|
import argparse |
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import scipy.stats |
|
import torch |
|
|
|
import lm_eval.evaluator |
|
import lm_eval.models.utils |
|
from lm_eval import tasks, utils |
|
|
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
eval_logger = utils.eval_logger |
|
|
|
|
|
def memory_stats(): |
|
eval_logger.info( |
|
f"Memory allocated: {torch.cuda.memory_allocated() / 1024 ** 2}, reserved: {torch.cuda.memory_reserved() // 1024 ** 2}" |
|
) |
|
|
|
|
|
def calculate_z_value(res1: Dict, res2: Dict) -> Tuple[float, float]: |
|
acc1, acc2 = res1["acc,none"], res2["acc,none"] |
|
st_err1, st_err2 = res1["acc_stderr,none"], res2["acc_stderr,none"] |
|
Z = (acc1 - acc2) / np.sqrt((st_err1**2) + (st_err2**2)) |
|
|
|
p_value = 2 * scipy.stats.norm.sf(abs(Z)) |
|
return Z, p_value |
|
|
|
|
|
def print_results( |
|
data_to_print: List = None, results_dict: Dict = None, alpha: float = None |
|
): |
|
model1_data = data_to_print[0] |
|
model2_data = data_to_print[1] |
|
table_data = [] |
|
for task in model1_data.keys(): |
|
row = { |
|
"Task": task, |
|
"HF Accuracy": model1_data[task]["acc,none"], |
|
"vLLM Accuracy": model2_data[task]["acc,none"], |
|
"HF StdErr": model1_data[task]["acc_stderr,none"], |
|
"vLLM StdErr": model2_data[task]["acc_stderr,none"], |
|
} |
|
table_data.append(row) |
|
comparison_df = pd.DataFrame(table_data) |
|
comparison_df["Z-Score"] = comparison_df["Task"].apply( |
|
lambda task: results_dict[task]["z"] |
|
) |
|
comparison_df["P-Value"] = comparison_df["Task"].apply( |
|
lambda task: results_dict[task]["p_value"] |
|
) |
|
comparison_df[f"p > {alpha}"] = comparison_df["P-Value"].apply( |
|
lambda p: "✓" if p > alpha else "×" |
|
) |
|
return comparison_df |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--pretrained", default="EleutherAI/pythia-70m", help="name of model to compare" |
|
) |
|
parser.add_argument( |
|
"--hf_args", help="huggingface model args <arg>=<value>", default="" |
|
) |
|
parser.add_argument("--vllm_args", help="vllm model args <arg>=<value>", default="") |
|
parser.add_argument("--tasks", type=str, default="arc_easy,hellaswag") |
|
parser.add_argument( |
|
"--limit", |
|
type=float, |
|
default=100, |
|
) |
|
parser.add_argument( |
|
"--alpha", |
|
type=float, |
|
default=0.05, |
|
help="Significance level for two-tailed z-test", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
default="cuda", |
|
) |
|
parser.add_argument( |
|
"--batch", |
|
type=str, |
|
default=8, |
|
) |
|
parser.add_argument( |
|
"--verbosity", |
|
type=str, |
|
default="INFO", |
|
help="Logging verbosity", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
tasks.initialize_tasks() |
|
args = parse_args() |
|
tasks = args.tasks.split(",") |
|
print(tasks) |
|
hf_args, vllm_args = "," + args.hf_args, "," + args.vllm_args |
|
results_vllm = lm_eval.evaluator.simple_evaluate( |
|
model="vllm", |
|
model_args=f"pretrained={args.pretrained}" + vllm_args, |
|
tasks=tasks, |
|
limit=args.limit, |
|
device=args.device, |
|
batch_size=args.batch, |
|
) |
|
memory_stats() |
|
lm_eval.models.utils.clear_torch_cache() |
|
eval_logger.info("Memory stats cleared") |
|
memory_stats() |
|
results_hf = lm_eval.evaluator.simple_evaluate( |
|
model="hf", |
|
model_args=f"pretrained={args.pretrained}" + hf_args, |
|
tasks=tasks, |
|
limit=args.limit, |
|
device=args.device, |
|
batch_size=args.batch, |
|
) |
|
all_res = {} |
|
for task1, task2 in zip( |
|
results_hf["results"].items(), results_vllm["results"].items() |
|
): |
|
assert task1[0] == task2[0] |
|
z, p_value = calculate_z_value(task1[1], task2[1]) |
|
all_res[task1[0]] = {"z": z, "p_value": p_value} |
|
df = print_results( |
|
[results_hf["results"], results_vllm["results"]], all_res, args.alpha |
|
) |
|
print(df) |
|
|