peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/__init__.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import sys | |
import types | |
import json | |
from typing import Optional, Union | |
import torch | |
from torch.optim import Optimizer | |
from torch.optim.lr_scheduler import _LRScheduler | |
from packaging import version as pkg_version | |
# Skip Triton import for AMD due to pytorch-triton-rocm module breaking device API in DeepSpeed | |
if not (hasattr(torch.version, 'hip') and torch.version.hip is not None): | |
try: | |
import triton # noqa: F401 # type: ignore | |
HAS_TRITON = True | |
except ImportError: | |
HAS_TRITON = False | |
else: | |
HAS_TRITON = False | |
from . import ops | |
from . import module_inject | |
from .accelerator import get_accelerator | |
from .constants import TORCH_DISTRIBUTED_DEFAULT_PORT | |
from .runtime.engine import DeepSpeedEngine, DeepSpeedOptimizerCallable, DeepSpeedSchedulerCallable | |
from .runtime.engine import ADAM_OPTIMIZER, LAMB_OPTIMIZER | |
from .runtime.hybrid_engine import DeepSpeedHybridEngine | |
from .runtime.pipe.engine import PipelineEngine | |
from .inference.engine import InferenceEngine | |
from .inference.config import DeepSpeedInferenceConfig | |
from .runtime.lr_schedules import add_tuning_arguments | |
from .runtime.config import DeepSpeedConfig, DeepSpeedConfigError | |
from .runtime.activation_checkpointing import checkpointing | |
from .ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig | |
from .module_inject import replace_transformer_layer, revert_transformer_layer | |
from .utils import log_dist, OnDevice, logger | |
from .comm.comm import init_distributed | |
from .runtime import zero | |
from .runtime.compiler import is_compile_supported | |
from .pipe import PipelineModule | |
from .git_version_info import version, git_hash, git_branch | |
def _parse_version(version_str): | |
'''Parse a version string and extract the major, minor, and patch versions.''' | |
ver = pkg_version.parse(version_str) | |
return ver.major, ver.minor, ver.micro | |
# Export version information | |
__version__ = version | |
__version_major__, __version_minor__, __version_patch__ = _parse_version(__version__) | |
__git_hash__ = git_hash | |
__git_branch__ = git_branch | |
# Set to torch's distributed package or deepspeed.comm based inside DeepSpeedEngine init | |
dist = None | |
def initialize(args=None, | |
model: torch.nn.Module = None, | |
optimizer: Optional[Union[Optimizer, DeepSpeedOptimizerCallable]] = None, | |
model_parameters: Optional[torch.nn.Module] = None, | |
training_data: Optional[torch.utils.data.Dataset] = None, | |
lr_scheduler: Optional[Union[_LRScheduler, DeepSpeedSchedulerCallable]] = None, | |
distributed_port: int = TORCH_DISTRIBUTED_DEFAULT_PORT, | |
mpu=None, | |
dist_init_required: Optional[bool] = None, | |
collate_fn=None, | |
config=None, | |
config_params=None): | |
"""Initialize the DeepSpeed Engine. | |
Arguments: | |
args: an object containing local_rank and deepspeed_config fields. | |
This is optional if `config` is passed. | |
model: Required: nn.module class before apply any wrappers | |
optimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object. | |
This overrides any optimizer definition in the DeepSpeed json config. | |
model_parameters: Optional: An iterable of torch.Tensors or dicts. | |
Specifies what Tensors should be optimized. | |
training_data: Optional: Dataset of type torch.utils.data.Dataset | |
lr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object. | |
The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methods | |
distributed_port: Optional: Master node (rank 0)'s free port that needs to be used for communication during distributed training | |
mpu: Optional: A model parallelism unit object that implements | |
get_{model,data}_parallel_{rank,group,world_size}() | |
dist_init_required: Optional: None will auto-initialize torch distributed if needed, | |
otherwise the user can force it to be initialized or not via boolean. | |
collate_fn: Optional: Merges a list of samples to form a | |
mini-batch of Tensor(s). Used when using batched loading from a | |
map-style dataset. | |
config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed config | |
as an argument instead, as a path or a dictionary. | |
config_params: Optional: Same as `config`, kept for backwards compatibility. | |
Returns: | |
A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler`` | |
* ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training. | |
* ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or if | |
optimizer is specified in json config else ``None``. | |
* ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied, | |
otherwise ``None``. | |
* ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, or | |
if ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``. | |
""" | |
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, | |
__git_branch__), | |
ranks=[0]) | |
# Disable zero.Init context if it's currently enabled | |
zero.partition_parameters.shutdown_init_context() | |
assert model is not None, "deepspeed.initialize requires a model" | |
global dist | |
from deepspeed import comm as dist | |
dist_backend = get_accelerator().communication_backend_name() | |
dist.init_distributed(dist_backend=dist_backend, | |
distributed_port=distributed_port, | |
dist_init_required=dist_init_required) | |
# Set config using config_params for backwards compat | |
if config is None and config_params is not None: | |
config = config_params | |
# Check for deepscale_config for backwards compat | |
if hasattr(args, "deepscale_config") and args.deepscale_config is not None: | |
logger.warning("************ --deepscale_config is deprecated, please use --deepspeed_config ************") | |
if hasattr(args, "deepspeed_config"): | |
assert (args.deepspeed_config is | |
None), "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config" | |
args.deepspeed_config = args.deepscale_config | |
args.deepscale_config = None | |
# Check that we have only one config passed | |
if hasattr(args, "deepspeed_config") and args.deepspeed_config is not None: | |
assert config is None, "Not sure how to proceed, we were given deepspeed configs in the deepspeed arguments and deepspeed.initialize() function call" | |
config = args.deepspeed_config | |
assert config is not None, "DeepSpeed requires --deepspeed_config to specify configuration file" | |
if not isinstance(model, PipelineModule): | |
config_class = DeepSpeedConfig(config, mpu) | |
if config_class.hybrid_engine.enabled: | |
engine = DeepSpeedHybridEngine(args=args, | |
model=model, | |
optimizer=optimizer, | |
model_parameters=model_parameters, | |
training_data=training_data, | |
lr_scheduler=lr_scheduler, | |
mpu=mpu, | |
dist_init_required=dist_init_required, | |
collate_fn=collate_fn, | |
config=config, | |
config_class=config_class) | |
else: | |
engine = DeepSpeedEngine(args=args, | |
model=model, | |
optimizer=optimizer, | |
model_parameters=model_parameters, | |
training_data=training_data, | |
lr_scheduler=lr_scheduler, | |
mpu=mpu, | |
dist_init_required=dist_init_required, | |
collate_fn=collate_fn, | |
config=config, | |
config_class=config_class) | |
else: | |
assert mpu is None, "mpu must be None with pipeline parallelism" | |
mpu = model.mpu() | |
config_class = DeepSpeedConfig(config, mpu) | |
engine = PipelineEngine(args=args, | |
model=model, | |
optimizer=optimizer, | |
model_parameters=model_parameters, | |
training_data=training_data, | |
lr_scheduler=lr_scheduler, | |
mpu=mpu, | |
dist_init_required=dist_init_required, | |
collate_fn=collate_fn, | |
config=config, | |
config_class=config_class) | |
# Restore zero.Init context if necessary | |
zero.partition_parameters.restore_init_context() | |
return_items = [engine, engine.optimizer, engine.training_dataloader, engine.lr_scheduler] | |
return tuple(return_items) | |
def _add_core_arguments(parser): | |
r"""Helper (internal) function to update an argument parser with an argument group of the core DeepSpeed arguments. | |
The core set of DeepSpeed arguments include the following: | |
1) --deepspeed: boolean flag to enable DeepSpeed | |
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime. | |
This is a helper function to the public add_config_arguments() | |
Arguments: | |
parser: argument parser | |
Return: | |
parser: Updated Parser | |
""" | |
group = parser.add_argument_group('DeepSpeed', 'DeepSpeed configurations') | |
group.add_argument('--deepspeed', | |
default=False, | |
action='store_true', | |
help='Enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') | |
group.add_argument('--deepspeed_config', default=None, type=str, help='DeepSpeed json configuration file.') | |
group.add_argument('--deepscale', | |
default=False, | |
action='store_true', | |
help='Deprecated enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') | |
group.add_argument('--deepscale_config', | |
default=None, | |
type=str, | |
help='Deprecated DeepSpeed json configuration file.') | |
return parser | |
def add_config_arguments(parser): | |
r"""Update the argument parser to enabling parsing of DeepSpeed command line arguments. | |
The set of DeepSpeed arguments include the following: | |
1) --deepspeed: boolean flag to enable DeepSpeed | |
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime. | |
Arguments: | |
parser: argument parser | |
Return: | |
parser: Updated Parser | |
""" | |
parser = _add_core_arguments(parser) | |
return parser | |
def default_inference_config(): | |
""" | |
Return a default DeepSpeed inference configuration dictionary. | |
""" | |
return DeepSpeedInferenceConfig().dict() | |
def init_inference(model, config=None, **kwargs): | |
"""Initialize the DeepSpeed InferenceEngine. | |
Description: all four cases are valid and supported in DS init_inference() API. | |
# Case 1: user provides no config and no kwargs. Default config will be used. | |
.. code-block:: python | |
generator.model = deepspeed.init_inference(generator.model) | |
string = generator("DeepSpeed is") | |
print(string) | |
# Case 2: user provides a config and no kwargs. User supplied config will be used. | |
.. code-block:: python | |
generator.model = deepspeed.init_inference(generator.model, config=config) | |
string = generator("DeepSpeed is") | |
print(string) | |
# Case 3: user provides no config and uses keyword arguments (kwargs) only. | |
.. code-block:: python | |
generator.model = deepspeed.init_inference(generator.model, | |
tensor_parallel={"tp_size": world_size}, | |
dtype=torch.half, | |
replace_with_kernel_inject=True) | |
string = generator("DeepSpeed is") | |
print(string) | |
# Case 4: user provides config and keyword arguments (kwargs). Both config and kwargs are merged and kwargs take precedence. | |
.. code-block:: python | |
generator.model = deepspeed.init_inference(generator.model, config={"dtype": torch.half}, replace_with_kernel_inject=True) | |
string = generator("DeepSpeed is") | |
print(string) | |
Arguments: | |
model: Required: original nn.module object without any wrappers | |
config: Optional: instead of arguments, you can pass in a DS inference config dict or path to JSON file | |
Returns: | |
A deepspeed.InferenceEngine wrapped model. | |
""" | |
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, | |
__git_branch__), | |
ranks=[0]) | |
# Load config_dict from config first | |
if config is None: | |
config = {} | |
if isinstance(config, str): | |
with open(config, "r") as f: | |
config_dict = json.load(f) | |
elif isinstance(config, dict): | |
config_dict = config | |
else: | |
raise ValueError(f"'config' argument expected string or dictionary, got {type(config)}") | |
# Update with values from kwargs, ensuring no conflicting overlap between config and kwargs | |
overlap_keys = set(config_dict.keys()).intersection(kwargs.keys()) | |
# If there is overlap, error out if values are different | |
for key in overlap_keys: | |
if config_dict[key] != kwargs[key]: | |
raise ValueError(f"Conflicting argument '{key}' in 'config':{config_dict[key]} and kwargs:{kwargs[key]}") | |
config_dict.update(kwargs) | |
ds_inference_config = DeepSpeedInferenceConfig(**config_dict) | |
engine = InferenceEngine(model, config=ds_inference_config) | |
return engine | |