peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/reshape_meg_2d.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from .reshape_utils import partition_data | |
class meg_2d_parallel_map(object): | |
def __init__(self, pp_degree, tp_degree): | |
self.pp_degree = pp_degree | |
self.tp_degree = tp_degree | |
self.map = {} | |
def simple_init(self): | |
self.map = { | |
self._make_key(i // self.tp_degree, i % self.tp_degree): [i] | |
for i in range(self.pp_degree * self.tp_degree) | |
} | |
def add_data(self, pp_index, tp_index, data): | |
self._validate_indices(pp_index, tp_index) | |
assert type(data) is list | |
key = self._make_key(pp_index, tp_index) | |
if not key in self.map.keys(): | |
self.map[key] = [] | |
self.map[key] += data | |
def get_data(self, pp_index=None, tp_index=None): | |
self._validate_indices(pp_index, tp_index) | |
pp_indices = list(range(self.pp_degree)) if pp_index is None else [pp_index] | |
tp_indices = list(range(self.tp_degree)) if tp_index is None else [tp_index] | |
result = [] | |
for i in pp_indices: | |
for j in tp_indices: | |
result += self.map[self._make_key(i, j)] | |
return result | |
def print_data(self, tag): | |
print(f'{tag}') | |
for key, value in self.map.items(): | |
print(f'{key} = {value}') | |
def _validate_indices(self, pp_index, tp_index): | |
assert pp_index is None or pp_index < self.pp_degree | |
assert tp_index is None or tp_index < self.tp_degree | |
def _make_key(self, i, j): | |
return f'{i},{j}' | |
def _reshape_tp_dimension(old_2d_map, new_tp_degree): | |
old_pp_degree = old_2d_map.pp_degree | |
new_2d_map = meg_2d_parallel_map(old_pp_degree, new_tp_degree) | |
for i in range(old_pp_degree): | |
ranks_for_pp_index = old_2d_map.get_data(pp_index=i, tp_index=None) | |
split_ranks = partition_data(ranks_for_pp_index, new_tp_degree) | |
for j in range(new_tp_degree): | |
new_2d_map.add_data(i, j, split_ranks[j]) | |
return new_2d_map | |
def _reshape_pp_dimension(old_2d_map, new_pp_degree): | |
old_tp_degree = old_2d_map.tp_degree | |
new_2d_map = meg_2d_parallel_map(new_pp_degree, old_tp_degree) | |
for i in range(old_tp_degree): | |
ranks_for_tp_index = old_2d_map.get_data(pp_index=None, tp_index=i) | |
split_ranks = partition_data(ranks_for_tp_index, new_pp_degree) | |
for j in range(new_pp_degree): | |
new_2d_map.add_data(j, i, split_ranks[j]) | |
return new_2d_map | |
def reshape_meg_2d_parallel(old_pp_degree, old_tp_degree, new_pp_degree, new_tp_degree, verbose=False): | |
assert new_pp_degree <= old_pp_degree | |
assert new_tp_degree <= old_tp_degree | |
old_2d_map = meg_2d_parallel_map(old_pp_degree, old_tp_degree) | |
old_2d_map.simple_init() | |
if verbose: | |
old_2d_map.print_data(f'original_2d_map:') | |
if old_tp_degree != new_tp_degree: | |
new_tp_map = _reshape_tp_dimension(old_2d_map, new_tp_degree) | |
else: | |
new_tp_map = old_2d_map | |
if verbose: | |
new_tp_map.print_data(f'after_tp_reshape:') | |
if old_pp_degree != new_pp_degree: | |
final_map = _reshape_pp_dimension(new_tp_map, new_pp_degree) | |
else: | |
final_map = new_tp_map | |
if verbose: | |
final_map.print_data(f'final_2d_map:') | |
return final_map | |
def get_mpu_ranks(tp_size=1, pp_size=1, dp_size=1, virtual_pp_size=None): | |
""" | |
Initialize model data parallel groups. | |
Arguments: | |
tp_size: number of GPUs used to parallelize model tensor. | |
pp_size: number of GPUs used to parallelize model pipeline. | |
dp_size: number of GPUs used to parallelize model data. | |
Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we | |
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize | |
the model pipeline. The present function will | |
create 8 tensor model-parallel groups, 4 pipeline model-parallel groups | |
and 8 data-parallel groups as: | |
8 data_parallel groups: | |
[g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15] | |
8 tensor model-parallel groups: | |
[g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15] | |
4 pipeline model-parallel groups: | |
[g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15] | |
Note that for efficiency, the caller should make sure adjacent ranks | |
are on the same DGX box. For example if we are using 2 DGX-1 boxes | |
with a total of 16 GPUs, rank 0 to 7 belong to the first box and | |
ranks 8 to 15 belong to the second box. | |
""" | |
world_size = tp_size * pp_size * dp_size | |
print(f"\n\n*** tp={tp_size}, pp={pp_size}, dp={dp_size}, world={world_size}") | |
tensor_model_parallel_size = min(tp_size, world_size) | |
pipeline_model_parallel_size = min(pp_size, world_size) | |
data_parallel_size = world_size // (tensor_model_parallel_size * pipeline_model_parallel_size) | |
num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size | |
num_pipeline_model_parallel_groups = world_size // pipeline_model_parallel_size | |
num_data_parallel_groups = world_size // data_parallel_size | |
# Build the data-parallel groups. | |
all_dp_group_ranks = [] | |
for i in range(pipeline_model_parallel_size): | |
start_rank = i * num_pipeline_model_parallel_groups | |
end_rank = (i + 1) * num_pipeline_model_parallel_groups | |
for j in range(tensor_model_parallel_size): | |
ranks = range(start_rank + j, end_rank, tensor_model_parallel_size) | |
all_dp_group_ranks.append(list(ranks)) | |
print("DP", all_dp_group_ranks) | |
# Build the model-parallel groups. | |
all_pp_group_ranks = [] | |
for i in range(data_parallel_size): | |
ranks = [data_parallel_group_ranks[i] for data_parallel_group_ranks in all_dp_group_ranks] | |
all_pp_group_ranks.append(list(ranks)) | |
print(f"PP", all_pp_group_ranks) | |
# Build the tensor model-parallel groups. | |
all_tp_group_ranks = [] | |
for i in range(num_tensor_model_parallel_groups): | |
ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size) | |
all_tp_group_ranks.append(list(ranks)) | |
print(f"TP", all_tp_group_ranks) | |
return all_tp_group_ranks, all_pp_group_ranks, all_dp_group_ranks | |
# # Build the pipeline model-parallel groups and embedding groups | |
# # (first and last rank in each pipeline model-parallel group). | |
# for i in range(num_pipeline_model_parallel_groups): | |
# ranks = range(i, world_size, | |
# num_pipeline_model_parallel_groups) | |
# print(f"EMB{i}", list(ranks)) | |
def reshape(src, tgt): | |
""" | |
reshape([tp_size_src, pp_size_src, dp_size_src], | |
[tp_size_tgt, pp_size_tgt, dp_size_tgt]) | |
""" | |
print(f"\n\n*** Reshaping: {src} => {tgt}") | |
tp_size_src, pp_size_src, dp_size_src = src | |
tp_size_tgt, pp_size_tgt, dp_size_tgt = tgt | |
tp_ranks1, pp_ranks1, dp_ranks1 = get_mpu_ranks(tp_size=tp_size_src, pp_size=pp_size_src, dp_size=dp_size_src) | |
tp_ranks2, pp_ranks2, dp_ranks2 = get_mpu_ranks(tp_size=tp_size_tgt, pp_size=pp_size_src, dp_size=dp_size_src) | |
tp_ranks3, pp_ranks3, dp_ranks3 = get_mpu_ranks(tp_size=tp_size_tgt, pp_size=pp_size_tgt, dp_size=dp_size_src) | |
# handle tp contraction first | |
print("\n*** TP contraction:") | |
for i, r in enumerate(tp_ranks1): | |
print(f'{tp_ranks1[i]} => {tp_ranks2[i]}') | |
# handle pp contraction next | |
print("\n*** PP contraction:") | |
for i, r in enumerate(pp_ranks1): | |
print(f'{pp_ranks2[i]} => {pp_ranks3[i]}') | |
# easy | |
#reshape([2,2,1],[1,1,1]) | |
# probably need more logic to suggest how to pack | |
#reshape([4,4,1],[2,2,1]) | |
#reshape([2,4,2], [8,32,1]) | |
# get_mpu_ranks(2,2,2) | |
# get_mpu_ranks(4,2,1) | |
# get_mpu_ranks(2,4,1) | |
# get_mpu_ranks(1,1,8) | |