|
import collections |
|
import fnmatch |
|
import functools |
|
import importlib.util |
|
import inspect |
|
import logging |
|
import os |
|
import re |
|
from itertools import islice |
|
from typing import Any, Callable, List |
|
|
|
import numpy as np |
|
import yaml |
|
from jinja2 import BaseLoader, Environment, StrictUndefined |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", |
|
datefmt="%Y-%m-%d:%H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
eval_logger = logging.getLogger("lm-eval") |
|
|
|
SPACING = " " * 47 |
|
|
|
|
|
def escaped_split(text, sep_char, maxsplit=-1): |
|
"""Split text into a list on occurrences of the given separation |
|
character `sep_char`. The separation character may be escaped by a |
|
backslash to avoid splitting at that location. |
|
|
|
The separation character must be a string of size 1. |
|
|
|
If `maxsplit` is given, at most `maxsplit` splits are done (thus, |
|
the list will have at most `maxsplit + 1` elements). If `maxsplit` |
|
is not specified or less than 0, then there is no limit on the |
|
number of splits (all possible splits are made). |
|
""" |
|
assert ( |
|
len(sep_char) == 1 |
|
), "separation string must be a single character for escaped splitting" |
|
|
|
if maxsplit == 0: |
|
return text |
|
maxsplit = max(0, maxsplit) |
|
|
|
return re.split(r"(?<!\\)" + sep_char, text, maxsplit) |
|
|
|
|
|
def handle_arg_string(arg): |
|
if arg.lower() == "true": |
|
return True |
|
elif arg.lower() == "false": |
|
return False |
|
elif arg.isnumeric(): |
|
return int(arg) |
|
try: |
|
return float(arg) |
|
except ValueError: |
|
return arg |
|
|
|
|
|
def simple_parse_args_string(args_string): |
|
""" |
|
Parses something like |
|
args1=val1,arg2=val2 |
|
Into a dictionary |
|
""" |
|
args_string = args_string.strip() |
|
if not args_string: |
|
return {} |
|
arg_list = [arg for arg in args_string.split(",") if arg] |
|
args_dict = { |
|
k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list] |
|
} |
|
return args_dict |
|
|
|
|
|
def join_iters(iters): |
|
for iter in iters: |
|
yield from iter |
|
|
|
|
|
def group(arr, fn): |
|
res = collections.defaultdict(list) |
|
|
|
for ob in arr: |
|
res[fn(ob)].append(ob) |
|
|
|
return list(res.values()) |
|
|
|
|
|
|
|
|
|
def pattern_match(patterns, source_list): |
|
if isinstance(patterns, str): |
|
patterns = [patterns] |
|
|
|
task_names = set() |
|
for pattern in patterns: |
|
for matching in fnmatch.filter(source_list, pattern): |
|
task_names.add(matching) |
|
return sorted(list(task_names)) |
|
|
|
|
|
def softmax(x): |
|
"""Compute softmax values for each sets of scores in x.""" |
|
e_x = np.exp(x - np.max(x)) |
|
return e_x / e_x.sum() |
|
|
|
|
|
def general_detokenize(string): |
|
string = string.replace(" n't", "n't") |
|
string = string.replace(" )", ")") |
|
string = string.replace("( ", "(") |
|
string = string.replace('" ', '"') |
|
string = string.replace(' "', '"') |
|
string = re.sub(r" (['.,])", r"\1", string) |
|
return string |
|
|
|
|
|
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len): |
|
""" |
|
- context_len allows for a rolling window context, allowing each prediction window to potentially |
|
condition on some context |
|
|
|
:param token_list: list |
|
List of tokens to be PREDICTED |
|
:param max_seq_len: int |
|
max_seq_len of model (or max_seq_len we want to use) |
|
:param context_len: int |
|
Amount of desired token context for prediction. Needs to be at least 1. |
|
:param prefix_token: token |
|
Dummy token like <eos> so the first token has something to condition on |
|
:return: generator |
|
Generator of tuples |
|
(input_tokens, pred_tokens) |
|
Note: Score only the last len(pred_tokens) logits of the LM |
|
""" |
|
assert 1 <= context_len <= max_seq_len |
|
if not token_list: |
|
return |
|
|
|
pred_len = max_seq_len - context_len + 1 |
|
predicted = 0 |
|
|
|
|
|
first_seq_len = min(max_seq_len, len(token_list)) |
|
yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len]) |
|
predicted += first_seq_len |
|
|
|
while predicted < len(token_list): |
|
window_pred_len = min(len(token_list) - predicted, pred_len) |
|
window_end = predicted + window_pred_len |
|
|
|
yield ( |
|
token_list[window_end - max_seq_len - 1 : window_end - 1], |
|
token_list[window_end - window_pred_len : window_end], |
|
) |
|
predicted += window_pred_len |
|
|
|
|
|
def make_disjoint_window(pair): |
|
"""Takes output from get_rolling_token_windows and makes the context not overlap with the continuation""" |
|
a, b = pair |
|
return a[: len(a) - (len(b) - 1)], b |
|
|
|
|
|
class Reorderer: |
|
def __init__(self, arr: List[Any], fn: Callable) -> None: |
|
"""Reorder an array according to some function |
|
|
|
Args: |
|
arr (List[Any]): The initial array |
|
fn (Callable[[Any], Any]): A function to determine the priority of elements |
|
""" |
|
self.size = len(arr) |
|
arr = list(enumerate(arr)) |
|
arr = group(arr, lambda x: fn(x[1])) |
|
|
|
|
|
arr = [([y[0]], x[0][1]) for x in arr for y in x] |
|
arr.sort(key=lambda x: fn(x[1])) |
|
|
|
self.arr = arr |
|
|
|
def get_reordered(self): |
|
"""Gets the reordered array |
|
|
|
Returns: |
|
List[Any]: The reordered array |
|
""" |
|
return [x[1] for x in self.arr] |
|
|
|
def get_original(self, newarr): |
|
"""Restores the original order of a new array based on the old array's order |
|
|
|
Args: |
|
newarr (List[Any]): The array to be restored |
|
|
|
Returns: |
|
List[Any]: The array restored to the original order |
|
""" |
|
res = [None] * self.size |
|
cov = [False] * self.size |
|
|
|
for (inds, _), v in zip(self.arr, newarr): |
|
for ind in inds: |
|
res[ind] = v |
|
cov[ind] = True |
|
|
|
assert all(cov) |
|
|
|
return res |
|
|
|
|
|
def make_table(result_dict, column: str = "results"): |
|
"""Generate table of results.""" |
|
from pytablewriter import LatexTableWriter, MarkdownTableWriter |
|
|
|
if column == "results": |
|
column_name = "Tasks" |
|
elif column == "groups": |
|
column_name = "Groups" |
|
|
|
all_headers = [ |
|
column_name, |
|
"Version", |
|
"Filter", |
|
"n-shot", |
|
"Metric", |
|
"Value", |
|
"", |
|
"Stderr", |
|
] |
|
|
|
md_writer = MarkdownTableWriter() |
|
latex_writer = LatexTableWriter() |
|
md_writer.headers = all_headers |
|
latex_writer.headers = all_headers |
|
|
|
values = [] |
|
|
|
for k, dic in result_dict[column].items(): |
|
version = result_dict["versions"].get(k, "N/A") |
|
n = str(result_dict["n-shot"][k]) |
|
|
|
if "alias" in dic: |
|
k = dic.pop("alias") |
|
|
|
for (mf), v in dic.items(): |
|
m, _, f = mf.partition(",") |
|
if m.endswith("_stderr"): |
|
continue |
|
|
|
if m + "_stderr" + "," + f in dic: |
|
se = dic[m + "_stderr" + "," + f] |
|
if se != "N/A": |
|
se = "%.4f" % se |
|
values.append([k, version, f, n, m, "%.4f" % v, "±", se]) |
|
else: |
|
values.append([k, version, f, n, m, "%.4f" % v, "", ""]) |
|
k = "" |
|
version = "" |
|
md_writer.value_matrix = values |
|
latex_writer.value_matrix = values |
|
|
|
|
|
|
|
|
|
return md_writer.dumps() |
|
|
|
|
|
def positional_deprecated(fn): |
|
""" |
|
A decorator to nudge users into passing only keyword args (`kwargs`) to the |
|
wrapped function, `fn`. |
|
""" |
|
|
|
@functools.wraps(fn) |
|
def _wrapper(*args, **kwargs): |
|
if len(args) != 1 if inspect.ismethod(fn) else 0: |
|
print( |
|
f"WARNING: using {fn.__name__} with positional arguments is " |
|
"deprecated and will be disallowed in a future version of " |
|
"lm-evaluation-harness!" |
|
) |
|
return fn(*args, **kwargs) |
|
|
|
return _wrapper |
|
|
|
|
|
def ignore_constructor(loader, node): |
|
return node |
|
|
|
|
|
def import_function(loader, node): |
|
function_name = loader.construct_scalar(node) |
|
yaml_path = os.path.dirname(loader.name) |
|
|
|
*module_name, function_name = function_name.split(".") |
|
if isinstance(module_name, list): |
|
module_name = ".".join(module_name) |
|
module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name))) |
|
|
|
spec = importlib.util.spec_from_file_location(module_name, module_path) |
|
module = importlib.util.module_from_spec(spec) |
|
spec.loader.exec_module(module) |
|
|
|
function = getattr(module, function_name) |
|
return function |
|
|
|
|
|
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"): |
|
if mode == "simple": |
|
constructor_fn = ignore_constructor |
|
elif mode == "full": |
|
constructor_fn = import_function |
|
|
|
|
|
yaml.add_constructor("!function", constructor_fn) |
|
if yaml_config is None: |
|
with open(yaml_path, "rb") as file: |
|
yaml_config = yaml.full_load(file) |
|
|
|
if yaml_dir is None: |
|
yaml_dir = os.path.dirname(yaml_path) |
|
|
|
assert yaml_dir is not None |
|
|
|
if "include" in yaml_config: |
|
include_path = yaml_config["include"] |
|
del yaml_config["include"] |
|
|
|
if isinstance(include_path, str): |
|
include_path = [include_path] |
|
|
|
|
|
include_path.reverse() |
|
final_yaml_config = {} |
|
for path in include_path: |
|
|
|
|
|
|
|
if not os.path.isfile(path): |
|
path = os.path.join(yaml_dir, path) |
|
|
|
try: |
|
included_yaml_config = load_yaml_config(yaml_path=path, mode=mode) |
|
final_yaml_config.update(included_yaml_config) |
|
except Exception as ex: |
|
|
|
raise ex |
|
|
|
final_yaml_config.update(yaml_config) |
|
return final_yaml_config |
|
return yaml_config |
|
|
|
|
|
def regex_replace(string, pattern, repl, count: int = 0): |
|
"""Implements the `re.sub` function as a custom Jinja filter.""" |
|
return re.sub(pattern, repl, string, count=count) |
|
|
|
|
|
env = Environment(loader=BaseLoader, undefined=StrictUndefined) |
|
env.filters["regex_replace"] = regex_replace |
|
|
|
|
|
def apply_template(template: str, doc: dict) -> str: |
|
rtemplate = env.from_string(template) |
|
return rtemplate.render(**doc) |
|
|
|
|
|
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None): |
|
""" |
|
Method for creating a (potentially) sliced and limited |
|
iterator from a raw document iterator. Used for splitting data |
|
among ranks in multigpu setting or only pulling a sample of documents |
|
""" |
|
return islice(raw_iterator, rank, limit, world_size) |
|
|