|
import copy |
|
import json |
|
import logging |
|
import os |
|
import re |
|
import subprocess |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Literal, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from packaging.version import Version |
|
from torch.utils.collect_env import get_pretty_env_info |
|
from transformers import __version__ as trans_version |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def remove_none_pattern(input_string: str) -> Tuple[str, bool]: |
|
"""Remove the ',none' substring from the input_string if it exists at the end. |
|
|
|
Args: |
|
input_string (str): The input string from which to remove the ',none' substring. |
|
|
|
Returns: |
|
Tuple[str, bool]: A tuple containing the modified input_string with the ',none' substring removed |
|
and a boolean indicating whether the modification was made (True) or not (False). |
|
""" |
|
|
|
pattern = re.compile(r",none$") |
|
|
|
|
|
result = re.sub(pattern, "", input_string) |
|
|
|
|
|
removed = result != input_string |
|
|
|
return result, removed |
|
|
|
|
|
def _handle_non_serializable(o: Any) -> Union[int, str, list]: |
|
"""Handle non-serializable objects by converting them to serializable types. |
|
|
|
Args: |
|
o (Any): The object to be handled. |
|
|
|
Returns: |
|
Union[int, str, list]: The converted object. If the object is of type np.int64 or np.int32, |
|
it will be converted to int. If the object is of type set, it will be converted |
|
to a list. Otherwise, it will be converted to str. |
|
""" |
|
if isinstance(o, np.int64) or isinstance(o, np.int32): |
|
return int(o) |
|
elif isinstance(o, set): |
|
return list(o) |
|
else: |
|
return str(o) |
|
|
|
|
|
def get_wandb_printer() -> Literal["Printer"]: |
|
"""Returns a wandb printer instance for pretty stdout.""" |
|
from wandb.sdk.lib.printer import get_printer |
|
from wandb.sdk.wandb_settings import Settings |
|
|
|
printer = get_printer(Settings()._jupyter) |
|
return printer |
|
|
|
|
|
class WandbLogger: |
|
def __init__(self, **kwargs) -> None: |
|
"""Attaches to wandb logger if already initialized. Otherwise, passes kwargs to wandb.init() |
|
|
|
Args: |
|
kwargs Optional[Any]: Arguments for configuration. |
|
|
|
Parse and log the results returned from evaluator.simple_evaluate() with: |
|
wandb_logger.post_init(results) |
|
wandb_logger.log_eval_result() |
|
wandb_logger.log_eval_samples(results["samples"]) |
|
""" |
|
try: |
|
import wandb |
|
|
|
assert Version(wandb.__version__) >= Version("0.13.6") |
|
if Version(wandb.__version__) < Version("0.13.6"): |
|
wandb.require("report-editing:v0") |
|
except Exception as e: |
|
logger.warning( |
|
"To use the wandb reporting functionality please install wandb>=0.13.6.\n" |
|
"To install the latest version of wandb run `pip install wandb --upgrade`\n" |
|
f"{e}" |
|
) |
|
|
|
self.wandb_args: Dict[str, Any] = kwargs |
|
|
|
|
|
if wandb.run is None: |
|
self.run = wandb.init(**self.wandb_args) |
|
else: |
|
self.run = wandb.run |
|
|
|
self.printer = get_wandb_printer() |
|
|
|
def post_init(self, results: Dict[str, Any]) -> None: |
|
self.results: Dict[str, Any] = copy.deepcopy(results) |
|
self.task_names: List[str] = list(results.get("results", {}).keys()) |
|
self.group_names: List[str] = list(results.get("groups", {}).keys()) |
|
|
|
def _get_config(self) -> Dict[str, Any]: |
|
"""Get configuration parameters.""" |
|
self.task_configs = self.results.get("configs", {}) |
|
cli_configs = self.results.get("config", {}) |
|
configs = { |
|
"task_configs": self.task_configs, |
|
"cli_configs": cli_configs, |
|
} |
|
|
|
return configs |
|
|
|
def _sanitize_results_dict(self) -> Tuple[Dict[str, str], Dict[str, Any]]: |
|
"""Sanitize the results dictionary.""" |
|
_results = copy.deepcopy(self.results.get("results", dict())) |
|
|
|
|
|
tmp_results = copy.deepcopy(_results) |
|
for task_name in self.task_names: |
|
task_result = tmp_results.get(task_name, dict()) |
|
for metric_name, metric_value in task_result.items(): |
|
_metric_name, removed = remove_none_pattern(metric_name) |
|
if removed: |
|
_results[task_name][_metric_name] = metric_value |
|
_results[task_name].pop(metric_name) |
|
|
|
|
|
wandb_summary = {} |
|
for task in self.task_names: |
|
task_result = _results.get(task, dict()) |
|
for metric_name, metric_value in task_result.items(): |
|
if isinstance(metric_value, str): |
|
wandb_summary[f"{task}/{metric_name}"] = metric_value |
|
|
|
for summary_metric, summary_value in wandb_summary.items(): |
|
_task, _summary_metric = summary_metric.split("/") |
|
_results[_task].pop(_summary_metric) |
|
|
|
tmp_results = copy.deepcopy(_results) |
|
for task_name, task_results in tmp_results.items(): |
|
for metric_name, metric_value in task_results.items(): |
|
_results[f"{task_name}/{metric_name}"] = metric_value |
|
_results[task_name].pop(metric_name) |
|
for task in self.task_names: |
|
_results.pop(task) |
|
|
|
return wandb_summary, _results |
|
|
|
def _log_results_as_table(self) -> None: |
|
"""Generate and log evaluation results as a table to W&B.""" |
|
columns = [ |
|
"Version", |
|
"Filter", |
|
"num_fewshot", |
|
"Metric", |
|
"Value", |
|
"Stderr", |
|
] |
|
|
|
def make_table(columns: List[str], key: str = "results"): |
|
import wandb |
|
|
|
table = wandb.Table(columns=columns) |
|
results = copy.deepcopy(self.results) |
|
|
|
for k, dic in results.get(key).items(): |
|
if k in self.group_names and not key == "groups": |
|
continue |
|
version = results.get("versions").get(k) |
|
if version == "N/A": |
|
version = None |
|
n = results.get("n-shot").get(k) |
|
|
|
for (mf), v in dic.items(): |
|
m, _, f = mf.partition(",") |
|
if m.endswith("_stderr"): |
|
continue |
|
if m == "alias": |
|
continue |
|
|
|
if m + "_stderr" + "," + f in dic: |
|
se = dic[m + "_stderr" + "," + f] |
|
if se != "N/A": |
|
se = "%.4f" % se |
|
table.add_data(*[k, version, f, n, m, str(v), str(se)]) |
|
else: |
|
table.add_data(*[k, version, f, n, m, str(v), ""]) |
|
|
|
return table |
|
|
|
|
|
table = make_table(["Tasks"] + columns, "results") |
|
self.run.log({"evaluation/eval_results": table}) |
|
|
|
if "groups" in self.results.keys(): |
|
table = make_table(["Groups"] + columns, "groups") |
|
self.run.log({"evaluation/group_eval_results": table}) |
|
|
|
def _log_results_as_artifact(self) -> None: |
|
"""Log results as JSON artifact to W&B.""" |
|
import wandb |
|
|
|
dumped = json.dumps( |
|
self.results, indent=2, default=_handle_non_serializable, ensure_ascii=False |
|
) |
|
artifact = wandb.Artifact("results", type="eval_results") |
|
with artifact.new_file("results.json", mode="w", encoding="utf-8") as f: |
|
f.write(dumped) |
|
self.run.log_artifact(artifact) |
|
|
|
def log_eval_result(self) -> None: |
|
"""Log evaluation results to W&B.""" |
|
|
|
configs = self._get_config() |
|
self.run.config.update(configs) |
|
|
|
wandb_summary, self.wandb_results = self._sanitize_results_dict() |
|
|
|
self.run.summary.update(wandb_summary) |
|
|
|
self.run.log(self.wandb_results) |
|
|
|
self._log_results_as_table() |
|
|
|
self._log_results_as_artifact() |
|
|
|
def _generate_dataset( |
|
self, data: List[Dict[str, Any]], config: Dict[str, Any] |
|
) -> pd.DataFrame: |
|
"""Generate a dataset from evaluation data. |
|
|
|
Args: |
|
data (List[Dict[str, Any]]): The data to generate a dataset for. |
|
config (Dict[str, Any]): The configuration of the task. |
|
|
|
Returns: |
|
pd.DataFrame: A dataframe that is ready to be uploaded to W&B. |
|
""" |
|
ids = [x["doc_id"] for x in data] |
|
labels = [x["target"] for x in data] |
|
instance = [""] * len(ids) |
|
resps = [""] * len(ids) |
|
filtered_resps = [""] * len(ids) |
|
model_outputs = {} |
|
|
|
metrics_list = config["metric_list"] |
|
metrics = {} |
|
for metric in metrics_list: |
|
metric = metric.get("metric") |
|
if metric in ["word_perplexity", "byte_perplexity", "bits_per_byte"]: |
|
metrics[f"{metric}_loglikelihood"] = [x[metric][0] for x in data] |
|
if metric in ["byte_perplexity", "bits_per_byte"]: |
|
metrics[f"{metric}_bytes"] = [x[metric][1] for x in data] |
|
else: |
|
metrics[f"{metric}_words"] = [x[metric][1] for x in data] |
|
else: |
|
metrics[metric] = [x[metric] for x in data] |
|
|
|
if config["output_type"] == "loglikelihood": |
|
instance = [x["arguments"][0][0] for x in data] |
|
labels = [x["arguments"][0][1] for x in data] |
|
resps = [ |
|
f'log probability of continuation is {x["resps"][0][0][0]} ' |
|
+ "\n\n" |
|
+ "continuation will {} generated with greedy sampling".format( |
|
"not be" if not x["resps"][0][0][1] else "be" |
|
) |
|
for x in data |
|
] |
|
filtered_resps = [ |
|
f'log probability of continuation is {x["filtered_resps"][0][0]} ' |
|
+ "\n\n" |
|
+ "continuation will {} generated with greedy sampling".format( |
|
"not be" if not x["filtered_resps"][0][1] else "be" |
|
) |
|
for x in data |
|
] |
|
elif config["output_type"] == "multiple_choice": |
|
instance = [x["arguments"][0][0] for x in data] |
|
choices = [ |
|
"\n".join([f"{idx}. {y[1]}" for idx, y in enumerate(x["arguments"])]) |
|
for x in data |
|
] |
|
resps = [np.argmax([n[0][0] for n in x["resps"]]) for x in data] |
|
filtered_resps = [ |
|
np.argmax([n[0] for n in x["filtered_resps"]]) for x in data |
|
] |
|
elif config["output_type"] == "loglikelihood_rolling": |
|
instance = [x["arguments"][0][0] for x in data] |
|
resps = [x["resps"][0][0] for x in data] |
|
filtered_resps = [x["filtered_resps"][0] for x in data] |
|
elif config["output_type"] == "generate_until": |
|
instance = [x["arguments"][0][0] for x in data] |
|
resps = [x["resps"][0][0] for x in data] |
|
filtered_resps = [x["filtered_resps"][0] for x in data] |
|
|
|
model_outputs["raw_predictions"] = resps |
|
model_outputs["filtered_predictions"] = filtered_resps |
|
|
|
df_data = { |
|
"id": ids, |
|
"data": instance, |
|
} |
|
if config["output_type"] == "multiple_choice": |
|
df_data["choices"] = choices |
|
|
|
tmp_data = { |
|
"input_len": [len(x) for x in instance], |
|
"labels": labels, |
|
"output_type": config["output_type"], |
|
} |
|
df_data.update(tmp_data) |
|
df_data.update(model_outputs) |
|
df_data.update(metrics) |
|
|
|
return pd.DataFrame(df_data) |
|
|
|
def _log_samples_as_artifact( |
|
self, data: List[Dict[str, Any]], task_name: str |
|
) -> None: |
|
import wandb |
|
|
|
|
|
dumped = json.dumps( |
|
data, |
|
indent=2, |
|
default=_handle_non_serializable, |
|
ensure_ascii=False, |
|
) |
|
artifact = wandb.Artifact(f"{task_name}", type="samples_by_task") |
|
with artifact.new_file( |
|
f"{task_name}_eval_samples.json", mode="w", encoding="utf-8" |
|
) as f: |
|
f.write(dumped) |
|
self.run.log_artifact(artifact) |
|
|
|
|
|
def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None: |
|
"""Log evaluation samples to W&B. |
|
|
|
Args: |
|
samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task. |
|
""" |
|
task_names: List[str] = [ |
|
x for x in self.task_names if x not in self.group_names |
|
] |
|
|
|
ungrouped_tasks = [] |
|
tasks_by_groups = {} |
|
|
|
for task_name in task_names: |
|
group_names = self.task_configs[task_name].get("group", None) |
|
if group_names: |
|
if isinstance(group_names, str): |
|
group_names = [group_names] |
|
|
|
for group_name in group_names: |
|
if not tasks_by_groups.get(group_name): |
|
tasks_by_groups[group_name] = [task_name] |
|
else: |
|
tasks_by_groups[group_name].append(task_name) |
|
else: |
|
ungrouped_tasks.append(task_name) |
|
|
|
for task_name in ungrouped_tasks: |
|
eval_preds = samples[task_name] |
|
|
|
|
|
df = self._generate_dataset(eval_preds, self.task_configs.get(task_name)) |
|
self.run.log({f"{task_name}_eval_results": df}) |
|
|
|
|
|
self._log_samples_as_artifact(eval_preds, task_name) |
|
|
|
for group, grouped_tasks in tasks_by_groups.items(): |
|
grouped_df = pd.DataFrame() |
|
for task_name in grouped_tasks: |
|
eval_preds = samples[task_name] |
|
df = self._generate_dataset( |
|
eval_preds, self.task_configs.get(task_name) |
|
) |
|
df["group"] = group |
|
df["task"] = task_name |
|
grouped_df = pd.concat([grouped_df, df], ignore_index=True) |
|
|
|
|
|
self._log_samples_as_artifact(eval_preds, task_name) |
|
|
|
self.run.log({f"{group}_eval_results": grouped_df}) |
|
|
|
|
|
def get_commit_from_path(repo_path: Union[Path, str]) -> Optional[str]: |
|
try: |
|
git_folder = Path(repo_path, ".git") |
|
if git_folder.is_file(): |
|
git_folder = Path( |
|
git_folder.parent, |
|
git_folder.read_text(encoding="utf-8").split("\n")[0].split(" ")[-1], |
|
) |
|
if Path(git_folder, "HEAD").exists(): |
|
head_name = ( |
|
Path(git_folder, "HEAD") |
|
.read_text(encoding="utf-8") |
|
.split("\n")[0] |
|
.split(" ")[-1] |
|
) |
|
head_ref = Path(git_folder, head_name) |
|
git_hash = head_ref.read_text(encoding="utf-8").replace("\n", "") |
|
else: |
|
git_hash = None |
|
except Exception as err: |
|
logger.debug( |
|
f"Failed to retrieve a Git commit hash from path: {str(repo_path)}. Error: {err}" |
|
) |
|
return None |
|
return git_hash |
|
|
|
|
|
def get_git_commit_hash(): |
|
""" |
|
Gets the git commit hash of your current repo (if it exists). |
|
Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42 |
|
""" |
|
try: |
|
git_hash = subprocess.check_output(["git", "describe", "--always"]).strip() |
|
git_hash = git_hash.decode() |
|
except (subprocess.CalledProcessError, FileNotFoundError): |
|
|
|
git_hash = get_commit_from_path(os.getcwd()) |
|
return git_hash |
|
|
|
|
|
def add_env_info(storage: Dict[str, Any]): |
|
try: |
|
pretty_env_info = get_pretty_env_info() |
|
except Exception as err: |
|
pretty_env_info = str(err) |
|
transformers_version = trans_version |
|
upper_dir_commit = get_commit_from_path( |
|
Path(os.getcwd(), "..") |
|
) |
|
added_info = { |
|
"pretty_env_info": pretty_env_info, |
|
"transformers_version": transformers_version, |
|
"upper_git_hash": upper_dir_commit, |
|
} |
|
storage.update(added_info) |
|
|