peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import torch | |
from .constants import (MODEL_FILE_PREFIX, MODEL_FILE_SUFFIX, OPTIM_FILE_SUFFIX, ZERO_FILE_PREFIX) | |
def get_model_ckpt_name_for_rank(base_folder, mp_rank_str): | |
ckpt_name = os.path.join( | |
base_folder, | |
MODEL_FILE_PREFIX + mp_rank_str + MODEL_FILE_SUFFIX, | |
) | |
return ckpt_name | |
def get_zero_ckpt_name_for_rank(base_folder, dp_rank, mp_rank): | |
zero_prefix = f'{ZERO_FILE_PREFIX}{dp_rank}' | |
mp_rank_string = f'_{MODEL_FILE_PREFIX}{mp_rank:02d}' | |
zero_ckpt_name = os.path.join( | |
base_folder, | |
zero_prefix + mp_rank_string + OPTIM_FILE_SUFFIX, | |
) | |
return zero_ckpt_name | |
def get_layer_ckpt_name_for_rank(base_folder, layer_id, tp_rank): | |
ckpt_file = f'{layer_id}-model_{tp_rank:02d}{MODEL_FILE_SUFFIX}' | |
ckpt_path = os.path.join(base_folder, ckpt_file) | |
return ckpt_path | |
# We pass cloned tensors to torch.save() to avoid checkpoint bloat that occurs when torch.save() | |
# saves the underlying storage rather than the slice of the storage corresponding to individual tensors. | |
# This is a problem in DeepSpeed because we often allocate tensors using slices of large flattened buffers. | |
# Tensor cloning helps to avoid this problem because the storage of cloned tensors are closer to the true size. | |
# It is expected that the garbage collector will reclaim the cloned tensor storage to avoid memory bloat. | |
# See https://pytorch.org/docs/stable/notes/serialization.html#preserve-storage-sharing | |
def clone_tensors_for_torch_save(item, device=torch.device('cpu')): | |
""" | |
Returns a copy of ``item`` with all enclosed tensors replaced by clones on a specified device. | |
Works on individual tensors, and tensors contained/nested in lists, tuples, and dicts. | |
Parameters: | |
- ``item``: tensor to clone or (possibly nested) container of tensors to clone. | |
- ``device``: target device (defaults to 'cpu') | |
Returns: | |
- copy of ``item`` with cloned tensors on target device | |
""" | |
if torch.is_tensor(item): | |
return item.detach().clone().to(device) | |
elif isinstance(item, list): | |
return [clone_tensors_for_torch_save(v, device) for v in item] | |
elif isinstance(item, tuple): | |
return tuple([clone_tensors_for_torch_save(v, device) for v in item]) | |
elif isinstance(item, dict): | |
return type(item)({k: clone_tensors_for_torch_save(v, device) for k, v in item.items()}) | |
else: | |
return item | |