peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/utils
/comms_logging.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import math | |
from deepspeed.utils import log_dist | |
def get_caller_func(frame=3): | |
import sys | |
return sys._getframe(frame).f_code.co_name | |
def print_rank_0(message): | |
import deepspeed.comm as dist | |
if dist.get_rank() == 0: | |
print(message) | |
# Helper function to pretty-print message sizes | |
def convert_size(size_bytes): | |
if size_bytes == 0: | |
return "0B" | |
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") | |
i = int(math.floor(math.log(size_bytes, 1024))) | |
p = math.pow(1024, i) | |
s = round(size_bytes / p, 2) | |
return "%s %s" % (s, size_name[i]) | |
# Helper function to calculate algbw and busbw. | |
# See https://gist.github.com/jeffra/b5e80466b4c86be00ea3b6f130fb7a36 and https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md | |
def calc_bw_log(comm_op, size, duration): | |
import deepspeed.comm as dist | |
n = dist.get_world_size() | |
tput = 0 | |
busbw = 0 | |
if comm_op == "all_to_all_single": | |
tput = (size / duration) | |
busbw = (size / duration) * ((n - 1) / n) | |
elif comm_op == "all_gather" or comm_op == "all_gather_into_tensor" or comm_op == "reduce_scatter" or comm_op == "reduce_scatter_tensor": | |
size *= n | |
tput = (size / duration) | |
busbw = (size / duration) * ((n - 1) / n) | |
elif comm_op == "all_reduce" or comm_op == "all_reduce_coalesced" or comm_op == "inference_all_reduce": | |
tput = (size * 2 / duration) | |
busbw = (size / duration) * (2 * (n - 1) / n) | |
elif comm_op == "send" or comm_op == "recv" or comm_op == "isend" or comm_op == "irecv" or comm_op == "broadcast" or comm_op == "reduce" or comm_op == "gather" or comm_op == "scatter" or comm_op == "barrier": | |
tput = (size / duration) | |
busbw = tput | |
else: | |
print_rank_0("wrong comm_op specified") # noqa: F821 | |
exit(0) | |
# convert to Gbps | |
tput *= 8 | |
busbw *= 8 | |
tput /= 1e6 | |
busbw /= 1e6 | |
return tput, busbw | |
class CommsLogger: | |
def __init__(self): | |
from deepspeed.comm.constants import COMMS_LOGGER_VERBOSE_DEFAULT, COMMS_LOGGER_DEBUG_DEFAULT, COMMS_LOGGER_PROF_OPS_DEFAULT, COMMS_LOGGER_PROF_ALL_DEFAULT, COMMS_LOGGER_ENABLED_DEFAULT | |
self.comms_dict = {} | |
self.verbose = COMMS_LOGGER_VERBOSE_DEFAULT | |
self.debug = COMMS_LOGGER_DEBUG_DEFAULT | |
self.prof_ops = COMMS_LOGGER_PROF_OPS_DEFAULT | |
self.prof_all = COMMS_LOGGER_PROF_ALL_DEFAULT | |
self.enabled = COMMS_LOGGER_ENABLED_DEFAULT | |
def configure(self, comms_config): | |
self.enabled = comms_config.comms_logger_enabled | |
if self.enabled: | |
self.verbose = comms_config.comms_logger.verbose | |
self.debug = comms_config.comms_logger.debug | |
self.prof_ops = comms_config.comms_logger.prof_ops | |
self.prof_all = comms_config.comms_logger.prof_all | |
# There are three settings for the op profiler: | |
# - Global profiling (profile all comms) | |
# - Op-type profiling (e.g. profile all all_reduce comms) | |
# - Op profiling (e.g. profile a specific all_reduce op) | |
def start_profiling_comms(self): | |
self.prof_all = True | |
def stop_profiling_comms(self): | |
self.prof_all = True | |
# E.g. start_profiling_op('all_reduce') | |
def start_profiling_op(self, op_name_list): | |
self.prof_ops = list(set(self.prof_ops) | set(op_name_list)) | |
def stop_profiling_op(self, op_name_list): | |
self.prof_ops = [op for op in self.prof_ops if op not in op_name_list] | |
# Add log entry | |
def append(self, raw_name, record_name, latency, msg_size): | |
algbw, busbw = calc_bw_log(raw_name, msg_size, latency) | |
if record_name in self.comms_dict.keys(): | |
# If this comm_op has already been logged with this message size, just add to existing record | |
if msg_size in self.comms_dict[record_name].keys(): | |
self.comms_dict[record_name][msg_size][0] += 1 | |
self.comms_dict[record_name][msg_size][1].append(latency) | |
self.comms_dict[record_name][msg_size][2].append(algbw) | |
self.comms_dict[record_name][msg_size][3].append(busbw) | |
# If this is a new message size for this comm_op, add new record under existing comm_op | |
else: | |
self.comms_dict[record_name][msg_size] = [1, [latency], [algbw], [busbw]] | |
else: | |
# Create entirely new record | |
self.comms_dict[record_name] = {msg_size: [1, [latency], [algbw], [busbw]]} | |
# If verbose, print every comm op | |
# TODO: Add to tensorboard | |
if self.verbose: | |
log_str = f"comm op: {record_name} | time (ms): {latency:.2f} | msg size: {convert_size(msg_size)} | algbw (Gbps): {algbw:.2f} | busbw (Gbps): {busbw:.2f}" | |
log_dist(log_str, [0]) | |
# Print summary at end of iteration, epoch, or training | |
def log_all(self, print_log=True, show_straggler=False): | |
import torch | |
from deepspeed.utils.timer import trim_mean | |
import deepspeed.comm as dist | |
from deepspeed.comm.reduce_op import ReduceOp | |
if print_log: | |
print( | |
f"{'Comm. Op': <20}{'Message Size': <20}{'Count': <20}{'Total Latency(ms)': <20}{'Avg Latency(ms)': <20}{'tput_avg (Gbps)': <20}{'busbw_avg (Gbps)': <20}" | |
) | |
for record_name in self.comms_dict.keys(): | |
if print_log: | |
print(record_name) | |
for msg_size, vals in sorted(self.comms_dict[record_name].items()): | |
# vals[0] is the count for each msg size | |
count = vals[0] | |
# vals[1] is a list of latency records for each msg size | |
total_lat = sum(vals[1]) | |
# vals[2] and vals[3] are the lists of algbw and busbw, respectively | |
# Get rid of outliers when we print | |
avg_lat = trim_mean(vals[1], 0.1) | |
avg_algbw = trim_mean(vals[2], 0.1) | |
avg_busbw = trim_mean(vals[3], 0.1) | |
if print_log: | |
print( | |
f"{' ': <20}{convert_size(msg_size): <20}{count: <20}{total_lat: <20.2f}{avg_lat: <20.2f}{avg_algbw: <20.2f}{avg_busbw: <20.2f}" | |
) | |
if show_straggler: | |
if print_log: | |
print("_______________________________") | |
print("Breakdown with straggler effect") | |
print("-------------------------------") | |
print( | |
f"{'Comm. Op': <20}{'Message Size': <20}{'Count': <20}{'Total comm lat(ms)': <20}{'Total straggler(ms)': <20}{'Avg comm lat(ms)': <20}{'Avg straggler(ms)': <20}" | |
) | |
for record_name in self.comms_dict.keys(): | |
if print_log: | |
print(record_name) | |
for msg_size, vals in sorted(self.comms_dict[record_name].items()): | |
# vals[0] is the count for each msg size | |
count = vals[0] | |
# vals[1] is a list of latency records for each msg size | |
lats = torch.tensor(vals[1]) | |
min_lats = torch.tensor(vals[1]) | |
dist.all_reduce(min_lats, op=ReduceOp.MIN) | |
total_lat = min_lats.sum().item() | |
total_straggler = (lats - min_lats).sum().item() | |
avg_lat = trim_mean(min_lats.tolist(), 0.1) | |
avg_straggler = trim_mean((lats - min_lats).tolist(), 0.1) | |
if print_log: | |
print( | |
f"{' ': <20}{convert_size(msg_size): <20}{count: <20}{total_lat: <20.2f}{total_straggler: <20.2f}{avg_lat: <20.2f}{avg_straggler: <20.2f}" | |
) | |