peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/ds_to_universal.py
#!/usr/bin/env python | |
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from functools import partial | |
from itertools import chain | |
import argparse | |
import glob | |
import itertools | |
from concurrent.futures import ProcessPoolExecutor | |
import os | |
import re | |
import shutil | |
import torch | |
import tqdm | |
#from pprint import pprint | |
from deepspeed.checkpoint import DeepSpeedCheckpoint | |
from deepspeed.checkpoint import ( | |
OPTIMIZER_STATE_DICT, | |
BASE_OPTIMIZER_STATE, | |
SINGLE_PARTITION_OF_FP32_GROUPS, | |
PARAM_GROUPS, | |
PARAM_SLICE_MAPPINGS, | |
PARAM_SHAPES, | |
PARAM, | |
CAT_DIM, | |
PARAM_N_SUB_PARAMS, | |
SUB_PARAM_SHAPE, | |
VOCAB_TENSOR, | |
UNIVERSAL_CHECKPOINT_INFO, | |
VOCABULARY_PARAMETER_PATTERNS, | |
PIPELINE_REPLICATED_PARAMETER_PATTERNS, | |
TP_REPLICATED_PARAMETER_PATTERNS, | |
PARAMETER_TO_AVERAGE_PATTERNS, | |
PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, | |
PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0, | |
PARAMETER_WITH_SUB_PARAMS, | |
SubparamShape, | |
) | |
def parse_arguments(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_folder', type=str, required=True, help='Input DeepSpeed Checkpoint folder') | |
parser.add_argument('--output_folder', type=str, required=True, help='Output DeepSpeed checkpoint folder') | |
parser.add_argument('--num_extract_workers', | |
default=4, | |
type=int, | |
help='How many parallel processes to extract zero shards') | |
parser.add_argument( | |
'--num_merge_workers', | |
default=2, | |
type=int, | |
help= | |
'How many parallel processes to merge tp slices (more memory intensive, use much fewer than --num_extract_workers))' | |
) | |
parser.add_argument('--keep_temp_folder', | |
action='store_true', | |
help='Preserve temporary folder of intermediate checkpoint slice files. Useful for debugging.') | |
parser.add_argument('--no_strict', | |
dest='strict', | |
action='store_false', | |
help='Do not perform validity checks on converted checkpoint.') | |
args = parser.parse_args() | |
print(f'args = {args}') | |
return args | |
def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree): | |
path_list = [] | |
iter_folder = f'iter_{iteration:07d}' | |
for i in range(0, tp_degree): | |
path_list.append([]) | |
for j in range(0, pp_degree): | |
rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}' | |
ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt') | |
path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path)) | |
return path_list | |
def _save_checkpoint(file_path, chkpt_sd): | |
dir, _ = os.path.split(file_path) | |
os.makedirs(dir, exist_ok=True) | |
torch.save(chkpt_sd, file_path) | |
def extract_zero_shards(dir, ds_checkpoint, indices_3D): | |
pp_index, tp_index, dp_index = indices_3D | |
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index) | |
# pprint(f"Processing {dp_index=} {pp_index=}, {tp_index=}") | |
optim_sd = sd[OPTIMIZER_STATE_DICT] | |
param_slice_mappings = optim_sd[PARAM_SLICE_MAPPINGS] | |
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
pipeline_replicated_params = universal_checkpoint_info.get(PIPELINE_REPLICATED_PARAMETER_PATTERNS, []) | |
# print(f'{pipeline_replicated_params=}') | |
# dict | |
state_groups = optim_sd[BASE_OPTIMIZER_STATE]["state"] | |
# list | |
fp32_groups = optim_sd[SINGLE_PARTITION_OF_FP32_GROUPS] | |
param_groups_cnt = len(state_groups) | |
for param_group_id in range(param_groups_cnt): | |
flat_state = dict( | |
exp_avg=state_groups[param_group_id]["exp_avg"], | |
exp_avg_sq=state_groups[param_group_id]["exp_avg_sq"], | |
fp32=fp32_groups[param_group_id], | |
) | |
if "step" in state_groups[param_group_id]: | |
flat_state["step"] = state_groups[param_group_id]["step"] | |
for name, fragment_mapping in param_slice_mappings[param_group_id].items(): | |
if pp_index > 0 and any(re.match(pattern, name) for pattern in pipeline_replicated_params): | |
# Skip tied weights that are replicated in first and last pp stages | |
continue | |
# pprint(f"dpt{dp_index}{pp_index}{tp_index} {param_group_id} {name} => {fragment_mapping.start}:{fragment_mapping.numel}") | |
for state_key in flat_state.keys(): | |
dump_param_fragment(dir, tp_index, dp_index, state_key, flat_state[state_key], name, | |
fragment_mapping.start, fragment_mapping.numel) | |
cnt = 0 | |
def dp_index_to_str(dp_index): | |
return f"{dp_index:0>2d}" | |
def dump_param_fragment(dir, tp_index, dp_index, state_name, state_flat_tensor, param_name, offset, numel): | |
global cnt # temp hack | |
param_base_path = os.path.join(dir, param_name, str(tp_index)) | |
os.makedirs(param_base_path, exist_ok=True) | |
cnt += 1 | |
path = os.path.join(param_base_path, f"{state_name}.{dp_index_to_str(dp_index)}") | |
#print(f"{param_name}: {offset}: {numel} => {path}") | |
# State might be a python int or a tensor | |
if state_name != "step" and torch.is_tensor(state_flat_tensor): | |
state_flat_tensor = state_flat_tensor.narrow(0, offset, numel).clone() | |
_save_checkpoint(path, state_flat_tensor) | |
def _merge_zero_shards(param_base_path, state, tp_degree, slice_shape): | |
slices = [] | |
for tp_index in range(tp_degree): | |
prefix_path = os.path.join(param_base_path, str(tp_index), f"{state}") | |
paths = glob.glob(f"{prefix_path}.*") | |
if len(paths) == 0: | |
continue | |
pattern = re.compile(f"{prefix_path}\\.([0-9]+)") | |
dp_indices = set() | |
for p in paths: | |
m = pattern.match(p) | |
if m: | |
dp_indices.add(int(m.group(1))) | |
else: | |
raise ValueError(f"Cannot parse dp_rank from {p}") | |
paths = [f"{prefix_path}.{dp_index_to_str(dp_index)}" for dp_index in sorted(list(dp_indices))] | |
shards = [torch.load(p) for p in paths] | |
if state == "step": | |
assert all(v == shards[0] for v in shards), "All shards must have the same step value" | |
slice = shards[0] | |
else: | |
slice = torch.cat(shards, dim=0).reshape(slice_shape) | |
slices.append(slice) | |
return slices | |
def merge_tp_slices(ds_checkpoint, dir, slice_dir, tp_degree, name_and_shape): | |
name, shape = name_and_shape | |
slice_base_path = os.path.join(slice_dir, name) | |
param_base_path = os.path.join(dir, name) | |
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
replicated_parameters = universal_checkpoint_info.get(TP_REPLICATED_PARAMETER_PATTERNS, []) | |
parameters_to_average = universal_checkpoint_info.get(PARAMETER_TO_AVERAGE_PATTERNS, []) | |
parameters_with_row_parallelism = universal_checkpoint_info.get(PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, []) | |
vocabulary_parameters = universal_checkpoint_info.get(VOCABULARY_PARAMETER_PATTERNS, []) | |
parameters_with_2_sub_params_cat_dim_0 = universal_checkpoint_info.get(PARAMETER_WITH_2_SUB_PARAMS_CAT_DIM_0, []) | |
parameter_with_sub_params = universal_checkpoint_info.get(PARAMETER_WITH_SUB_PARAMS, []) | |
unmatched_patterns = set(replicated_parameters + parameters_to_average + parameters_with_row_parallelism + | |
vocabulary_parameters + parameters_with_2_sub_params_cat_dim_0) | |
unmatched_patterns.update(chain.from_iterable(SubparamShape(**s).patterns for s in parameter_with_sub_params)) | |
def get_matched_pattern(patterns_, name_): | |
matched_ = [pattern_ for pattern_ in patterns_ if re.match(pattern_, name_)] | |
assert len(matched_) <= 1, f'Got more than one matching patterns={matched_} for {name_}' | |
if matched_: | |
pattern_ = matched_[0] | |
unmatched_patterns.discard(pattern_) | |
return pattern_ | |
return None | |
def get_matched_sub_params_pattern(name_): | |
for subparam_shape_dict in parameter_with_sub_params: | |
subparam_shape = SubparamShape(**subparam_shape_dict) | |
for pattern_ in subparam_shape.patterns: | |
if re.match(pattern_, name_): | |
unmatched_patterns.discard(pattern_) | |
return subparam_shape | |
return None | |
matched_sub_params_shape = get_matched_sub_params_pattern(name) | |
step_merged = _merge_zero_shards(slice_base_path, "step", tp_degree, shape) | |
if step_merged: | |
_save_checkpoint(os.path.join(param_base_path, f"step.pt"), step_merged[0]) | |
for state in ("fp32", "exp_avg", "exp_avg_sq"): | |
slices = _merge_zero_shards(slice_base_path, state, tp_degree, shape) | |
final_path = os.path.join(param_base_path, f"{state}.pt") | |
#print(f"Expected shape: {shape}") | |
#print(f"Fragment sizes:", list(frag.shape for frag in slices)) | |
ckpt_dict = {} | |
if get_matched_pattern(replicated_parameters, name): | |
if len(slices) > 1: | |
assert all([slices[0].equal(other_slice) for other_slice in slices[1:]]) | |
param = slices[0] | |
# print(f'replicate {name} using first slice') | |
elif get_matched_pattern(parameters_to_average, name): | |
param = sum(slices) / len(slices) | |
# print(f'merge {name} using average') | |
elif get_matched_pattern(parameters_with_2_sub_params_cat_dim_0, name): | |
cat_dim = 0 | |
chunked_slices = [torch.chunk(s, 2, dim=cat_dim) for s in slices] | |
merged_chunks_0 = torch.cat([s[0] for s in chunked_slices], dim=cat_dim) | |
merged_chunks_1 = torch.cat([s[1] for s in chunked_slices], dim=cat_dim) | |
param = torch.cat([merged_chunks_0, merged_chunks_1], dim=cat_dim) | |
ckpt_dict[CAT_DIM] = cat_dim | |
ckpt_dict[PARAM_N_SUB_PARAMS] = 2 | |
elif matched_sub_params_shape: | |
merged_chunks = [] | |
partition_dim = matched_sub_params_shape.partition_dim | |
sub_dim_sizes = matched_sub_params_shape.shape[partition_dim] | |
if not isinstance(sub_dim_sizes, tuple): | |
sub_dim_sizes = (sub_dim_sizes, ) | |
partition_shape = [sum(d) if isinstance(d, tuple) else d for d in matched_sub_params_shape.shape] | |
partition_shape = [d // tp_degree if i == partition_dim else d for i, d in enumerate(partition_shape)] | |
slices = [s.view(partition_shape) for s in slices] | |
offset = 0 | |
for sub_dim_size in sub_dim_sizes: | |
part_sub_dim_size = sub_dim_size // tp_degree | |
merged_chunks.append( | |
torch.cat([s.narrow(partition_dim, offset, part_sub_dim_size) for s in slices], dim=partition_dim)) | |
offset += part_sub_dim_size | |
param = torch.cat(merged_chunks, dim=partition_dim) | |
ckpt_dict[SUB_PARAM_SHAPE] = matched_sub_params_shape | |
else: | |
cat_dim = 1 if get_matched_pattern(parameters_with_row_parallelism, name) else 0 | |
# print(f"merge {name} with CAT DIM: {cat_dim}") | |
param = torch.cat(slices, dim=cat_dim) | |
ckpt_dict[CAT_DIM] = cat_dim | |
if get_matched_pattern(vocabulary_parameters, name): | |
#print(f"Before {param.shape=}") | |
# strip padding | |
original_vocab_size = universal_checkpoint_info['original_vocab_size'] | |
param = param[:original_vocab_size, :] | |
ckpt_dict[VOCAB_TENSOR] = True | |
#print(f"After {param.shape=}") | |
#print(f"Final shape: {param.shape}") | |
ckpt_dict[PARAM] = param | |
_save_checkpoint(final_path, ckpt_dict) | |
return unmatched_patterns | |
def _do_parallel_work(do_work, work_chunks, num_workers): | |
results = [] | |
if num_workers > 1: | |
with ProcessPoolExecutor(max_workers=num_workers) as executor: | |
future_list = [executor.submit(do_work, work) for work in work_chunks] | |
for f in tqdm.tqdm(future_list): | |
results.append(f.result()) | |
else: | |
# No parallel pass for unit testing | |
# We can't create child processes in tests | |
for work in tqdm.tqdm(work_chunks): | |
results.append(do_work(work)) | |
return results | |
def _extract_zero_shard_files(args, ds_checkpoint, temp_dir): | |
_3d_range_list = list( | |
itertools.product(range(ds_checkpoint.pp_degree), range(ds_checkpoint.tp_degree), | |
range(ds_checkpoint.dp_degree))) | |
#pprint(f'{_3d_range_list=}') | |
do_work = partial(extract_zero_shards, temp_dir, ds_checkpoint) | |
_do_parallel_work(do_work, _3d_range_list, args.num_extract_workers) | |
def _merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir): | |
zero_output_folder = os.path.join(args.output_folder, "zero") | |
do_work = partial(merge_tp_slices, ds_checkpoint, zero_output_folder, temp_dir, ds_checkpoint.tp_degree) | |
unmatched_patterns_lists = _do_parallel_work(do_work, list(slice_shapes.items()), args.num_merge_workers) | |
# verify that all patterns were used | |
# if a pattern was not used by any of the workers, then it was not used at all -> assert/alert | |
sets = [set(lst) for lst in unmatched_patterns_lists] | |
unmatched_patterns = list(set.intersection(*sets)) | |
if args.strict: | |
assert not unmatched_patterns, f'Unused patterns={unmatched_patterns} while merging tp slices' | |
elif unmatched_patterns: | |
print(f'Warning: Unused patterns={unmatched_patterns} while merging tp slices') | |
def _save_optimizer_state(args, ds_checkpoint): | |
sharded_states = [BASE_OPTIMIZER_STATE, PARAM_SLICE_MAPPINGS, SINGLE_PARTITION_OF_FP32_GROUPS] | |
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=0, tp_index=0, dp_index=0) | |
optim_sd = sd[OPTIMIZER_STATE_DICT] | |
output_sd = {k: v for k, v in optim_sd.items() if k not in sharded_states} | |
output_sd[PARAM_GROUPS] = optim_sd[BASE_OPTIMIZER_STATE][PARAM_GROUPS] | |
zero_output_folder = os.path.join(args.output_folder, "zero") | |
output_file_path = os.path.join(zero_output_folder, f"optimizer_state.pt") | |
_save_checkpoint(output_file_path, output_sd) | |
def _check_for_required_state(ds_checkpoint): | |
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | |
assert universal_checkpoint_info is not None, f'Required {UNIVERSAL_CHECKPOINT_INFO} state is missing in checkpoint. Verify that client creates this state.' | |
def main(args): | |
print(f'Convert DeepSpeed Checkpoint to Universal Checkpoint') | |
print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Universal checkpoint in {args.output_folder}') | |
ds_checkpoint = DeepSpeedCheckpoint(args.input_folder) | |
_check_for_required_state(ds_checkpoint) | |
iteration = ds_checkpoint.get_iteration() | |
#_create_latest_file(args.output_folder, iteration) | |
checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree, | |
ds_checkpoint.pp_degree) | |
slice_shapes = [] | |
for mp_rank_file in ds_checkpoint.mp_rank_files: | |
mp_sd = torch.load(mp_rank_file, map_location=torch.device('cpu')) | |
slice_shapes += mp_sd[PARAM_SHAPES] | |
# fix back to normal flat dict, merge duplicates for tp>1 | |
slice_shapes = dict((k, v) for d in slice_shapes for k, v in d.items()) | |
temp_dir = os.path.join(args.output_folder, 'tmp') | |
print('*** 1. Extracting ZeRO fragments') | |
_extract_zero_shard_files(args, ds_checkpoint, temp_dir) | |
print('*** 2. Merging slices .....') | |
_merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir) | |
print('*** 3. Saving common optimizer states') | |
_save_optimizer_state(args, ds_checkpoint) | |
if not args.keep_temp_folder: | |
shutil.rmtree(temp_dir, ignore_errors=True) | |
# Copy mp* files into output folder | |
for f in glob.glob(os.path.join(args.input_folder, 'mp*')): | |
shutil.copy2(f, args.output_folder) | |
# Update latest to output folder | |
checkpoint_root_folder, step_folder = os.path.split(args.output_folder) | |
latest_file = os.path.join(checkpoint_root_folder, 'latest_universal') | |
with open(latest_file, "w") as f: | |
f.write(step_folder) | |
print('*** Done!') | |
if __name__ == "__main__": | |
args = parse_arguments() | |
main(args) | |