applied-ai-018's picture
Add files using upload-large-folder tool
0cee4ac verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from typing import Callable
from torch import Tensor
from packaging import version as pkg_version
class OnDevice(object):
"""
Create modules/tensors w. specific devices and dtypes. Examples:
Create MyModule which consists of many different sub-modules and parameters. In this case we can create
MyModule as a collection of 'meta' tensors by passing `device='meta'` or we can create the module _directly_
on a CUDA device by passing `device=f'cuda:{local_rank}'` (where `local_rank` is the local GPU id.
with OnDevice(dtype=torch.float16, device='meta'):
model = MyModel()
with OnDevice(dtype=torch.float16, device=f'cuda:{local_rank}'):
model = MyModel()
"""
_orig_torch_empty = torch.empty
_orig_torch_zeros = torch.zeros
_orig_torch_ones = torch.ones
_orig_torch_full = torch.full
def __init__(self, dtype, device="meta", enabled=True):
self.dtype = dtype
self.enabled = enabled
self.device = device
if device == "meta":
if pkg_version.parse('1.10') > pkg_version.parse(torch.__version__):
raise NotImplementedError("Meta tensor support is not available, please upgrade to torch 1.10+")
def fp_tensor_constructor(self, fn: Callable, target_fp_dtype: torch.dtype) -> Callable:
def wrapped_fn(*args, **kwargs) -> Tensor:
if kwargs.get("device", None) is None:
kwargs['device'] = self.device
tensor: Tensor = fn(*args, **kwargs)
if tensor.is_floating_point():
tensor = tensor.to(target_fp_dtype)
return tensor
return wrapped_fn
def get_new_tensor_fn_for_dtype(self, dtype: torch.dtype) -> Callable:
def new_tensor(cls, *args) -> Tensor:
tensor = OnDevice._orig_torch_empty(0, device=self.device).new_empty(*args)
if tensor.is_floating_point():
tensor = tensor.to(dtype)
return tensor
return new_tensor
def __enter__(self):
if not self.enabled:
return
torch.Tensor.__old_new__ = torch.Tensor.__new__
torch.Tensor.__new__ = self.get_new_tensor_fn_for_dtype(self.dtype)
torch.empty = self.fp_tensor_constructor(self._orig_torch_empty, self.dtype)
torch.zeros = self.fp_tensor_constructor(self._orig_torch_zeros, self.dtype)
torch.ones = self.fp_tensor_constructor(self._orig_torch_ones, self.dtype)
torch.full = self.fp_tensor_constructor(self._orig_torch_full, self.dtype)
def __exit__(self, exc_type, exc_value, traceback):
if not self.enabled:
return
torch.Tensor.__new__ = torch.Tensor.__old_new__
torch.empty = self._orig_torch_empty
torch.zeros = self._orig_torch_zeros
torch.ones = self._orig_torch_ones
torch.full = self._orig_torch_full