peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/autotuning
/tuner
/cost_model.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from .utils import * | |
try: | |
import xgboost as xgb | |
except ImportError: | |
xgb = None | |
class XGBoostCostModel(): | |
def __init__(self, loss_type, num_threads=None, log_interval=25, upper_model=None): | |
assert xgb is not None, "missing requirements, please install deepspeed w. 'autotuning_ml' extra." | |
self.loss_type = loss_type | |
if loss_type == "reg": | |
self.xgb_params = { | |
"max_depth": 3, | |
"gamma": 0.0001, | |
"min_child_weight": 1, | |
"subsample": 1.0, | |
"eta": 0.3, | |
"lambda": 1.0, | |
"alpha": 0, | |
"objective": "reg:linear", | |
} | |
elif loss_type == "rank": | |
self.xgb_params = { | |
"max_depth": 3, | |
"gamma": 0.0001, | |
"min_child_weight": 1, | |
"subsample": 1.0, | |
"eta": 0.3, | |
"lambda": 1.0, | |
"alpha": 0, | |
"objective": "rank:pairwise", | |
} | |
else: | |
raise RuntimeError("Invalid loss type: " + loss_type) | |
self.xgb_params["verbosity"] = 0 | |
if num_threads: | |
self.xgb_params["nthread"] = num_threads | |
def fit(self, xs, ys): | |
x_train = np.array(xs, dtype=np.float32) | |
y_train = np.array(ys, dtype=np.float32) | |
y_max = np.max(y_train) | |
y_train = y_train / max(y_max, 1e-9) | |
index = np.random.permutation(len(x_train)) | |
dtrain = xgb.DMatrix(x_train[index], y_train[index]) | |
self.bst = xgb.train(self.xgb_params, dtrain) | |
def predict(self, xs): | |
features = xgb.DMatrix(xs) | |
return self.bst.predict(features) | |