peacock-data-public-datasets-idc-cronscript
/
lm-evaluation-harness
/lm_eval
/models
/vllm_causallms.py
import copy | |
from importlib.metadata import version | |
from importlib.util import find_spec | |
from typing import List, Literal, Optional, Tuple, Union | |
from more_itertools import distribute | |
from packaging.version import parse as parse_version | |
from tqdm import tqdm | |
from lm_eval.api.instance import Instance | |
from lm_eval.api.model import TemplateLM | |
from lm_eval.api.registry import register_model | |
from lm_eval.models.utils import Collator, undistribute | |
from lm_eval.utils import ( | |
eval_logger, | |
get_rolling_token_windows, | |
make_disjoint_window, | |
) | |
try: | |
import ray | |
from vllm import LLM, SamplingParams | |
from vllm.transformers_utils.tokenizer import get_tokenizer | |
except ModuleNotFoundError: | |
pass | |
eval_logger = eval_logger | |
class VLLM(TemplateLM): | |
_DEFAULT_MAX_LENGTH = 2048 | |
def __init__( | |
self, | |
pretrained="gpt2", | |
dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto", | |
revision: Optional[str] = None, | |
trust_remote_code: Optional[bool] = False, | |
tokenizer: Optional[str] = None, | |
tokenizer_mode: Literal["auto", "slow"] = "auto", | |
tokenizer_revision: Optional[str] = None, | |
add_bos_token: Optional[bool] = False, | |
prefix_token_id: Optional[int] = None, | |
tensor_parallel_size: int = 1, | |
quantization: Optional[str] = None, | |
max_gen_toks: int = 256, | |
swap_space: int = 4, | |
batch_size: Union[str, int] = 1, | |
max_batch_size=None, | |
max_length: int = None, | |
max_model_len: int = None, | |
seed: int = 1234, | |
gpu_memory_utilization: float = 0.9, | |
device: str = "cuda", | |
data_parallel_size: int = 1, | |
**kwargs, | |
): | |
super().__init__() | |
if not find_spec("vllm"): | |
raise Exception( | |
"attempted to use 'vllm' LM type, but package `vllm` is not installed. " | |
"Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`" | |
) | |
assert "cuda" in device or device is None, "vLLM only supports CUDA" | |
assert ( | |
max_length is None or max_model_len is None | |
), "Either max_length or max_model_len may be provided, but not both" | |
self._max_length = max_model_len if max_model_len is not None else max_length | |
self.tensor_parallel_size = int(tensor_parallel_size) | |
self.data_parallel_size = int(data_parallel_size) | |
self.model_args = { | |
"model": pretrained, | |
"gpu_memory_utilization": float(gpu_memory_utilization), | |
"revision": revision, | |
"dtype": dtype, | |
"tokenizer": tokenizer, | |
"tokenizer_mode": tokenizer_mode, | |
"tokenizer_revision": tokenizer_revision, | |
"trust_remote_code": trust_remote_code, | |
"tensor_parallel_size": int(tensor_parallel_size), | |
"max_model_len": int(self._max_length) if self._max_length else None, | |
"swap_space": int(swap_space), | |
"quantization": quantization, | |
"seed": int(seed), | |
} | |
self.model_args.update(kwargs) | |
self.batch_size = ( | |
"auto" | |
if isinstance(batch_size, str) and "auto" in batch_size | |
else batch_size | |
) | |
if self.data_parallel_size <= 1: | |
self.model = LLM(**self.model_args) | |
else: | |
assert parse_version(version("vllm")) < parse_version( | |
"0.3.3" | |
), "data_parallel is only compatible with vllm < v0.3.3." | |
eval_logger.warning( | |
"You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached." | |
) | |
self.model_args["worker_use_ray"] = True | |
self.batch_size = "auto" | |
eval_logger.info("Manual batching is not compatible with data parallelism.") | |
from transformers import AutoConfig | |
self._config = AutoConfig.from_pretrained( | |
pretrained, trust_remote_code=trust_remote_code, revision=revision | |
) | |
self.tokenizer = get_tokenizer( | |
tokenizer if tokenizer else pretrained, | |
tokenizer_mode=tokenizer_mode, | |
trust_remote_code=trust_remote_code, | |
tokenizer_revision=tokenizer_revision, | |
) | |
self.add_bos_token = add_bos_token | |
self.custom_prefix_token_id = prefix_token_id | |
if prefix_token_id is not None: | |
eval_logger.info( | |
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}" | |
) | |
self._max_gen_toks = max_gen_toks | |
def eot_token_id(self): | |
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | |
return self.tokenizer.eos_token_id | |
def prefix_token_id(self): | |
# it is used as prefix for loglikelihood | |
if self.custom_prefix_token_id is not None: | |
return self.custom_prefix_token_id | |
if self.tokenizer.bos_token_id is not None: | |
return self.tokenizer.bos_token_id | |
return self.tokenizer.eos_token_id | |
def max_length(self): | |
if self._max_length: # if max length manually set, return it | |
return self._max_length | |
if self.data_parallel_size <= 1: | |
return self.model.llm_engine.model_config.max_model_len | |
else: | |
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx") | |
for attr in seqlen_config_attrs: | |
if hasattr(self._config, attr): | |
return getattr(self._config, attr) | |
if hasattr(self.tokenizer, "model_max_length"): | |
if self.tokenizer.model_max_length == 1000000000000000019884624838656: | |
return self._DEFAULT_MAX_LENGTH | |
return self.tokenizer.model_max_length | |
return self._DEFAULT_MAX_LENGTH | |
def max_gen_toks(self): | |
return self._max_gen_toks | |
def tok_encode( | |
self, | |
string: str, | |
left_truncate_len=None, | |
add_special_tokens=None, | |
truncation=False, | |
): | |
""" """ | |
if not add_special_tokens: | |
add_special_tokens = False or self.add_bos_token | |
encoding = self.tokenizer.encode( | |
string, add_special_tokens=add_special_tokens, truncation=truncation | |
) | |
# left-truncate the encoded context to be at most `left_truncate_len` tokens long | |
if left_truncate_len: | |
encoding = encoding[-left_truncate_len:] | |
return encoding | |
def _model_generate( | |
self, | |
requests: List[List[int]] = None, | |
generate: bool = False, | |
max_tokens: int = None, | |
stop: Optional[List[str]] = None, | |
**kwargs, | |
): | |
if generate: | |
kwargs = self.modify_gen_kwargs(kwargs) | |
sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs) | |
else: | |
sampling_params = SamplingParams( | |
temperature=0, prompt_logprobs=1, max_tokens=1 | |
) | |
if self.data_parallel_size > 1: | |
# vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote | |
# also seems to only work with decorator and not with ray.remote() fn | |
# see https://github.com/vllm-project/vllm/issues/973 | |
# note: this has changed on 0.3.3, and it only works now if num_gpus are set. | |
# but then tensor_parallel breaks | |
def run_inference_one_model( | |
model_args: dict, sampling_params, requests: List[List[int]] | |
): | |
llm = LLM(**model_args) | |
return llm.generate( | |
prompt_token_ids=requests, sampling_params=sampling_params | |
) | |
# dispatch requests to all self.data_parallel_size workers, in interleaved fashion | |
# interleaved important to balance context lengths across workers | |
requests = [list(x) for x in distribute(self.data_parallel_size, requests)] | |
inputs = ((self.model_args, sampling_params, req) for req in requests) | |
object_refs = [run_inference_one_model.remote(*x) for x in inputs] | |
results = ray.get(object_refs) | |
# Invoke ray.shutdown() to prevent hang-ups if subsequent calls required. | |
ray.shutdown() | |
# flatten results | |
return undistribute(results) | |
outputs = self.model.generate( | |
prompt_token_ids=requests, | |
sampling_params=sampling_params, | |
use_tqdm=True if self.batch_size == "auto" else False, | |
) | |
return outputs | |
def loglikelihood_rolling( | |
self, requests: List[Instance], disable_tqdm: bool = False | |
) -> List[float]: | |
loglikelihoods = [] | |
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm): | |
rolling_token_windows = list( | |
map( | |
make_disjoint_window, | |
get_rolling_token_windows( | |
token_list=self.tok_encode(string), | |
prefix_token=self.eot_token_id, | |
max_seq_len=self.max_length - 1, | |
context_len=1, | |
), | |
) | |
) | |
rolling_token_windows = [(None,) + x for x in rolling_token_windows] | |
string_nll = self._loglikelihood_tokens( | |
rolling_token_windows, | |
) | |
# discard is_greedy | |
string_nll = [x[0] for x in string_nll] | |
string_nll = sum(string_nll) | |
loglikelihoods.append(string_nll) | |
return loglikelihoods | |
def generate_until( | |
self, requests: List[Instance], disable_tqdm: bool = False | |
) -> List[str]: | |
res = [] | |
# batch tokenize contexts | |
context, all_gen_kwargs = zip(*(req.args for req in requests)) | |
context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids | |
requests = [ | |
((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs) | |
] | |
def _collate_gen(_requests): | |
# the negative sign on len(toks) sorts descending - this has a few advantages: | |
# - time estimates will always be over not underestimates, which is more useful for planning | |
# - to know the size of a batch when going through the list, you know the first one is always the batch | |
# padded context length. this is useful to simplify the batching logic and more importantly to make | |
# automatic adaptive batches much much easier to implement | |
# - any OOMs will happen right away rather than near the end | |
return -len(_requests[0][1]), _requests[0][0] | |
# we group requests by their generation_kwargs, | |
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | |
# in the same batch. | |
re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs") | |
chunks = re_ords.get_batched( | |
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None | |
) | |
pbar = tqdm( | |
total=len(requests), | |
disable=(disable_tqdm or (self.rank != 0)), | |
desc="Running generate_until requests", | |
) | |
# for each different set of kwargs, we execute all requests, by batch. | |
for chunk in chunks: | |
context_and_encoding, all_gen_kwargs = zip(*chunk) | |
context, context_encoding = zip(*context_and_encoding) | |
# we assume all gen kwargs in the batch are the same | |
# this is safe to assume because the `grouper` object ensures it. | |
gen_kwargs = all_gen_kwargs[0] | |
# unpack our keyword arguments. | |
until = None | |
if isinstance(gen_kwargs, dict): | |
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1 | |
if "until" in kwargs.keys(): | |
until = kwargs.pop("until") | |
if isinstance(until, str): | |
until = [until] | |
elif not isinstance(until, list): | |
raise ValueError( | |
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}" | |
) | |
else: | |
raise ValueError( | |
f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}" | |
) | |
# add EOS token to stop sequences | |
eos = self.tokenizer.decode(self.eot_token_id) | |
if not until: | |
until = [eos] | |
else: | |
until.append(eos) | |
if "max_gen_toks" in kwargs.keys(): | |
max_gen_toks = kwargs.pop("max_gen_toks") | |
else: | |
max_gen_toks = self.max_gen_toks | |
# set the max length in tokens of inputs ("context_enc") | |
# max len for inputs = max length, minus room to generate the max new tokens | |
max_ctx_len = self.max_length - max_gen_toks | |
context_encoding = [x[-max_ctx_len:] for x in context_encoding] | |
# perform batched generation | |
cont = self._model_generate( | |
requests=context_encoding, | |
generate=True, | |
max_tokens=max_gen_toks, | |
stop=until, | |
**kwargs, | |
) | |
# cache generations | |
for output, context in zip(cont, context): | |
generated_text = output.outputs[0].text | |
res.append(generated_text) | |
self.cache_hook.add_partial( | |
"generate_until", (context, gen_kwargs), generated_text | |
) | |
pbar.update(1) | |
pbar.close() | |
# reorder all group of results back to original unsorted form | |
return re_ords.get_original(res) | |
def _loglikelihood_tokens( | |
self, | |
requests: List[Tuple[Tuple[str, str], List[int], List[int]]], | |
disable_tqdm: bool = False, | |
) -> List[Tuple[float, bool]]: | |
res = [] | |
def _collate(x): | |
toks = x[1] + x[2] | |
return -len(toks), tuple(toks) | |
# Reorder requests by length and batch | |
re_ord = Collator(requests, sort_fn=_collate) | |
chunks = re_ord.get_batched( | |
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None | |
) | |
pbar = tqdm( | |
total=len(requests), | |
disable=disable_tqdm, | |
desc="Running loglikelihood requests", | |
) | |
for chunk in chunks: | |
inputs = [] | |
ctxlens = [] | |
for cache_key, context_enc, continuation_enc in chunk: | |
inp = (context_enc + continuation_enc)[-(self.max_length) :] | |
ctxlen = len(context_enc) - max( | |
0, len(context_enc) + len(continuation_enc) - (self.max_length) | |
) | |
inputs.append(inp) | |
ctxlens.append(ctxlen) | |
outputs = self._model_generate(requests=inputs, generate=False) | |
for output, ctxlen, (cache_key, _, _), inp in zip( | |
outputs, ctxlens, chunk, inputs | |
): | |
answer = self._parse_logprobs( | |
tokens=inp, | |
outputs=output, | |
ctxlen=ctxlen, | |
) | |
res.append(answer) | |
# partial caching | |
if cache_key is not None: | |
self.cache_hook.add_partial("loglikelihood", cache_key, answer) | |
pbar.update(1) | |
pbar.close() | |
return re_ord.get_original(res) | |
def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]: | |
"""Process logprobs and tokens. | |
:param tokens: list | |
Input tokens (potentially left-truncated) | |
:param outputs: RequestOutput | |
Contains prompt_logprobs | |
:param ctxlen: int | |
Length of context (so we can slice them away and only keep the predictions) | |
:return: | |
continuation_logprobs: float | |
Log probabilities of continuation tokens | |
is_greedy: bool | |
Whether argmax matches given continuation exactly | |
""" | |
# The first entry of prompt_logprobs is None because the model has no previous tokens to condition on. | |
continuation_logprobs_dicts = outputs.prompt_logprobs | |
def coerce_logprob_to_num(logprob): | |
# vLLM changed the return type of logprobs from float | |
# to a Logprob object storing the float value + extra data | |
# (https://github.com/vllm-project/vllm/pull/3065). | |
# If we are dealing with vllm's Logprob object, return | |
# the logprob value stored as an attribute. Otherwise, | |
# return the object itself (which should be a float | |
# for older versions of vLLM). | |
return getattr(logprob, "logprob", logprob) | |
continuation_logprobs_dicts = [ | |
{ | |
token: coerce_logprob_to_num(logprob) | |
for token, logprob in logprob_dict.items() | |
} | |
if logprob_dict is not None | |
else None | |
for logprob_dict in continuation_logprobs_dicts | |
] | |
# Calculate continuation_logprobs | |
# assume ctxlen always >= 1 | |
continuation_logprobs = sum( | |
logprob_dict.get(token) | |
for token, logprob_dict in zip( | |
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:] | |
) | |
) | |
# Determine if is_greedy | |
is_greedy = True | |
for token, logprob_dict in zip( | |
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:] | |
): | |
# Get the token with the maximum log probability from the logprob_dict | |
if logprob_dict: # Ensure the logprob_dict is not None | |
top_token = max(logprob_dict, key=logprob_dict.get) | |
if top_token != token: | |
is_greedy = False | |
break | |
return continuation_logprobs, is_greedy | |
def modify_gen_kwargs(kwargs: dict) -> dict: | |
# sampling_params | |
do_sample = kwargs.pop("do_sample", None) | |
if do_sample is False or "temperature" not in kwargs: | |
kwargs["temperature"] = 0.0 | |
# hf defaults | |
kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False) | |
kwargs["spaces_between_special_tokens"] = kwargs.get( | |
"spaces_between_special_tokens", False | |
) | |
return kwargs | |