peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/models
/neuralmagic.py
import copy | |
from typing import List, Optional, Tuple, Union | |
import numpy | |
import transformers | |
from tqdm import tqdm | |
import lm_eval.models.utils | |
from lm_eval import utils | |
from lm_eval.api.instance import Instance | |
from lm_eval.api.model import LM | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.huggingface import HFLM | |
eval_logger = utils.eval_logger | |
class SparseMLLM(HFLM): | |
""" | |
SparseML is an open-source model optimization toolkit that enables you to create | |
inference-optimized sparse models using pruning, quantization, and distillation | |
algorithms. Models optimized with SparseML can then be exported to the ONNX format and | |
deployed with DeepSparse for GPU-class performance on CPU hardware. | |
This class is a wrapper around the HuggingFace LM class to enable SparseML | |
integration with the lm-evaluation-harness. | |
""" | |
def _create_model( | |
self, | |
pretrained: str, | |
revision: Optional[str] = "main", | |
dtype: Optional[str] = "auto", | |
trust_remote_code: Optional[bool] = False, | |
**kwargs, | |
) -> None: | |
try: | |
from sparseml.transformers import SparseAutoModelForCausalLM | |
except ModuleNotFoundError: | |
raise Exception( | |
"Package `sparseml` is not installed. " | |
"Please install it via `pip install sparseml[transformers]`" | |
) | |
model_kwargs = kwargs if kwargs else {} | |
if "device_map" not in model_kwargs: | |
# set a device_map to initialize model on the right GPU. | |
# this is needed because it seems that the default behavior | |
# for quantized models now seems to be device_map="auto" | |
# which breaks data-parallel mode. | |
if hasattr(self, "accelerator"): | |
model_kwargs.update( | |
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}} | |
) | |
else: | |
model_kwargs.update({"device_map": {"": str(self.device)}}) | |
relevant_kwarg_names = [ | |
"offload_folder", | |
"device_map", | |
] | |
relevant_kwargs = { | |
k: v for k, v in model_kwargs.items() if k in relevant_kwarg_names | |
} | |
# Log the difference between model_kwargs and relevant_kwargs so we can see | |
# what is being ignored | |
ignored_kwargs = {} | |
for k, v in model_kwargs.items(): | |
if k not in relevant_kwargs.keys(): | |
ignored_kwargs[k] = v | |
eval_logger.warning( | |
f"The sparseml integration is ignoring the following kwargs that are specified: {ignored_kwargs}" | |
) | |
model = SparseAutoModelForCausalLM.from_pretrained( | |
pretrained, | |
revision=revision, | |
torch_dtype=lm_eval.models.utils.get_dtype(dtype), | |
trust_remote_code=trust_remote_code, | |
**relevant_kwargs, | |
) | |
self._model = model | |
def _get_config(self, pretrained: str, **kwargs) -> None: | |
try: | |
from sparseml.transformers import SparseAutoConfig | |
except ModuleNotFoundError: | |
raise Exception( | |
"Package `sparseml` is not installed. " | |
"Please install it via `pip install sparseml[transformers]`" | |
) | |
self._config = SparseAutoConfig.from_pretrained( | |
pretrained_model_name_or_path=pretrained, **kwargs | |
) | |
def _create_tokenizer( | |
self, | |
pretrained: Union[str, transformers.PreTrainedModel], | |
tokenizer: Optional[ | |
Union[ | |
str, | |
transformers.PreTrainedTokenizer, | |
transformers.PreTrainedTokenizerFast, | |
] | |
], | |
**kwargs, | |
) -> None: | |
try: | |
from sparseml.transformers import SparseAutoTokenizer | |
except ModuleNotFoundError: | |
raise Exception( | |
"Package `sparseml` is not installed. " | |
"Please install it via `pip install sparseml[transformers]`" | |
) | |
if tokenizer: | |
if isinstance(tokenizer, str): | |
self.tokenizer = SparseAutoTokenizer.from_pretrained( | |
tokenizer, | |
**kwargs, | |
) | |
else: | |
assert isinstance( | |
tokenizer, transformers.PreTrainedTokenizer | |
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast) | |
self.tokenizer = tokenizer | |
else: | |
# Get tokenizer based on 'pretrained' | |
if isinstance(pretrained, str): | |
model_name = pretrained | |
else: | |
# get the HF hub name via accessor on model | |
model_name = self.model.name_or_path | |
self.tokenizer = SparseAutoTokenizer.from_pretrained( | |
model_name, | |
**kwargs, | |
) | |
return None | |
class DeepSparseLM(LM): | |
""" | |
Wrapper around DeepSparse, a sparsity-aware deep learning | |
inference runtime for CPUs, to make it compatible with the | |
lm-evaluation-harness. | |
""" | |
_DEFAULT_MAX_LENGTH = 2048 | |
def __init__( | |
self, | |
pretrained: str, | |
tokenizer: Optional[ | |
Union[ | |
str, | |
transformers.PreTrainedTokenizer, | |
transformers.PreTrainedTokenizerFast, | |
] | |
] = None, | |
batch_size: Optional[Union[int, str]] = 1, | |
max_gen_toks: Optional[int] = 256, | |
max_length: Optional[int] = None, | |
): | |
super().__init__() | |
try: | |
import deepsparse | |
except ModuleNotFoundError: | |
raise Exception( | |
"Package `deepsparse` is not installed. " | |
"Please install it via `pip install deepsparse[transformers]`" | |
) | |
if isinstance(batch_size, str) and not batch_size.isdigit(): | |
eval_logger.warning( | |
f"batch_size={batch_size} is not valid for deepsparse because it is not an integer. " | |
"Ignoring and using the default of 1." | |
) | |
batch_size = 1 | |
self.batch_size = int(batch_size) | |
self._max_length = max_length if max_length else self._DEFAULT_MAX_LENGTH | |
self._max_gen_toks = max_gen_toks | |
self.batch_sizes = {} | |
# Initialize new model and tokenizer instances | |
self.model = deepsparse.TextGeneration( | |
model_path=pretrained, | |
sequence_length=self._max_length, | |
batch_size=batch_size, | |
) | |
self.tokenizer = tokenizer if tokenizer else self.model.tokenizer | |
self.config = self.model.config | |
def tok_encode(self, string: str) -> List[int]: | |
return self.tokenizer.encode(string) | |
def tok_decode(self, tokens: List[int]) -> str: | |
return self.tokenizer.decode(tokens) | |
def eot_token_id(self): | |
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | |
return self.tokenizer.eos_token_id | |
def prefix_token_id(self): | |
# it is used as prefix for loglikelihood | |
if self.tokenizer.bos_token_id is not None: | |
return self.tokenizer.bos_token_id | |
return self.tokenizer.eos_token_id | |
def max_length(self) -> int: | |
return self._max_length | |
def max_gen_toks(self) -> int: | |
return self._max_gen_toks | |
def loglikelihood(self, requests) -> List[Tuple[float, bool]]: | |
""" | |
Copied directly from | |
https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py | |
""" | |
new_reqs = [] | |
for context, continuation in [req.args for req in requests]: | |
if context == "": | |
raise NotImplementedError( | |
"Implementing empty context is not supported yet" | |
) | |
context_enc, continuation_enc = self._encode_pair(context, continuation) | |
new_reqs.append(((context, continuation), context_enc, continuation_enc)) | |
return self._loglikelihood_tokens(new_reqs) | |
def _loglikelihood_tokens( | |
self, | |
requests: List[Tuple[Tuple[str, str], List[int], List[int]]], | |
disable_tqdm: bool = False, | |
) -> List[Tuple[float, bool]]: | |
""" | |
The function to compute the loglikelihood of the continuation | |
tokens given the context tokens. | |
This function is an adapted version of the original function from | |
https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py | |
""" | |
res = [] | |
def _collate(x): | |
"""Defines the key for the sorted method""" | |
toks = x[1] + x[2] | |
return -len(toks), tuple(toks) | |
re_ord = utils.Reorderer(requests, _collate) | |
for chunk in tqdm( | |
list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)), | |
disable=disable_tqdm, | |
): | |
batch_inp = [] | |
batch_cache_key = [] | |
batch_continuation_enc = [] | |
# len(chunk) is the batch_size | |
for cache_key, context_enc, continuation_enc in chunk: | |
# how this all works (illustrated on a causal decoder-only setup): | |
# CTX CONT | |
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] | |
# model \ \ | |
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the | |
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice # noqa: E501 | |
inp = (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1] | |
batch_inp.append(self.tokenizer.decode(inp)) | |
batch_cache_key.append(cache_key) | |
batch_continuation_enc.append(continuation_enc) | |
response = self.model( | |
prompt=batch_inp, | |
max_new_tokens=0, | |
output_scores=True, | |
include_prompt_logits=True, | |
) | |
for resp, continuation_enc, cache_key in zip( | |
response.generations, batch_continuation_enc, batch_cache_key | |
): | |
# (seq_len, vocab_size) | |
multi_scores = resp.score | |
from deepsparse.utils.data import numpy_log_softmax | |
# (seq_len, vocab_size) but with softmax applied | |
multi_logits = numpy_log_softmax(multi_scores, axis=1) | |
# toss out the context half of the sequence | |
# (cont_len, vocab_size) | |
continuation_multi_logits = multi_logits[-len(continuation_enc) :] | |
# pick out the logits for the continuation tokens | |
# (cont_len,) | |
continuation_logits = continuation_multi_logits[ | |
numpy.arange(len(continuation_enc)), continuation_enc | |
] | |
# check if the tokens generated greedly are the same | |
# as the expected continuation | |
greedy_tokens = continuation_multi_logits.argmax(axis=1) | |
max_equal = greedy_tokens.tolist() == continuation_enc | |
# Answer: (log prob, is-exact-match) | |
answer = (float(continuation_logits.sum()), bool(max_equal)) | |
res.append(answer) | |
if cache_key is not None: | |
self.cache_hook.add_partial("loglikelihood", cache_key, answer) | |
return re_ord.get_original(res) | |
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]: | |
raise NotImplementedError( | |
"The method not required by any of our current task integrations so far" | |
) | |
def generate_until(self, requests: List[Instance]) -> List[str]: | |
""" | |
The function to generate a certain number of new tokens | |
given a context. | |
This function is an adapted version of the original function from | |
https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/openai_completions.py | |
""" | |
if not requests: | |
return [] | |
res = [] | |
requests = [req.args for req in requests] | |
def _collate(x): | |
toks = self.tok_encode(x[0]) | |
return len(toks), x[0] | |
re_ord = utils.Reorderer(requests, _collate) | |
def sameuntil_chunks(xs, size): | |
ret = [] | |
lastuntil = xs[0][1] | |
for x in xs: | |
if len(ret) >= size or x[1] != lastuntil: | |
yield ret, lastuntil | |
ret = [] | |
lastuntil = x[1] | |
ret.append(x) | |
if ret: | |
yield ret, lastuntil | |
pbar = tqdm(total=len(requests)) | |
for chunk, request_args in tqdm( | |
list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)) | |
): | |
inps = [] | |
# make a deepcopy since we are changing arguments | |
request_args = copy.deepcopy(request_args) | |
self._max_gen_toks = request_args.pop("max_gen_toks", self.max_gen_toks) | |
for context, _ in chunk: | |
# add context (prompts) to the list | |
inps.append(context) | |
until = request_args.pop("until", ["<|endoftext|>"]) | |
request_args.pop("do_sample", None) | |
request_args["temperature"] = request_args.get("temperature", 0) | |
# run inference (generate max_gen_toks tokens) | |
out = self.model( | |
sequences=inps, | |
max_new_tokens=self.max_gen_toks - 1, | |
stop=until, | |
**request_args, | |
) | |
for resp, (context, args_) in zip(out.generations, chunk): | |
text = resp.text | |
until_ = until | |
# split the text at the first occurrence of any of the until tokens | |
for term in until_: | |
if len(term) > 0: | |
text = text.split(term)[0] | |
res.append(text) | |
self.cache_hook.add_partial( | |
"generate_until", (context, {"until": until_}), text | |
) | |
pbar.update(1) | |
pbar.close() | |
return re_ord.get_original(res) | |
def _encode_pair( | |
self, context: str, continuation: str | |
) -> Tuple[List[int], List[int]]: | |
""" | |
Copied directly from | |
https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py | |
""" | |
n_spaces = len(context) - len(context.rstrip()) | |
if n_spaces > 0: | |
continuation = context[-n_spaces:] + continuation | |
context = context[:-n_spaces] | |
whole_enc = self.tok_encode(context + continuation) | |
context_enc = self.tok_encode(context) | |
context_enc_len = len(context_enc) | |
continuation_enc = whole_enc[context_enc_len:] | |
return context_enc, continuation_enc | |