|
import re |
|
import string |
|
|
|
import numpy as np |
|
from scipy.optimize import linear_sum_assignment |
|
|
|
|
|
_ARTICLES = re.compile(r"\b(a|an|the)\b", re.UNICODE) |
|
|
|
|
|
def process_docs(dataset): |
|
def _process(doc): |
|
return { |
|
"id": doc["query_id"], |
|
"passage": doc["passage"], |
|
"question": doc["question"], |
|
"answers": get_answers(doc), |
|
} |
|
|
|
return dataset.map(_process) |
|
|
|
|
|
def get_answers(doc): |
|
def _flatten_validated_answers(validated_answers): |
|
"""Flattens a dict of lists of validated answers. |
|
{"number": ['1', '8'], ...} |
|
-> [{"number": ['1'], ...}, {"number": ['8'], ...}] |
|
""" |
|
valid_answers = [] |
|
for i in range(len(validated_answers["number"])): |
|
valid_answers.append( |
|
{ |
|
"number": validated_answers["number"][i], |
|
"date": validated_answers["date"][i], |
|
"spans": validated_answers["spans"][i], |
|
} |
|
) |
|
return valid_answers |
|
|
|
answers = [] |
|
answers_set = set() |
|
candidates = [doc["answer"]] + _flatten_validated_answers(doc["validated_answers"]) |
|
for candidate in candidates: |
|
answer = parse_answer(candidate) |
|
if answer in answers_set: |
|
continue |
|
answers_set.add(answer) |
|
answers.append(answer) |
|
return answers |
|
|
|
|
|
def parse_answer(answer): |
|
|
|
if answer["number"] != "": |
|
return (str(answer["number"]),) |
|
if answer["spans"] != []: |
|
return tuple(answer["spans"]) |
|
return ( |
|
" ".join( |
|
[answer["date"]["day"], answer["date"]["month"], answer["date"]["year"]] |
|
).strip(), |
|
) |
|
|
|
|
|
def process_results(doc, results): |
|
preds, golds = results, doc["answers"] |
|
max_em = 0 |
|
max_f1 = 0 |
|
for gold_answer in golds: |
|
exact_match, f1_score = get_metrics(preds, gold_answer) |
|
if gold_answer[0].strip(): |
|
max_em = max(max_em, exact_match) |
|
max_f1 = max(max_f1, f1_score) |
|
return {"em": max_em, "f1": max_f1} |
|
|
|
|
|
def get_metrics(predicted, gold): |
|
""" |
|
Takes a predicted answer and a gold answer (that are both either a string or a list of |
|
strings), and returns exact match and the DROP F1 metric for the prediction. If you are |
|
writing a script for evaluating objects in memory (say, the output of predictions during |
|
validation, or while training), this is the function you want to call, after using |
|
:func:`answer_json_to_strings` when reading the gold answer from the released data file. |
|
""" |
|
predicted_bags = _answer_to_bags(predicted) |
|
gold_bags = _answer_to_bags(gold) |
|
|
|
if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len( |
|
gold_bags[0] |
|
): |
|
exact_match = 1.0 |
|
else: |
|
exact_match = 0.0 |
|
|
|
f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1]) |
|
f1 = np.mean(f1_per_bag) |
|
f1 = round(f1, 2) |
|
return exact_match, f1 |
|
|
|
|
|
def _answer_to_bags(answer): |
|
if isinstance(answer, (list, tuple)): |
|
raw_spans = answer |
|
else: |
|
raw_spans = [answer] |
|
normalized_spans = [] |
|
token_bags = [] |
|
for raw_span in raw_spans: |
|
normalized_span = _normalize(raw_span) |
|
normalized_spans.append(normalized_span) |
|
token_bags.append(set(normalized_span.split())) |
|
return normalized_spans, token_bags |
|
|
|
|
|
def _align_bags(predicted, gold): |
|
""" |
|
Takes gold and predicted answer sets and first finds the optimal 1-1 alignment |
|
between them and gets maximum metric values over all the answers. |
|
""" |
|
scores = np.zeros([len(gold), len(predicted)]) |
|
for gold_index, gold_item in enumerate(gold): |
|
for pred_index, pred_item in enumerate(predicted): |
|
if _match_numbers_if_present(gold_item, pred_item): |
|
scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item) |
|
row_ind, col_ind = linear_sum_assignment(-scores) |
|
|
|
max_scores = np.zeros([max(len(gold), len(predicted))]) |
|
for row, column in zip(row_ind, col_ind): |
|
max_scores[row] = max(max_scores[row], scores[row, column]) |
|
return max_scores |
|
|
|
|
|
def _compute_f1(predicted_bag, gold_bag): |
|
intersection = len(gold_bag.intersection(predicted_bag)) |
|
if not predicted_bag: |
|
precision = 1.0 |
|
else: |
|
precision = intersection / float(len(predicted_bag)) |
|
if not gold_bag: |
|
recall = 1.0 |
|
else: |
|
recall = intersection / float(len(gold_bag)) |
|
f1 = ( |
|
(2 * precision * recall) / (precision + recall) |
|
if not (precision == 0.0 and recall == 0.0) |
|
else 0.0 |
|
) |
|
return f1 |
|
|
|
|
|
def _match_numbers_if_present(gold_bag, predicted_bag): |
|
gold_numbers = set() |
|
predicted_numbers = set() |
|
for word in gold_bag: |
|
if _is_number(word): |
|
gold_numbers.add(word) |
|
for word in predicted_bag: |
|
if _is_number(word): |
|
predicted_numbers.add(word) |
|
if (not gold_numbers) or gold_numbers.intersection(predicted_numbers): |
|
return True |
|
return False |
|
|
|
|
|
def _is_number(text): |
|
try: |
|
float(text) |
|
return True |
|
except ValueError: |
|
return False |
|
|
|
|
|
def _remove_articles(text): |
|
return _ARTICLES.sub(" ", text) |
|
|
|
|
|
def _white_space_fix(text): |
|
return " ".join(text.split()) |
|
|
|
|
|
def _remove_punc(text): |
|
exclude = set(string.punctuation) |
|
if not _is_number(text): |
|
return "".join(ch for ch in text if ch not in exclude) |
|
else: |
|
return text |
|
|
|
|
|
def _fix_number(text): |
|
return str(float(text)) if _is_number(text) else text |
|
|
|
|
|
def _tokenize(text): |
|
return re.split(" |-", text) |
|
|
|
|
|
def _normalize(answer): |
|
tokens = [ |
|
_white_space_fix(_remove_articles(_fix_number(_remove_punc(token.lower())))) |
|
for token in _tokenize(answer) |
|
] |
|
tokens = [token for token in tokens if token.strip()] |
|
normalized = " ".join(tokens).strip() |
|
return normalized |
|
|