applied-ai-018's picture
Add files using upload-large-folder tool
0c17c1b verified
import collections
import math
import pathlib
import sys
from typing import Dict, List, Optional, Tuple, Union
from lm_eval.api import metrics
from lm_eval.utils import eval_logger, positional_deprecated
class TaskOutput:
"""
Wrapper class for Task outputs.It contains various attributes and methods to manage and calculate metrics for the task.
Attributes:
task (object): The task object.
task_name (str): The name of the task.
task_config (dict): The configuration of the task.
version (str): The version of the task.
group_name (str): The name of the task group.
n_shot (int): The number of shots for the task.
task_alias (str): The alias of the task.
group_alias (str): The alias of the task group.
is_group (bool): Indicates if the task is a group.
logged_samples (list): The list of logged samples.
sample_len (int): The length of the samples.
sample_metrics (defaultdict): The dictionary of samples' metrics.
agg_metrics (defaultdict): The dictionary of aggregate metrics.
Methods:
from_taskdict(cls, task_name: str, task):
Creates a TaskOutput instance from a task dictionary.
calculate_aggregate_metric(bootstrap_iters=100000) -> None:
Calculates the aggregate metrics for the task.
"""
def __init__(
self,
task=None,
task_name=None,
task_config=None,
version=None,
group_name=None,
n_shot=None,
task_alias=None,
group_alias=None,
is_group=None,
):
self.task = task
self.task_config = task_config
self.task_name = task_name
self.group_name = group_name
self.version = version
self.n_shot = n_shot
self.task_alias = task_alias
self.group_alias = group_alias
self.is_group = is_group
self.logged_samples = []
self.sample_len = None
self.sample_metrics = collections.defaultdict(list)
self.agg_metrics = collections.defaultdict(list)
@classmethod
def from_taskdict(cls, task_name: str, task):
if isinstance(task, tuple):
group_name, task = task
else:
group_name = None
if not task:
# these gets filtered out in get_task_list
# once they are added to group hierarchy
is_group = True
return cls(
task=task, task_name=task_name, is_group=is_group, group_name=group_name
)
version = task.VERSION
task_config = dict(task.dump_config())
if (n_shot := task_config.get("num_fewshot")) == 0:
n_shot = task_config.get("metadata", {}).get("num_fewshot", 0)
task_alias = task_config.get("alias")
group_alias = task_config.get("group_alias")
return cls(
task=task,
task_name=task_name,
task_config=task_config,
group_name=group_name,
version=version,
n_shot=n_shot,
task_alias=task_alias,
group_alias=group_alias,
)
def calculate_aggregate_metric(self, bootstrap_iters=100000) -> None:
for (metric, filter_key), items in self.sample_metrics.items():
agg_fn = self.task.aggregation()[metric]
metric_key = f"{metric},{filter_key}"
self.agg_metrics[metric_key] = agg_fn(items)
self.sample_len = len(items) # TODO: same sample size for each metric?
if bootstrap_iters:
stderr_fn = metrics.stderr_for_metric(
metric=agg_fn,
bootstrap_iters=min(bootstrap_iters, 100)
if metric in ["bleu", "chrf", "ter"]
else bootstrap_iters,
)
self.agg_metrics[f"{metric}_stderr,{filter_key}"] = (
stderr_fn(items) if (stderr_fn and len(items) > 1) else "N/A"
)
def __repr__(self):
return (
f"TaskOutput(task_name={self.task_name}, "
f"group_name={self.group_name}, "
f"version={self.version},"
f"n_shot={self.n_shot}"
f"task_alias={self.task_alias}, group_alias={self.group_alias})"
)
def get_task_list(task_dict: dict) -> Tuple[Dict[str, list], List[TaskOutput]]:
task_hierarchy = collections.defaultdict(list)
outputs = list(TaskOutput.from_taskdict(x, y) for x, y in task_dict.items())
for task_output in outputs:
if group_name := task_output.group_name:
task_hierarchy[group_name].append(task_output.task_name)
else:
task_hierarchy[task_output.task_name] = []
# returns task_hierarchy tracking which groups contain which subtasks,
# and a list of TaskOutput classes for each non-group subtask
return task_hierarchy, [x for x in outputs if x.task]
def print_writeout(task) -> None:
for inst in task.instances:
# print the prompt for the first few documents
if inst.doc_id < 1:
eval_logger.info(
f"Task: {task}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
)
eval_logger.info(f"Request: {str(inst)}")
def get_sample_size(task, limit: Optional[int]) -> Union[int, None]:
if limit is not None:
limit = (
int(math.ceil(len(task.eval_docs) * limit)) if limit < 1.0 else int(limit)
)
return limit
def prepare_print_tasks(
task_hierarchy: dict, results: dict, tab=0
) -> Tuple[dict, dict]:
"""
@param task_hierarchy: Dictionary representing the group hierarchy of tasks. Each key is a group name and its
value is a list of task names.
@param results: Dictionary containing the results of each task. Each key is a
group name and its value is a dictionary of task results.
@param tab: The indentation level for printing the task
hierarchy. Default is 0.
@return: A tuple of two dictionaries: results_agg and groups_agg. results_agg contains
aggregated results for each task, and groups_agg contains aggregated results for each group.
Prepares the task hierarchy and aggregates the results for each task and group recursively for printing.
"""
results_agg = collections.defaultdict(dict)
groups_agg = collections.defaultdict(dict)
(group_name, task_list), *_ = task_hierarchy.items()
task_list = sorted(task_list)
results_agg[group_name] = results[group_name].copy()
# results_agg[group_name]["tab"] = tab
if "samples" in results_agg[group_name]:
results_agg[group_name].pop("samples")
tab_string = " " * tab + "- " if tab > 0 else ""
if "alias" in results_agg[group_name]:
results_agg[group_name]["alias"] = tab_string + results_agg[group_name]["alias"]
else:
results_agg[group_name]["alias"] = tab_string + group_name
if len(task_list) > 0:
groups_agg[group_name] = results[group_name].copy()
# groups_agg[group_name]["tab"] = tab
if "samples" in groups_agg[group_name]:
groups_agg[group_name].pop("samples")
if "alias" in groups_agg[group_name]:
groups_agg[group_name]["alias"] = (
tab_string + groups_agg[group_name]["alias"]
)
else:
groups_agg[group_name]["alias"] = tab_string + group_name
for task_name in task_list:
if task_name in task_hierarchy:
_task_hierarchy = {
**{task_name: task_hierarchy[task_name]},
**task_hierarchy,
}
else:
_task_hierarchy = {
**{task_name: []},
**task_hierarchy,
}
_results_agg, _groups_agg = prepare_print_tasks(
_task_hierarchy, results, tab + 1
)
results_agg = {**results_agg, **_results_agg}
groups_agg = {**groups_agg, **_groups_agg}
return results_agg, groups_agg
def consolidate_results(
eval_tasks: List[TaskOutput],
) -> Tuple[dict, dict, dict, dict, dict]:
"""
@param eval_tasks: list(TaskOutput).
@return: A tuple containing the consolidated results, samples, configs, versions, and num_fewshot.
Consolidates the results of multiple evaluation tasks into a single structure.
The method iterates over each evaluation instance and extracts relevant information to create the consolidated
results structure. The consolidated results structure has the following properties:
- results: A defaultdict with task names as keys and dictionaries as values. Each dictionary contains
metric/filter pairs as keys and corresponding metric values as values. The "alias" key is used to store task
aliases specified in the task configuration.
- samples: A defaultdict with task names as keys and lists of log samples as values.
- configs: A defaultdict with task names as keys and task configurations as values.
- versions: A defaultdict with task names as keys and task versions as values.
- num_fewshot: A defaultdict with task names as keys and number of few-shot samples as values.
The method then returns the consolidated results, samples, configs, versions, and num_fewshot as a tuple.
"""
# stores the final result for each task, for each metric/filter pair.
results = collections.defaultdict(dict)
# logs info about each document evaluated.
samples = collections.defaultdict(list)
# store num-fewshot value per task
num_fewshot = collections.defaultdict(int)
# Tracks the YAML configs of all chosen task
configs = collections.defaultdict(dict)
# Tracks each task's version.
versions = collections.defaultdict(dict)
for task_output in eval_tasks:
if "task_alias" in (task_config := task_output.task_config):
results[task_output.task_name]["alias"] = task_config["task_alias"]
if group_alias := task_output.group_alias:
if group_alias not in results and (group_name := task_output.group_name):
results[group_name]["alias"] = group_alias
num_fewshot[task_output.task_name] = task_output.n_shot
configs[task_output.task_name] = task_output.task_config
versions[task_output.task_name] = task_output.version
samples[task_output.task_name] = task_output.logged_samples
for (metric, filter_key), items in task_output.sample_metrics.items():
metric_key = f"{metric},{filter_key}"
results[task_output.task_name][metric_key] = task_output.agg_metrics[
metric_key
]
results[task_output.task_name]["samples"] = task_output.sample_len
results[task_output.task_name][
f"{metric}_stderr,{filter_key}"
] = task_output.agg_metrics[f"{metric}_stderr,{filter_key}"]
return results, samples, configs, versions, num_fewshot
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
"""
Search upward in the directory tree to a maximum of three layers
to find and return the package root (containing the 'tests' folder)
"""
cur_path = start_path.resolve()
max_layers = 3
for _ in range(max_layers):
if (cur_path / "tests" / "test_version_stable.py").exists():
return cur_path
else:
cur_path = cur_path.parent.resolve()
raise FileNotFoundError(
f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
)
@positional_deprecated
def run_task_tests(task_list: List[str]):
"""
Find the package root and run the tests for the given tasks
"""
import pytest
package_root = find_test_root(start_path=pathlib.Path(__file__))
task_string = " or ".join(task_list)
args = [
f"{package_root}/tests/test_version_stable.py",
f"--rootdir={package_root}",
"-k",
f"{task_string}",
]
sys.path.append(str(package_root))
pytest_return_val = pytest.main(args)
if pytest_return_val:
raise ValueError(
f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
)