applied-ai-018's picture
Add files using upload-large-folder tool
0c17c1b verified
import collections
import fnmatch
import functools
import importlib.util
import inspect
import logging
import os
import re
from itertools import islice
from typing import Any, Callable, List
import numpy as np
import yaml
from jinja2 import BaseLoader, Environment, StrictUndefined
logging.basicConfig(
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d:%H:%M:%S",
level=logging.INFO,
)
eval_logger = logging.getLogger("lm-eval")
SPACING = " " * 47
def escaped_split(text, sep_char, maxsplit=-1):
"""Split text into a list on occurrences of the given separation
character `sep_char`. The separation character may be escaped by a
backslash to avoid splitting at that location.
The separation character must be a string of size 1.
If `maxsplit` is given, at most `maxsplit` splits are done (thus,
the list will have at most `maxsplit + 1` elements). If `maxsplit`
is not specified or less than 0, then there is no limit on the
number of splits (all possible splits are made).
"""
assert (
len(sep_char) == 1
), "separation string must be a single character for escaped splitting"
if maxsplit == 0:
return text
maxsplit = max(0, maxsplit)
return re.split(r"(?<!\\)" + sep_char, text, maxsplit)
def handle_arg_string(arg):
if arg.lower() == "true":
return True
elif arg.lower() == "false":
return False
elif arg.isnumeric():
return int(arg)
try:
return float(arg)
except ValueError:
return arg
def simple_parse_args_string(args_string):
"""
Parses something like
args1=val1,arg2=val2
Into a dictionary
"""
args_string = args_string.strip()
if not args_string:
return {}
arg_list = [arg for arg in args_string.split(",") if arg]
args_dict = {
k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
}
return args_dict
def join_iters(iters):
for iter in iters:
yield from iter
def group(arr, fn):
res = collections.defaultdict(list)
for ob in arr:
res[fn(ob)].append(ob)
return list(res.values())
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
if isinstance(patterns, str):
patterns = [patterns]
task_names = set()
for pattern in patterns:
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return sorted(list(task_names))
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def general_detokenize(string):
string = string.replace(" n't", "n't")
string = string.replace(" )", ")")
string = string.replace("( ", "(")
string = string.replace('" ', '"')
string = string.replace(' "', '"')
string = re.sub(r" (['.,])", r"\1", string)
return string
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
"""
- context_len allows for a rolling window context, allowing each prediction window to potentially
condition on some context
:param token_list: list
List of tokens to be PREDICTED
:param max_seq_len: int
max_seq_len of model (or max_seq_len we want to use)
:param context_len: int
Amount of desired token context for prediction. Needs to be at least 1.
:param prefix_token: token
Dummy token like <eos> so the first token has something to condition on
:return: generator
Generator of tuples
(input_tokens, pred_tokens)
Note: Score only the last len(pred_tokens) logits of the LM
"""
assert 1 <= context_len <= max_seq_len
if not token_list:
return
# +1 offset, going from input->preds
pred_len = max_seq_len - context_len + 1
predicted = 0
# Special handling for first window: predict all tokens
first_seq_len = min(max_seq_len, len(token_list))
yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
predicted += first_seq_len
while predicted < len(token_list):
window_pred_len = min(len(token_list) - predicted, pred_len)
window_end = predicted + window_pred_len
yield (
token_list[window_end - max_seq_len - 1 : window_end - 1],
token_list[window_end - window_pred_len : window_end],
)
predicted += window_pred_len
def make_disjoint_window(pair):
"""Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
a, b = pair
return a[: len(a) - (len(b) - 1)], b
class Reorderer:
def __init__(self, arr: List[Any], fn: Callable) -> None:
"""Reorder an array according to some function
Args:
arr (List[Any]): The initial array
fn (Callable[[Any], Any]): A function to determine the priority of elements
"""
self.size = len(arr)
arr = list(enumerate(arr))
arr = group(arr, lambda x: fn(x[1]))
# arr = [([y[0] for y in x], x[0][1]) for x in arr]
# TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
arr = [([y[0]], x[0][1]) for x in arr for y in x]
arr.sort(key=lambda x: fn(x[1]))
self.arr = arr
def get_reordered(self):
"""Gets the reordered array
Returns:
List[Any]: The reordered array
"""
return [x[1] for x in self.arr]
def get_original(self, newarr):
"""Restores the original order of a new array based on the old array's order
Args:
newarr (List[Any]): The array to be restored
Returns:
List[Any]: The array restored to the original order
"""
res = [None] * self.size
cov = [False] * self.size
for (inds, _), v in zip(self.arr, newarr):
for ind in inds:
res[ind] = v
cov[ind] = True
assert all(cov)
return res
def make_table(result_dict, column: str = "results"):
"""Generate table of results."""
from pytablewriter import LatexTableWriter, MarkdownTableWriter
if column == "results":
column_name = "Tasks"
elif column == "groups":
column_name = "Groups"
all_headers = [
column_name,
"Version",
"Filter",
"n-shot",
"Metric",
"Value",
"",
"Stderr",
]
md_writer = MarkdownTableWriter()
latex_writer = LatexTableWriter()
md_writer.headers = all_headers
latex_writer.headers = all_headers
values = []
for k, dic in result_dict[column].items():
version = result_dict["versions"].get(k, "N/A")
n = str(result_dict["n-shot"][k])
if "alias" in dic:
k = dic.pop("alias")
for (mf), v in dic.items():
m, _, f = mf.partition(",")
if m.endswith("_stderr"):
continue
if m + "_stderr" + "," + f in dic:
se = dic[m + "_stderr" + "," + f]
if se != "N/A":
se = "%.4f" % se
values.append([k, version, f, n, m, "%.4f" % v, "±", se])
else:
values.append([k, version, f, n, m, "%.4f" % v, "", ""])
k = ""
version = ""
md_writer.value_matrix = values
latex_writer.value_matrix = values
# todo: make latex table look good
# print(latex_writer.dumps())
return md_writer.dumps()
def positional_deprecated(fn):
"""
A decorator to nudge users into passing only keyword args (`kwargs`) to the
wrapped function, `fn`.
"""
@functools.wraps(fn)
def _wrapper(*args, **kwargs):
if len(args) != 1 if inspect.ismethod(fn) else 0:
print(
f"WARNING: using {fn.__name__} with positional arguments is "
"deprecated and will be disallowed in a future version of "
"lm-evaluation-harness!"
)
return fn(*args, **kwargs)
return _wrapper
def ignore_constructor(loader, node):
return node
def import_function(loader, node):
function_name = loader.construct_scalar(node)
yaml_path = os.path.dirname(loader.name)
*module_name, function_name = function_name.split(".")
if isinstance(module_name, list):
module_name = ".".join(module_name)
module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
spec = importlib.util.spec_from_file_location(module_name, module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
function = getattr(module, function_name)
return function
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
if mode == "simple":
constructor_fn = ignore_constructor
elif mode == "full":
constructor_fn = import_function
# Add the import_function constructor to the YAML loader
yaml.add_constructor("!function", constructor_fn)
if yaml_config is None:
with open(yaml_path, "rb") as file:
yaml_config = yaml.full_load(file)
if yaml_dir is None:
yaml_dir = os.path.dirname(yaml_path)
assert yaml_dir is not None
if "include" in yaml_config:
include_path = yaml_config["include"]
del yaml_config["include"]
if isinstance(include_path, str):
include_path = [include_path]
# Load from the last one first
include_path.reverse()
final_yaml_config = {}
for path in include_path:
# Assumes that path is a full path.
# If not found, assume the included yaml
# is in the same dir as the original yaml
if not os.path.isfile(path):
path = os.path.join(yaml_dir, path)
try:
included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
final_yaml_config.update(included_yaml_config)
except Exception as ex:
# If failed to load, ignore
raise ex
final_yaml_config.update(yaml_config)
return final_yaml_config
return yaml_config
def regex_replace(string, pattern, repl, count: int = 0):
"""Implements the `re.sub` function as a custom Jinja filter."""
return re.sub(pattern, repl, string, count=count)
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
env.filters["regex_replace"] = regex_replace
def apply_template(template: str, doc: dict) -> str:
rtemplate = env.from_string(template)
return rtemplate.render(**doc)
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
"""
Method for creating a (potentially) sliced and limited
iterator from a raw document iterator. Used for splitting data
among ranks in multigpu setting or only pulling a sample of documents
"""
return islice(raw_iterator, rank, limit, world_size)