|
import argparse |
|
import json |
|
import os |
|
import re |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
from zeno_client import ZenoClient, ZenoMetric |
|
|
|
from lm_eval.utils import eval_logger |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description="Upload your data to the Zeno AI evaluation platform to visualize results. This requires a ZENO_API_KEY in your environment variables. The eleuther harness must be run with log_samples=True and an output_path set for data to be written to disk." |
|
) |
|
parser.add_argument( |
|
"--data_path", |
|
required=True, |
|
help="Where to find the results of the benchmarks that have been run. Uses the name of each subfolder as the model name.", |
|
) |
|
parser.add_argument( |
|
"--project_name", |
|
required=True, |
|
help="The name of the generated Zeno project.", |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
"""Upload the results of your benchmark tasks to the Zeno AI evaluation platform. |
|
|
|
This scripts expects your results to live in a data folder where subfolders contain results of individual models. |
|
""" |
|
args = parse_args() |
|
|
|
client = ZenoClient(os.environ["ZENO_API_KEY"]) |
|
|
|
|
|
models = [ |
|
os.path.basename(os.path.normpath(f)) |
|
for f in os.scandir(Path(args.data_path)) |
|
if f.is_dir() |
|
] |
|
|
|
assert len(models) > 0, "No model directories found in the data_path." |
|
|
|
tasks = set(tasks_for_model(models[0], args.data_path)) |
|
|
|
for model in models: |
|
old_tasks = tasks.copy() |
|
task_count = len(tasks) |
|
|
|
model_tasks = tasks_for_model(model, args.data_path) |
|
tasks.intersection(set(model_tasks)) |
|
|
|
if task_count != len(tasks): |
|
eval_logger.warning( |
|
f"All models must have the same tasks. {model} has tasks: {model_tasks} but have already recorded tasks: {old_tasks}. Taking intersection {tasks}" |
|
) |
|
|
|
assert ( |
|
len(tasks) > 0 |
|
), "Must provide at least one task in common amongst models to compare." |
|
|
|
for task in tasks: |
|
|
|
for model_index, model in enumerate(models): |
|
model_args = re.sub( |
|
r"[\"<>:/\|\\?\*\[\]]+", |
|
"__", |
|
json.load( |
|
open(Path(args.data_path, model, "results.json"), encoding="utf-8") |
|
)["config"]["model_args"], |
|
) |
|
with open( |
|
Path(args.data_path, model, f"{model_args}_{task}.jsonl"), |
|
"r", |
|
encoding="utf-8", |
|
) as file: |
|
data = json.loads(file.read()) |
|
|
|
configs = json.load( |
|
open(Path(args.data_path, model, "results.json"), encoding="utf-8") |
|
)["configs"] |
|
config = configs[task] |
|
|
|
if model_index == 0: |
|
metrics = [] |
|
for metric in config["metric_list"]: |
|
metrics.append( |
|
ZenoMetric( |
|
name=metric["metric"], |
|
type="mean", |
|
columns=[metric["metric"]], |
|
) |
|
) |
|
project = client.create_project( |
|
name=args.project_name + (f"_{task}" if len(tasks) > 1 else ""), |
|
view="text-classification", |
|
metrics=metrics, |
|
) |
|
project.upload_dataset( |
|
generate_dataset(data, config), |
|
id_column="id", |
|
data_column="data", |
|
label_column="labels", |
|
) |
|
|
|
project.upload_system( |
|
generate_system_df(data, config), |
|
name=model, |
|
id_column="id", |
|
output_column="output", |
|
) |
|
|
|
|
|
def tasks_for_model(model: str, data_path: str): |
|
"""Get the tasks for a specific model. |
|
|
|
Args: |
|
model (str): The name of the model. |
|
data_path (str): The path to the data. |
|
|
|
Returns: |
|
list: A list of tasks for the model. |
|
""" |
|
dir_path = Path(data_path, model) |
|
config = ( |
|
json.load(open(Path(dir_path, "results.json"), encoding="utf-8"))["configs"], |
|
) |
|
return list(config[0].keys()) |
|
|
|
|
|
def generate_dataset( |
|
data, |
|
config, |
|
): |
|
"""Generate a Zeno dataset from evaluation data. |
|
|
|
Args: |
|
data: The data to generate a dataset for. |
|
config: The configuration of the task. |
|
|
|
Returns: |
|
pd.Dataframe: A dataframe that is ready to be uploaded to Zeno. |
|
""" |
|
ids = [x["doc_id"] for x in data] |
|
labels = [x["target"] for x in data] |
|
instance = [""] * len(ids) |
|
|
|
if config["output_type"] == "loglikelihood": |
|
instance = [x["arguments"][0][0] for x in data] |
|
labels = [x["arguments"][0][1] for x in data] |
|
elif config["output_type"] == "multiple_choice": |
|
instance = [ |
|
x["arguments"][0][0] |
|
+ "\n\n" |
|
+ "\n".join([f"- {y[1]}" for y in x["arguments"]]) |
|
for x in data |
|
] |
|
elif config["output_type"] == "loglikelihood_rolling": |
|
instance = [x["arguments"][0][0] for x in data] |
|
elif config["output_type"] == "generate_until": |
|
instance = [x["arguments"][0][0] for x in data] |
|
|
|
return pd.DataFrame( |
|
{ |
|
"id": ids, |
|
"data": instance, |
|
"input_len": [len(x) for x in instance], |
|
"labels": labels, |
|
"output_type": config["output_type"], |
|
} |
|
) |
|
|
|
|
|
def generate_system_df(data, config): |
|
"""Generate a dataframe for a specific system to be uploaded to Zeno. |
|
|
|
Args: |
|
data: The data to generate a dataframe from. |
|
config: The configuration of the task. |
|
|
|
Returns: |
|
pd.Dataframe: A dataframe that is ready to be uploaded to Zeno as a system. |
|
""" |
|
ids = [x["doc_id"] for x in data] |
|
system_dict = {"id": ids} |
|
system_dict["output"] = [""] * len(ids) |
|
|
|
if config["output_type"] == "loglikelihood": |
|
system_dict["output"] = [ |
|
"correct" if x["filtered_resps"][0][1] is True else "incorrect" |
|
for x in data |
|
] |
|
elif config["output_type"] == "multiple_choice": |
|
system_dict["output"] = [ |
|
", ".join([str(y[0]) for y in x["filtered_resps"]]) for x in data |
|
] |
|
system_dict["num_answers"] = [len(x["filtered_resps"]) for x in data] |
|
elif config["output_type"] == "loglikelihood_rolling": |
|
system_dict["output"] = [str(x["filtered_resps"][0]) for x in data] |
|
elif config["output_type"] == "generate_until": |
|
system_dict["output"] = [str(x["filtered_resps"][0]) for x in data] |
|
system_dict["output_length"] = [len(str(x["filtered_resps"][0])) for x in data] |
|
|
|
metrics = {} |
|
for metric in config["metric_list"]: |
|
if "aggregation" in metric and metric["aggregation"] == "mean": |
|
metrics[metric["metric"]] = [x[metric["metric"]] for x in data] |
|
|
|
system_dict.update(metrics) |
|
system_df = pd.DataFrame(system_dict) |
|
return system_df |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|