peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/autotuning
/tuner
/base_tuner.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import sys | |
from deepspeed.autotuning.constants import * | |
from deepspeed.autotuning.utils import write_experiments | |
from deepspeed.utils import logger | |
class BaseTuner: | |
def __init__(self, exps, resource_manager, metric): | |
self.all_exps = exps | |
self.rm = resource_manager | |
self.best_iter = 0 | |
self.best_exp = None | |
self.best_metric_val = None | |
self.metric = metric if metric else AUTOTUNING_METRIC_DEFAULT | |
logger.info(f"total number of exps = {len(self.all_exps)}") | |
def has_next(self): | |
"""Whether there exists more configurations for evaluation""" | |
if len(self.all_exps) > 0: | |
return True | |
else: | |
return False | |
def next_batch(self, sample_size): | |
"""Select the next batch of configurations for evaluation""" | |
raise NotImplementedError | |
def update(self): | |
""""Update the tuner with what configurations have been evaluated and their performance results""" | |
def tune(self, sample_size=1, n_trials=1000, early_stopping=None): | |
i = 0 | |
try: | |
while i < n_trials and self.has_next(): | |
# Select the next batch of configuration for evaluation | |
sampled_exps = self.next_batch(sample_size) | |
# Generate experiments for measurement of performance | |
exp_paths = write_experiments(sampled_exps, self.rm.exps_dir) | |
self.rm.schedule_experiments(exp_paths) | |
self.rm.run() | |
exp, metric_val = self.rm.parse_results(self.metric) | |
if self.best_exp is None or self.best_metric_val is None or (metric_val | |
and metric_val > self.best_metric_val): | |
# logger.info(f"tuner finds better = {exp}") | |
self.best_exp = exp | |
self.best_metric_val = metric_val | |
self.best_iter = i | |
i += len(sampled_exps) | |
# Update the tuner with evaluated performance results | |
self.update() | |
self.rm.clear() | |
# Early stop if no more promising configurations are likely to be found | |
if early_stopping and i >= self.best_iter + early_stopping: | |
logger.info( | |
f"Tuner early stopped at iteration {i}. Best iteration is {self.best_iter}. Early stopping threshold is {early_stopping}" | |
) | |
break | |
return i | |
except: | |
logger.info("Tuner Error:", sys.exc_info()[0]) | |
return i | |