applied-ai-018's picture
Add files using upload-large-folder tool
ba26ad3 verified
"""
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
"""
import copy
import enum
import sys
import typing
from collections import Counter
from decimal import Decimal
from typing import Any, Dict, List, Mapping, Optional, Sequence, Tuple, Type, Union, cast
import typepy
from typepy import (
Bool,
DateTime,
Dictionary,
Infinity,
Integer,
IpAddress,
Nan,
NoneType,
NullString,
RealNumber,
StrictLevel,
String,
Typecode,
is_empty_sequence,
)
from typepy.type import AbstractType
from ._column import ColumnDataProperty
from ._common import MIN_STRICT_LEVEL_MAP, DefaultValue
from ._converter import DataPropertyConverter
from ._dataproperty import DataProperty
from ._formatter import Format
from ._preprocessor import Preprocessor
from .logger import logger
from .typing import (
DateTimeFormatter,
StrictLevelMap,
TransFunc,
TypeHint,
TypeValueMap,
normalize_type_hint,
)
DataPropertyMatrix = List[List[DataProperty]]
@enum.unique
class MatrixFormatting(enum.Enum):
# raise exception if the matrix is not properly formatted
EXCEPTION = 1 << 1
# trim to the minimum size column
TRIM = 1 << 2
# Append None values to columns so that it is the same as the maximum
# column size.
FILL_NONE = 1 << 3
HEADER_ALIGNED = 1 << 4
class DataPropertyExtractor:
"""
.. py:attribute:: quoting_flags
Configurations to add double quote to for each items in a matrix,
where |Typecode| of table-value is |True| in the ``quote_flag_table``
mapping table. ``quote_flag_table`` should be a dictionary.
And is ``{ Typecode : bool }``. Defaults to:
.. code-block:: json
:caption: The default values
{
Typecode.BOOL: False,
Typecode.DATETIME: False,
Typecode.DICTIONARY: False,
Typecode.INFINITY: False,
Typecode.INTEGER: False,
Typecode.IP_ADDRESS: False,
Typecode.LIST: False,
Typecode.NAN: False,
Typecode.NULL_STRING: False,
Typecode.NONE: False,
Typecode.REAL_NUMBER: False,
Typecode.STRING: False,
}
"""
def __init__(self, max_precision: Optional[int] = None) -> None:
self.max_workers = DefaultValue.MAX_WORKERS
if max_precision is None:
self.__max_precision = DefaultValue.MAX_PRECISION
else:
self.__max_precision = max_precision
self.__headers: Sequence[str] = []
self.__default_type_hint: TypeHint = None
self.__col_type_hints: List[TypeHint] = []
self.__strip_str_header: Optional[str] = None
self.__is_formatting_float = True
self.__min_col_ascii_char_width = 0
self.__default_format_flags = Format.NONE
self.__format_flags_list: Sequence[int] = []
self.__float_type: Union[Type[float], Type[Decimal], None] = None
self.__datetime_format_str = DefaultValue.DATETIME_FORMAT
self.__strict_level_map = copy.deepcopy(
cast(Dict[Union[Typecode, str], int], DefaultValue.STRICT_LEVEL_MAP)
)
self.__east_asian_ambiguous_width = 1
self.__preprocessor = Preprocessor()
self.__type_value_map: Mapping[Typecode, Union[float, Decimal, None]] = copy.deepcopy(
DefaultValue.TYPE_VALUE_MAP
)
self.__trans_func_list: List[TransFunc] = []
self.__quoting_flags = copy.deepcopy(DefaultValue.QUOTING_FLAGS)
self.__datetime_formatter: Optional[DateTimeFormatter] = None
self.__matrix_formatting = MatrixFormatting.TRIM
self.__dp_converter: DataPropertyConverter
self.__clear_cache()
def __clear_cache(self) -> None:
self.__update_dp_converter()
self.__dp_cache_zero = self.__to_dp_raw(0)
self.__dp_cache_one = self.__to_dp_raw(1)
self.__dp_cache_true = self.__to_dp_raw(True)
self.__dp_cache_false = self.__to_dp_raw(False)
self.__dp_cache_map = {None: self.__to_dp_raw(None), "": self.__to_dp_raw("")}
@property
def headers(self) -> Sequence[str]:
return self.__headers
@headers.setter
def headers(self, value: Sequence[str]) -> None:
if self.__headers == value:
return
self.__headers = value
self.__clear_cache()
@property
def default_type_hint(self) -> TypeHint:
return self.__default_type_hint
@default_type_hint.setter
def default_type_hint(self, value: TypeHint) -> None:
if self.__default_type_hint == value:
return
self.__default_type_hint = value
self.__clear_cache()
@property
def column_type_hints(self) -> List[TypeHint]:
return self.__col_type_hints
@column_type_hints.setter
def column_type_hints(self, value: Sequence[Union[str, TypeHint]]) -> None:
normalized_type_hints: List[TypeHint] = []
for type_hint in value:
type_hint = normalize_type_hint(type_hint)
if type_hint not in (
Bool,
DateTime,
Dictionary,
Infinity,
Integer,
IpAddress,
typepy.List,
Nan,
NoneType,
RealNumber,
String,
NullString,
None,
):
raise ValueError(f"invalid type hint: {type(type_hint)}")
normalized_type_hints.append(type_hint)
if self.__col_type_hints == normalized_type_hints:
return
self.__col_type_hints = normalized_type_hints
self.__clear_cache()
@property
def is_formatting_float(self) -> bool:
return self.__is_formatting_float
@is_formatting_float.setter
def is_formatting_float(self, value: bool) -> None:
self.__is_formatting_float = value
@property
def max_precision(self) -> int:
return self.__max_precision
@max_precision.setter
def max_precision(self, value: int) -> None:
if self.__max_precision == value:
return
self.__max_precision = value
self.__clear_cache()
@property
def preprocessor(self) -> Preprocessor:
return self.__preprocessor
@preprocessor.setter
def preprocessor(self, value: Preprocessor) -> None:
if self.preprocessor == value:
return
self.__preprocessor = value
self.__update_dp_converter()
@property
def strip_str_header(self) -> Optional[str]:
return self.__strip_str_header
@strip_str_header.setter
def strip_str_header(self, value: str) -> None:
if self.__strip_str_header == value:
return
self.__strip_str_header = value
self.__clear_cache()
@property
def min_column_width(self) -> int:
return self.__min_col_ascii_char_width
@min_column_width.setter
def min_column_width(self, value: int) -> None:
if self.__min_col_ascii_char_width == value:
return
self.__min_col_ascii_char_width = value
self.__clear_cache()
@property
def default_format_flags(self) -> int:
return self.__default_format_flags
@default_format_flags.setter
def default_format_flags(self, value: int) -> None:
if self.__default_format_flags == value:
return
self.__default_format_flags = value
self.__clear_cache()
@property
def format_flags_list(self) -> Sequence[int]:
return self.__format_flags_list
@format_flags_list.setter
def format_flags_list(self, value: Sequence[int]) -> None:
if self.__format_flags_list == value:
return
self.__format_flags_list = value
self.__clear_cache()
@property
def float_type(self) -> Union[Type[float], Type[Decimal], None]:
return self.__float_type
@float_type.setter
def float_type(self, value: Union[Type[float], Type[Decimal]]) -> None:
if self.__float_type == value:
return
self.__float_type = value
self.__clear_cache()
@property
def datetime_format_str(self) -> str:
return self.__datetime_format_str
@datetime_format_str.setter
def datetime_format_str(self, value: str) -> None:
if self.__datetime_format_str == value:
return
self.__datetime_format_str = value
self.__clear_cache()
@property
def strict_level_map(self) -> StrictLevelMap:
return self.__strict_level_map
@strict_level_map.setter
def strict_level_map(self, value: StrictLevelMap) -> None:
if self.__strict_level_map == value:
return
self.__strict_level_map = cast(Dict[Union[Typecode, str], int], value)
self.__clear_cache()
@property
def east_asian_ambiguous_width(self) -> int:
return self.__east_asian_ambiguous_width
@east_asian_ambiguous_width.setter
def east_asian_ambiguous_width(self, value: int) -> None:
if self.__east_asian_ambiguous_width == value:
return
self.__east_asian_ambiguous_width = value
self.__clear_cache()
@property
def type_value_map(self) -> TypeValueMap:
return self.__type_value_map
@type_value_map.setter
def type_value_map(self, value: TypeValueMap) -> None:
if self.__type_value_map == value:
return
self.__type_value_map = value
self.__clear_cache()
def register_trans_func(self, trans_func: TransFunc) -> None:
self.__trans_func_list.insert(0, trans_func)
self.__clear_cache()
@property
def quoting_flags(self) -> Dict[Typecode, bool]:
return self.__quoting_flags
@quoting_flags.setter
def quoting_flags(self, value: Dict[Typecode, bool]) -> None:
if self.__quoting_flags == value:
return
self.__quoting_flags = value
self.__clear_cache()
@property
def datetime_formatter(self) -> Optional[DateTimeFormatter]:
return self.__datetime_formatter
@datetime_formatter.setter
def datetime_formatter(self, value: Optional[DateTimeFormatter]) -> None:
if self.__datetime_formatter == value:
return
self.__datetime_formatter = value
self.__clear_cache()
@property
def matrix_formatting(self) -> MatrixFormatting:
return self.__matrix_formatting
@matrix_formatting.setter
def matrix_formatting(self, value: MatrixFormatting) -> None:
if self.__matrix_formatting == value:
return
self.__matrix_formatting = value
self.__clear_cache()
@property
def max_workers(self) -> int:
assert self.__max_workers
return self.__max_workers
@max_workers.setter
def max_workers(self, value: Optional[int]) -> None:
try:
from _multiprocessing import SemLock, sem_unlink # noqa
except ImportError:
logger.debug("This platform lacks a functioning sem_open implementation")
value = 1
if "pytest" in sys.modules and value != 1:
logger.debug("set max_workers to 1 to avoid deadlock when executed from pytest")
value = 1
self.__max_workers = value
if not self.__max_workers:
self.__max_workers = DefaultValue.MAX_WORKERS
def to_dp(self, value: Any) -> DataProperty:
self.__update_dp_converter()
return self.__to_dp(value)
def to_dp_list(self, values: Sequence[Any]) -> List[DataProperty]:
if is_empty_sequence(values):
return []
self.__update_dp_converter()
return self._to_dp_list(values)
def to_column_dp_list(
self,
value_dp_matrix: Any,
previous_column_dp_list: Optional[Sequence[ColumnDataProperty]] = None,
) -> List[ColumnDataProperty]:
col_dp_list = self.__get_col_dp_list_base()
logger.debug("converting to column dataproperty:")
logs = [" params:"]
if self.headers:
logs.append(f" headers={len(self.headers)}")
logs.extend(
[
" prev_col_count={}".format(
len(previous_column_dp_list) if previous_column_dp_list else None
),
f" matrix_formatting={self.matrix_formatting}",
]
)
if self.column_type_hints:
logs.append(
" column_type_hints=({})".format(
", ".join(
[
type_hint.__name__ if type_hint else "none"
for type_hint in self.column_type_hints
]
)
)
)
else:
logs.append(" column_type_hints=()")
for log in logs:
logger.debug(log)
logger.debug(" results:")
for col_idx, value_dp_list in enumerate(zip(*value_dp_matrix)):
try:
col_dp_list[col_idx]
except IndexError:
col_dp_list.append(
ColumnDataProperty(
column_index=col_idx,
float_type=self.float_type,
min_width=self.min_column_width,
format_flags=self.__get_format_flags(col_idx),
is_formatting_float=self.is_formatting_float,
datetime_format_str=self.datetime_format_str,
east_asian_ambiguous_width=self.east_asian_ambiguous_width,
max_precision=self.__max_precision,
)
)
col_dp = col_dp_list[col_idx]
col_dp.begin_update()
try:
col_dp.merge(previous_column_dp_list[col_idx]) # type: ignore
except (TypeError, IndexError):
pass
for value_dp in value_dp_list:
col_dp.update_body(value_dp)
col_dp.end_update()
logger.debug(f" {str(col_dp):s}")
return col_dp_list
def to_dp_matrix(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix:
self.__update_dp_converter()
logger.debug(f"max_workers={self.max_workers}, preprocessor={self.__preprocessor}")
value_matrix = self.__strip_data_matrix(value_matrix)
if self.__is_dp_matrix(value_matrix):
logger.debug("already a dataproperty matrix")
return value_matrix # type: ignore
if self.max_workers <= 1:
return self.__to_dp_matrix_st(value_matrix)
return self.__to_dp_matrix_mt(value_matrix)
def to_header_dp_list(self) -> List[DataProperty]:
self.__update_dp_converter()
preprocessor = copy.deepcopy(self.__preprocessor)
preprocessor.strip_str = self.strip_str_header
return self._to_dp_list(
self.headers,
type_hint=String,
preprocessor=preprocessor,
strict_level_map=MIN_STRICT_LEVEL_MAP,
)
def update_preprocessor(self, **kwargs: Any) -> bool:
is_updated = self.__preprocessor.update(**kwargs)
self.__update_dp_converter()
return is_updated
def update_strict_level_map(self, value: StrictLevelMap) -> bool:
org = copy.deepcopy(self.__strict_level_map)
self.__strict_level_map.update(value)
if org == self.__strict_level_map:
return False
self.__clear_cache()
return True
"""
def update_dict(self, lhs: Mapping, rhs: Mapping) -> bool:
is_updated = False
for key, value in rhs.items():
if key not in lhs:
lhs[]
continue
if getattr(lhs, key) == value:
continue
setattr(lhs, key, value)
is_updated = True
return is_updated
"""
@staticmethod
def __is_dp_matrix(value: Any) -> bool:
try:
return isinstance(value[0][0], DataProperty)
except (TypeError, IndexError):
return False
def __get_col_type_hint(self, col_idx: int) -> TypeHint:
try:
return self.column_type_hints[col_idx]
except (TypeError, IndexError):
return self.default_type_hint
def __get_format_flags(self, col_idx: int) -> int:
try:
return self.format_flags_list[col_idx]
except (TypeError, IndexError):
return self.__default_format_flags
def __to_dp(
self,
data: Any,
type_hint: TypeHint = None,
preprocessor: Optional[Preprocessor] = None,
strict_level_map: Optional[StrictLevelMap] = None,
) -> DataProperty:
for trans_func in self.__trans_func_list:
data = trans_func(data)
if type_hint:
return self.__to_dp_raw(
data,
type_hint=type_hint,
preprocessor=preprocessor,
strict_level_map=strict_level_map,
)
try:
if data in self.__dp_cache_map:
return self.__dp_cache_map[data]
except TypeError:
# unhashable type
pass
if data == 0:
if data is False:
return self.__dp_cache_false
return self.__dp_cache_zero
if data == 1:
if data is True:
return self.__dp_cache_true
return self.__dp_cache_one
return self.__to_dp_raw(
data, type_hint=type_hint, preprocessor=preprocessor, strict_level_map=strict_level_map
)
def __to_dp_raw(
self,
data: Any,
type_hint: TypeHint = None,
preprocessor: Optional[Preprocessor] = None,
strict_level_map: Optional[StrictLevelMap] = None,
) -> DataProperty:
if preprocessor:
preprocessor = Preprocessor(
dequote=preprocessor.dequote,
line_break_handling=preprocessor.line_break_handling,
line_break_repl=preprocessor.line_break_repl,
strip_str=preprocessor.strip_str,
is_escape_formula_injection=preprocessor.is_escape_formula_injection,
)
else:
preprocessor = Preprocessor(
dequote=self.preprocessor.dequote,
line_break_handling=self.preprocessor.line_break_handling,
line_break_repl=self.preprocessor.line_break_repl,
strip_str=self.preprocessor.strip_str,
is_escape_formula_injection=self.__preprocessor.is_escape_formula_injection,
)
value_dp = DataProperty(
data,
preprocessor=preprocessor,
type_hint=(type_hint if type_hint is not None else self.default_type_hint),
float_type=self.float_type,
datetime_format_str=self.datetime_format_str,
strict_level_map=(strict_level_map if type_hint is not None else self.strict_level_map),
east_asian_ambiguous_width=self.east_asian_ambiguous_width,
)
return self.__dp_converter.convert(value_dp)
def __to_dp_matrix_st(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix:
return list(
zip( # type: ignore
*(
_to_dp_list_helper(
self,
col_idx,
values,
self.__get_col_type_hint(col_idx),
self.__preprocessor,
)[1]
for col_idx, values in enumerate(zip(*value_matrix))
)
)
)
def __to_dp_matrix_mt(self, value_matrix: Sequence[Sequence[Any]]) -> DataPropertyMatrix:
from concurrent import futures
col_data_map = {}
with futures.ProcessPoolExecutor(self.max_workers) as executor:
future_list = [
executor.submit(
_to_dp_list_helper,
self,
col_idx,
values,
self.__get_col_type_hint(col_idx),
self.__preprocessor,
)
for col_idx, values in enumerate(zip(*value_matrix))
]
for future in futures.as_completed(future_list):
col_idx, value_dp_list = future.result()
col_data_map[col_idx] = value_dp_list
return list(
zip(*(col_data_map[col_idx] for col_idx in sorted(col_data_map))) # type: ignore
)
def _to_dp_list(
self,
data_list: Sequence[Any],
type_hint: TypeHint = None,
preprocessor: Optional[Preprocessor] = None,
strict_level_map: Optional[StrictLevelMap] = None,
) -> List[DataProperty]:
if is_empty_sequence(data_list):
return []
type_counter: typing.Counter[Type[AbstractType]] = Counter()
dp_list = []
for data in data_list:
expect_type_hint: TypeHint = type_hint
if type_hint is None:
try:
expect_type_hint, _count = type_counter.most_common(1)[0]
if not expect_type_hint(
data, float_type=self.float_type, strict_level=StrictLevel.MAX
).is_type():
expect_type_hint = None
except IndexError:
pass
dataprop = self.__to_dp(
data=data,
type_hint=expect_type_hint,
preprocessor=preprocessor if preprocessor else self.__preprocessor,
strict_level_map=strict_level_map,
)
type_counter[dataprop.type_class] += 1
dp_list.append(dataprop)
return dp_list
def __strip_data_matrix(self, data_matrix: Sequence[Sequence[Any]]) -> Sequence[Sequence[Any]]:
header_col_size = len(self.headers) if self.headers else 0
try:
col_size_list = [len(data_list) for data_list in data_matrix]
except TypeError:
return []
if self.headers:
min_col_size = min([header_col_size] + col_size_list)
max_col_size = max([header_col_size] + col_size_list)
elif col_size_list:
min_col_size = min(col_size_list)
max_col_size = max(col_size_list)
else:
min_col_size = 0
max_col_size = 0
if self.matrix_formatting == MatrixFormatting.EXCEPTION:
if min_col_size != max_col_size:
raise ValueError(
"nonuniform column size found: min={}, max={}".format(
min_col_size, max_col_size
)
)
return data_matrix
if self.matrix_formatting == MatrixFormatting.HEADER_ALIGNED:
if header_col_size > 0:
format_col_size = header_col_size
else:
format_col_size = max_col_size
elif self.matrix_formatting == MatrixFormatting.TRIM:
format_col_size = min_col_size
elif self.matrix_formatting == MatrixFormatting.FILL_NONE:
format_col_size = max_col_size
else:
raise ValueError(f"unknown matrix formatting: {self.matrix_formatting}")
return [
list(data_matrix[row_idx][:format_col_size]) + [None] * (format_col_size - col_size)
for row_idx, col_size in enumerate(col_size_list)
]
def __get_col_dp_list_base(self) -> List[ColumnDataProperty]:
header_dp_list = self.to_header_dp_list()
col_dp_list = []
for col_idx, header_dp in enumerate(header_dp_list):
col_dp = ColumnDataProperty(
column_index=col_idx,
float_type=self.float_type,
min_width=self.min_column_width,
format_flags=self.__get_format_flags(col_idx),
is_formatting_float=self.is_formatting_float,
datetime_format_str=self.datetime_format_str,
east_asian_ambiguous_width=self.east_asian_ambiguous_width,
max_precision=self.__max_precision,
)
col_dp.update_header(header_dp)
col_dp_list.append(col_dp)
return col_dp_list
def __update_dp_converter(self) -> None:
preprocessor = Preprocessor(
line_break_handling=self.__preprocessor.line_break_handling,
line_break_repl=self.preprocessor.line_break_repl,
is_escape_html_tag=self.__preprocessor.is_escape_html_tag,
is_escape_formula_injection=self.__preprocessor.is_escape_formula_injection,
)
self.__dp_converter = DataPropertyConverter(
preprocessor=preprocessor,
type_value_map=self.type_value_map,
quoting_flags=self.quoting_flags,
datetime_formatter=self.datetime_formatter,
datetime_format_str=self.datetime_format_str,
float_type=self.float_type,
strict_level_map=self.strict_level_map,
)
def _to_dp_list_helper(
extractor: DataPropertyExtractor,
col_idx: int,
data_list: Sequence[Any],
type_hint: TypeHint,
preprocessor: Preprocessor,
) -> Tuple[int, List[DataProperty]]:
return (
col_idx,
extractor._to_dp_list(data_list, type_hint=type_hint, preprocessor=preprocessor),
)