peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/ops
/lamb
/fused_lamb.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
""" | |
Copyright NVIDIA/apex | |
This file is adapted from NVIDIA/apex/optimizer/fused_adam and implements the LAMB optimizer | |
""" | |
import types | |
import torch | |
from deepspeed.ops.op_builder import FusedLambBuilder | |
class FusedLamb(torch.optim.Optimizer): | |
"""Implements the LAMB algorithm. Currently GPU-only. | |
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. | |
https://arxiv.org/abs/1904.00962 | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups. | |
lr (float, optional): learning rate. (default: 1e-3) | |
bias_correction (bool, optional): bias correction (default: True) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square. (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability. (default: 1e-8) | |
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, | |
adds eps to the bias-corrected second moment estimate before | |
evaluating square root instead of adding it to the square root of | |
second moment estimate as in the original paper. (default: False) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
max_grad_norm (float, optional): value used to clip global grad norm | |
(default: 0.0) | |
max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0) | |
min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01) | |
amsgrad (boolean, optional): NOT SUPPORTED in FusedLamb! | |
""" | |
def __init__(self, | |
params, | |
lr=1e-3, | |
bias_correction=True, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
eps_inside_sqrt=False, | |
weight_decay=0., | |
max_grad_norm=0., | |
max_coeff=10.0, | |
min_coeff=0.01, | |
amsgrad=False): | |
self.fused_lamb_cuda = FusedLambBuilder().load() | |
if amsgrad: | |
raise RuntimeError('FusedLamb does not support the AMSGrad variant.') | |
defaults = dict(lr=lr, | |
bias_correction=bias_correction, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
max_grad_norm=max_grad_norm, | |
max_coeff=max_coeff, | |
min_coeff=min_coeff) | |
super(FusedLamb, self).__init__(params, defaults) | |
self.eps_mode = 0 if eps_inside_sqrt else 1 | |
self.lamb_coeffs = [] | |
def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
grads (list of tensors, optional): weight gradient to use for the | |
optimizer update. If gradients have type torch.half, parameters | |
are expected to be in type torch.float. (default: None) | |
output params (list of tensors, optional): A reduced precision copy | |
of the updated weights written out in addition to the regular | |
updated weights. Have to be of same type as gradients. (default: None) | |
scale (float, optional): factor to divide gradient tensor values | |
by before applying to weights. (default: 1) | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
if grads is None: | |
grads_group = [None] * len(self.param_groups) | |
# backward compatibility | |
# assuming a list/generator of parameter means single group | |
elif isinstance(grads, types.GeneratorType): | |
grads_group = [grads] | |
elif type(grads[0]) != list: | |
grads_group = [grads] | |
else: | |
grads_group = grads | |
if output_params is None: | |
output_params_group = [None] * len(self.param_groups) | |
elif isinstance(output_params, types.GeneratorType): | |
output_params_group = [output_params] | |
elif type(output_params[0]) != list: | |
output_params_group = [output_params] | |
else: | |
output_params_group = output_params | |
if grad_norms is None: | |
grad_norms = [None] * len(self.param_groups) | |
#remove the previous coeffs | |
del self.lamb_coeffs[:] | |
for group, grads_this_group, output_params_this_group, grad_norm_group in zip( | |
self.param_groups, grads_group, output_params_group, grad_norms): | |
if grads_this_group is None: | |
grads_this_group = [None] * len(group['params']) | |
if output_params_this_group is None: | |
output_params_this_group = [None] * len(group['params']) | |
if grad_norm_group is None: | |
grad_norm_group = [None] * len(group['params']) | |
elif not isinstance(grad_norm_group, list): | |
grad_norm_group = [grad_norm_group] | |
bias_correction = 1 if group['bias_correction'] else 0 | |
for p, grad, output_param, grad_norm in zip(group['params'], grads_this_group, output_params_this_group, | |
grad_norm_group): | |
# compute combined scale factor for this group | |
combined_scale = scale | |
if group['max_grad_norm'] > 0: | |
# norm is in fact norm*scale | |
clip = ((grad_norm / scale) + 1e-6) / group['max_grad_norm'] | |
if clip > 1: | |
combined_scale = clip * scale | |
#note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients | |
if p.grad is None and grad is None: | |
continue | |
if grad is None: | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('FusedLamb does not support sparse gradients') | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
max_coeff = group['max_coeff'] | |
min_coeff = group['min_coeff'] | |
state['step'] += 1 | |
out_p = torch.tensor([], dtype=torch.float) if output_param is None else output_param | |
lamb_coeff = self.fused_lamb_cuda.lamb(p.data, out_p, exp_avg, exp_avg_sq, grad, group['lr'], beta1, | |
beta2, max_coeff, min_coeff, group['eps'], combined_scale, | |
state['step'], self.eps_mode, bias_correction, | |
group['weight_decay']) | |
self.lamb_coeffs.append(lamb_coeff) | |
return loss | |
def get_lamb_coeffs(self): | |
lamb_coeffs = [lamb_coeff.item() for lamb_coeff in self.lamb_coeffs] | |
return lamb_coeffs | |