`. | |
Accepted values are "at_start", "at_end". | |
""" | |
def __init__(self, sort_keys=(), *, null_placement="at_end"): | |
self._set_options(sort_keys, null_placement) | |
cdef class _SelectKOptions(FunctionOptions): | |
def _set_options(self, k, sort_keys): | |
cdef vector[CSortKey] c_sort_keys | |
for name, order in sort_keys: | |
c_sort_keys.push_back( | |
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order)) | |
) | |
self.wrapped.reset(new CSelectKOptions(k, c_sort_keys)) | |
class SelectKOptions(_SelectKOptions): | |
""" | |
Options for top/bottom k-selection. | |
Parameters | |
---------- | |
k : int | |
Number of leading values to select in sorted order | |
(i.e. the largest values if sort order is "descending", | |
the smallest otherwise). | |
sort_keys : sequence of (name, order) tuples | |
Names of field/column keys to sort the input on, | |
along with the order each field/column is sorted in. | |
Accepted values for `order` are "ascending", "descending". | |
The field name can be a string column name or expression. | |
""" | |
def __init__(self, k, sort_keys): | |
self._set_options(k, sort_keys) | |
cdef class _QuantileOptions(FunctionOptions): | |
_interp_map = { | |
"linear": CQuantileInterp_LINEAR, | |
"lower": CQuantileInterp_LOWER, | |
"higher": CQuantileInterp_HIGHER, | |
"nearest": CQuantileInterp_NEAREST, | |
"midpoint": CQuantileInterp_MIDPOINT, | |
} | |
def _set_options(self, quantiles, interp, skip_nulls, min_count): | |
try: | |
self.wrapped.reset( | |
new CQuantileOptions(quantiles, self._interp_map[interp], | |
skip_nulls, min_count) | |
) | |
except KeyError: | |
_raise_invalid_function_option(interp, "quantile interpolation") | |
class QuantileOptions(_QuantileOptions): | |
__doc__ = f""" | |
Options for the `quantile` function. | |
Parameters | |
---------- | |
q : double or sequence of double, default 0.5 | |
Probability levels of the quantiles to compute. All values must be in | |
[0, 1]. | |
interpolation : str, default "linear" | |
How to break ties between competing data points for a given quantile. | |
Accepted values are: | |
- "linear": compute an interpolation | |
- "lower": always use the smallest of the two data points | |
- "higher": always use the largest of the two data points | |
- "nearest": select the data point that is closest to the quantile | |
- "midpoint": compute the (unweighted) mean of the two data points | |
{_skip_nulls_doc()} | |
{_min_count_doc(default=0)} | |
""" | |
def __init__(self, q=0.5, *, interpolation="linear", skip_nulls=True, | |
min_count=0): | |
if not isinstance(q, (list, tuple, np.ndarray)): | |
q = [q] | |
self._set_options(q, interpolation, skip_nulls, min_count) | |
cdef class _TDigestOptions(FunctionOptions): | |
def _set_options(self, quantiles, delta, buffer_size, skip_nulls, | |
min_count): | |
self.wrapped.reset( | |
new CTDigestOptions(quantiles, delta, buffer_size, skip_nulls, | |
min_count) | |
) | |
class TDigestOptions(_TDigestOptions): | |
__doc__ = f""" | |
Options for the `tdigest` function. | |
Parameters | |
---------- | |
q : double or sequence of double, default 0.5 | |
Probability levels of the quantiles to approximate. All values must be | |
in [0, 1]. | |
delta : int, default 100 | |
Compression parameter for the T-digest algorithm. | |
buffer_size : int, default 500 | |
Buffer size for the T-digest algorithm. | |
{_skip_nulls_doc()} | |
{_min_count_doc(default=0)} | |
""" | |
def __init__(self, q=0.5, *, delta=100, buffer_size=500, skip_nulls=True, | |
min_count=0): | |
if not isinstance(q, (list, tuple, np.ndarray)): | |
q = [q] | |
self._set_options(q, delta, buffer_size, skip_nulls, min_count) | |
cdef class _Utf8NormalizeOptions(FunctionOptions): | |
_form_map = { | |
"NFC": CUtf8NormalizeForm_NFC, | |
"NFKC": CUtf8NormalizeForm_NFKC, | |
"NFD": CUtf8NormalizeForm_NFD, | |
"NFKD": CUtf8NormalizeForm_NFKD, | |
} | |
def _set_options(self, form): | |
try: | |
self.wrapped.reset( | |
new CUtf8NormalizeOptions(self._form_map[form]) | |
) | |
except KeyError: | |
_raise_invalid_function_option(form, | |
"Unicode normalization form") | |
class Utf8NormalizeOptions(_Utf8NormalizeOptions): | |
""" | |
Options for the `utf8_normalize` function. | |
Parameters | |
---------- | |
form : str | |
Unicode normalization form. | |
Accepted values are "NFC", "NFKC", "NFD", NFKD". | |
""" | |
def __init__(self, form): | |
self._set_options(form) | |
cdef class _RandomOptions(FunctionOptions): | |
def _set_options(self, initializer): | |
if initializer == 'system': | |
self.wrapped.reset(new CRandomOptions( | |
CRandomOptions.FromSystemRandom())) | |
return | |
if not isinstance(initializer, int): | |
try: | |
initializer = hash(initializer) | |
except TypeError: | |
raise TypeError( | |
f"initializer should be 'system', an integer, " | |
f"or a hashable object; got {initializer!r}") | |
if initializer < 0: | |
initializer += 2**64 | |
self.wrapped.reset(new CRandomOptions( | |
CRandomOptions.FromSeed(initializer))) | |
class RandomOptions(_RandomOptions): | |
""" | |
Options for random generation. | |
Parameters | |
---------- | |
initializer : int or str | |
How to initialize the underlying random generator. | |
If an integer is given, it is used as a seed. | |
If "system" is given, the random generator is initialized with | |
a system-specific source of (hopefully true) randomness. | |
Other values are invalid. | |
""" | |
def __init__(self, *, initializer='system'): | |
self._set_options(initializer) | |
cdef class _RankOptions(FunctionOptions): | |
_tiebreaker_map = { | |
"min": CRankOptionsTiebreaker_Min, | |
"max": CRankOptionsTiebreaker_Max, | |
"first": CRankOptionsTiebreaker_First, | |
"dense": CRankOptionsTiebreaker_Dense, | |
} | |
def _set_options(self, sort_keys, null_placement, tiebreaker): | |
cdef vector[CSortKey] c_sort_keys | |
if isinstance(sort_keys, str): | |
c_sort_keys.push_back( | |
CSortKey(_ensure_field_ref(""), unwrap_sort_order(sort_keys)) | |
) | |
else: | |
for name, order in sort_keys: | |
c_sort_keys.push_back( | |
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order)) | |
) | |
try: | |
self.wrapped.reset( | |
new CRankOptions(c_sort_keys, | |
unwrap_null_placement(null_placement), | |
self._tiebreaker_map[tiebreaker]) | |
) | |
except KeyError: | |
_raise_invalid_function_option(tiebreaker, "tiebreaker") | |
class RankOptions(_RankOptions): | |
""" | |
Options for the `rank` function. | |
Parameters | |
---------- | |
sort_keys : sequence of (name, order) tuples or str, default "ascending" | |
Names of field/column keys to sort the input on, | |
along with the order each field/column is sorted in. | |
Accepted values for `order` are "ascending", "descending". | |
The field name can be a string column name or expression. | |
Alternatively, one can simply pass "ascending" or "descending" as a string | |
if the input is array-like. | |
null_placement : str, default "at_end" | |
Where nulls in input should be sorted. | |
Accepted values are "at_start", "at_end". | |
tiebreaker : str, default "first" | |
Configure how ties between equal values are handled. | |
Accepted values are: | |
- "min": Ties get the smallest possible rank in sorted order. | |
- "max": Ties get the largest possible rank in sorted order. | |
- "first": Ranks are assigned in order of when ties appear in the | |
input. This ensures the ranks are a stable permutation | |
of the input. | |
- "dense": The ranks span a dense [1, M] interval where M is the | |
number of distinct values in the input. | |
""" | |
def __init__(self, sort_keys="ascending", *, null_placement="at_end", tiebreaker="first"): | |
self._set_options(sort_keys, null_placement, tiebreaker) | |
cdef class Expression(_Weakrefable): | |
""" | |
A logical expression to be evaluated against some input. | |
To create an expression: | |
- Use the factory function ``pyarrow.compute.scalar()`` to create a | |
scalar (not necessary when combined, see example below). | |
- Use the factory function ``pyarrow.compute.field()`` to reference | |
a field (column in table). | |
- Compare fields and scalars with ``<``, ``<=``, ``==``, ``>=``, ``>``. | |
- Combine expressions using python operators ``&`` (logical and), | |
``|`` (logical or) and ``~`` (logical not). | |
Note: python keywords ``and``, ``or`` and ``not`` cannot be used | |
to combine expressions. | |
- Create expression predicates using Expression methods such as | |
``pyarrow.compute.Expression.isin()``. | |
Examples | |
-------- | |
>>> import pyarrow.compute as pc | |
>>> (pc.field("a") < pc.scalar(3)) | (pc.field("b") > 7) | |
<pyarrow.compute.Expression ((a < 3) or (b > 7))> | |
>>> pc.field('a') != 3 | |
<pyarrow.compute.Expression (a != 3)> | |
>>> pc.field('a').isin([1, 2, 3]) | |
<pyarrow.compute.Expression is_in(a, {value_set=int64:[ | |
1, | |
2, | |
3 | |
], null_matching_behavior=MATCH})> | |
""" | |
def __init__(self): | |
msg = 'Expression is an abstract class thus cannot be initialized.' | |
raise TypeError(msg) | |
cdef void init(self, const CExpression& sp): | |
self.expr = sp | |
cdef wrap(const CExpression& sp): | |
cdef Expression self = Expression.__new__(Expression) | |
self.init(sp) | |
return self | |
cdef inline CExpression unwrap(self): | |
return self.expr | |
def equals(self, Expression other): | |
""" | |
Parameters | |
---------- | |
other : pyarrow.dataset.Expression | |
Returns | |
------- | |
bool | |
""" | |
return self.expr.Equals(other.unwrap()) | |
def __str__(self): | |
return frombytes(self.expr.ToString()) | |
def __repr__(self): | |
return "<pyarrow.compute.{0} {1}>".format( | |
self.__class__.__name__, str(self) | |
) | |
def from_substrait(object buffer not None): | |
""" | |
Deserialize an expression from Substrait | |
The serialized message must be an ExtendedExpression message that has | |
only a single expression. The name of the expression and the schema | |
the expression was bound to will be ignored. Use | |
pyarrow.substrait.deserialize_expressions if this information is needed | |
or if the message might contain multiple expressions. | |
Parameters | |
---------- | |
buffer : bytes or Buffer | |
The Substrait message to deserialize | |
Returns | |
------- | |
Expression | |
The deserialized expression | |
""" | |
expressions = _pas().deserialize_expressions(buffer).expressions | |
if len(expressions) == 0: | |
raise ValueError("Substrait message did not contain any expressions") | |
if len(expressions) > 1: | |
raise ValueError( | |
"Substrait message contained multiple expressions. Use pyarrow.substrait.deserialize_expressions instead") | |
return next(iter(expressions.values())) | |
def to_substrait(self, Schema schema not None, c_bool allow_arrow_extensions=False): | |
""" | |
Serialize the expression using Substrait | |
The expression will be serialized as an ExtendedExpression message that has a | |
single expression named "expression" | |
Parameters | |
---------- | |
schema : Schema | |
The input schema the expression will be bound to | |
allow_arrow_extensions : bool, default False | |
If False then only functions that are part of the core Substrait function | |
definitions will be allowed. Set this to True to allow pyarrow-specific functions | |
but the result may not be accepted by other compute libraries. | |
Returns | |
------- | |
Buffer | |
A buffer containing the serialized Protobuf plan. | |
""" | |
return _pas().serialize_expressions([self], ["expression"], schema, allow_arrow_extensions=allow_arrow_extensions) | |
def _deserialize(Buffer buffer not None): | |
return Expression.wrap(GetResultValue(CDeserializeExpression( | |
pyarrow_unwrap_buffer(buffer)))) | |
def __reduce__(self): | |
buffer = pyarrow_wrap_buffer(GetResultValue( | |
CSerializeExpression(self.expr))) | |
return Expression._deserialize, (buffer,) | |
cdef Expression _expr_or_scalar(object expr): | |
if isinstance(expr, Expression): | |
return (<Expression> expr) | |
return (<Expression> Expression._scalar(expr)) | |
def _call(str function_name, list arguments, FunctionOptions options=None): | |
cdef: | |
vector[CExpression] c_arguments | |
shared_ptr[CFunctionOptions] c_options | |
for argument in arguments: | |
if not isinstance(argument, Expression): | |
# Attempt to help convert this to an expression | |
try: | |
argument = Expression._scalar(argument) | |
except ArrowInvalid: | |
raise TypeError( | |
"only other expressions allowed as arguments") | |
c_arguments.push_back((<Expression> argument).expr) | |
if options is not None: | |
c_options = options.unwrap() | |
return Expression.wrap(CMakeCallExpression( | |
tobytes(function_name), move(c_arguments), c_options)) | |
def __richcmp__(self, other, int op): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call({ | |
Py_EQ: "equal", | |
Py_NE: "not_equal", | |
Py_GT: "greater", | |
Py_GE: "greater_equal", | |
Py_LT: "less", | |
Py_LE: "less_equal", | |
}[op], [self, other]) | |
def __bool__(self): | |
raise ValueError( | |
"An Expression cannot be evaluated to python True or False. " | |
"If you are using the 'and', 'or' or 'not' operators, use '&', " | |
"'|' or '~' instead." | |
) | |
def __invert__(self): | |
return Expression._call("invert", [self]) | |
def __and__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("and_kleene", [self, other]) | |
def __or__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("or_kleene", [self, other]) | |
def __add__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("add_checked", [self, other]) | |
def __mul__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("multiply_checked", [self, other]) | |
def __sub__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("subtract_checked", [self, other]) | |
def __truediv__(Expression self, other): | |
other = Expression._expr_or_scalar(other) | |
return Expression._call("divide_checked", [self, other]) | |
def is_valid(self): | |
""" | |
Check whether the expression is not-null (valid). | |
This creates a new expression equivalent to calling the | |
`is_valid` compute function on this expression. | |
Returns | |
------- | |
is_valid : Expression | |
""" | |
return Expression._call("is_valid", [self]) | |
def is_null(self, bint nan_is_null=False): | |
""" | |
Check whether the expression is null. | |
This creates a new expression equivalent to calling the | |
`is_null` compute function on this expression. | |
Parameters | |
---------- | |
nan_is_null : boolean, default False | |
Whether floating-point NaNs are considered null. | |
Returns | |
------- | |
is_null : Expression | |
""" | |
options = NullOptions(nan_is_null=nan_is_null) | |
return Expression._call("is_null", [self], options) | |
def is_nan(self): | |
""" | |
Check whether the expression is NaN. | |
This creates a new expression equivalent to calling the | |
`is_nan` compute function on this expression. | |
Returns | |
------- | |
is_nan : Expression | |
""" | |
return Expression._call("is_nan", [self]) | |
def cast(self, type=None, safe=None, options=None): | |
""" | |
Explicitly set or change the expression's data type. | |
This creates a new expression equivalent to calling the | |
`cast` compute function on this expression. | |
Parameters | |
---------- | |
type : DataType, default None | |
Type to cast array to. | |
safe : boolean, default True | |
Whether to check for conversion errors such as overflow. | |
options : CastOptions, default None | |
Additional checks pass by CastOptions | |
Returns | |
------- | |
cast : Expression | |
""" | |
safe_vars_passed = (safe is not None) or (type is not None) | |
if safe_vars_passed and (options is not None): | |
raise ValueError("Must either pass values for 'type' and 'safe' or pass a " | |
"value for 'options'") | |
if options is None: | |
type = ensure_type(type, allow_none=False) | |
if safe is False: | |
options = CastOptions.unsafe(type) | |
else: | |
options = CastOptions.safe(type) | |
return Expression._call("cast", [self], options) | |
def isin(self, values): | |
""" | |
Check whether the expression is contained in values. | |
This creates a new expression equivalent to calling the | |
`is_in` compute function on this expression. | |
Parameters | |
---------- | |
values : Array or iterable | |
The values to check for. | |
Returns | |
------- | |
isin : Expression | |
A new expression that, when evaluated, checks whether | |
this expression's value is contained in `values`. | |
""" | |
if not isinstance(values, Array): | |
values = lib.array(values) | |
options = SetLookupOptions(values) | |
return Expression._call("is_in", [self], options) | |
def _field(name_or_idx not None): | |
cdef: | |
CFieldRef c_field | |
if isinstance(name_or_idx, int): | |
return Expression.wrap(CMakeFieldExpressionByIndex(name_or_idx)) | |
else: | |
c_field = CFieldRef(<c_string> tobytes(name_or_idx)) | |
return Expression.wrap(CMakeFieldExpression(c_field)) | |
def _nested_field(tuple names not None): | |
cdef: | |
vector[CFieldRef] nested | |
if len(names) == 0: | |
raise ValueError("nested field reference should be non-empty") | |
nested.reserve(len(names)) | |
for name in names: | |
if isinstance(name, int): | |
nested.push_back(CFieldRef(<int>name)) | |
else: | |
nested.push_back(CFieldRef(<c_string> tobytes(name))) | |
return Expression.wrap(CMakeFieldExpression(CFieldRef(move(nested)))) | |
def _scalar(value): | |
cdef: | |
Scalar scalar | |
if isinstance(value, Scalar): | |
scalar = value | |
else: | |
scalar = lib.scalar(value) | |
return Expression.wrap(CMakeScalarExpression(scalar.unwrap())) | |
_deserialize = Expression._deserialize | |
cdef CExpression _true = CMakeScalarExpression( | |
<shared_ptr[CScalar]> make_shared[CBooleanScalar](True) | |
) | |
cdef CExpression _bind(Expression filter, Schema schema) except *: | |
assert schema is not None | |
if filter is None: | |
return _true | |
return GetResultValue(filter.unwrap().Bind( | |
deref(pyarrow_unwrap_schema(schema).get()))) | |
cdef class UdfContext: | |
""" | |
Per-invocation function context/state. | |
This object will always be the first argument to a user-defined | |
function. It should not be used outside of a call to the function. | |
""" | |
def __init__(self): | |
raise TypeError("Do not call {}'s constructor directly" | |
.format(self.__class__.__name__)) | |
cdef void init(self, const CUdfContext &c_context): | |
self.c_context = c_context | |
def batch_length(self): | |
""" | |
The common length of all input arguments (int). | |
In the case that all arguments are scalars, this value | |
is used to pass the "actual length" of the arguments, | |
e.g. because the scalar values are encoding a column | |
with a constant value. | |
""" | |
return self.c_context.batch_length | |
def memory_pool(self): | |
""" | |
A memory pool for allocations (:class:`MemoryPool`). | |
This is the memory pool supplied by the user when they invoked | |
the function and it should be used in any calls to arrow that the | |
UDF makes if that call accepts a memory_pool. | |
""" | |
return box_memory_pool(self.c_context.pool) | |
cdef inline CFunctionDoc _make_function_doc(dict func_doc) except *: | |
""" | |
Helper function to generate the FunctionDoc | |
This function accepts a dictionary and expects the | |
summary(str), description(str) and arg_names(List[str]) keys. | |
""" | |
cdef: | |
CFunctionDoc f_doc | |
vector[c_string] c_arg_names | |
f_doc.summary = tobytes(func_doc["summary"]) | |
f_doc.description = tobytes(func_doc["description"]) | |
for arg_name in func_doc["arg_names"]: | |
c_arg_names.push_back(tobytes(arg_name)) | |
f_doc.arg_names = c_arg_names | |
# UDFOptions integration: | |
# TODO: https://issues.apache.org/jira/browse/ARROW-16041 | |
f_doc.options_class = b"" | |
f_doc.options_required = False | |
return f_doc | |
cdef object box_udf_context(const CUdfContext& c_context): | |
cdef UdfContext context = UdfContext.__new__(UdfContext) | |
context.init(c_context) | |
return context | |
cdef _udf_callback(user_function, const CUdfContext& c_context, inputs): | |
""" | |
Helper callback function used to wrap the UdfContext from Python to C++ | |
execution. | |
""" | |
context = box_udf_context(c_context) | |
return user_function(context, *inputs) | |
def _get_udf_context(memory_pool, batch_length): | |
cdef CUdfContext c_context | |
c_context.pool = maybe_unbox_memory_pool(memory_pool) | |
c_context.batch_length = batch_length | |
context = box_udf_context(c_context) | |
return context | |
ctypedef CStatus (*CRegisterUdf)(PyObject* function, function[CallbackUdf] wrapper, | |
const CUdfOptions& options, CFunctionRegistry* registry) | |
cdef class RegisterUdf(_Weakrefable): | |
cdef CRegisterUdf register_func | |
cdef void init(self, const CRegisterUdf register_func): | |
self.register_func = register_func | |
cdef get_register_scalar_function(): | |
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf) | |
reg.register_func = RegisterScalarFunction | |
return reg | |
cdef get_register_tabular_function(): | |
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf) | |
reg.register_func = RegisterTabularFunction | |
return reg | |
cdef get_register_aggregate_function(): | |
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf) | |
reg.register_func = RegisterAggregateFunction | |
return reg | |
cdef get_register_vector_function(): | |
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf) | |
reg.register_func = RegisterVectorFunction | |
return reg | |
def register_scalar_function(func, function_name, function_doc, in_types, out_type, | |
func_registry=None): | |
""" | |
Register a user-defined scalar function. | |
This API is EXPERIMENTAL. | |
A scalar function is a function that executes elementwise | |
operations on arrays or scalars, i.e. a scalar function must | |
be computed row-by-row with no state where each output row | |
is computed only from its corresponding input row. | |
In other words, all argument arrays have the same length, | |
and the output array is of the same length as the arguments. | |
Scalar functions are the only functions allowed in query engine | |
expressions. | |
Parameters | |
---------- | |
func : callable | |
A callable implementing the user-defined function. | |
The first argument is the context argument of type | |
UdfContext. | |
Then, it must take arguments equal to the number of | |
in_types defined. It must return an Array or Scalar | |
matching the out_type. It must return a Scalar if | |
all arguments are scalar, else it must return an Array. | |
To define a varargs function, pass a callable that takes | |
*args. The last in_type will be the type of all varargs | |
arguments. | |
function_name : str | |
Name of the function. There should only be one function | |
registered with this name in the function registry. | |
function_doc : dict | |
A dictionary object with keys "summary" (str), | |
and "description" (str). | |
in_types : Dict[str, DataType] | |
A dictionary mapping function argument names to | |
their respective DataType. | |
The argument names will be used to generate | |
documentation for the function. The number of | |
arguments specified here determines the function | |
arity. | |
out_type : DataType | |
Output type of the function. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
Examples | |
-------- | |
>>> import pyarrow as pa | |
>>> import pyarrow.compute as pc | |
>>> | |
>>> func_doc = {} | |
>>> func_doc["summary"] = "simple udf" | |
>>> func_doc["description"] = "add a constant to a scalar" | |
>>> | |
>>> def add_constant(ctx, array): | |
... return pc.add(array, 1, memory_pool=ctx.memory_pool) | |
>>> | |
>>> func_name = "py_add_func" | |
>>> in_types = {"array": pa.int64()} | |
>>> out_type = pa.int64() | |
>>> pc.register_scalar_function(add_constant, func_name, func_doc, | |
... in_types, out_type) | |
>>> | |
>>> func = pc.get_function(func_name) | |
>>> func.name | |
'py_add_func' | |
>>> answer = pc.call_function(func_name, [pa.array([20])]) | |
>>> answer | |
<pyarrow.lib.Int64Array object at ...> | |
[ | |
21 | |
] | |
""" | |
return _register_user_defined_function(get_register_scalar_function(), | |
func, function_name, function_doc, in_types, | |
out_type, func_registry) | |
def register_vector_function(func, function_name, function_doc, in_types, out_type, | |
func_registry=None): | |
""" | |
Register a user-defined vector function. | |
This API is EXPERIMENTAL. | |
A vector function is a function that executes vector | |
operations on arrays. Vector function is often used | |
when compute doesn't fit other more specific types of | |
functions (e.g., scalar and aggregate). | |
Parameters | |
---------- | |
func : callable | |
A callable implementing the user-defined function. | |
The first argument is the context argument of type | |
UdfContext. | |
Then, it must take arguments equal to the number of | |
in_types defined. It must return an Array or Scalar | |
matching the out_type. It must return a Scalar if | |
all arguments are scalar, else it must return an Array. | |
To define a varargs function, pass a callable that takes | |
*args. The last in_type will be the type of all varargs | |
arguments. | |
function_name : str | |
Name of the function. There should only be one function | |
registered with this name in the function registry. | |
function_doc : dict | |
A dictionary object with keys "summary" (str), | |
and "description" (str). | |
in_types : Dict[str, DataType] | |
A dictionary mapping function argument names to | |
their respective DataType. | |
The argument names will be used to generate | |
documentation for the function. The number of | |
arguments specified here determines the function | |
arity. | |
out_type : DataType | |
Output type of the function. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
Examples | |
-------- | |
>>> import pyarrow as pa | |
>>> import pyarrow.compute as pc | |
>>> | |
>>> func_doc = {} | |
>>> func_doc["summary"] = "percent rank" | |
>>> func_doc["description"] = "compute percent rank" | |
>>> | |
>>> def list_flatten_udf(ctx, x): | |
... return pc.list_flatten(x) | |
>>> | |
>>> func_name = "list_flatten_udf" | |
>>> in_types = {"array": pa.list_(pa.int64())} | |
>>> out_type = pa.int64() | |
>>> pc.register_vector_function(list_flatten_udf, func_name, func_doc, | |
... in_types, out_type) | |
>>> | |
>>> answer = pc.call_function(func_name, [pa.array([[1, 2], [3, 4]])]) | |
>>> answer | |
<pyarrow.lib.Int64Array object at ...> | |
[ | |
1, | |
2, | |
3, | |
4 | |
] | |
""" | |
return _register_user_defined_function(get_register_vector_function(), | |
func, function_name, function_doc, in_types, | |
out_type, func_registry) | |
def register_aggregate_function(func, function_name, function_doc, in_types, out_type, | |
func_registry=None): | |
""" | |
Register a user-defined non-decomposable aggregate function. | |
This API is EXPERIMENTAL. | |
A non-decomposable aggregation function is a function that executes | |
aggregate operations on the whole data that it is aggregating. | |
In other words, non-decomposable aggregate function cannot be | |
split into consume/merge/finalize steps. | |
This is often used with ordered or segmented aggregation where groups | |
can be emit before accumulating all of the input data. | |
Note that currently the size of any input column cannot exceed 2 GB | |
for a single segment (all groups combined). | |
Parameters | |
---------- | |
func : callable | |
A callable implementing the user-defined function. | |
The first argument is the context argument of type | |
UdfContext. | |
Then, it must take arguments equal to the number of | |
in_types defined. It must return a Scalar matching the | |
out_type. | |
To define a varargs function, pass a callable that takes | |
*args. The in_type needs to match in type of inputs when | |
the function gets called. | |
function_name : str | |
Name of the function. This name must be unique, i.e., | |
there should only be one function registered with | |
this name in the function registry. | |
function_doc : dict | |
A dictionary object with keys "summary" (str), | |
and "description" (str). | |
in_types : Dict[str, DataType] | |
A dictionary mapping function argument names to | |
their respective DataType. | |
The argument names will be used to generate | |
documentation for the function. The number of | |
arguments specified here determines the function | |
arity. | |
out_type : DataType | |
Output type of the function. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import pyarrow as pa | |
>>> import pyarrow.compute as pc | |
>>> | |
>>> func_doc = {} | |
>>> func_doc["summary"] = "simple median udf" | |
>>> func_doc["description"] = "compute median" | |
>>> | |
>>> def compute_median(ctx, array): | |
... return pa.scalar(np.median(array)) | |
>>> | |
>>> func_name = "py_compute_median" | |
>>> in_types = {"array": pa.int64()} | |
>>> out_type = pa.float64() | |
>>> pc.register_aggregate_function(compute_median, func_name, func_doc, | |
... in_types, out_type) | |
>>> | |
>>> func = pc.get_function(func_name) | |
>>> func.name | |
'py_compute_median' | |
>>> answer = pc.call_function(func_name, [pa.array([20, 40])]) | |
>>> answer | |
<pyarrow.DoubleScalar: 30.0> | |
>>> table = pa.table([pa.array([1, 1, 2, 2]), pa.array([10, 20, 30, 40])], names=['k', 'v']) | |
>>> result = table.group_by('k').aggregate([('v', 'py_compute_median')]) | |
>>> result | |
pyarrow.Table | |
k: int64 | |
v_py_compute_median: double | |
---- | |
k: [[1,2]] | |
v_py_compute_median: [[15,35]] | |
""" | |
return _register_user_defined_function(get_register_aggregate_function(), | |
func, function_name, function_doc, in_types, | |
out_type, func_registry) | |
def register_tabular_function(func, function_name, function_doc, in_types, out_type, | |
func_registry=None): | |
""" | |
Register a user-defined tabular function. | |
This API is EXPERIMENTAL. | |
A tabular function is one accepting a context argument of type | |
UdfContext and returning a generator of struct arrays. | |
The in_types argument must be empty and the out_type argument | |
specifies a schema. Each struct array must have field types | |
corresponding to the schema. | |
Parameters | |
---------- | |
func : callable | |
A callable implementing the user-defined function. | |
The only argument is the context argument of type | |
UdfContext. It must return a callable that | |
returns on each invocation a StructArray matching | |
the out_type, where an empty array indicates end. | |
function_name : str | |
Name of the function. There should only be one function | |
registered with this name in the function registry. | |
function_doc : dict | |
A dictionary object with keys "summary" (str), | |
and "description" (str). | |
in_types : Dict[str, DataType] | |
Must be an empty dictionary (reserved for future use). | |
out_type : Union[Schema, DataType] | |
Schema of the function's output, or a corresponding flat struct type. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
""" | |
cdef: | |
shared_ptr[CSchema] c_schema | |
shared_ptr[CDataType] c_type | |
if isinstance(out_type, Schema): | |
c_schema = pyarrow_unwrap_schema(out_type) | |
with nogil: | |
c_type = <shared_ptr[CDataType]>make_shared[CStructType](deref(c_schema).fields()) | |
out_type = pyarrow_wrap_data_type(c_type) | |
return _register_user_defined_function(get_register_tabular_function(), | |
func, function_name, function_doc, in_types, | |
out_type, func_registry) | |
def _register_user_defined_function(register_func, func, function_name, function_doc, in_types, | |
out_type, func_registry=None): | |
""" | |
Register a user-defined function. | |
This method itself doesn't care about the type of the UDF | |
(i.e., scalar vs tabular vs aggregate) | |
Parameters | |
---------- | |
register_func: object | |
An object holding a CRegisterUdf in a "register_func" attribute. | |
func : callable | |
A callable implementing the user-defined function. | |
function_name : str | |
Name of the function. There should only be one function | |
registered with this name in the function registry. | |
function_doc : dict | |
A dictionary object with keys "summary" (str), | |
and "description" (str). | |
in_types : Dict[str, DataType] | |
A dictionary mapping function argument names to | |
their respective DataType. | |
out_type : DataType | |
Output type of the function. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
""" | |
cdef: | |
CRegisterUdf c_register_func | |
c_string c_func_name | |
CArity c_arity | |
CFunctionDoc c_func_doc | |
vector[shared_ptr[CDataType]] c_in_types | |
PyObject* c_function | |
shared_ptr[CDataType] c_out_type | |
CUdfOptions c_options | |
CFunctionRegistry* c_func_registry | |
if callable(func): | |
c_function = <PyObject*>func | |
else: | |
raise TypeError("func must be a callable") | |
c_func_name = tobytes(function_name) | |
func_spec = inspect.getfullargspec(func) | |
num_args = -1 | |
if isinstance(in_types, dict): | |
for in_type in in_types.values(): | |
c_in_types.push_back( | |
pyarrow_unwrap_data_type(ensure_type(in_type))) | |
function_doc["arg_names"] = in_types.keys() | |
num_args = len(in_types) | |
else: | |
raise TypeError( | |
"in_types must be a dictionary of DataType") | |
c_arity = CArity(<int> num_args, func_spec.varargs) | |
if "summary" not in function_doc: | |
raise ValueError("Function doc must contain a summary") | |
if "description" not in function_doc: | |
raise ValueError("Function doc must contain a description") | |
if "arg_names" not in function_doc: | |
raise ValueError("Function doc must contain arg_names") | |
c_func_doc = _make_function_doc(function_doc) | |
c_out_type = pyarrow_unwrap_data_type(ensure_type(out_type)) | |
c_options.func_name = c_func_name | |
c_options.arity = c_arity | |
c_options.func_doc = c_func_doc | |
c_options.input_types = c_in_types | |
c_options.output_type = c_out_type | |
if func_registry is None: | |
c_func_registry = NULL | |
else: | |
c_func_registry = (<FunctionRegistry>func_registry).registry | |
c_register_func = (<RegisterUdf>register_func).register_func | |
check_status(c_register_func(c_function, | |
<function[CallbackUdf]> &_udf_callback, | |
c_options, c_func_registry)) | |
def call_tabular_function(function_name, args=None, func_registry=None): | |
""" | |
Get a record batch iterator from a tabular function. | |
Parameters | |
---------- | |
function_name : str | |
Name of the function. | |
args : iterable | |
The arguments to pass to the function. Accepted types depend | |
on the specific function. Currently, only an empty args is supported. | |
func_registry : FunctionRegistry | |
Optional function registry to use instead of the default global one. | |
""" | |
cdef: | |
c_string c_func_name | |
vector[CDatum] c_args | |
CFunctionRegistry* c_func_registry | |
shared_ptr[CRecordBatchReader] c_reader | |
RecordBatchReader reader | |
c_func_name = tobytes(function_name) | |
if func_registry is None: | |
c_func_registry = NULL | |
else: | |
c_func_registry = (<FunctionRegistry>func_registry).registry | |
if args is None: | |
args = [] | |
_pack_compute_args(args, &c_args) | |
with nogil: | |
c_reader = GetResultValue(CallTabularFunction( | |
c_func_name, c_args, c_func_registry)) | |
reader = RecordBatchReader.__new__(RecordBatchReader) | |
reader.reader = c_reader | |
return RecordBatchReader.from_batches(pyarrow_wrap_schema(deref(c_reader).schema()), reader) | |