applied-ai-018's picture
Add files using upload-large-folder tool
0cee4ac verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# For lazy import with printflock()
fcntl = None
# for debug purposes map module and param objects to their fully qualified names
module_names = {}
param_names = {}
def debug_clear_module_and_param_names():
global module_names
global param_names
module_names = {}
param_names = {}
def debug_extract_module_and_param_names(model):
# extract the fully qualified names as soon as the model is acquired
global module_names
global param_names
# XXX: can probably make a map of param2module and vice-versa
module_names = {module: name for name, module in model.named_modules()}
param_names = {param: name for name, param in model.named_parameters()}
def debug_module2name(module):
if module in module_names:
return module_names[module]
else:
return "unknown"
def debug_module2name_id(module):
return f"name={debug_module2name(module)} id={module.id}"
def debug_module2name_class(module):
return f"name={debug_module2name(module)} {module.__class__.__name__}"
def debug_param2name(param):
if param in param_names:
return param_names[param]
else:
return "unknown"
def debug_param2name_id(param):
return f"name={debug_param2name(param)} id={param.ds_id}"
def debug_param2name_id_shape(param):
return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape}"
def debug_param2name_id_shape_device(param):
return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape} device={param.device}"
def debug_param2name_id_numel(param):
return f"name={debug_param2name(param)} id={param.ds_id} numel={param.numel()}"
def debug_param2name_id_shape_status(param):
return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape} status={param.ds_status}"
def printflock(*msgs):
"""
For printing messages for all concurrent gpus w/o getting interleaved text.
This is useful when debugging issues where multi-gpus don't sync.
1. Enable the force debug in say partitioning and zero3 files
2. Override the usual versions with ::
def print_rank_0(message, debug=False, force=False):
rank = deepspeed.comm.get_rank()
printflock(f"[{rank}] {message}")
3. run the program and you get both logs non-interleaved
But this makes it very difficult to make sense of the output, so the ``log_rank_file`` helper
function might be more useful, as it's easier to send each log stream into a separate file and
then compare those.
"""
global fcntl
if fcntl is None:
import fcntl
with open(__file__, "r") as fh:
fcntl.flock(fh, fcntl.LOCK_EX)
try:
print(*msgs)
finally:
fcntl.flock(fh, fcntl.LOCK_UN)
fh = None
def log_rank_file(rank, *msgs):
"""
Print to a log file of the given rank
This is useful for debugging hanging in sync processes. Here is a possible workflow:
1. Enable the force debug in say partitioning and zero3 files
2. Override the usual versions of print_rank_0 in those files with ::
def print_rank_0(message, debug=False, force=False):
rank = deepspeed.comm.get_rank()
log_rank_file(rank, message)
3. run the program
4. fix up the expected differences, e.g. different cuda numbers ::
perl -pi -e 's|cuda:1|cuda:0|' log_rank_*
5. now diff and see where names and ids diverge - you will find where the gpus don't do the same
work (e.g. when some layers get conditionally skipped on one gpu but not all)
diff -u log_rank_0.txt log_rank_1.txt | less
"""
global fh
if fh is None:
fh = open(f"log_rank_{rank}.txt", "w")
for m in msgs:
fh.write(f"{m}\n")
fh.flush()
def print_backward_tensors(tensor):
def _print_bwd_tensors(grad_fn):
print(f"Backward tensors in {grad_fn}")
for funcs in grad_fn.next_functions:
if funcs[0]:
try:
tensor = getattr(funcs[0], 'variable')
print(funcs[0])
print(f"Tensor - id: {id(tensor)}, shape: {tensor.shape}, data: {tensor}, grad: {tensor.grad}")
except AttributeError as e:
_print_bwd_tensors(funcs[0])
if hasattr(tensor, 'grad_fn'):
_print_bwd_tensors(tensor.grad_fn)