applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed.ops.op_builder import CPUAdagradBuilder
from deepspeed.utils.logging import should_log_le
class DeepSpeedCPUAdagrad(torch.optim.Optimizer):
optimizer_id = 0
def __init__(self, model_params, lr=1e-2, eps=1e-10, weight_decay=0, amsgrad=False, fp32_optimizer_states=True):
default_args = dict(lr=lr, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad)
super(DeepSpeedCPUAdagrad, self).__init__(model_params, default_args)
self.opt_id = DeepSpeedCPUAdagrad.optimizer_id
DeepSpeedCPUAdagrad.optimizer_id = DeepSpeedCPUAdagrad.optimizer_id + 1
self.fp32_optimizer_states = fp32_optimizer_states
self.ds_opt_adagrad = CPUAdagradBuilder().load()
self.ds_opt_adagrad.create_adagrad(self.opt_id, lr, eps, weight_decay, should_log_le("info"))
def __del__(self):
# need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize
# is used multiple times in the same process (notebook or pytest worker)
self.ds_opt_adagrad.destroy_adagrad(self.opt_id)
def __setstate__(self, state):
super(DeepSpeedCPUAdagrad, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None, fp16_param_groups=None):
"""Update the model parameters.
.. note::
This method will be called internally by ZeRO-Offload. DeepSpeed
users should still use ``engine.step()`` as shown in the
`Getting Started
<https://www.deepspeed.ai/getting-started/#training>`_ guide.
Args:
closure (callable, optional): closure to compute the loss.
Defaults to ``None``.
fp16_param_groups: FP16 GPU parameters to update. Performing the
copy here reduces communication time. Defaults to ``None``.
Returns:
loss: if ``closure`` is provided. Otherwise ``None``.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
# intended device for step
device = torch.device('cpu')
for group_id, group in enumerate(self.param_groups):
for param_id, p in enumerate(group['params']):
if p.grad is None:
continue
assert p.device == device, f"CPUAdagrad param is on {p.device} and must be 'cpu', make " \
"sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config."
state = self.state[p]
# State initialization
if len(state) == 0:
#print(f'group {group_id} param {param_id} = {p.numel()}')
state['step'] = 0
#use full precision by default unless self.fp32_optimizer_states is off
state_dtype = torch.float if self.fp32_optimizer_states else p.dtype
#memory_format=torch.preserve_format)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device='cpu')
#memory_format=torch.preserve_format)
state['step'] += 1
if p.grad.is_sparse == True:
sparse_param = p.sparse_mask(p.grad)
sparse_exp_avg_sq = state['exp_avg_sq'].sparse_mask(p.grad)
self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'],
group['weight_decay'], sparse_param.values(), p.grad.values(),
sparse_exp_avg_sq.values())
p[sparse_param.indices()] = sparse_param.values()
state['exp_avg_sq'][sparse_exp_avg_sq.indices()] = sparse_exp_avg_sq.values()
if fp16_param_groups is not None:
fp16_param_groups[group_id][param_id][sparse_param.indices()] = sparse_param.values()
else:
if fp16_param_groups is not None:
self.ds_opt_adagrad.adagrad_update_copy(self.opt_id, state['step'], group['lr'], group['eps'],
group['weight_decay'], p.data, p.grad.data,
state['exp_avg_sq'],
fp16_param_groups[group_id][param_id].data)
else:
self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'],
group['weight_decay'], p.data, p.grad.data,
state['exp_avg_sq'])
return loss