peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/moe
/experts.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import copy | |
from typing import List, Optional | |
import torch | |
from torch import nn | |
class Experts(nn.Module): | |
def __init__(self, expert: nn.Module, num_local_experts: int = 1, expert_group_name: Optional[str] = None) -> None: | |
super(Experts, self).__init__() | |
self.deepspeed_experts = nn.ModuleList([copy.deepcopy(expert) for _ in range(num_local_experts)]) | |
self.num_local_experts = num_local_experts | |
# TODO: revisit allreduce for moe.gate... | |
for expert in self.deepspeed_experts: | |
# TODO: Create param groups to handle expert + data case (e.g. param.group = moe_group) | |
for param in expert.parameters(): | |
param.allreduce = False | |
param.group_name = expert_group_name | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
chunks = inputs.chunk(self.num_local_experts, dim=1) | |
expert_outputs: List[torch.Tensor] = [] | |
for chunk, expert in zip(chunks, self.deepspeed_experts): | |
out = expert(chunk) | |
if isinstance(out, tuple): | |
out = out[0] # Ignore the bias term for now | |
expert_outputs += [out] | |
return torch.cat(expert_outputs, dim=1) | |