applied-ai-018's picture
Add files using upload-large-folder tool
7a67bfc verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
'''
Copyright 2021 The Microsoft DeepSpeed Team
'''
import torch
from deepspeed.accelerator import get_accelerator
from .reduce_op import ReduceOp
from .torch import TorchBackend
def build_ccl_op():
builder = get_accelerator().create_op_builder("CCLCommBuilder")
if builder is None:
return None
ccl_cpp_module = builder.load()
print(f'DeepSpeed {builder.absolute_name()} built successfully')
return ccl_cpp_module
class CCLHandler():
def __init__(self, ccl_comm_op=None):
self.ccl_comm_op = ccl_comm_op
def wait(self):
# backend covered it
pass
class CCLBackend(TorchBackend):
def __init__(self, name='ccl', rank=-1, world_size=-1, mpu=None, timeout=None, init_method=None):
self.ccl_comm_op = build_ccl_op()
if self.ccl_comm_op is None:
# set CCLBackend to uninitialized state if CCLCommBuilder cannot be loaded
self.initialized = False
return
super(CCLBackend, self).__init__(backend='ccl',
name='torch',
rank=rank,
world_size=world_size,
timeout=timeout,
init_method=init_method)
self.name = 'ccl'
size = self.get_world_size()
rank = self.get_rank()
main_kvs = self.ccl_comm_op.get_kvs_addr(rank)
main_kvs = torch.tensor(main_kvs).to(torch.uint8).to(get_accelerator().current_device_name())
super(CCLBackend, self).broadcast(main_kvs, 0)
self.ccl_comm_op.initialize(size, rank, main_kvs)
self.initialized = True
self.groups = [tuple(range(self.get_world_size()))]
self.available_coll = self.ccl_comm_op.get_available_coll()
def is_initialized(self):
return self.initialized
def run_collective(self, name, **kwargs):
if name in self.available_coll:
if 'group' in kwargs:
kwargs['group'] = self.get_all_ranks_from_group(kwargs['group'])
if 'dst' in kwargs:
kwargs['dst'] = kwargs['group'].index(kwargs['dst'])
if 'src' in kwargs:
kwargs['src'] = kwargs['group'].index(kwargs['src'])
func = "self.ccl_comm_op." + name
eval(func)(*(kwargs.values()))
return CCLHandler(self.ccl_comm_op)
else:
func = "super(CCLBackend, self)." + name
eval(func)(*(kwargs.values()))
return CCLHandler(self.ccl_comm_op)
def all_reduce(self, tensor, op=ReduceOp.SUM, group=None, async_op=False):
use_caching = False
if use_caching:
match_id = f"{tensor.size()}-{op}"
name = "all_reduce_caching"
if name in self.available_coll:
group = self.get_all_ranks_from_group(group)
return self.ccl_comm_op.all_reduce_caching(tensor, op, match_id, group, async_op)
else:
return self.run_collective(name=name,
tensor=tensor,
op=op,
match_id=match_id,
group=group,
async_op=async_op)
else:
name = "all_reduce"
if name in self.available_coll:
group = self.get_all_ranks_from_group(group)
return self.ccl_comm_op.all_reduce(tensor, op, group, async_op)
else:
return self.run_collective(name=name, tensor=tensor, op=op, group=group, async_op=async_op)
def inference_all_reduce(self, tensor, op=ReduceOp.SUM, group=None):
name = "inference_all_reduce"
if name in self.available_coll:
return self.ccl_comm_op.inference_all_reduce(tensor, op)
else:
return self.run_collective(name=name, tensor=tensor, op=op, group=None, async_op=False)
def broadcast(self, tensor, src, group=None, async_op=False):
return self.run_collective(name="broadcast", tensor=tensor, src=src, group=group, async_op=async_op)
def all_gather(self, tensor_list, tensor, group=None, async_op=False):
return self.run_collective(name="all_gather",
tensor_list=tensor_list,
tensor=tensor,
group=group,
async_op=async_op)
def reduce_scatter_tensor(self, output_tensor, input_tensor, op, group=None, async_op=False):
return self.run_collective(name="reduce_scatter_tensor",
output_tensor=output_tensor,
input_tensor=input_tensor,
op=op,
group=group)
def all_gather_into_tensor(self, output_tensor, input_tensor, group=None, async_op=False):
return self.run_collective(name="all_gather_into_tensor",
output_tensor=output_tensor,
input_tensor=input_tensor,
group=group)
def all_to_all_single(self, output, input, output_split_sizes, input_split_sizes, group=None, async_op=False):
return self.run_collective(name="all_to_all_single",
output=output,
input=input,
output_split_sizes=output_split_sizes,
input_split_sizes=input_split_sizes,
group=group)
def send(self, tensor, dst, group=None, tag=0):
return self.run_collective(name="send", tensor=tensor, dst=dst, group=group, tag=tag)
def recv(self, tensor, src, group=None, tag=0):
return self.run_collective(name="recv", tensor=tensor, src=src, group=group, tag=tag)
def gather(self, tensor, gather_list, dst, group=None, async_op=False):
return self.run_collective(name="gather", tensor=tensor, gather_list=gather_list, dst=dst, group=group)
def scatter(self, tensor, gather_list, dst, group=None, async_op=False):
return self.run_collective(name="scatter", tensor=tensor, gather_list=gather_list, dst=dst, group=group)
def barrier(self, group=None, async_op=False):
return self.run_collective(name="barrier", group=group, async_op=async_op)
def monitored_barrier(self, group=None, timeout=None, wait_all_ranks=False):
return self.run_collective(name="monitored_barrier", group=group)
def reduce_scatter(self, output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
return self.run_collective(name="reduce_scatter",
output=output,
input_list=input_list,
op=op,
group=group,
async_op=async_op)
def reduce(self, tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
return self.run_collective(name="reduce", tensor=tensor, dst=dst, op=op, group=group, async_op=async_op)
def new_group(self, ranks):
return super(CCLBackend, self).new_group(ranks)
def _new_group(self, ranks, group):
size = len(ranks)
rank = self.get_rank()
sub_main_kvs = self.ccl_comm_op.get_sub_kvs_addr(rank == ranks[0])
sub_main_kvs = torch.tensor(sub_main_kvs).to(torch.uint8).to(get_accelerator().current_device_name())
super(CCLBackend, self).broadcast(sub_main_kvs, ranks[0], group)
self.ccl_comm_op.initialize_sub_comm(size, ranks.index(rank), sub_main_kvs, ranks)
self.groups.append(tuple(ranks))
def get_all_ranks_from_group(self, group):
if group is None:
return list(range(self.get_world_size()))
rank = 0
results = []
try:
while True:
results.append(super(CCLBackend, self).get_global_rank(group, rank))
rank += 1
except (ValueError, RuntimeError):
pass
if tuple(results) not in self.groups:
self._new_group(results, group)
return results