peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/autotuning
/tuner
/utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import numpy as np | |
import itertools | |
from ..utils import * | |
import collections.abc | |
def index_to_feature(p, dims): | |
"""convert index form (single integer) to feature form (vector)""" | |
feature = [] | |
for dim in dims: | |
feature.append(p % dim) | |
p //= dim | |
return feature | |
def feature_to_index(feature, dims): | |
"""convert feature form (vector) to index form (single integer)""" | |
p = 0 | |
for j, k in enumerate(feature): | |
print("j:", "k:", k, "dims", dims[:j]) | |
p += int(np.prod(dims[:j])) * k | |
return p | |
def dict_to_dims(tuning_space): | |
dims = [] | |
for key, val in tuning_space.items(): | |
if isinstance(val, dict): | |
dims.extend(dict_to_dims(val)) | |
elif isinstance(val, list): | |
dims.append(len(val)) | |
else: | |
dims.append(1) | |
return dims | |
def gen_combinations(d: dict): | |
keys, values = d.keys(), d.values() | |
for v in values: | |
if not isinstance(v, list): | |
v = [v] | |
values_choices = (gen_combinations(v) if isinstance(v, dict) else get_list(v) for v in values) | |
for comb in itertools.product(*values_choices): | |
yield dict(zip(keys, comb)) | |
def flatten(d, parent_key='', sep='_'): | |
items = [] | |
for k, v in d.items(): | |
new_key = parent_key + sep + k if parent_key else k | |
if isinstance(v, collections.abc.MutableMapping): | |
items.extend(flatten(v, new_key, sep=sep).items()) | |
else: | |
items.append((new_key, v)) | |
return dict(items) | |
def dict_to_feature(feature_dict, keys, max_value=None): | |
"""Extract values from dict""" | |
feature = [] | |
for key, val in feature_dict.items(): # First level | |
if key not in keys: | |
continue | |
if val is None or val == "auto" or key == "autotuning" or val == "": | |
continue | |
if isinstance(val, dict): | |
feature.append(dict_to_feature(val, max_value)) | |
else: | |
feature.append(float(val)) | |
# normalization, should not matter in tree models | |
if max_value is not None: | |
norm_feature = [] | |
for f, mv in zip(feature, max_value): | |
norm_feature.append(f / mv) | |
feature = norm_feature | |
return feature | |