applied-ai-018's picture
Add files using upload-large-folder tool
11ed373 verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a
# https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py
import torch
import triton
import triton.language as tl
def next_power_of_2(n):
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n += 1
return n
def num_warps(n):
if n < 512:
return 4
if n < 2048:
return 8
return 16
@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[6] * meta['BLOCK'])})
@triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[6] * meta['BLOCK'])})
@triton.jit
def _forward(X, scale, LUT, RPE, KP_M, ATTN_M, sizemax, stride_zx, stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm,
stride_zattnm, **meta):
TN = meta['TN']
BLOCK = meta['BLOCK']
pidhm = tl.program_id(0)
pidz = tl.program_id(1)
# create index ranges
rxm = pidhm % BLOCK
rbm = pidhm // BLOCK
rxn = tl.arange(0, TN) % BLOCK
rbn = tl.arange(0, TN) // BLOCK
# extract information from LUT
header = LUT + rbm * 2
size = tl.load(header + 0)
offset = tl.load(header + 1)
check = rbn < size
rbmn = tl.where(check, rbn, size - 1)
# block id and column id
blockid = tl.load(LUT + offset + rbmn * 4 + 0)
columnid = tl.load(LUT + offset + rbmn * 4 + 1)
rowid = tl.load(LUT + offset + rbmn * 4 + 2)
headid = tl.load(LUT + offset + rbmn * 4 + 3)
# pointers to X
px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
x = tl.load(px, mask=check, other=-float('inf'))
x = x.to(tl.float32)
# apply scale
if meta['APPLY_SCALE']:
x = x * scale
# apply RPE
if meta['APPLY_RPE']:
prpe = RPE + pidz * stride_zrpe + headid * stride_hrpe + columnid * BLOCK + rowid * BLOCK * stride_srpe + rxm * stride_srpe + rxn
rpe = tl.load(prpe, mask=check, other=0)
x = x + rpe
# apply key-padding mask
if meta['APPLY_KP_MASK']:
pkp_m = KP_M + pidz * stride_zkpm + columnid * BLOCK + rxn
kp_m = tl.load(pkp_m, mask=check, other=-float('inf'))
if meta['KP_MASK_MUL']:
kp_m = tl.where(kp_m == 0, -float('inf'), 0.)
x = x + kp_m
# apply attention mask
if meta['APPLY_ATTN_MASK']:
pattn_m = ATTN_M + columnid * BLOCK + rowid * BLOCK * stride_zattnm + rxm * stride_zattnm + rxn
attn_m = tl.load(pattn_m, mask=check, other=-float('inf'))
if meta['ATTN_MASK_MUL']:
attn_m = tl.where(attn_m == 0, -float('inf'), 0.)
x = x + attn_m
# computation
x = tl.softmax(x)
tl.store(px, x, mask=check)
@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[4] * meta['BLOCK'])})
@triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[4]) * meta['BLOCK']})
@triton.jit
def _backward(X, scale, DX, LUT, sizemax, stride_zx, stride_zdx, **meta):
pidhm = tl.program_id(0)
pidz = tl.program_id(1)
TN = meta['TN']
BLOCK = meta['BLOCK']
# create index ranges
rxm = pidhm % BLOCK
rbm = pidhm // BLOCK
rxn = tl.arange(0, TN) % BLOCK
rbn = tl.arange(0, TN) // BLOCK
# extract information from look-up table
header = LUT + rbm * 2
size = tl.load(header + 0)
offset = tl.load(header + 1)
# bounds checking on lut
check = rbn < size
rbmn = tl.where(check, rbn, size - 1)
# initialize pointers to block-sparse input
blockid = tl.load(LUT + offset + rbmn * 4)
X = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
DX = DX + pidz * stride_zdx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
# compute fused softmax backward
x = tl.load(X, mask=check, other=0)
dx = tl.load(DX, mask=check, other=0)
x = x.to(tl.float32)
dx = dx.to(tl.float32)
y = x * (dx - tl.sum(x * dx, 0)) * scale
tl.store(DX, y, mask=check)
class _sparse_softmax(torch.autograd.Function):
bwd_kernels = dict()
@staticmethod
def make_lut(layout, block, device):
_empty = torch.tensor([], dtype=torch.int64, device=layout.device)
sizes = _empty.clone()
# sizes along rows
for h in range(layout.shape[0]):
sizes = torch.cat((sizes, layout[h, :, :].sum(-1)))
# offsets in block format
offsets = torch.zeros_like(sizes)
offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
# block indices
idx = torch.arange(layout.sum())
head = layout.nonzero()[:, 0]
rows = layout.nonzero()[:, 1]
columns = layout.nonzero()[:, 2]
core = torch.stack((idx, columns, rows, head), dim=1).view(-1)
# construct look-up table
offsets = offsets * 4 + 2 * sizes.numel()
header = torch.stack((sizes, offsets), dim=1).view(-1)
lut = torch.cat((header, core)).type(torch.int32).to(device)
return lut, int(sizes.max())
@staticmethod
def forward(ctx, x, scale, rpe, key_padding_mask, attn_mask, kp_mask_mode, attn_mask_mode, spdims, block, lut,
num_blocks, maxlut, bench, time):
apply_scale = False if scale == 1.0 else True
# handle None rpe
if rpe is None:
apply_rpe = False
stride_zrpe, stride_hrpe, stride_srpe = 0, 0, 0
rpe = torch.empty(0, dtype=x.dtype, device=x.device)
else:
apply_rpe = True
stride_zrpe, stride_hrpe, stride_srpe = rpe.stride(0), rpe.stride(1), rpe.stride(2)
# handle None key_padding_mask
if key_padding_mask is None:
apply_kp_mask = False
stride_zkpm = 0
key_padding_mask = torch.empty(0, dtype=x.dtype, device=x.device)
else:
apply_kp_mask = True
stride_zkpm = key_padding_mask.stride(0)
# handle None attention_mask
if attn_mask is None:
apply_attn_mask = False
stride_zattnm = 0
attn_mask = torch.empty(0, dtype=x.dtype, device=x.device)
else:
apply_attn_mask = True
stride_zattnm = attn_mask.stride(0)
# run kernel
M = x.shape[0]
meta = {
'BLOCK': block,
'APPLY_SCALE': apply_scale,
'APPLY_RPE': apply_rpe,
'APPLY_KP_MASK': apply_kp_mask,
'APPLY_ATTN_MASK': apply_attn_mask,
'KP_MASK_MUL': kp_mask_mode == 'mul',
'ATTN_MASK_MUL': attn_mask_mode == 'mul',
}
grid = lambda opt: [spdims[0] * spdims[1] * block, M]
_forward[grid](x, scale, lut, rpe, key_padding_mask, attn_mask, maxlut, x.stride(0),\
stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, **meta)
# save to context
ctx.mark_dirty(x)
ctx.save_for_backward(x, lut)
ctx.spdims = spdims
ctx.block = block
ctx.maxlut = maxlut
ctx.scale = scale
ctx.apply_scale = apply_scale
ctx.apply_rpe = apply_rpe
ctx.apply_kp_mask = apply_kp_mask
ctx.apply_attn_mask = apply_attn_mask
ctx.kp_mask_mode = kp_mask_mode
ctx.attn_mask_mode = attn_mask_mode
return x
@staticmethod
def backward(ctx, dx):
# retrieve from context
x, lut = ctx.saved_tensors
# run kernel
M = x.shape[0]
grid = lambda opt: [ctx.spdims[0] * ctx.spdims[1] * ctx.block, M]
_backward[grid](x, ctx.scale, dx, lut, ctx.maxlut, x.stride(0), dx.stride(0), BLOCK=ctx.block)
return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None
class Softmax:
"""Block-Sparse Softmax class; this class computes softmax on a block sparse matrix. It is also able to apply either/all of the following masks:
- relative position embedding
- key padding mask
- attention mask
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
"""
def sparse_softmax(*args, **kwargs):
return _sparse_softmax.apply(*args, **kwargs)
def make_lut(self, device):
"""Generates the sparsity layout used in block-sparse softmax
"""
key = (device, )
if key not in self.lut_cache:
self.lut_cache[key] = _sparse_softmax.make_lut(self.layout, self.block, device)
return self.lut_cache[key]
def __init__(self, layout, block, bench=False):
"""Initialize the Block-Sparse Softmax class.
Arguments:
layout: required: sparsity layout tensor
block: required: an integer determining the block size.
bench: optional: set if you want to do benchmarking
"""
self.num_blocks = layout.sum().item()
self.spdims = layout.shape
self.layout = layout
self.block = block
self.bench = bench
self.lut_cache = dict()
def __call__(self,
x,
scale=1.,
rpe=None,
key_padding_mask=None,
attn_mask=None,
key_padding_mask_mode='add',
attn_mask_mode='add'):
"""Applies softmax on a Block-Sparse input tensor.
For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509
Arguments:
x: required: a block-sparse tensor that softmax is applied on it; computation will be in place and result will be returned in the same tensor
scale: optional: a float value; x values will be multiplied by this value before normalization. Default value is 1.0.
rpe: optional: a tensor same dimension as x that is used as relative position embedding
key_padding_mask: optional: a mask tensor of size (BatchSize X SequenceLength)
attn_mask: optional: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported
key_padding_mask_mode: optional: a boolean determining if key_padding_mask needs to be added or multiplied
attn_mask_mode: optional: a boolean determining if attn_mask needs to be added or multiplied
Return:
x: a block-sparse tensor contains normalized input x using softmax; and masks applied if given
"""
time_y = [None]
if rpe is not None and rpe.dtype != x.dtype:
raise ValueError('relative position embedding must be %s' % x.dtype)
if attn_mask is not None and attn_mask.dtype != x.dtype:
raise ValueError('Attention mask must be %s' % x.dtype)
if key_padding_mask is not None and key_padding_mask.dtype != x.dtype:
raise ValueError('Key padding mask must be %s' % x.dtype)
lut, maxlut = self.make_lut(x.device)
x = Softmax.sparse_softmax(x, scale, rpe, key_padding_mask, attn_mask, key_padding_mask_mode, attn_mask_mode,
self.spdims, self.block, lut, self.num_blocks, maxlut, self.bench, time_y)
self.time_y = time_y[0]
return x