Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/20.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/20.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/25.post_attention_layernorm.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi +0 -0
- venv/lib/python3.10/site-packages/torch/_C/__init__.pyi +0 -0
- venv/lib/python3.10/site-packages/torch/_C/_aoti.pyi +3 -0
- venv/lib/python3.10/site-packages/torch/_C/_autograd.pyi +123 -0
- venv/lib/python3.10/site-packages/torch/_C/_cpu.pyi +5 -0
- venv/lib/python3.10/site-packages/torch/_C/_cudnn.pyi +17 -0
- venv/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi +26 -0
- venv/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi +590 -0
- venv/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi +188 -0
- venv/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi +35 -0
- venv/lib/python3.10/site-packages/torch/_C/_functions.pyi +11 -0
- venv/lib/python3.10/site-packages/torch/_C/_functorch.pyi +77 -0
- venv/lib/python3.10/site-packages/torch/_C/_itt.pyi +5 -0
- venv/lib/python3.10/site-packages/torch/_C/_lazy.pyi +28 -0
- venv/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi +11 -0
- venv/lib/python3.10/site-packages/torch/_C/_monitor.pyi +44 -0
- venv/lib/python3.10/site-packages/torch/_C/_nn.pyi +86 -0
- venv/lib/python3.10/site-packages/torch/_C/_nvtx.pyi +6 -0
- venv/lib/python3.10/site-packages/torch/_C/_onnx.pyi +40 -0
- venv/lib/python3.10/site-packages/torch/_C/_profiler.pyi +238 -0
- venv/lib/python3.10/site-packages/torch/_C/_verbose.pyi +3 -0
- venv/lib/python3.10/site-packages/torch/contrib/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/contrib/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/contrib/__pycache__/_tensorboard_vis.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/contrib/_tensorboard_vis.py +142 -0
- venv/lib/python3.10/site-packages/torch/nested/__init__.py +253 -0
- venv/lib/python3.10/site-packages/torch/nested/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/nested/_internal/nested_tensor.py +431 -0
- venv/lib/python3.10/site-packages/torch/nested/_internal/ops.py +1120 -0
- venv/lib/python3.10/site-packages/torch/nested/_internal/sdpa.py +780 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__init__.py +8 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/decomposition_skip.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/decomposition_table.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/diagnostics.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/dynamo_graph_extractor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/fx_onnx_interpreter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/fx_symbolic_graph_extractor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/onnxfunction_dispatcher.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/op_validation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/patcher.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/registration.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/serialization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/torch_export_graph_extractor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/type_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/_pass.py +325 -0
ckpts/universal/global_step120/zero/20.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15700589f296845f2d0beb7dfddf71f97d8d1eb420d5a2b4387ae75b5510be67
|
3 |
+
size 50332843
|
ckpts/universal/global_step120/zero/20.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a205de8822f22125338bc73b6e4416ca501f8a31d3fb2f622ab1d37afa2f10d9
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/25.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef91423cd5f8b3b965c03f597b64aedb8a8b36744d94c84b2fb44fdec9dddaf
|
3 |
+
size 9372
|
venv/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/_C/__init__.pyi
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/_C/_aoti.pyi
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/inductor/aoti_runner/pybind.cpp
|
2 |
+
class AOTIModelContainerRunnerCpu: ...
|
3 |
+
class AOTIModelContainerRunnerCuda: ...
|
venv/lib/python3.10/site-packages/torch/_C/_autograd.pyi
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Any, Callable, List, Optional, Set
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from ._profiler import (
|
7 |
+
_ProfilerEvent,
|
8 |
+
ActiveProfilerType,
|
9 |
+
ProfilerActivity,
|
10 |
+
ProfilerConfig,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Defined in tools/autograd/init.cpp
|
14 |
+
|
15 |
+
class DeviceType(Enum):
|
16 |
+
CPU = ...
|
17 |
+
CUDA = ...
|
18 |
+
MKLDNN = ...
|
19 |
+
OPENGL = ...
|
20 |
+
OPENCL = ...
|
21 |
+
IDEEP = ...
|
22 |
+
HIP = ...
|
23 |
+
FPGA = ...
|
24 |
+
ORT = ...
|
25 |
+
XLA = ...
|
26 |
+
MPS = ...
|
27 |
+
HPU = ...
|
28 |
+
Meta = ...
|
29 |
+
Vulkan = ...
|
30 |
+
Metal = ...
|
31 |
+
PrivateUse1 = ...
|
32 |
+
|
33 |
+
class ProfilerEvent:
|
34 |
+
def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ...
|
35 |
+
def cpu_memory_usage(self) -> int: ...
|
36 |
+
def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ...
|
37 |
+
def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ...
|
38 |
+
def cuda_memory_usage(self) -> int: ...
|
39 |
+
def device(self) -> int: ...
|
40 |
+
def handle(self) -> int: ...
|
41 |
+
def has_cuda(self) -> bool: ...
|
42 |
+
def is_remote(self) -> bool: ...
|
43 |
+
def kind(self) -> int: ...
|
44 |
+
def name(self) -> str: ...
|
45 |
+
def node_id(self) -> int: ...
|
46 |
+
def sequence_nr(self) -> int: ...
|
47 |
+
def shapes(self) -> List[List[int]]: ...
|
48 |
+
def thread_id(self) -> int: ...
|
49 |
+
def flops(self) -> float: ...
|
50 |
+
def is_async(self) -> bool: ...
|
51 |
+
|
52 |
+
class _KinetoEvent:
|
53 |
+
def name(self) -> str: ...
|
54 |
+
def device_index(self) -> int: ...
|
55 |
+
def start_us(self) -> int: ...
|
56 |
+
def duration_us(self) -> int: ...
|
57 |
+
def is_async(self) -> bool: ...
|
58 |
+
def linked_correlation_id(self) -> int: ...
|
59 |
+
def shapes(self) -> List[List[int]]: ...
|
60 |
+
def dtypes(self) -> List[str]: ...
|
61 |
+
def concrete_inputs(self) -> List[Any]: ...
|
62 |
+
def device_type(self) -> DeviceType: ...
|
63 |
+
def start_thread_id(self) -> int: ...
|
64 |
+
def end_thread_id(self) -> int: ...
|
65 |
+
def correlation_id(self) -> int: ...
|
66 |
+
def fwd_thread_id(self) -> int: ...
|
67 |
+
def stack(self) -> List[str]: ...
|
68 |
+
def scope(self) -> int: ...
|
69 |
+
def sequence_nr(self) -> int: ...
|
70 |
+
def flops(self) -> int: ...
|
71 |
+
def cuda_elapsed_us(self) -> int: ...
|
72 |
+
def privateuse1_elapsed_us(self) -> int: ...
|
73 |
+
|
74 |
+
class _ProfilerResult:
|
75 |
+
def events(self) -> List[_KinetoEvent]: ...
|
76 |
+
def legacy_events(self) -> List[List[ProfilerEvent]]: ...
|
77 |
+
def save(self, path: str) -> None: ...
|
78 |
+
def experimental_event_tree(self) -> List[_ProfilerEvent]: ...
|
79 |
+
def trace_start_us(self) -> int: ...
|
80 |
+
|
81 |
+
class SavedTensor: ...
|
82 |
+
|
83 |
+
def _enable_profiler(
|
84 |
+
config: ProfilerConfig,
|
85 |
+
activities: Set[ProfilerActivity],
|
86 |
+
) -> None: ...
|
87 |
+
def _prepare_profiler(
|
88 |
+
config: ProfilerConfig,
|
89 |
+
activities: Set[ProfilerActivity],
|
90 |
+
) -> None: ...
|
91 |
+
def _disable_profiler() -> _ProfilerResult: ...
|
92 |
+
def _profiler_enabled() -> bool: ...
|
93 |
+
def _add_metadata_json(key: str, value: str) -> None: ...
|
94 |
+
def _kineto_step() -> None: ...
|
95 |
+
def _get_sequence_nr() -> int: ...
|
96 |
+
def kineto_available() -> bool: ...
|
97 |
+
def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ...
|
98 |
+
def _record_function_with_args_exit(handle: torch.Tensor) -> None: ...
|
99 |
+
def _supported_activities() -> Set[ProfilerActivity]: ...
|
100 |
+
def _enable_record_function(enable: bool) -> None: ...
|
101 |
+
def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ...
|
102 |
+
def _push_saved_tensors_default_hooks(
|
103 |
+
pack_hook: Callable[[torch.Tensor], Any],
|
104 |
+
unpack_hook: Callable[[Any], torch.Tensor],
|
105 |
+
) -> None: ...
|
106 |
+
def _pop_saved_tensors_default_hooks() -> None: ...
|
107 |
+
def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ...
|
108 |
+
def _enable_profiler_legacy(config: ProfilerConfig) -> None: ...
|
109 |
+
def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ...
|
110 |
+
def _profiler_type() -> ActiveProfilerType: ...
|
111 |
+
def _saved_tensors_hooks_enable() -> None: ...
|
112 |
+
def _saved_tensors_hooks_disable(message: str) -> None: ...
|
113 |
+
def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ...
|
114 |
+
|
115 |
+
class CreationMeta(Enum):
|
116 |
+
DEFAULT = ...
|
117 |
+
IN_CUSTOM_FUNCTION = ...
|
118 |
+
MULTI_OUTPUT_NODE = ...
|
119 |
+
NO_GRAD_MODE = ...
|
120 |
+
INFERENCE_MODE = ...
|
121 |
+
|
122 |
+
def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ...
|
123 |
+
def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ...
|
venv/lib/python3.10/site-packages/torch/_C/_cpu.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.types import _bool
|
2 |
+
|
3 |
+
# Defined in torch/csrc/cpu/Module.cpp
|
4 |
+
|
5 |
+
def _is_cpu_support_vnni() -> _bool: ...
|
venv/lib/python3.10/site-packages/torch/_C/_cudnn.pyi
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
from torch.types import _bool, Tuple
|
4 |
+
|
5 |
+
# Defined in torch/csrc/cuda/shared/cudnn.cpp
|
6 |
+
is_cuda: _bool
|
7 |
+
|
8 |
+
def getRuntimeVersion() -> Tuple[int, int, int]: ...
|
9 |
+
def getCompileVersion() -> Tuple[int, int, int]: ...
|
10 |
+
def getVersionInt() -> int: ...
|
11 |
+
|
12 |
+
class RNNMode(int, Enum):
|
13 |
+
value: int
|
14 |
+
rnn_relu = ...
|
15 |
+
rnn_tanh = ...
|
16 |
+
lstm = ...
|
17 |
+
gru = ...
|
venv/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Set
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# This module is defined in torch/csrc/distributed/autograd/init.cpp
|
6 |
+
|
7 |
+
class DistAutogradContext:
|
8 |
+
def _context_id(self) -> int: ...
|
9 |
+
def _recv_functions(self) -> Dict[int, Any]: ...
|
10 |
+
def _send_functions(self) -> Dict[int, Any]: ...
|
11 |
+
def _known_worker_ids(self) -> Set[int]: ...
|
12 |
+
|
13 |
+
def _new_context() -> DistAutogradContext: ...
|
14 |
+
def _release_context(context_id: int) -> None: ...
|
15 |
+
def _get_max_id() -> int: ...
|
16 |
+
def _is_valid_context(worker_id: int) -> bool: ...
|
17 |
+
def _retrieve_context(context_id: int) -> DistAutogradContext: ...
|
18 |
+
def _current_context() -> DistAutogradContext: ...
|
19 |
+
def _init(worker_id: int) -> None: ...
|
20 |
+
def _get_debug_info() -> Dict[str, str]: ...
|
21 |
+
def backward(
|
22 |
+
context_id: int,
|
23 |
+
roots: List[torch.Tensor],
|
24 |
+
retain_graph=False,
|
25 |
+
) -> None: ...
|
26 |
+
def get_gradients(context_id: int) -> Dict[torch.Tensor, torch.Tensor]: ...
|
venv/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="type-arg"
|
2 |
+
from datetime import timedelta
|
3 |
+
from enum import Enum
|
4 |
+
from typing import Any, Dict, List, Optional, overload, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import Tensor
|
8 |
+
from torch._C import ScriptObject
|
9 |
+
from torch.futures import Future
|
10 |
+
|
11 |
+
# This module is defined in torch/csrc/distributed/c10d/init.cpp
|
12 |
+
|
13 |
+
_DEFAULT_FIRST_BUCKET_BYTES: int
|
14 |
+
_DEFAULT_NO_TIMEOUT: timedelta
|
15 |
+
_DEFAULT_PG_TIMEOUT: timedelta
|
16 |
+
_DEFAULT_PG_NCCL_TIMEOUT: timedelta
|
17 |
+
|
18 |
+
class BuiltinCommHookType(Enum):
|
19 |
+
ALLREDUCE = ...
|
20 |
+
FP16_COMPRESS = ...
|
21 |
+
|
22 |
+
def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
|
23 |
+
def _register_builtin_comm_hook(
|
24 |
+
reducer: Reducer,
|
25 |
+
comm_hook_type: BuiltinCommHookType,
|
26 |
+
): ...
|
27 |
+
def _set_global_rank(rank: int) -> None: ...
|
28 |
+
def _hash_tensors(tensors: List[Tensor]) -> int: ...
|
29 |
+
|
30 |
+
class GradBucket:
|
31 |
+
def index(self) -> int: ...
|
32 |
+
def buffer(self) -> Tensor: ...
|
33 |
+
def gradients(self) -> List[Tensor]: ...
|
34 |
+
def is_last(self) -> bool: ...
|
35 |
+
def set_buffer(self, tensor: Tensor) -> None: ...
|
36 |
+
def parameters(self) -> List[Tensor]: ...
|
37 |
+
|
38 |
+
class Reducer:
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
params: List[Tensor],
|
42 |
+
bucket_indices: List[List[int]],
|
43 |
+
per_bucket_size_limits: List[int],
|
44 |
+
process_group: ProcessGroup,
|
45 |
+
expect_sparse_gradients: List[bool] = ...,
|
46 |
+
bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp
|
47 |
+
find_unused_parameters: bool = ...,
|
48 |
+
gradient_as_bucket_view: bool = ...,
|
49 |
+
param_to_name_mapping: Dict[int, str] = ...,
|
50 |
+
first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp
|
51 |
+
): ...
|
52 |
+
def prepare_for_forward(self) -> None: ...
|
53 |
+
def prepare_for_backward(self, output: List[Tensor]) -> None: ...
|
54 |
+
def get_backward_stats(self) -> List[int]: ...
|
55 |
+
def _install_post_backward_futures(self, futures: List[Future]) -> None: ...
|
56 |
+
def _rebuild_buckets(self) -> bool: ...
|
57 |
+
def _get_zeros_like_grad_buckets(self) -> List[GradBucket]: ...
|
58 |
+
def _push_all_rebuilt_params(self) -> None: ...
|
59 |
+
def _set_forward_pass_work_handle(
|
60 |
+
self,
|
61 |
+
work: Work,
|
62 |
+
use_static_world_size: bool,
|
63 |
+
): ...
|
64 |
+
def _get_local_used_map(self) -> Tensor: ...
|
65 |
+
def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
|
66 |
+
def _set_static_graph(self) -> None: ...
|
67 |
+
def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
|
68 |
+
def set_logger(self, logger: Logger) -> None: ...
|
69 |
+
def _remove_autograd_hooks(self) -> None: ...
|
70 |
+
def _check_reducer_finalized(self) -> None: ...
|
71 |
+
def _set_sparse_metadata(self, global_unique_ids: Dict[str, Tensor]) -> None: ...
|
72 |
+
def _reset_state(self) -> None: ...
|
73 |
+
def _update_process_group(self, new_process_group: ProcessGroup) -> None: ...
|
74 |
+
|
75 |
+
class DDPLoggingData:
|
76 |
+
strs_map: Dict[str, str]
|
77 |
+
ints_map: Dict[str, int]
|
78 |
+
|
79 |
+
class Logger:
|
80 |
+
def __init__(self, reducer: Reducer): ...
|
81 |
+
def set_construction_data_and_log(
|
82 |
+
self,
|
83 |
+
module_name: str,
|
84 |
+
device_ids: List[int],
|
85 |
+
output_device: int,
|
86 |
+
broadcast_buffers: bool,
|
87 |
+
has_sync_bn: bool,
|
88 |
+
static_graph: bool,
|
89 |
+
): ...
|
90 |
+
def set_runtime_stats_and_log(self) -> None: ...
|
91 |
+
def set_error_and_log(self, error: str) -> None: ...
|
92 |
+
def _get_ddp_logging_data(self) -> DDPLoggingData: ...
|
93 |
+
def _set_comm_hook_name(self, comm_hook: str) -> None: ...
|
94 |
+
def _set_uneven_input_join(self) -> None: ...
|
95 |
+
def _set_static_graph(self) -> None: ...
|
96 |
+
|
97 |
+
def get_debug_level(): ...
|
98 |
+
def set_debug_level(): ...
|
99 |
+
def set_debug_level_from_env(): ...
|
100 |
+
|
101 |
+
class DebugLevel(Enum):
|
102 |
+
OFF = ...
|
103 |
+
INFO = ...
|
104 |
+
DETAIL = ...
|
105 |
+
|
106 |
+
class ReduceOp:
|
107 |
+
def __init__(self, op: RedOpType): ...
|
108 |
+
|
109 |
+
SUM: RedOpType = ...
|
110 |
+
AVG: RedOpType = ...
|
111 |
+
PRODUCT: RedOpType = ...
|
112 |
+
MIN: RedOpType = ...
|
113 |
+
MAX: RedOpType = ...
|
114 |
+
BAND: RedOpType = ...
|
115 |
+
BOR: RedOpType = ...
|
116 |
+
BXOR: RedOpType = ...
|
117 |
+
PREMUL_SUM: RedOpType = ...
|
118 |
+
UNUSED: RedOpType = ...
|
119 |
+
|
120 |
+
class RedOpType(Enum): ...
|
121 |
+
|
122 |
+
class BroadcastOptions:
|
123 |
+
rootRank: int
|
124 |
+
rootTensor: int
|
125 |
+
timeout: timedelta
|
126 |
+
asyncOp: bool
|
127 |
+
|
128 |
+
class AllreduceOptions:
|
129 |
+
reduceOp: ReduceOp
|
130 |
+
timeout: timedelta
|
131 |
+
|
132 |
+
class AllreduceCoalescedOptions(AllreduceOptions): ...
|
133 |
+
|
134 |
+
class ReduceOptions:
|
135 |
+
reduceOp: ReduceOp
|
136 |
+
rootRank: int
|
137 |
+
rootTensor: int
|
138 |
+
timeout: timedelta
|
139 |
+
|
140 |
+
class AllgatherOptions:
|
141 |
+
timeout: timedelta
|
142 |
+
asyncOp: bool
|
143 |
+
|
144 |
+
class GatherOptions:
|
145 |
+
rootRank: int
|
146 |
+
timeout: timedelta
|
147 |
+
|
148 |
+
class ScatterOptions:
|
149 |
+
rootRank: int
|
150 |
+
timeout: timedelta
|
151 |
+
asyncOp: bool
|
152 |
+
|
153 |
+
class ReduceScatterOptions:
|
154 |
+
reduceOp: ReduceOp
|
155 |
+
timeout: timedelta
|
156 |
+
asyncOp: bool
|
157 |
+
|
158 |
+
class BarrierOptions:
|
159 |
+
device_ids: List[int]
|
160 |
+
device: torch.device
|
161 |
+
timeout: timedelta
|
162 |
+
|
163 |
+
class AllToAllOptions:
|
164 |
+
timeout: timedelta
|
165 |
+
|
166 |
+
class Store:
|
167 |
+
def set(self, key: str, value: str): ...
|
168 |
+
def get(self, key: str) -> bytes: ...
|
169 |
+
def add(self, key: str, value: int) -> int: ...
|
170 |
+
def compare_set(
|
171 |
+
self,
|
172 |
+
key: str,
|
173 |
+
expected_value: str,
|
174 |
+
desired_value: str,
|
175 |
+
) -> bytes: ...
|
176 |
+
def delete_key(self, key: str) -> bool: ...
|
177 |
+
def num_keys(self) -> int: ...
|
178 |
+
def set_timeout(self, timeout: timedelta): ...
|
179 |
+
@overload
|
180 |
+
def wait(self, keys: List[str]): ...
|
181 |
+
@overload
|
182 |
+
def wait(self, keys: List[str], timeout: timedelta): ...
|
183 |
+
|
184 |
+
class FileStore(Store):
|
185 |
+
def __init__(self, path: str, numWorkers: int = ...): ...
|
186 |
+
|
187 |
+
class HashStore(Store):
|
188 |
+
def __init__(self): ...
|
189 |
+
|
190 |
+
class TCPStore(Store):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
host_name: str,
|
194 |
+
port: int,
|
195 |
+
world_size: Optional[int] = ...,
|
196 |
+
is_master: bool = ...,
|
197 |
+
timeout: timedelta = ...,
|
198 |
+
wait_for_workers: bool = ...,
|
199 |
+
multi_tenant: bool = ...,
|
200 |
+
master_listen_fd: Optional[int] = ...,
|
201 |
+
use_libuv: Optional[bool] = ...,
|
202 |
+
): ...
|
203 |
+
@property
|
204 |
+
def host(self) -> str: ...
|
205 |
+
@property
|
206 |
+
def port(self) -> int: ...
|
207 |
+
|
208 |
+
class PrefixStore(Store):
|
209 |
+
def __init__(self, prefix: str, store: Store): ...
|
210 |
+
@property
|
211 |
+
def underlying_store(self) -> Store: ...
|
212 |
+
|
213 |
+
class _DistributedBackendOptions:
|
214 |
+
def __init__(self): ...
|
215 |
+
@property
|
216 |
+
def store(self) -> Store: ...
|
217 |
+
@store.setter
|
218 |
+
def store(self, store: Store) -> None: ...
|
219 |
+
@property
|
220 |
+
def group_rank(self) -> int: ...
|
221 |
+
@group_rank.setter
|
222 |
+
def group_rank(self, rank: int) -> None: ...
|
223 |
+
@property
|
224 |
+
def group_size(self) -> int: ...
|
225 |
+
@group_size.setter
|
226 |
+
def group_size(self, size: int) -> None: ...
|
227 |
+
@property
|
228 |
+
def timeout(self) -> timedelta: ...
|
229 |
+
@timeout.setter
|
230 |
+
def timeout(self, timeout: timedelta) -> None: ...
|
231 |
+
@property
|
232 |
+
def group_id(self) -> str: ...
|
233 |
+
@group_id.setter
|
234 |
+
def group_id(self, group_id: str) -> None: ...
|
235 |
+
@property
|
236 |
+
def global_ranks_in_group(self) -> List[int]: ...
|
237 |
+
@global_ranks_in_group.setter
|
238 |
+
def global_ranks_in_group(self, ranks: List[int]) -> None: ...
|
239 |
+
|
240 |
+
class Work:
|
241 |
+
def is_completed(self) -> bool: ...
|
242 |
+
def is_success(self) -> bool: ...
|
243 |
+
def exception(self) -> Any: ...
|
244 |
+
def wait(self, timeout: timedelta = ...) -> bool: ...
|
245 |
+
def get_future(self) -> Future: ...
|
246 |
+
def source_rank(self) -> int: ...
|
247 |
+
def _source_rank(self) -> int: ...
|
248 |
+
def result(self) -> List[Tensor]: ...
|
249 |
+
def synchronize(self): ...
|
250 |
+
def boxed(self) -> ScriptObject: ...
|
251 |
+
@staticmethod
|
252 |
+
def unbox(obj: ScriptObject) -> Work: ...
|
253 |
+
|
254 |
+
class Backend:
|
255 |
+
def __init__(
|
256 |
+
self,
|
257 |
+
rank: int,
|
258 |
+
size: int,
|
259 |
+
): ...
|
260 |
+
@property
|
261 |
+
def supports_splitting(self) -> bool: ...
|
262 |
+
def rank(self) -> int: ...
|
263 |
+
def size(self) -> int: ...
|
264 |
+
def eager_connect_single_device(self, device: Optional[torch.device]) -> None: ...
|
265 |
+
def _set_sequence_number_for_group(self) -> None: ...
|
266 |
+
|
267 |
+
class ProcessGroup:
|
268 |
+
class Options:
|
269 |
+
def __init__(self, backend: str, timeout: timedelta = ...): ...
|
270 |
+
@property
|
271 |
+
def backend(self) -> str: ...
|
272 |
+
@property
|
273 |
+
def _timeout(self) -> timedelta: ...
|
274 |
+
@_timeout.setter
|
275 |
+
def _timeout(self, val: timedelta) -> None: ...
|
276 |
+
|
277 |
+
class BackendType(Enum):
|
278 |
+
UNDEFINED = ...
|
279 |
+
GLOO = ...
|
280 |
+
NCCL = ...
|
281 |
+
UCC = ...
|
282 |
+
MPI = ...
|
283 |
+
CUSTOM = ...
|
284 |
+
def __init__(self, store: Store, rank: int, size: int, options: Options): ...
|
285 |
+
def rank(self) -> int: ...
|
286 |
+
def size(self) -> int: ...
|
287 |
+
@overload
|
288 |
+
def broadcast(
|
289 |
+
self,
|
290 |
+
tensors: List[Tensor],
|
291 |
+
opts=...,
|
292 |
+
) -> Work: ...
|
293 |
+
@overload
|
294 |
+
def broadcast(
|
295 |
+
self,
|
296 |
+
tensor: Tensor,
|
297 |
+
root: int,
|
298 |
+
) -> Work: ...
|
299 |
+
@overload
|
300 |
+
def allreduce(
|
301 |
+
self,
|
302 |
+
tensors: List[Tensor],
|
303 |
+
opts: AllreduceOptions = ...,
|
304 |
+
) -> Work: ...
|
305 |
+
@overload
|
306 |
+
def allreduce(
|
307 |
+
self,
|
308 |
+
tensors: List[Tensor],
|
309 |
+
op=...,
|
310 |
+
) -> Work: ...
|
311 |
+
@overload
|
312 |
+
def allreduce(
|
313 |
+
self,
|
314 |
+
tensor: Tensor,
|
315 |
+
op=...,
|
316 |
+
) -> Work: ...
|
317 |
+
def allreduce_coalesced(
|
318 |
+
self,
|
319 |
+
tensors: List[Tensor],
|
320 |
+
opts=...,
|
321 |
+
) -> Work: ...
|
322 |
+
def reduce_scatter_tensor_coalesced(
|
323 |
+
self,
|
324 |
+
outputTensors: List[Tensor],
|
325 |
+
inputTensors: List[Tensor],
|
326 |
+
opts: Optional[ReduceScatterOptions] = None,
|
327 |
+
) -> Work: ...
|
328 |
+
@overload
|
329 |
+
def reduce(
|
330 |
+
self,
|
331 |
+
tensors: List[Tensor],
|
332 |
+
opts=...,
|
333 |
+
) -> Work: ...
|
334 |
+
@overload
|
335 |
+
def reduce(
|
336 |
+
self,
|
337 |
+
tensor: Tensor,
|
338 |
+
root: int,
|
339 |
+
op=...,
|
340 |
+
) -> Work: ...
|
341 |
+
@overload
|
342 |
+
def allgather(
|
343 |
+
self,
|
344 |
+
output_tensors: List[List[Tensor]],
|
345 |
+
input_tensors: List[Tensor],
|
346 |
+
opts=...,
|
347 |
+
) -> Work: ...
|
348 |
+
@overload
|
349 |
+
def allgather(
|
350 |
+
self,
|
351 |
+
output_tensors: List[Tensor],
|
352 |
+
input_tensor: Tensor,
|
353 |
+
) -> Work: ...
|
354 |
+
def _allgather_base(
|
355 |
+
self,
|
356 |
+
output: Tensor,
|
357 |
+
input: Tensor,
|
358 |
+
opts=...,
|
359 |
+
) -> Work: ...
|
360 |
+
def allgather_coalesced(
|
361 |
+
self,
|
362 |
+
output_lists: List[List[Tensor]],
|
363 |
+
input_list: List[Tensor],
|
364 |
+
opts=...,
|
365 |
+
) -> Work: ...
|
366 |
+
def allgather_into_tensor_coalesced(
|
367 |
+
self,
|
368 |
+
output_lists: List[Tensor],
|
369 |
+
input_list: List[Tensor],
|
370 |
+
opts=...,
|
371 |
+
) -> Work: ...
|
372 |
+
@overload
|
373 |
+
def gather(
|
374 |
+
self,
|
375 |
+
output_tensors: List[List[Tensor]],
|
376 |
+
input_tensors: List[Tensor],
|
377 |
+
opts=...,
|
378 |
+
) -> Work: ...
|
379 |
+
@overload
|
380 |
+
def gather(
|
381 |
+
self,
|
382 |
+
output_tensors: List[Tensor],
|
383 |
+
input_tensor: Tensor,
|
384 |
+
root: int,
|
385 |
+
) -> Work: ...
|
386 |
+
@overload
|
387 |
+
def scatter(
|
388 |
+
self,
|
389 |
+
output_tensors: List[Tensor],
|
390 |
+
input_tensors: List[List[Tensor]],
|
391 |
+
opts=...,
|
392 |
+
) -> Work: ...
|
393 |
+
@overload
|
394 |
+
def scatter(
|
395 |
+
self,
|
396 |
+
output_tensor: Tensor,
|
397 |
+
input_tensors: List[Tensor],
|
398 |
+
root: int,
|
399 |
+
) -> Work: ...
|
400 |
+
@overload
|
401 |
+
def reduce_scatter(
|
402 |
+
self,
|
403 |
+
output_tensors: List[Tensor],
|
404 |
+
input_tensors: List[List[Tensor]],
|
405 |
+
opts=...,
|
406 |
+
) -> Work: ...
|
407 |
+
@overload
|
408 |
+
def reduce_scatter(
|
409 |
+
self,
|
410 |
+
output_tensors: Tensor,
|
411 |
+
input_tensor: List[Tensor],
|
412 |
+
) -> Work: ...
|
413 |
+
def _reduce_scatter_base(
|
414 |
+
self,
|
415 |
+
outputTensor: Tensor,
|
416 |
+
inputTensor: Tensor,
|
417 |
+
opts: Optional[ReduceScatterOptions],
|
418 |
+
) -> Work: ...
|
419 |
+
@overload
|
420 |
+
def alltoall_base(
|
421 |
+
self,
|
422 |
+
output_tensor: Tensor,
|
423 |
+
input_tensor: Tensor,
|
424 |
+
output_split_sizes: List[int],
|
425 |
+
input_split_sizes: List[int],
|
426 |
+
opts=...,
|
427 |
+
) -> Work: ...
|
428 |
+
@overload
|
429 |
+
def alltoall_base(
|
430 |
+
self,
|
431 |
+
output: Tensor,
|
432 |
+
input: Tensor,
|
433 |
+
output_split_sizes: List[int],
|
434 |
+
input_split_sizes: List[int],
|
435 |
+
) -> Work: ...
|
436 |
+
@overload
|
437 |
+
def alltoall(
|
438 |
+
self,
|
439 |
+
output_tensor: List[Tensor],
|
440 |
+
input_tensor: List[Tensor],
|
441 |
+
opts=...,
|
442 |
+
) -> Work: ...
|
443 |
+
@overload
|
444 |
+
def alltoall(
|
445 |
+
self,
|
446 |
+
output: List[Tensor],
|
447 |
+
input: List[Tensor],
|
448 |
+
) -> Work: ...
|
449 |
+
def send(
|
450 |
+
self,
|
451 |
+
tensors: List[Tensor],
|
452 |
+
dstRank: int,
|
453 |
+
tag: int,
|
454 |
+
) -> Work: ...
|
455 |
+
def recv(
|
456 |
+
self,
|
457 |
+
tensors: List[Tensor],
|
458 |
+
srcRank: int,
|
459 |
+
tag: int,
|
460 |
+
) -> Work: ...
|
461 |
+
def recv_anysource(self, tensors: List[Tensor], tag: int) -> Work: ...
|
462 |
+
def barrier(self, opts=...) -> Work: ...
|
463 |
+
def boxed(self) -> ScriptObject: ...
|
464 |
+
@staticmethod
|
465 |
+
def unbox(obj: ScriptObject) -> ProcessGroup: ...
|
466 |
+
def _start_coalescing(self, device: torch.device) -> None: ...
|
467 |
+
def _end_coalescing(self, device: torch.device) -> Work: ...
|
468 |
+
def _get_backend_name(self) -> str: ...
|
469 |
+
def _backend_id(self, backend_type: BackendType) -> int: ...
|
470 |
+
@property
|
471 |
+
def _device_types(self) -> List[torch.device]: ...
|
472 |
+
def _get_backend(self, device: torch.device) -> Backend: ...
|
473 |
+
def _register_backend(
|
474 |
+
self,
|
475 |
+
device: torch.device,
|
476 |
+
backend_type: BackendType,
|
477 |
+
backend: Optional[Backend],
|
478 |
+
) -> None: ...
|
479 |
+
def _set_group_name(self, name: str) -> None: ...
|
480 |
+
def name(self) -> str: ...
|
481 |
+
def _has_hooks(self) -> bool: ...
|
482 |
+
def _wait_for_pending_works(self) -> None: ...
|
483 |
+
def _set_sequence_number_for_group(self) -> None: ...
|
484 |
+
@property
|
485 |
+
def bound_device_id(self) -> Optional[torch.device]: ...
|
486 |
+
@bound_device_id.setter
|
487 |
+
def bound_device_id(self, device: Optional[torch.device]) -> None: ...
|
488 |
+
@property
|
489 |
+
def group_name(self) -> str: ...
|
490 |
+
|
491 |
+
class ProcessGroupRoundRobin(ProcessGroup): ...
|
492 |
+
|
493 |
+
def _round_robin_process_groups(
|
494 |
+
process_groups: List[ProcessGroup],
|
495 |
+
) -> ProcessGroupRoundRobin: ...
|
496 |
+
|
497 |
+
class ProcessGroupGloo(Backend):
|
498 |
+
class Device: ...
|
499 |
+
class Options: ...
|
500 |
+
|
501 |
+
def __init__(
|
502 |
+
self,
|
503 |
+
store: Store,
|
504 |
+
rank: int,
|
505 |
+
size: int,
|
506 |
+
timeout: timedelta,
|
507 |
+
): ...
|
508 |
+
@staticmethod
|
509 |
+
def create_device(hostname="", interface="") -> Device: ...
|
510 |
+
@staticmethod
|
511 |
+
def create_default_device() -> Device: ...
|
512 |
+
def _set_default_timeout(self, timeout) -> None: ...
|
513 |
+
|
514 |
+
class _ProcessGroupWrapper(Backend):
|
515 |
+
def __init__(self, pg: Backend, gloo_pg: ProcessGroupGloo): ...
|
516 |
+
wrapped_pg: Backend
|
517 |
+
|
518 |
+
class ProcessGroupNCCL(Backend):
|
519 |
+
class Options:
|
520 |
+
def __init__(self, timeout: Optional[timedelta] = None): ...
|
521 |
+
@property
|
522 |
+
def backend(self) -> str: ...
|
523 |
+
@property
|
524 |
+
def _timeout(self) -> timedelta: ...
|
525 |
+
@_timeout.setter
|
526 |
+
def _timeout(self, val: timedelta) -> None: ...
|
527 |
+
@property
|
528 |
+
def _is_high_priority_stream(self) -> bool: ...
|
529 |
+
@_is_high_priority_stream.setter
|
530 |
+
def _is_high_priority_stream(self, val: bool) -> None: ...
|
531 |
+
|
532 |
+
def __init__(
|
533 |
+
self,
|
534 |
+
store: Store,
|
535 |
+
rank: int,
|
536 |
+
size: int,
|
537 |
+
timeout: timedelta,
|
538 |
+
): ...
|
539 |
+
def _group_start(self) -> None: ...
|
540 |
+
def _group_end(self) -> None: ...
|
541 |
+
def _set_default_timeout(self, timeout) -> None: ...
|
542 |
+
def _shutdown(self) -> None: ...
|
543 |
+
@property
|
544 |
+
def uid(self) -> int: ...
|
545 |
+
|
546 |
+
class ProcessGroupUCC(Backend):
|
547 |
+
def __init__(
|
548 |
+
self,
|
549 |
+
store: Store,
|
550 |
+
rank: int,
|
551 |
+
size: int,
|
552 |
+
timeout: timedelta,
|
553 |
+
): ...
|
554 |
+
|
555 |
+
class ProcessGroupMPI(Backend):
|
556 |
+
def __init__(
|
557 |
+
self,
|
558 |
+
rank: int,
|
559 |
+
size: int,
|
560 |
+
pgComm: int,
|
561 |
+
): ...
|
562 |
+
@staticmethod
|
563 |
+
def create(ranks: List[int]) -> ProcessGroupMPI: ...
|
564 |
+
|
565 |
+
def _compute_bucket_assignment_by_size(
|
566 |
+
tensors: List[Tensor],
|
567 |
+
bucket_size_limits: List[int],
|
568 |
+
expect_sparse_gradient: List[bool] = ...,
|
569 |
+
tensor_indices: List[int] = ...,
|
570 |
+
) -> Tuple[List[List[int]], List[int]]: ...
|
571 |
+
def _broadcast_coalesced(
|
572 |
+
process_group: ProcessGroup,
|
573 |
+
tensors: List[Tensor],
|
574 |
+
buffer_size: int,
|
575 |
+
src: int,
|
576 |
+
): ...
|
577 |
+
def _test_python_store(store: Store): ...
|
578 |
+
def _verify_params_across_processes(
|
579 |
+
process_group: ProcessGroup,
|
580 |
+
params: List[Tensor],
|
581 |
+
logger: Optional[Logger],
|
582 |
+
): ...
|
583 |
+
def _make_nccl_premul_sum(factor: Union[float, List[Tensor]]) -> ReduceOp: ...
|
584 |
+
def _register_process_group(
|
585 |
+
group_name: str,
|
586 |
+
process_group: ProcessGroup,
|
587 |
+
) -> None: ...
|
588 |
+
def _resolve_process_group(group_name: str) -> ProcessGroup: ...
|
589 |
+
def _unregister_all_process_groups() -> None: ...
|
590 |
+
def _unregister_process_group(group_name: str) -> None: ...
|
venv/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="type-arg"
|
2 |
+
from datetime import timedelta
|
3 |
+
from typing import Any, Dict, Generic, List, Optional, overload, Tuple, Type, TypeVar
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from . import Future
|
8 |
+
from ._autograd import ProfilerEvent
|
9 |
+
from ._distributed_c10d import Store
|
10 |
+
from ._profiler import ProfilerConfig
|
11 |
+
|
12 |
+
# This module is defined in torch/csrc/distributed/rpc/init.cpp
|
13 |
+
|
14 |
+
_DEFAULT_INIT_METHOD: str
|
15 |
+
_DEFAULT_NUM_WORKER_THREADS: int
|
16 |
+
_UNSET_RPC_TIMEOUT: float
|
17 |
+
_DEFAULT_RPC_TIMEOUT_SEC: float
|
18 |
+
|
19 |
+
_T = TypeVar("_T")
|
20 |
+
|
21 |
+
class RpcBackendOptions:
|
22 |
+
rpc_timeout: float
|
23 |
+
init_method: str
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
rpc_timeout: float = ...,
|
27 |
+
init_method: str = ...,
|
28 |
+
): ...
|
29 |
+
|
30 |
+
class WorkerInfo:
|
31 |
+
def __init__(self, name: str, worker_id: int): ...
|
32 |
+
@property
|
33 |
+
def name(self) -> str: ...
|
34 |
+
@property
|
35 |
+
def id(self) -> int: ...
|
36 |
+
def __eq__(self, other: object) -> bool: ...
|
37 |
+
|
38 |
+
class RpcAgent:
|
39 |
+
def join(self, shutdown: bool = False, timeout: float = 0): ...
|
40 |
+
def sync(self): ...
|
41 |
+
def shutdown(self): ...
|
42 |
+
@overload
|
43 |
+
def get_worker_info(self) -> WorkerInfo: ...
|
44 |
+
@overload
|
45 |
+
def get_worker_info(self, workerName: str) -> WorkerInfo: ...
|
46 |
+
def get_worker_infos(self) -> List[WorkerInfo]: ...
|
47 |
+
def _get_device_map(self, dst: WorkerInfo) -> Dict[torch.device, torch.device]: ...
|
48 |
+
def get_debug_info(self) -> Dict[str, str]: ...
|
49 |
+
def get_metrics(self) -> Dict[str, str]: ...
|
50 |
+
|
51 |
+
class PyRRef(Generic[_T]):
|
52 |
+
def __init__(self, value: _T, type_hint: Any = None) -> None: ...
|
53 |
+
def is_owner(self) -> bool: ...
|
54 |
+
def confirmed_by_owner(self) -> bool: ...
|
55 |
+
def owner(self) -> WorkerInfo: ...
|
56 |
+
def owner_name(self) -> str: ...
|
57 |
+
def to_here(self, timeout: float = ...) -> _T: ...
|
58 |
+
def local_value(self) -> Any: ...
|
59 |
+
def rpc_sync(self, timeout: float = ...) -> Any: ...
|
60 |
+
def rpc_async(self, timeout: float = ...) -> Any: ...
|
61 |
+
def remote(self, timeout: float = ...) -> Any: ...
|
62 |
+
def _serialize(self) -> Tuple: ...
|
63 |
+
@staticmethod
|
64 |
+
def _deserialize(tp: Tuple) -> PyRRef: ...
|
65 |
+
def _get_type(self) -> Type[_T]: ...
|
66 |
+
def _get_future(self) -> Future[_T]: ...
|
67 |
+
def _get_profiling_future(self) -> Future[_T]: ...
|
68 |
+
def _set_profiling_future(self, profilingFuture: Future[_T]): ...
|
69 |
+
|
70 |
+
class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions):
|
71 |
+
num_worker_threads: int
|
72 |
+
device_maps: Dict[str, Dict[torch.device, torch.device]]
|
73 |
+
devices: List[torch.device]
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
num_worker_threads: int,
|
77 |
+
_transports: Optional[List],
|
78 |
+
_channels: Optional[List],
|
79 |
+
rpc_timeout: float = ...,
|
80 |
+
init_method: str = ...,
|
81 |
+
device_maps: Dict[str, Dict[torch.device, torch.device]] = {}, # noqa: B006
|
82 |
+
devices: List[torch.device] = [], # noqa: B006
|
83 |
+
): ...
|
84 |
+
def _set_device_map(
|
85 |
+
self,
|
86 |
+
to: str,
|
87 |
+
device_map: Dict[torch.device, torch.device],
|
88 |
+
): ...
|
89 |
+
|
90 |
+
class TensorPipeAgent(RpcAgent):
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
store: Store,
|
94 |
+
name: str,
|
95 |
+
worker_id: int,
|
96 |
+
world_size: Optional[int],
|
97 |
+
opts: _TensorPipeRpcBackendOptionsBase,
|
98 |
+
reverse_device_maps: Dict[str, Dict[torch.device, torch.device]],
|
99 |
+
devices: List[torch.device],
|
100 |
+
): ...
|
101 |
+
def join(self, shutdown: bool = False, timeout: float = 0): ...
|
102 |
+
def shutdown(self): ...
|
103 |
+
@overload
|
104 |
+
def get_worker_info(self) -> WorkerInfo: ...
|
105 |
+
@overload
|
106 |
+
def get_worker_info(self, workerName: str) -> WorkerInfo: ...
|
107 |
+
@overload
|
108 |
+
def get_worker_info(self, id: int) -> WorkerInfo: ...
|
109 |
+
def get_worker_infos(self) -> List[WorkerInfo]: ...
|
110 |
+
def _get_device_map(self, dst: WorkerInfo) -> Dict[torch.device, torch.device]: ...
|
111 |
+
def _update_group_membership(
|
112 |
+
self,
|
113 |
+
worker_info: WorkerInfo,
|
114 |
+
my_devices: List[torch.device],
|
115 |
+
reverse_device_map: Dict[str, Dict[torch.device, torch.device]],
|
116 |
+
is_join: bool,
|
117 |
+
): ...
|
118 |
+
def _get_backend_options(self) -> _TensorPipeRpcBackendOptionsBase: ...
|
119 |
+
@property
|
120 |
+
def is_static_group(self) -> bool: ...
|
121 |
+
@property
|
122 |
+
def store(self) -> Store: ...
|
123 |
+
|
124 |
+
def _is_current_rpc_agent_set() -> bool: ...
|
125 |
+
def _get_current_rpc_agent() -> RpcAgent: ...
|
126 |
+
def _set_and_start_rpc_agent(agent: RpcAgent): ...
|
127 |
+
def _reset_current_rpc_agent(): ...
|
128 |
+
def _delete_all_user_and_unforked_owner_rrefs(timeout: timedelta = ...): ...
|
129 |
+
def _destroy_rref_context(ignoreRRefLeak: bool): ...
|
130 |
+
def _rref_context_get_debug_info() -> Dict[str, str]: ...
|
131 |
+
def _cleanup_python_rpc_handler(): ...
|
132 |
+
def _invoke_rpc_builtin(
|
133 |
+
dst: WorkerInfo,
|
134 |
+
opName: str,
|
135 |
+
rpcTimeoutSeconds: float,
|
136 |
+
*args: Any,
|
137 |
+
**kwargs: Any,
|
138 |
+
): ...
|
139 |
+
def _invoke_rpc_python_udf(
|
140 |
+
dst: WorkerInfo,
|
141 |
+
pickledPythonUDF: str,
|
142 |
+
tensors: List[torch.Tensor],
|
143 |
+
rpcTimeoutSeconds: float,
|
144 |
+
isAsyncExecution: bool,
|
145 |
+
): ...
|
146 |
+
def _invoke_rpc_torchscript(
|
147 |
+
dstWorkerName: str,
|
148 |
+
qualifiedNameStr: str,
|
149 |
+
argsTuple: Tuple,
|
150 |
+
kwargsDict: Dict,
|
151 |
+
rpcTimeoutSeconds: float,
|
152 |
+
isAsyncExecution: bool,
|
153 |
+
): ...
|
154 |
+
def _invoke_remote_builtin(
|
155 |
+
dst: WorkerInfo,
|
156 |
+
opName: str,
|
157 |
+
rpcTimeoutSeconds: float,
|
158 |
+
*args: Any,
|
159 |
+
**kwargs: Any,
|
160 |
+
): ...
|
161 |
+
def _invoke_remote_python_udf(
|
162 |
+
dst: WorkerInfo,
|
163 |
+
pickledPythonUDF: str,
|
164 |
+
tensors: List[torch.Tensor],
|
165 |
+
rpcTimeoutSeconds: float,
|
166 |
+
isAsyncExecution: bool,
|
167 |
+
): ...
|
168 |
+
def _invoke_remote_torchscript(
|
169 |
+
dstWorkerName: WorkerInfo,
|
170 |
+
qualifiedNameStr: str,
|
171 |
+
rpcTimeoutSeconds: float,
|
172 |
+
isAsyncExecution: bool,
|
173 |
+
*args: Any,
|
174 |
+
**kwargs: Any,
|
175 |
+
): ...
|
176 |
+
def get_rpc_timeout() -> float: ...
|
177 |
+
def enable_gil_profiling(flag: bool): ...
|
178 |
+
def _set_rpc_timeout(rpcTimeoutSeconds: float): ...
|
179 |
+
|
180 |
+
class RemoteProfilerManager:
|
181 |
+
@staticmethod
|
182 |
+
def set_current_profiling_key(key: str): ...
|
183 |
+
|
184 |
+
def _enable_server_process_global_profiler(new_config: ProfilerConfig): ...
|
185 |
+
def _disable_server_process_global_profiler() -> List[List[List[ProfilerEvent]]]: ...
|
186 |
+
def _set_profiler_node_id(default_node_id: int): ...
|
187 |
+
def _enable_jit_rref_pickle(): ...
|
188 |
+
def _disable_jit_rref_pickle(): ...
|
venv/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ._distributed_c10d import Store
|
6 |
+
from ._distributed_rpc import _TensorPipeRpcBackendOptionsBase, TensorPipeAgent
|
7 |
+
|
8 |
+
# This module is defined in torch/csrc/distributed/rpc/testing/init.cpp
|
9 |
+
|
10 |
+
class FaultyTensorPipeRpcBackendOptions(_TensorPipeRpcBackendOptionsBase):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
num_worker_threads: int,
|
14 |
+
rpc_timeout: float,
|
15 |
+
init_method: str,
|
16 |
+
messages_to_fail: List[str],
|
17 |
+
messages_to_delay: Dict[str, float],
|
18 |
+
num_fail_sends: int,
|
19 |
+
): ...
|
20 |
+
num_send_recv_threads: int
|
21 |
+
messages_to_fail: List[str]
|
22 |
+
messages_to_delay: Dict[str, float]
|
23 |
+
num_fail_sends: int
|
24 |
+
|
25 |
+
class FaultyTensorPipeAgent(TensorPipeAgent):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
store: Store,
|
29 |
+
name: str,
|
30 |
+
rank: int,
|
31 |
+
world_size: int,
|
32 |
+
options: FaultyTensorPipeRpcBackendOptions,
|
33 |
+
reverse_device_maps: Dict[str, Dict[torch.device, torch.device]],
|
34 |
+
devices: List[torch.device],
|
35 |
+
): ...
|
venv/lib/python3.10/site-packages/torch/_C/_functions.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import AnyStr, List
|
2 |
+
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
class UndefinedGrad:
|
6 |
+
def __init__(self) -> None: ...
|
7 |
+
def __call__(self, *inputs: Tensor) -> List[Tensor]: ...
|
8 |
+
|
9 |
+
class DelayedError:
|
10 |
+
def __init__(self, msg: AnyStr, num_inputs: int) -> None: ...
|
11 |
+
def __call__(self, inputs: List[Tensor]) -> List[Tensor]: ...
|
venv/lib/python3.10/site-packages/torch/_C/_functorch.pyi
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
# Defined in torch/csrc/functorch/init.cpp
|
7 |
+
|
8 |
+
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
|
9 |
+
def get_unwrapped(tensor: Tensor) -> Tensor: ...
|
10 |
+
def is_batchedtensor(tensor: Tensor) -> bool: ...
|
11 |
+
def is_functionaltensor(tensor: Tensor) -> bool: ...
|
12 |
+
def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
|
13 |
+
def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
|
14 |
+
def maybe_get_bdim(tensor: Tensor) -> int: ...
|
15 |
+
def maybe_get_level(tensor: Tensor) -> int: ...
|
16 |
+
def maybe_current_level() -> Optional[int]: ...
|
17 |
+
def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
|
18 |
+
def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
|
19 |
+
def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
|
20 |
+
def _unwrap_batched(tensor: Tensor, level: int) -> Tuple[Tensor, Optional[int]]: ...
|
21 |
+
def current_level() -> int: ...
|
22 |
+
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
|
23 |
+
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
|
24 |
+
def get_single_level_autograd_function_allowed() -> bool: ...
|
25 |
+
def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
|
26 |
+
def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
|
27 |
+
def _vmap_increment_nesting(batch_size: int, randomness: str) -> int: ...
|
28 |
+
def _vmap_decrement_nesting() -> int: ...
|
29 |
+
def _grad_increment_nesting() -> int: ...
|
30 |
+
def _grad_decrement_nesting() -> int: ...
|
31 |
+
|
32 |
+
# Defined in aten/src/ATen/functorch/Interpreter.h
|
33 |
+
class TransformType(Enum):
|
34 |
+
Torch: TransformType = ...
|
35 |
+
Vmap: TransformType = ...
|
36 |
+
Grad: TransformType = ...
|
37 |
+
Jvp: TransformType = ...
|
38 |
+
Functionalize: TransformType = ...
|
39 |
+
|
40 |
+
class RandomnessType(Enum):
|
41 |
+
Error: TransformType = ...
|
42 |
+
Same: TransformType = ...
|
43 |
+
Different: TransformType = ...
|
44 |
+
|
45 |
+
class CInterpreter:
|
46 |
+
def key(self) -> TransformType: ...
|
47 |
+
def level(self) -> int: ...
|
48 |
+
|
49 |
+
class CGradInterpreterPtr:
|
50 |
+
def __init__(self, interpreter: CInterpreter): ...
|
51 |
+
def lift(self, Tensor) -> Tensor: ...
|
52 |
+
def prevGradMode(self) -> bool: ...
|
53 |
+
|
54 |
+
class CJvpInterpreterPtr:
|
55 |
+
def __init__(self, interpreter: CInterpreter): ...
|
56 |
+
def lift(self, Tensor) -> Tensor: ...
|
57 |
+
def prevFwdGradMode(self) -> bool: ...
|
58 |
+
|
59 |
+
class CFunctionalizeInterpreterPtr:
|
60 |
+
def __init__(self, interpreter: CInterpreter): ...
|
61 |
+
def key(self) -> TransformType: ...
|
62 |
+
def level(self) -> int: ...
|
63 |
+
def functionalizeAddBackViews(self) -> bool: ...
|
64 |
+
|
65 |
+
class CVmapInterpreterPtr:
|
66 |
+
def __init__(self, interpreter: CInterpreter): ...
|
67 |
+
def key(self) -> TransformType: ...
|
68 |
+
def level(self) -> int: ...
|
69 |
+
def batchSize(self) -> int: ...
|
70 |
+
def randomness(self) -> RandomnessType: ...
|
71 |
+
|
72 |
+
class DynamicLayer: ...
|
73 |
+
|
74 |
+
def get_interpreter_stack() -> list[CInterpreter]: ...
|
75 |
+
def peek_interpreter_stack() -> CInterpreter: ...
|
76 |
+
def pop_dynamic_layer_stack() -> DynamicLayer: ...
|
77 |
+
def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...
|
venv/lib/python3.10/site-packages/torch/_C/_itt.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/itt.cpp
|
2 |
+
def is_available() -> None: ...
|
3 |
+
def rangePush(message: str) -> None: ...
|
4 |
+
def rangePop() -> None: ...
|
5 |
+
def mark(message: str) -> None: ...
|
venv/lib/python3.10/site-packages/torch/_C/_lazy.pyi
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from torch import Tensor
|
4 |
+
|
5 |
+
# defined in torch/csrc/lazy/python/init.cpp
|
6 |
+
def _mark_step(device: str, devices: List[str], wait: bool): ...
|
7 |
+
def _wait_device_ops(devices: List[str]): ...
|
8 |
+
def _reset_metrics(): ...
|
9 |
+
def _counter_names() -> List[str]: ...
|
10 |
+
def _counter_value(name: str) -> int: ...
|
11 |
+
def _metrics_report() -> str: ...
|
12 |
+
def _get_graph_hash(tensors: List[Tensor]) -> str: ...
|
13 |
+
def _sync_multi(
|
14 |
+
tensors: List[Tensor],
|
15 |
+
devices: List[str],
|
16 |
+
wait: bool = True,
|
17 |
+
sync_ltc_data: bool = True,
|
18 |
+
): ...
|
19 |
+
def _get_tensor_id(tensor: Tensor) -> int: ...
|
20 |
+
def _get_tensors_text(tensors: List[Tensor]) -> str: ...
|
21 |
+
def _get_tensors_dot(tensors: List[Tensor]) -> str: ...
|
22 |
+
def _get_tensors_backend(tensors: List[Tensor]) -> str: ...
|
23 |
+
def _get_force_fallback() -> str: ...
|
24 |
+
def _set_force_fallback(newval: str): ...
|
25 |
+
def _clear_ir_cache(): ...
|
26 |
+
def _dump_ir_cache(filename: str): ...
|
27 |
+
def _set_reuse_ir(val: bool): ...
|
28 |
+
def _get_default_device_type(): ...
|
venv/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# defined in torch/csrc/lazy/python/init.cpp
|
2 |
+
|
3 |
+
from typing import Any, List, Tuple
|
4 |
+
|
5 |
+
from torch import Tensor
|
6 |
+
|
7 |
+
def _init(): ...
|
8 |
+
def _get_tensors_ts_device_data_node(
|
9 |
+
tensors: List[Tensor],
|
10 |
+
) -> Tuple[List[int], List[Any]]: ...
|
11 |
+
def _run_cached_graph(hash_str: str, graph_inputs: List[Any]) -> List[Tensor]: ...
|
venv/lib/python3.10/site-packages/torch/_C/_monitor.pyi
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/monitor/python_init.cpp
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
from enum import Enum
|
5 |
+
from typing import Callable, Dict, List, Union
|
6 |
+
|
7 |
+
class Aggregation(Enum):
|
8 |
+
VALUE = ...
|
9 |
+
MEAN = ...
|
10 |
+
COUNT = ...
|
11 |
+
SUM = ...
|
12 |
+
MAX = ...
|
13 |
+
MIN = ...
|
14 |
+
|
15 |
+
class Stat:
|
16 |
+
name: str
|
17 |
+
count: int
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
name: str,
|
21 |
+
aggregations: List[Aggregation],
|
22 |
+
window_size: int,
|
23 |
+
max_samples: int = -1,
|
24 |
+
) -> None: ...
|
25 |
+
def add(self, v: float) -> None: ...
|
26 |
+
def get(self) -> Dict[Aggregation, float]: ...
|
27 |
+
|
28 |
+
class Event:
|
29 |
+
name: str
|
30 |
+
timestamp: datetime.datetime
|
31 |
+
data: Dict[str, Union[int, float, bool, str]]
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
name: str,
|
35 |
+
timestamp: datetime.datetime,
|
36 |
+
data: Dict[str, Union[int, float, bool, str]],
|
37 |
+
) -> None: ...
|
38 |
+
|
39 |
+
def log_event(e: Event) -> None: ...
|
40 |
+
|
41 |
+
class EventHandlerHandle: ...
|
42 |
+
|
43 |
+
def register_event_handler(handler: Callable[[Event], None]) -> EventHandlerHandle: ...
|
44 |
+
def unregister_event_handler(handle: EventHandlerHandle) -> None: ...
|
venv/lib/python3.10/site-packages/torch/_C/_nn.pyi
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: disable-error-code="type-arg"
|
2 |
+
from typing import List, Optional, overload, Sequence, Tuple, Union
|
3 |
+
|
4 |
+
from torch import memory_format, Tensor
|
5 |
+
from torch.types import _bool, _device, _dtype, _int, _size
|
6 |
+
|
7 |
+
# Defined in tools/autograd/templates/python_nn_functions.cpp
|
8 |
+
|
9 |
+
def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
|
10 |
+
def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
|
11 |
+
def avg_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ...
|
12 |
+
def avg_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ...
|
13 |
+
def elu_(input: Tensor, alpha: float = ...) -> Tensor: ...
|
14 |
+
def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ...
|
15 |
+
def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ...
|
16 |
+
def gelu(input: Tensor, approximate: str = ...) -> Tensor: ...
|
17 |
+
def hardsigmoid(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
|
18 |
+
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ...
|
19 |
+
def hardtanh_(input: Tensor, min_val: float = ..., max_val: float = ...) -> Tensor: ...
|
20 |
+
def leaky_relu(input: Tensor, negative_slope: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ...
|
21 |
+
def leaky_relu_(input: Tensor, negative_slope: float = ...) -> Tensor: ...
|
22 |
+
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: ...
|
23 |
+
def log_sigmoid(input: Tensor) -> Tensor: ...
|
24 |
+
def one_hot(tensor: Tensor, num_classes: int = ...) -> Tensor: ...
|
25 |
+
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: Optional[float] = None) -> Tensor: ...
|
26 |
+
def scaled_dot_product_attention(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: float = 0.0, is_causal: bool = False, scale: Optional[float] = None) -> Tensor: ...
|
27 |
+
def softplus(input: Tensor, beta: float = ..., threshold: float = ...) -> Tensor: ...
|
28 |
+
def softshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
|
29 |
+
|
30 |
+
# Defined in aten/src/ATen/native/mkldnn/Linear.cpp
|
31 |
+
def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
|
32 |
+
|
33 |
+
# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
|
34 |
+
def mkldnn_reorder_conv2d_weight(
|
35 |
+
self: Tensor,
|
36 |
+
padding: List,
|
37 |
+
stride: List,
|
38 |
+
dilatation: List,
|
39 |
+
groups: int,
|
40 |
+
) -> Tensor: ...
|
41 |
+
def mkldnn_reorder_conv3d_weight(
|
42 |
+
self: Tensor,
|
43 |
+
padding: List,
|
44 |
+
stride: List,
|
45 |
+
dilatation: List,
|
46 |
+
groups: int,
|
47 |
+
) -> Tensor: ...
|
48 |
+
|
49 |
+
# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
|
50 |
+
def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
|
51 |
+
|
52 |
+
# Defined at tools/autograd/templates/python_nn_functions.cpp
|
53 |
+
@overload
|
54 |
+
def _parse_to(
|
55 |
+
device: _device,
|
56 |
+
dtype: _dtype,
|
57 |
+
non_blocking: _bool,
|
58 |
+
copy: _bool,
|
59 |
+
*,
|
60 |
+
memory_format: memory_format,
|
61 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
62 |
+
@overload
|
63 |
+
def _parse_to(
|
64 |
+
dtype: _dtype,
|
65 |
+
non_blocking: _bool,
|
66 |
+
copy: _bool,
|
67 |
+
*,
|
68 |
+
memory_format: memory_format,
|
69 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
70 |
+
@overload
|
71 |
+
def _parse_to(
|
72 |
+
tensor: Tensor,
|
73 |
+
non_blocking: _bool,
|
74 |
+
copy: _bool,
|
75 |
+
*,
|
76 |
+
memory_format: memory_format,
|
77 |
+
) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|
78 |
+
|
79 |
+
# Defined in aten/src/ATen/native/PadSequence.cpp
|
80 |
+
def pad_sequence(
|
81 |
+
sequences: List[Tensor],
|
82 |
+
batch_first: bool = False,
|
83 |
+
padding_value: float = ...,
|
84 |
+
) -> Tensor: ...
|
85 |
+
def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ...
|
86 |
+
def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...
|
venv/lib/python3.10/site-packages/torch/_C/_nvtx.pyi
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/cuda/shared/nvtx.cpp
|
2 |
+
def rangePushA(message: str) -> int: ...
|
3 |
+
def rangePop() -> int: ...
|
4 |
+
def rangeStartA(message: str) -> int: ...
|
5 |
+
def rangeEnd(int) -> None: ...
|
6 |
+
def markA(message: str) -> None: ...
|
venv/lib/python3.10/site-packages/torch/_C/_onnx.pyi
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/onnx/init.cpp
|
2 |
+
|
3 |
+
from enum import Enum
|
4 |
+
|
5 |
+
_CAFFE2_ATEN_FALLBACK: bool
|
6 |
+
PRODUCER_VERSION: str
|
7 |
+
|
8 |
+
class TensorProtoDataType(Enum):
|
9 |
+
UNDEFINED = ...
|
10 |
+
FLOAT = ...
|
11 |
+
UINT8 = ...
|
12 |
+
INT8 = ...
|
13 |
+
UINT16 = ...
|
14 |
+
INT16 = ...
|
15 |
+
INT32 = ...
|
16 |
+
INT64 = ...
|
17 |
+
STRING = ...
|
18 |
+
BOOL = ...
|
19 |
+
FLOAT16 = ...
|
20 |
+
DOUBLE = ...
|
21 |
+
UINT32 = ...
|
22 |
+
UINT64 = ...
|
23 |
+
COMPLEX64 = ...
|
24 |
+
COMPLEX128 = ...
|
25 |
+
BFLOAT16 = ...
|
26 |
+
FLOAT8E5M2 = ...
|
27 |
+
FLOAT8E4M3FN = ...
|
28 |
+
FLOAT8E5M2FNUZ = ...
|
29 |
+
FLOAT8E4M3FNUZ = ...
|
30 |
+
|
31 |
+
class OperatorExportTypes(Enum):
|
32 |
+
ONNX = ...
|
33 |
+
ONNX_ATEN = ...
|
34 |
+
ONNX_ATEN_FALLBACK = ...
|
35 |
+
ONNX_FALLTHROUGH = ...
|
36 |
+
|
37 |
+
class TrainingMode(Enum):
|
38 |
+
EVAL = ...
|
39 |
+
PRESERVE = ...
|
40 |
+
TRAINING = ...
|
venv/lib/python3.10/site-packages/torch/_C/_profiler.pyi
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from torch._C import device, dtype, layout
|
5 |
+
from typing_extensions import TypeAlias
|
6 |
+
|
7 |
+
# defined in torch/csrc/profiler/python/init.cpp
|
8 |
+
|
9 |
+
class RecordScope(Enum):
|
10 |
+
FUNCTION = ...
|
11 |
+
BACKWARD_FUNCTION = ...
|
12 |
+
TORCHSCRIPT_FUNCTION = ...
|
13 |
+
KERNEL_FUNCTION_DTYPE = ...
|
14 |
+
CUSTOM_CLASS = ...
|
15 |
+
BUILD_FEATURE = ...
|
16 |
+
LITE_INTERPRETER = ...
|
17 |
+
USER_SCOPE = ...
|
18 |
+
STATIC_RUNTIME_OP = ...
|
19 |
+
STATIC_RUNTIME_MODEL = ...
|
20 |
+
|
21 |
+
class ProfilerState(Enum):
|
22 |
+
Disable = ...
|
23 |
+
CPU = ...
|
24 |
+
CUDA = ...
|
25 |
+
NVTX = ...
|
26 |
+
ITT = ...
|
27 |
+
KINETO = ...
|
28 |
+
KINETO_GPU_FALLBACK = ...
|
29 |
+
KINETO_PRIVATEUSE1_FALLBACK = ...
|
30 |
+
KINETO_PRIVATEUSE1 = ...
|
31 |
+
|
32 |
+
class ActiveProfilerType(Enum):
|
33 |
+
NONE = ...
|
34 |
+
LEGACY = ...
|
35 |
+
KINETO = ...
|
36 |
+
NVTX = ...
|
37 |
+
ITT = ...
|
38 |
+
|
39 |
+
class ProfilerActivity(Enum):
|
40 |
+
CPU = ...
|
41 |
+
CUDA = ...
|
42 |
+
MTIA = ...
|
43 |
+
PrivateUse1 = ...
|
44 |
+
|
45 |
+
class _EventType(Enum):
|
46 |
+
TorchOp = ...
|
47 |
+
Backend = ...
|
48 |
+
Allocation = ...
|
49 |
+
OutOfMemory = ...
|
50 |
+
PyCall = ...
|
51 |
+
PyCCall = ...
|
52 |
+
Kineto = ...
|
53 |
+
|
54 |
+
class _ExperimentalConfig:
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
profiler_metrics: List[str] = ...,
|
58 |
+
profiler_measure_per_kernel: bool = ...,
|
59 |
+
verbose: bool = ...,
|
60 |
+
performance_events: List[str] = ...,
|
61 |
+
enable_cuda_sync_events: bool = ...,
|
62 |
+
) -> None: ...
|
63 |
+
|
64 |
+
class ProfilerConfig:
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
state: ProfilerState,
|
68 |
+
report_input_shapes: bool,
|
69 |
+
profile_memory: bool,
|
70 |
+
with_stack: bool,
|
71 |
+
with_flops: bool,
|
72 |
+
with_modules: bool,
|
73 |
+
experimental_config: _ExperimentalConfig,
|
74 |
+
) -> None: ...
|
75 |
+
|
76 |
+
class _ProfilerEvent:
|
77 |
+
start_tid: int
|
78 |
+
start_time_ns: int
|
79 |
+
children: List[_ProfilerEvent]
|
80 |
+
|
81 |
+
# TODO(robieta): remove in favor of `self.typed`
|
82 |
+
extra_fields: Union[
|
83 |
+
_ExtraFields_TorchOp,
|
84 |
+
_ExtraFields_Backend,
|
85 |
+
_ExtraFields_Allocation,
|
86 |
+
_ExtraFields_OutOfMemory,
|
87 |
+
_ExtraFields_PyCall,
|
88 |
+
_ExtraFields_PyCCall,
|
89 |
+
_ExtraFields_Kineto,
|
90 |
+
]
|
91 |
+
|
92 |
+
@property
|
93 |
+
def typed(
|
94 |
+
self,
|
95 |
+
) -> Union[
|
96 |
+
Tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp],
|
97 |
+
Tuple[Literal[_EventType.Backend], _ExtraFields_Backend],
|
98 |
+
Tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation],
|
99 |
+
Tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory],
|
100 |
+
Tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall],
|
101 |
+
Tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall],
|
102 |
+
Tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto],
|
103 |
+
]: ...
|
104 |
+
@property
|
105 |
+
def name(self) -> str: ...
|
106 |
+
@property
|
107 |
+
def tag(self) -> _EventType: ...
|
108 |
+
@property
|
109 |
+
def id(self) -> int: ...
|
110 |
+
@property
|
111 |
+
def parent(self) -> Optional[_ProfilerEvent]: ...
|
112 |
+
@property
|
113 |
+
def correlation_id(self) -> int: ...
|
114 |
+
@property
|
115 |
+
def end_time_ns(self) -> int: ...
|
116 |
+
@property
|
117 |
+
def duration_time_ns(self) -> int: ...
|
118 |
+
|
119 |
+
class _TensorMetadata:
|
120 |
+
impl_ptr: Optional[int]
|
121 |
+
storage_data_ptr: Optional[int]
|
122 |
+
id: Optional[int]
|
123 |
+
|
124 |
+
@property
|
125 |
+
def allocation_id(self) -> Optional[int]: ...
|
126 |
+
@property
|
127 |
+
def layout(self) -> layout: ...
|
128 |
+
@property
|
129 |
+
def device(self) -> device: ...
|
130 |
+
@property
|
131 |
+
def dtype(self) -> dtype: ...
|
132 |
+
@property
|
133 |
+
def sizes(self) -> List[int]: ...
|
134 |
+
@property
|
135 |
+
def strides(self) -> List[int]: ...
|
136 |
+
|
137 |
+
Scalar: TypeAlias = Union[int, float, bool, complex]
|
138 |
+
Input: TypeAlias = Optional[Union[_TensorMetadata, List[_TensorMetadata], Scalar]]
|
139 |
+
|
140 |
+
class _ExtraFields_TorchOp:
|
141 |
+
name: str
|
142 |
+
sequence_number: int
|
143 |
+
allow_tf32_cublas: bool
|
144 |
+
|
145 |
+
@property
|
146 |
+
def inputs(self) -> List[Input]: ...
|
147 |
+
@property
|
148 |
+
def scope(self) -> RecordScope: ...
|
149 |
+
|
150 |
+
class _ExtraFields_Backend: ...
|
151 |
+
|
152 |
+
class _ExtraFields_Allocation:
|
153 |
+
ptr: int
|
154 |
+
id: Optional[int]
|
155 |
+
alloc_size: int
|
156 |
+
total_allocated: int
|
157 |
+
total_reserved: int
|
158 |
+
|
159 |
+
@property
|
160 |
+
def allocation_id(self) -> Optional[int]: ...
|
161 |
+
@property
|
162 |
+
def device(self) -> device: ...
|
163 |
+
|
164 |
+
class _ExtraFields_OutOfMemory: ...
|
165 |
+
|
166 |
+
class _PyFrameState:
|
167 |
+
line_number: int
|
168 |
+
function_name: str
|
169 |
+
|
170 |
+
@property
|
171 |
+
def file_name(self) -> str: ...
|
172 |
+
|
173 |
+
class _NNModuleInfo:
|
174 |
+
@property
|
175 |
+
def self_ptr(self) -> int: ...
|
176 |
+
@property
|
177 |
+
def cls_ptr(self) -> int: ...
|
178 |
+
@property
|
179 |
+
def cls_name(self) -> str: ...
|
180 |
+
@property
|
181 |
+
def parameters(
|
182 |
+
self,
|
183 |
+
) -> List[Tuple[str, _TensorMetadata, Optional[_TensorMetadata]]]: ...
|
184 |
+
|
185 |
+
class _OptimizerInfo:
|
186 |
+
@property
|
187 |
+
def parameters(
|
188 |
+
self,
|
189 |
+
) -> List[
|
190 |
+
Tuple[
|
191 |
+
# Parameter
|
192 |
+
_TensorMetadata,
|
193 |
+
#
|
194 |
+
# Gradient (if present during optimizer.step())
|
195 |
+
Optional[_TensorMetadata],
|
196 |
+
#
|
197 |
+
# Optimizer state for Parameter as (name, tensor) pairs
|
198 |
+
List[Tuple[str, _TensorMetadata]],
|
199 |
+
]
|
200 |
+
]: ...
|
201 |
+
|
202 |
+
class _ExtraFields_PyCCall:
|
203 |
+
@property
|
204 |
+
def caller(self) -> _PyFrameState: ...
|
205 |
+
|
206 |
+
class _ExtraFields_PyCall:
|
207 |
+
@property
|
208 |
+
def callsite(self) -> _PyFrameState: ...
|
209 |
+
@property
|
210 |
+
def caller(self) -> _PyFrameState: ...
|
211 |
+
@property
|
212 |
+
def module(self) -> Optional[_NNModuleInfo]: ...
|
213 |
+
@property
|
214 |
+
def optimizer(self) -> Optional[_OptimizerInfo]: ...
|
215 |
+
|
216 |
+
class _ExtraFields_Kineto: ...
|
217 |
+
|
218 |
+
def _add_execution_trace_observer(output_file_path: str) -> bool: ...
|
219 |
+
def _remove_execution_trace_observer() -> None: ...
|
220 |
+
def _enable_execution_trace_observer() -> None: ...
|
221 |
+
def _disable_execution_trace_observer() -> None: ...
|
222 |
+
def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ...
|
223 |
+
def _set_fwd_bwd_enabled_val(val: bool) -> None: ...
|
224 |
+
def _set_cuda_sync_enabled_val(val: bool) -> None: ...
|
225 |
+
|
226 |
+
class CapturedTraceback: ...
|
227 |
+
|
228 |
+
def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ...
|
229 |
+
|
230 |
+
# The Dict has name, filename, line
|
231 |
+
def symbolize_tracebacks(
|
232 |
+
to_symbolize: List[CapturedTraceback],
|
233 |
+
) -> List[List[Dict[str, str]]]: ...
|
234 |
+
|
235 |
+
class _RecordFunctionFast:
|
236 |
+
def __init__(self, name: str) -> None: ...
|
237 |
+
def __enter__(self) -> None: ...
|
238 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: ...
|
venv/lib/python3.10/site-packages/torch/_C/_verbose.pyi
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Defined in torch/csrc/utils/verbose.cpp
|
2 |
+
def mkl_set_verbose(enable: int) -> int: ...
|
3 |
+
def mkldnn_set_verbose(level: int) -> int: ...
|
venv/lib/python3.10/site-packages/torch/contrib/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/contrib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (181 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/contrib/__pycache__/_tensorboard_vis.cpython-310.pyc
ADDED
Binary file (5.31 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/contrib/_tensorboard_vis.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import partial
|
4 |
+
from typing import DefaultDict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
# Unfortunately it doesn't seem as if there was any way to get TensorBoard to do
|
10 |
+
# anything without having TF installed, and so this file has a hard dependency on it
|
11 |
+
# as well. It really is a debugging tool, so it doesn't matter.
|
12 |
+
try:
|
13 |
+
from tensorflow.core.util import event_pb2
|
14 |
+
from tensorflow.core.framework import graph_pb2
|
15 |
+
from tensorflow.python.summary.writer.writer import FileWriter
|
16 |
+
except ImportError:
|
17 |
+
raise ImportError("TensorBoard visualization of GraphExecutors requires having "
|
18 |
+
"TensorFlow installed") from None
|
19 |
+
|
20 |
+
|
21 |
+
def dump_tensorboard_summary(graph_executor, logdir):
|
22 |
+
with FileWriter(logdir) as w:
|
23 |
+
pb_graph = visualize(graph_executor)
|
24 |
+
evt = event_pb2.Event(wall_time=time.time(), graph_def=pb_graph.SerializeToString())
|
25 |
+
w.add_event(evt)
|
26 |
+
|
27 |
+
|
28 |
+
def visualize(graph, name_prefix='', pb_graph=None, executors_it=None):
|
29 |
+
"""Visualizes an independent graph, or a graph executor."""
|
30 |
+
value_map = {}
|
31 |
+
pb_graph = pb_graph or graph_pb2.GraphDef()
|
32 |
+
|
33 |
+
if isinstance(graph, torch._C.GraphExecutorState):
|
34 |
+
visualize_graph_executor(graph, name_prefix, pb_graph,
|
35 |
+
partial(visualize, pb_graph=pb_graph))
|
36 |
+
return pb_graph
|
37 |
+
|
38 |
+
# Set up an input node
|
39 |
+
input_node = pb_graph.node.add(op='input', name=name_prefix + 'input')
|
40 |
+
for i, value in enumerate(graph.param_node().outputs()):
|
41 |
+
value_map[value.unique()] = name_prefix + 'input:' + str(i)
|
42 |
+
|
43 |
+
visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it)
|
44 |
+
|
45 |
+
# Gather all outputs
|
46 |
+
return_node = pb_graph.node.add(op='output', name=name_prefix + 'output')
|
47 |
+
for value in graph.return_node().inputs():
|
48 |
+
return_node.input.append(value_map[value.unique()])
|
49 |
+
|
50 |
+
return pb_graph
|
51 |
+
|
52 |
+
|
53 |
+
def visualize_graph_executor(state, name_prefix, pb_graph, inline_graph):
|
54 |
+
"""Append the state of a given GraphExecutor to the graph protobuf.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
state (GraphExecutor or GraphExecutorState): GraphExecutor to display.
|
58 |
+
name_prefix (str): Name prefix of the containing subgraph.
|
59 |
+
pb_graph (GraphDef): graph to append to.
|
60 |
+
inline_graph (Callable): a function that handles setting up a value_map,
|
61 |
+
so that some graphs in here can be inlined. This is necessary, because
|
62 |
+
this will simply be `visualize` for the top-level GraphExecutor,
|
63 |
+
or `inline_graph` for all nested ones.
|
64 |
+
|
65 |
+
The signature should look like (Graph, name_prefix) -> ().
|
66 |
+
It will be called exactly once.
|
67 |
+
|
68 |
+
The strategy is to embed all different configurations as independent subgraphs,
|
69 |
+
while inlining the original graph as the one that actually produces the values.
|
70 |
+
"""
|
71 |
+
if state.autograd_fallback_graph is not None:
|
72 |
+
visualize(graph=state.autograd_fallback_graph,
|
73 |
+
name_prefix=name_prefix + 'autograd_fallback/',
|
74 |
+
pb_graph=pb_graph,
|
75 |
+
executors_it=iter(state.autograd_fallback.executors()))
|
76 |
+
|
77 |
+
for i, (arg_spec, plan) in enumerate(state.execution_plans.items()):
|
78 |
+
subgraph_name = name_prefix + f'plan{i}/'
|
79 |
+
|
80 |
+
# Create a disconnected node that will keep information regarding the input
|
81 |
+
# types of this trace. This is unfortunately a bit too verbose to be included
|
82 |
+
# in the subgraph name.
|
83 |
+
input_kinds = pb_graph.node.add(op='INPUT_KIND', name=subgraph_name)
|
84 |
+
input_kinds.attr['inputs'].s = repr(arg_spec).encode('ascii')
|
85 |
+
|
86 |
+
visualize(plan.graph, subgraph_name, pb_graph, iter(plan.code.executors()))
|
87 |
+
|
88 |
+
# Show gradient as an independent subgraph of this plan
|
89 |
+
if plan.grad_executor is not None:
|
90 |
+
grad_subgraph_name = subgraph_name + 'grad/'
|
91 |
+
visualize(plan.grad_executor, grad_subgraph_name, pb_graph)
|
92 |
+
|
93 |
+
return inline_graph(state.graph, name_prefix + 'original/')
|
94 |
+
|
95 |
+
|
96 |
+
def visualize_rec(graph, value_map, name_prefix, pb_graph, executors_it=None):
|
97 |
+
"""Recursive part of visualize (basically skips setting up the input and output nodes)."""
|
98 |
+
def inline_graph(subgraph, name, node):
|
99 |
+
rec_value_map = {inp.unique(): value_map[val.unique()]
|
100 |
+
for inp, val in zip(subgraph.inputs(), node.inputs())}
|
101 |
+
visualize_rec(graph=subgraph,
|
102 |
+
value_map=rec_value_map,
|
103 |
+
name_prefix=name,
|
104 |
+
pb_graph=pb_graph)
|
105 |
+
for out, val in zip(subgraph.outputs(), node.outputs()):
|
106 |
+
value_map[val.unique()] = rec_value_map[out.unique()]
|
107 |
+
|
108 |
+
op_id_counter: DefaultDict[str, int] = defaultdict(int)
|
109 |
+
|
110 |
+
def name_for(node):
|
111 |
+
kind = node.kind()[node.kind().index('::') + 2:]
|
112 |
+
op_id_counter[kind] += 1
|
113 |
+
return kind, name_prefix + kind + '_' + str(op_id_counter[kind])
|
114 |
+
|
115 |
+
def add_fusion_group(node):
|
116 |
+
op, name = name_for(node)
|
117 |
+
inline_graph(node.g('Subgraph'), name + '/', node)
|
118 |
+
|
119 |
+
def add_graph_executor(node):
|
120 |
+
op, name = name_for(node)
|
121 |
+
if executors_it is None:
|
122 |
+
add_node(node)
|
123 |
+
else:
|
124 |
+
ge = next(executors_it)
|
125 |
+
visualize_graph_executor(ge, name + '/', pb_graph,
|
126 |
+
partial(inline_graph, node=node))
|
127 |
+
|
128 |
+
def add_node(node):
|
129 |
+
if node.kind() == 'prim::FusionGroup':
|
130 |
+
return add_fusion_group(node)
|
131 |
+
elif node.kind() == 'prim::GraphExecutor':
|
132 |
+
return add_graph_executor(node)
|
133 |
+
op, name = name_for(node)
|
134 |
+
pb_node = pb_graph.node.add(op=op, name=name)
|
135 |
+
for value in node.inputs():
|
136 |
+
pb_node.input.append(value_map[value.unique()])
|
137 |
+
# TODO: handle attrs
|
138 |
+
for i, value in enumerate(node.outputs()):
|
139 |
+
value_map[value.unique()] = name + ':' + str(i)
|
140 |
+
|
141 |
+
for node in graph.nodes():
|
142 |
+
add_node(node)
|
venv/lib/python3.10/site-packages/torch/nested/__init__.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union, Sequence
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import SymInt, Tensor
|
5 |
+
from torch._C import _add_docstr, _nested # type: ignore[attr-defined]
|
6 |
+
|
7 |
+
from torch.types import _device as Device, _dtype as DType
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"to_padded_tensor",
|
11 |
+
"as_nested_tensor",
|
12 |
+
"nested_tensor",
|
13 |
+
"narrow",
|
14 |
+
]
|
15 |
+
|
16 |
+
# Nested Tensor constructor functions
|
17 |
+
|
18 |
+
|
19 |
+
def as_nested_tensor(
|
20 |
+
tensor_list: Sequence[Tensor],
|
21 |
+
dtype: Optional[DType] = None,
|
22 |
+
device: Optional[Device] = None,
|
23 |
+
layout=None
|
24 |
+
) -> Tensor:
|
25 |
+
r"""
|
26 |
+
Constructs a nested tensor preserving autograd history from :attr:`tensor_list` a list of tensors.
|
27 |
+
|
28 |
+
.. note::
|
29 |
+
Tensors within the list are always copied by this function due to current nested tensor semantics.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
tensor_list (List[Tensor]): a list of tensors with the same ndim
|
33 |
+
|
34 |
+
Keyword arguments:
|
35 |
+
dtype (:class:`torch.dtype`, optional): the desired type of returned nested tensor.
|
36 |
+
Default: if None, same :class:`torch.dtype` as leftmost tensor in the list.
|
37 |
+
device (:class:`torch.device`, optional): the desired device of returned nested tensor.
|
38 |
+
Default: if None, same :class:`torch.device` as leftmost tensor in the list
|
39 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned nested tensor.
|
40 |
+
Only strided and jagged layouts are supported. Default: if None, the strided layout.
|
41 |
+
|
42 |
+
Example::
|
43 |
+
|
44 |
+
>>> a = torch.arange(3, dtype=torch.float, requires_grad=True)
|
45 |
+
>>> b = torch.arange(5, dtype=torch.float, requires_grad=True)
|
46 |
+
>>> nt = torch.nested.as_nested_tensor([a, b])
|
47 |
+
>>> nt.is_leaf
|
48 |
+
False
|
49 |
+
>>> fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)])
|
50 |
+
>>> nt.backward(fake_grad)
|
51 |
+
>>> a.grad
|
52 |
+
tensor([1., 1., 1.])
|
53 |
+
>>> b.grad
|
54 |
+
tensor([0., 0., 0., 0., 0.])
|
55 |
+
"""
|
56 |
+
if not isinstance(tensor_list, list) or any(
|
57 |
+
not isinstance(t, Tensor) for t in tensor_list
|
58 |
+
):
|
59 |
+
raise TypeError(
|
60 |
+
"as_nested_tensor(): Expected first argument to be a list of tensors "
|
61 |
+
)
|
62 |
+
|
63 |
+
if layout is None:
|
64 |
+
layout = torch.strided
|
65 |
+
if layout == torch.strided:
|
66 |
+
return torch._nested_tensor_from_tensor_list(tensor_list, dtype, None, device, None)
|
67 |
+
elif layout == torch.jagged:
|
68 |
+
from torch.nested._internal.nested_tensor import jagged_from_list
|
69 |
+
|
70 |
+
nt, _ = jagged_from_list(tensor_list, offsets=None, device=device, dtype=dtype)
|
71 |
+
return nt
|
72 |
+
else:
|
73 |
+
raise RuntimeError(f"Specified layout is unsupported for nested tensors: {layout}")
|
74 |
+
|
75 |
+
|
76 |
+
# Note: This not only adds doc strings for the nested ops, but
|
77 |
+
# also connects the torch.nested Python namespace to the torch._C._nested builtins.
|
78 |
+
|
79 |
+
to_padded_tensor = _add_docstr(
|
80 |
+
_nested.nested_to_padded_tensor,
|
81 |
+
r"""
|
82 |
+
to_padded_tensor(input, padding, output_size=None, out=None) -> Tensor
|
83 |
+
|
84 |
+
Returns a new (non-nested) Tensor by padding the :attr:`input` nested tensor.
|
85 |
+
The leading entries will be filled with the nested data,
|
86 |
+
while the trailing entries will be padded.
|
87 |
+
|
88 |
+
.. warning::
|
89 |
+
|
90 |
+
:func:`to_padded_tensor` always copies the underlying data,
|
91 |
+
since the nested and the non-nested tensors differ in memory layout.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
padding (float): The padding value for the trailing entries.
|
95 |
+
|
96 |
+
Keyword args:
|
97 |
+
output_size (Tuple[int]): The size of the output tensor.
|
98 |
+
If given, it must be large enough to contain all nested data;
|
99 |
+
else, will infer by taking the max size of each nested sub-tensor along each dimension.
|
100 |
+
out (Tensor, optional): the output tensor.
|
101 |
+
|
102 |
+
Example::
|
103 |
+
|
104 |
+
>>> nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))])
|
105 |
+
nested_tensor([
|
106 |
+
tensor([[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276],
|
107 |
+
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995]]),
|
108 |
+
tensor([[-1.8546, -0.7194, -0.2918, -0.1846],
|
109 |
+
[ 0.2773, 0.8793, -0.5183, -0.6447],
|
110 |
+
[ 1.8009, 1.8468, -0.9832, -1.5272]])
|
111 |
+
])
|
112 |
+
>>> pt_infer = torch.nested.to_padded_tensor(nt, 0.0)
|
113 |
+
tensor([[[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276],
|
114 |
+
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995],
|
115 |
+
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]],
|
116 |
+
[[-1.8546, -0.7194, -0.2918, -0.1846, 0.0000],
|
117 |
+
[ 0.2773, 0.8793, -0.5183, -0.6447, 0.0000],
|
118 |
+
[ 1.8009, 1.8468, -0.9832, -1.5272, 0.0000]]])
|
119 |
+
>>> pt_large = torch.nested.to_padded_tensor(nt, 1.0, (2, 4, 6))
|
120 |
+
tensor([[[ 1.6862, -1.1282, 1.1031, 0.0464, -1.3276, 1.0000],
|
121 |
+
[-1.9967, -1.0054, 1.8972, 0.9174, -1.4995, 1.0000],
|
122 |
+
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
|
123 |
+
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],
|
124 |
+
[[-1.8546, -0.7194, -0.2918, -0.1846, 1.0000, 1.0000],
|
125 |
+
[ 0.2773, 0.8793, -0.5183, -0.6447, 1.0000, 1.0000],
|
126 |
+
[ 1.8009, 1.8468, -0.9832, -1.5272, 1.0000, 1.0000],
|
127 |
+
[ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
|
128 |
+
>>> pt_small = torch.nested.to_padded_tensor(nt, 2.0, (2, 2, 2))
|
129 |
+
RuntimeError: Value in output_size is less than NestedTensor padded size. Truncation is not supported.
|
130 |
+
|
131 |
+
""",
|
132 |
+
)
|
133 |
+
|
134 |
+
def nested_tensor(tensor_list, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor:
|
135 |
+
r"""
|
136 |
+
Constructs a nested tensor with no autograd history (also known as a “leaf tensor”, see
|
137 |
+
:ref:`Autograd mechanics <autograd-mechanics>`) from :attr:`tensor_list` a list of tensors.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
tensor_list (List[array_like]): a list of tensors, or anything that can be passed to torch.tensor,
|
141 |
+
where each element of the list has the same dimensionality.
|
142 |
+
|
143 |
+
Keyword arguments:
|
144 |
+
dtype (:class:`torch.dtype`, optional): the desired type of returned nested tensor.
|
145 |
+
Default: if None, same :class:`torch.dtype` as leftmost tensor in the list.
|
146 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned nested tensor.
|
147 |
+
Only strided and jagged layouts are supported. Default: if None, the strided layout.
|
148 |
+
device (:class:`torch.device`, optional): the desired device of returned nested tensor.
|
149 |
+
Default: if None, same :class:`torch.device` as leftmost tensor in the list
|
150 |
+
requires_grad (bool, optional): If autograd should record operations on the
|
151 |
+
returned nested tensor. Default: ``False``.
|
152 |
+
pin_memory (bool, optional): If set, returned nested tensor would be allocated in
|
153 |
+
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
154 |
+
|
155 |
+
Example::
|
156 |
+
|
157 |
+
>>> a = torch.arange(3, dtype=torch.float, requires_grad=True)
|
158 |
+
>>> b = torch.arange(5, dtype=torch.float, requires_grad=True)
|
159 |
+
>>> nt = torch.nested.nested_tensor([a, b], requires_grad=True)
|
160 |
+
>>> nt.is_leaf
|
161 |
+
True
|
162 |
+
"""
|
163 |
+
if layout is None:
|
164 |
+
layout = torch.strided
|
165 |
+
if layout == torch.strided:
|
166 |
+
return _nested.nested_tensor(
|
167 |
+
tensor_list,
|
168 |
+
dtype=dtype,
|
169 |
+
device=device,
|
170 |
+
requires_grad=requires_grad,
|
171 |
+
pin_memory=pin_memory)
|
172 |
+
elif layout == torch.jagged:
|
173 |
+
# Need to wrap lists of scalars as tensors
|
174 |
+
list_of_tensors = [t if isinstance(t, Tensor) else torch.as_tensor(t) for t in tensor_list]
|
175 |
+
|
176 |
+
from torch.nested._internal.nested_tensor import jagged_from_list
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
nt, _ = jagged_from_list(list_of_tensors, offsets=None, device=device, dtype=dtype)
|
180 |
+
|
181 |
+
nt.requires_grad_(requires_grad)
|
182 |
+
if pin_memory:
|
183 |
+
nt = nt.pin_memory() # type: ignore[assignment]
|
184 |
+
|
185 |
+
return nt
|
186 |
+
else:
|
187 |
+
raise RuntimeError(f"Specified layout is unsupported for nested tensors: {layout}")
|
188 |
+
|
189 |
+
|
190 |
+
def narrow(tensor: Tensor, dim: int, start: Union[int, Tensor], length: Union[int, Tensor], layout=torch.strided) -> Tensor:
|
191 |
+
r"""
|
192 |
+
Constructs a nested tensor (which might be a view) from :attr:`tensor`, a strided tensor. This follows
|
193 |
+
similar semantics to torch.Tensor.narrow, where in the :attr:`dim`-th dimension the new nested tensor
|
194 |
+
shows only the elements in the interval `[start, start+length)`. As nested representations
|
195 |
+
allow for a different `start` and `length` at each 'row' of that dimension, :attr:`start` and :attr:`length`
|
196 |
+
can also be tensors of shape `tensor.shape[0]`.
|
197 |
+
|
198 |
+
There's some differences depending on the layout you use for the nested tensor. If using strided layout,
|
199 |
+
torch.narrow will do a copy of the narrowed data into a contiguous NT with strided layout, while
|
200 |
+
jagged layout narrow() will create a non-contiguous view of your original strided tensor. This particular
|
201 |
+
representation is really useful for representing kv-caches in Transformer models, as specialized
|
202 |
+
SDPA kernels can deal with format easily, resulting in performance improvements.
|
203 |
+
|
204 |
+
|
205 |
+
Args:
|
206 |
+
tensor (:class:`torch.Tensor`): a strided tensor, which will be used as the underlying data
|
207 |
+
for the nested tensor if using the jagged layout or will be copied for the strided layout.
|
208 |
+
dim (int): the dimension where narrow will be applied. Only `dim=1` is supported for the
|
209 |
+
jagged layout, while strided supports all dim
|
210 |
+
start (Union[int, :class:`torch.Tensor`]): starting element for the narrow operation
|
211 |
+
length (Union[int, :class:`torch.Tensor`]): number of elements taken during the narrow op
|
212 |
+
|
213 |
+
Keyword arguments:
|
214 |
+
layout (:class:`torch.layout`, optional): the desired layout of returned nested tensor.
|
215 |
+
Only strided and jagged layouts are supported. Default: if None, the strided layout.
|
216 |
+
|
217 |
+
Example::
|
218 |
+
|
219 |
+
>>> starts = torch.tensor([0, 1, 2, 3, 4], dtype=torch.int64)
|
220 |
+
>>> lengths = torch.tensor([3, 2, 2, 1, 5], dtype=torch.int64)
|
221 |
+
>>> narrow_base = torch.randn(5, 10, 20)
|
222 |
+
>>> nt_narrowed = torch.nested.narrow(narrow_base, 1, starts, lengths, layout=torch.jagged)
|
223 |
+
>>> nt_narrowed.is_contiguous()
|
224 |
+
False
|
225 |
+
"""
|
226 |
+
if not isinstance(start, (int, SymInt, Tensor)):
|
227 |
+
raise RuntimeError("start must be an integer or a tensor")
|
228 |
+
|
229 |
+
if not isinstance(length, (int, SymInt, Tensor)):
|
230 |
+
raise RuntimeError("length must be an integer or a tensor")
|
231 |
+
|
232 |
+
if layout == torch.strided:
|
233 |
+
if isinstance(start, Tensor) or isinstance(length, Tensor):
|
234 |
+
raise RuntimeError("start and length must be integers for the strided layout NT impl")
|
235 |
+
# TODO: switch to as_nested_tensor(tensor) when it is available
|
236 |
+
nt = as_nested_tensor(torch.unbind(tensor), layout=torch.strided).narrow(dim, start, length)
|
237 |
+
elif layout == torch.jagged:
|
238 |
+
if dim != 1:
|
239 |
+
raise RuntimeError("jagged layout only supports dim=1")
|
240 |
+
|
241 |
+
from torch.nested._internal.nested_tensor import jagged_from_tensor_and_lengths
|
242 |
+
|
243 |
+
if isinstance(start, (int, SymInt)):
|
244 |
+
start = torch.tensor([start], device=tensor.device, dtype=torch.int64)
|
245 |
+
|
246 |
+
if isinstance(length, (int, SymInt)):
|
247 |
+
length = torch.tensor([length], device=tensor.device, dtype=torch.int64)
|
248 |
+
|
249 |
+
nt, _, _ = jagged_from_tensor_and_lengths(tensor, start, length)
|
250 |
+
else:
|
251 |
+
raise RuntimeError(f"Specified layout is unsupported for nested narrow: {layout}")
|
252 |
+
|
253 |
+
return nt
|
venv/lib/python3.10/site-packages/torch/nested/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/nested/_internal/nested_tensor.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch._C import DispatchKey, DispatchKeySet
|
5 |
+
from torch._prims_common import is_expandable_to
|
6 |
+
from torch.fx.experimental.symbolic_shapes import has_free_symbols
|
7 |
+
from torch.utils.weak import WeakTensorKeyDictionary
|
8 |
+
from typing import * # noqa: F403
|
9 |
+
|
10 |
+
_tensor_id_counter = 0
|
11 |
+
_tensor_symint_registry = WeakTensorKeyDictionary()
|
12 |
+
|
13 |
+
|
14 |
+
def get_tensor_symint(tensor, *, coeff=1):
|
15 |
+
global _tensor_id_counter
|
16 |
+
tensor_symint = _tensor_symint_registry.get(tensor)
|
17 |
+
if tensor_symint is None:
|
18 |
+
tensor_symint = torch._C._get_nested_int(_tensor_id_counter, coeff)
|
19 |
+
_tensor_id_counter += 1
|
20 |
+
_tensor_symint_registry[tensor] = tensor_symint
|
21 |
+
return tensor_symint
|
22 |
+
|
23 |
+
|
24 |
+
# SDPA metadata; max / min seqlens are needed for e.g. flash
|
25 |
+
def _get_sdpa_extreme_seqlen(func, tensor):
|
26 |
+
return int(func(tensor).item())
|
27 |
+
|
28 |
+
|
29 |
+
class NestedTensor(torch.Tensor):
|
30 |
+
_values: torch.Tensor # type: ignore[assignment]
|
31 |
+
_offsets: torch.Tensor
|
32 |
+
_lengths: Optional[torch.Tensor]
|
33 |
+
# NOTE [ Nested ints for ragged sizes and strides ]
|
34 |
+
#
|
35 |
+
# Jagged layout tensors are tensors that represent a n-dim tensor with a
|
36 |
+
# ragged dimension, but are backed by an (n-1)-dim tensor underneath, e.g.,
|
37 |
+
# a jagged tensor with outer shape [B, x, D] is represented internally by a
|
38 |
+
# tensor with shape [sum(x), D] where we introduce what we call a nested int
|
39 |
+
# denoted as "x" here (but sometimes denoted with "*" to
|
40 |
+
# represent the ragged dimension, and sum(x) represents the dim of the inner
|
41 |
+
# tensor or equivalently the sum of all the sizes of the constituent
|
42 |
+
# tensors' varying lengths.
|
43 |
+
#
|
44 |
+
# We also use nested ints to represent the strides of this tensor.
|
45 |
+
# For example, a jagged tensor with shape [B, x, D] can be strided in two
|
46 |
+
# ways: [xD, D, 1] and [x, 1, sum(x)], where xD represents x multiplied by D
|
47 |
+
_size: Tuple[int, ...]
|
48 |
+
_stride: Tuple[int, ...]
|
49 |
+
# Indicates that the nth dimension is ragged
|
50 |
+
_ragged_idx: int
|
51 |
+
_metadata_cache: Dict[str, Any]
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def __new__(
|
55 |
+
cls,
|
56 |
+
values,
|
57 |
+
offsets,
|
58 |
+
*,
|
59 |
+
lengths=None,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
ks = DispatchKeySet(DispatchKey.NestedTensor)
|
63 |
+
ks = ks.add(DispatchKey.AutogradNestedTensor)
|
64 |
+
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
65 |
+
cls,
|
66 |
+
(0,),
|
67 |
+
(0,),
|
68 |
+
0,
|
69 |
+
torch.contiguous_format,
|
70 |
+
values.dtype,
|
71 |
+
torch.jagged,
|
72 |
+
values.device,
|
73 |
+
False,
|
74 |
+
kwargs.get("requires_grad", False),
|
75 |
+
"sizes",
|
76 |
+
False,
|
77 |
+
True, # dispatch_layout
|
78 |
+
ks,
|
79 |
+
)
|
80 |
+
return r
|
81 |
+
|
82 |
+
def __init__(self, values, offsets, *, lengths=None, **kwargs):
|
83 |
+
super().__init__()
|
84 |
+
# Only support jagged for now.
|
85 |
+
assert offsets is not None
|
86 |
+
assert offsets.ndim == 1
|
87 |
+
assert not isinstance(values, NestedTensor)
|
88 |
+
|
89 |
+
# Query cache for the symint associated with offsets or lengths
|
90 |
+
# (create a new one if needed).
|
91 |
+
ragged_source = offsets if lengths is None else lengths
|
92 |
+
ragged_size = get_tensor_symint(ragged_source, coeff=1)
|
93 |
+
self._ragged_idx = kwargs.get("_ragged_idx", 1)
|
94 |
+
B = offsets.shape[0] - 1
|
95 |
+
if lengths is not None:
|
96 |
+
assert B == lengths.shape[0]
|
97 |
+
|
98 |
+
# subtract 1 to convert to values dim space
|
99 |
+
r = self._ragged_idx - 1
|
100 |
+
self._size = (B, *values.shape[:r], ragged_size, *values.shape[r + 1 :])
|
101 |
+
stride = values.stride()
|
102 |
+
self._strides = (ragged_size * stride[r], *stride)
|
103 |
+
|
104 |
+
self._values = values
|
105 |
+
self._offsets = offsets
|
106 |
+
self._lengths = lengths
|
107 |
+
|
108 |
+
# holds properties that are computed lazily
|
109 |
+
self._metadata_cache = kwargs.get("_metadata_cache") or {}
|
110 |
+
|
111 |
+
# collapsed ragged dim must always be dynamic
|
112 |
+
torch._dynamo.mark_dynamic(self, self._ragged_idx)
|
113 |
+
torch._dynamo.mark_dynamic(self._values, self._ragged_idx - 1)
|
114 |
+
|
115 |
+
def values(self):
|
116 |
+
# dispatch to get proper view relationship
|
117 |
+
return torch._nested_get_values(self) # type: ignore[return-value]
|
118 |
+
|
119 |
+
def offsets(self):
|
120 |
+
return self._offsets
|
121 |
+
|
122 |
+
def lengths(self):
|
123 |
+
return self._lengths
|
124 |
+
|
125 |
+
@property
|
126 |
+
def _max_seqlen(self):
|
127 |
+
if "max_seqlen" not in self._metadata_cache:
|
128 |
+
# compute & cache
|
129 |
+
self._metadata_cache["max_seqlen"] = _get_sdpa_extreme_seqlen(
|
130 |
+
torch.max,
|
131 |
+
self._offsets.diff() if self._lengths is None else self._lengths,
|
132 |
+
)
|
133 |
+
return self._metadata_cache["max_seqlen"]
|
134 |
+
|
135 |
+
@property
|
136 |
+
def _min_seqlen(self):
|
137 |
+
if "min_seqlen" not in self._metadata_cache:
|
138 |
+
# compute & cache
|
139 |
+
self._metadata_cache["min_seqlen"] = _get_sdpa_extreme_seqlen(
|
140 |
+
torch.min,
|
141 |
+
self._offsets.diff() if self._lengths is None else self._lengths,
|
142 |
+
)
|
143 |
+
return self._metadata_cache["min_seqlen"]
|
144 |
+
|
145 |
+
def __repr__(self):
|
146 |
+
# We should implement this in torch/_tensor_str.py instead
|
147 |
+
grad_fn_str = (
|
148 |
+
f", requires_grad={self.requires_grad}" if self.requires_grad else ""
|
149 |
+
)
|
150 |
+
if self.grad_fn:
|
151 |
+
grad_fn_str = f", grad_fn={self.grad_fn}"
|
152 |
+
return f"NestedTensor(size={self._size}, offsets={self._offsets}{grad_fn_str}, contiguous={self._lengths is None})"
|
153 |
+
|
154 |
+
def __reduce_ex__(self, proto):
|
155 |
+
state = torch._utils._get_obj_state(self)
|
156 |
+
|
157 |
+
# SymNodes are not serializable
|
158 |
+
assert "_size" in state and "_strides" in state
|
159 |
+
state = dict(state)
|
160 |
+
del state["_size"]
|
161 |
+
del state["_strides"]
|
162 |
+
|
163 |
+
func = NestedTensor
|
164 |
+
args = (self._values, self._offsets)
|
165 |
+
return (torch._tensor._rebuild_from_type_v2, (func, type(self), args, state))
|
166 |
+
|
167 |
+
def __tensor_flatten__(self):
|
168 |
+
ctx = {
|
169 |
+
"requires_grad": self.requires_grad,
|
170 |
+
# TODO: Don't guard on this!
|
171 |
+
"metadata_cache": self._metadata_cache,
|
172 |
+
"ragged_idx": self._ragged_idx,
|
173 |
+
}
|
174 |
+
inner_tensors = ["_values", "_offsets"]
|
175 |
+
if self._lengths is not None:
|
176 |
+
inner_tensors.append("_lengths")
|
177 |
+
return inner_tensors, ctx
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def __tensor_unflatten__(inner_tensors: Dict, meta, outer_size, outer_stride):
|
181 |
+
# inner tensors: _values, _offsets, [_lengths]
|
182 |
+
assert len(inner_tensors) >= 2 and len(inner_tensors) <= 3
|
183 |
+
values = inner_tensors["_values"]
|
184 |
+
offsets = inner_tensors["_offsets"]
|
185 |
+
lengths = inner_tensors.get("_lengths", None)
|
186 |
+
ragged_idx = meta["ragged_idx"]
|
187 |
+
|
188 |
+
# Note that we cannot simply check if is_fake(values) because
|
189 |
+
# during aot autograd, FunctionalTensors are not fake but hold
|
190 |
+
# symbolic sizes.
|
191 |
+
ragged_source = offsets if lengths is None else lengths
|
192 |
+
if has_free_symbols(ragged_source) or has_free_symbols(values):
|
193 |
+
# Associate offsets or lengths (possibly fake, possibly functionalized)
|
194 |
+
# with the ragged_size.
|
195 |
+
ragged_size = outer_size[ragged_idx]
|
196 |
+
_tensor_symint_registry[ragged_source] = ragged_size
|
197 |
+
|
198 |
+
return NestedTensor(
|
199 |
+
values,
|
200 |
+
offsets=offsets,
|
201 |
+
lengths=lengths,
|
202 |
+
requires_grad=meta["requires_grad"],
|
203 |
+
_ragged_idx=ragged_idx,
|
204 |
+
_metadata_cache=meta["metadata_cache"],
|
205 |
+
)
|
206 |
+
|
207 |
+
@classmethod
|
208 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
209 |
+
kwargs = {} if kwargs is None else kwargs
|
210 |
+
|
211 |
+
# Lazy import to avoid circular dependency
|
212 |
+
from .ops import lookup_jagged
|
213 |
+
|
214 |
+
fn = lookup_jagged(func, *args, **kwargs)
|
215 |
+
if fn is not None:
|
216 |
+
return fn(*args, **kwargs)
|
217 |
+
|
218 |
+
raise NotImplementedError(func)
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
222 |
+
if kwargs is None:
|
223 |
+
kwargs = {}
|
224 |
+
|
225 |
+
from .ops import jagged_torch_function
|
226 |
+
|
227 |
+
try:
|
228 |
+
return jagged_torch_function(func, *args, **kwargs)
|
229 |
+
except NotImplementedError:
|
230 |
+
pass
|
231 |
+
with torch._C.DisableTorchFunctionSubclass():
|
232 |
+
return func(*args, **kwargs)
|
233 |
+
|
234 |
+
|
235 |
+
# NB: These fake view autograd.Functions are superseded by real view ops. Don't use them!
|
236 |
+
# TODO: Remove ViewBufferFromNested, ViewNestedFromBuffer, and buffer_from_jagged once the
|
237 |
+
# internal BC period has passed.
|
238 |
+
|
239 |
+
|
240 |
+
# Not actually a view!
|
241 |
+
class ViewBufferFromNested(torch.autograd.Function):
|
242 |
+
@staticmethod
|
243 |
+
def forward(ctx, x: NestedTensor): # type: ignore[override]
|
244 |
+
ctx.save_for_backward(x.offsets())
|
245 |
+
ctx.metadata_cache = x._metadata_cache
|
246 |
+
ctx.ragged_idx = x._ragged_idx
|
247 |
+
return x._values
|
248 |
+
|
249 |
+
@staticmethod
|
250 |
+
def backward(ctx, gO: torch.Tensor): # type: ignore[override]
|
251 |
+
(offsets,) = ctx.saved_tensors
|
252 |
+
return NestedTensor(
|
253 |
+
gO,
|
254 |
+
offsets=offsets,
|
255 |
+
_metadata_cache=ctx.metadata_cache,
|
256 |
+
_ragged_idx=ctx.ragged_idx,
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
# Not actually a view!
|
261 |
+
class ViewNestedFromBuffer(torch.autograd.Function):
|
262 |
+
@staticmethod
|
263 |
+
def forward(
|
264 |
+
ctx,
|
265 |
+
values: torch.Tensor,
|
266 |
+
offsets: torch.Tensor,
|
267 |
+
metadata_cache: Optional[Dict[str, Any]] = None,
|
268 |
+
): # type: ignore[override]
|
269 |
+
return NestedTensor(
|
270 |
+
values.detach(),
|
271 |
+
offsets=offsets,
|
272 |
+
_metadata_cache=metadata_cache,
|
273 |
+
)
|
274 |
+
|
275 |
+
@staticmethod
|
276 |
+
def backward(ctx, gO: NestedTensor): # type: ignore[override]
|
277 |
+
return gO._values, None, None
|
278 |
+
|
279 |
+
|
280 |
+
def buffer_from_jagged(jagged):
|
281 |
+
return ViewBufferFromNested.apply(jagged)
|
282 |
+
|
283 |
+
|
284 |
+
# Need to make it obvious that users should be passing in offsets
|
285 |
+
def jagged_from_list(
|
286 |
+
tensors: List[torch.Tensor],
|
287 |
+
offsets: Optional[torch.Tensor],
|
288 |
+
dtype=None,
|
289 |
+
device=None,
|
290 |
+
) -> Tuple[NestedTensor, torch.Tensor]:
|
291 |
+
"""Constructs a NestedTensor backed by jagged layout from a list of tensors"""
|
292 |
+
|
293 |
+
if not len(set(t.dtype for t in tensors)) == 1: # noqa: C401
|
294 |
+
raise RuntimeError(
|
295 |
+
"When constructing a nested tensor, all tensors in list must have the same dtype"
|
296 |
+
)
|
297 |
+
if not len(set(t.device for t in tensors)) == 1: # noqa: C401
|
298 |
+
raise RuntimeError(
|
299 |
+
"When constructing a nested tensor, all tensors in list must be on the same device"
|
300 |
+
)
|
301 |
+
|
302 |
+
# Check that the NT is representable by the jagged layout.
|
303 |
+
# Jagged layout represents (B, *, D_0, D_1, ..., D_N), where the only
|
304 |
+
# raggedness allowed is for the single dim immediately adjacent to the batch dim.
|
305 |
+
sizes = [t.shape for t in tensors]
|
306 |
+
non_first_sizes = [s[1:] for s in sizes]
|
307 |
+
at_most_first_ragged = all(s == non_first_sizes[0] for s in non_first_sizes)
|
308 |
+
if not at_most_first_ragged:
|
309 |
+
raise RuntimeError(
|
310 |
+
"Cannot represent given tensor list as a nested tensor with the jagged layout. "
|
311 |
+
"Note that the jagged layout only represents shapes of the form "
|
312 |
+
"(B, *, D_0, D_1, ..., D_N), with only * allowed to be ragged."
|
313 |
+
)
|
314 |
+
|
315 |
+
# Set properties appropriately.
|
316 |
+
values = torch.cat(tensors, dim=0)
|
317 |
+
to_kwargs = {}
|
318 |
+
if device is not None:
|
319 |
+
to_kwargs["device"] = device
|
320 |
+
if dtype is not None:
|
321 |
+
to_kwargs["dtype"] = dtype
|
322 |
+
values = values.to(**to_kwargs)
|
323 |
+
|
324 |
+
# Calculate jagged offsets if not provided.
|
325 |
+
if offsets is None:
|
326 |
+
# Jagged layout specifies that offsets are stored as int64 on the same device as values.
|
327 |
+
# TODO: An alternative way to construct offsets is to use F.pad. This avoids creating
|
328 |
+
# an extra leaf tensor during the forward, potentially resolving compatibility issues.
|
329 |
+
offsets = torch.cat(
|
330 |
+
[
|
331 |
+
torch.zeros(1, dtype=torch.int64, device=values.device),
|
332 |
+
torch.tensor([s[0] for s in sizes], device=values.device).cumsum(dim=0),
|
333 |
+
]
|
334 |
+
)
|
335 |
+
|
336 |
+
ret_nt = nested_view_from_values_offsets(values, offsets)
|
337 |
+
ret_nt._metadata_cache = {
|
338 |
+
# compute this now since it's easy
|
339 |
+
"max_seqlen": max([t.shape[0] for t in tensors]),
|
340 |
+
"min_seqlen": min([t.shape[0] for t in tensors]),
|
341 |
+
}
|
342 |
+
return (ret_nt, offsets) # type: ignore[return-value]
|
343 |
+
|
344 |
+
|
345 |
+
def jagged_from_tensor_and_lengths(
|
346 |
+
tensor: torch.Tensor, starts: torch.Tensor, lengths: torch.Tensor
|
347 |
+
) -> Tuple[NestedTensor, torch.Tensor, Optional[torch.Tensor]]:
|
348 |
+
"""Constructs a NestedTensor backed by jagged layout from a tensor, starts of sequences, and sequence lengths"""
|
349 |
+
batch_size = tensor.shape[0]
|
350 |
+
if is_expandable_to(starts.shape, (batch_size,)) and is_expandable_to(
|
351 |
+
lengths.shape, (batch_size,)
|
352 |
+
):
|
353 |
+
start_list = starts.expand(batch_size)
|
354 |
+
length_list = lengths.expand(batch_size)
|
355 |
+
else:
|
356 |
+
raise RuntimeError(
|
357 |
+
"When constructing a jagged nested tensor using narrow(), "
|
358 |
+
"your start and length must be Tensors that broadcast to input.shape[0]"
|
359 |
+
)
|
360 |
+
|
361 |
+
# Calculate jagged offsets
|
362 |
+
assert (
|
363 |
+
len(tensor.shape) >= 2
|
364 |
+
), "tensor must at least be 2D for the nested narrow op to work"
|
365 |
+
max_seq_len = tensor.shape[1]
|
366 |
+
offset_lengths = max_seq_len * torch.arange(
|
367 |
+
0, batch_size, dtype=torch.int64, device=tensor.device
|
368 |
+
)
|
369 |
+
# Jagged layout specifies that offsets are stored as int64 on the same device as values.
|
370 |
+
offsets = torch.cat(
|
371 |
+
[
|
372 |
+
start_list + offset_lengths,
|
373 |
+
(start_list[-1] + offset_lengths[-1] + length_list[-1]).unsqueeze(0),
|
374 |
+
]
|
375 |
+
)
|
376 |
+
|
377 |
+
# Reshape buffer to flatten the 1st and 2nd dimension (view used to enforce non-copy)
|
378 |
+
if len(tensor.shape) > 2:
|
379 |
+
values = tensor.view(-1, *tensor.shape[2:])
|
380 |
+
else:
|
381 |
+
values = tensor.view(-1)
|
382 |
+
|
383 |
+
# Check if offsets and lengths make it possibly contiguous and return a regular NT
|
384 |
+
is_contiguous = True
|
385 |
+
orig_dim = tensor.shape[1]
|
386 |
+
if torch.any(length_list[1:-1].ne(orig_dim)):
|
387 |
+
is_contiguous = False
|
388 |
+
if torch.any(offsets[1:-2].diff().ne(orig_dim)):
|
389 |
+
is_contiguous = False
|
390 |
+
if offsets[0] + length_list[0] != orig_dim:
|
391 |
+
is_contiguous = False
|
392 |
+
|
393 |
+
actual_max_seqlen = int(torch.max(lengths).item())
|
394 |
+
min_seqlen = int(torch.min(lengths).item())
|
395 |
+
|
396 |
+
if is_contiguous:
|
397 |
+
ret_nt = nested_view_from_values_offsets(
|
398 |
+
values[offsets[0] : offsets[-1]], offsets - offsets[0]
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
ret_nt = nested_view_from_values_offsets_lengths(values, offsets, length_list)
|
402 |
+
|
403 |
+
# populate metadata cache with computed seqlen extremes
|
404 |
+
ret_nt._metadata_cache = {
|
405 |
+
"max_seqlen": actual_max_seqlen,
|
406 |
+
"min_seqlen": min_seqlen,
|
407 |
+
}
|
408 |
+
|
409 |
+
return (ret_nt, offsets, None if is_contiguous else length_list)
|
410 |
+
|
411 |
+
|
412 |
+
# NB: A dummy arg is required so that NestedTensor.__torch_dispatch__() is invoked
|
413 |
+
# for _nested_view_from_values_offsets(). Sizes don't matter much, but they shouldn't be
|
414 |
+
# 0/1 because the dummy can be fake-ified and we want to avoid specializing.
|
415 |
+
# This arg is otherwise unused.
|
416 |
+
_nt_view_dummy = NestedTensor(
|
417 |
+
values=torch.randn(3, 3, device="meta"),
|
418 |
+
offsets=torch.randint(3, (2,), device="meta", dtype=torch.int64),
|
419 |
+
).detach()
|
420 |
+
|
421 |
+
|
422 |
+
def nested_view_from_values_offsets(values, offsets, ragged_idx=1):
|
423 |
+
return torch._nested_view_from_jagged(
|
424 |
+
values, offsets, _nt_view_dummy, None, ragged_idx
|
425 |
+
) # type: ignore[return-value]
|
426 |
+
|
427 |
+
|
428 |
+
def nested_view_from_values_offsets_lengths(values, offsets, lengths, ragged_idx=1):
|
429 |
+
return torch._nested_view_from_jagged(
|
430 |
+
values, offsets, _nt_view_dummy, lengths, ragged_idx
|
431 |
+
) # type: ignore[return-value]
|
venv/lib/python3.10/site-packages/torch/nested/_internal/ops.py
ADDED
@@ -0,0 +1,1120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import math
|
3 |
+
import operator
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention
|
7 |
+
|
8 |
+
from .nested_tensor import NestedTensor
|
9 |
+
from typing import * # noqa: F403
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.fx.operator_schemas import normalize_function
|
12 |
+
|
13 |
+
__all__: List[Any] = []
|
14 |
+
|
15 |
+
JAGGED_OPS_TABLE: Dict[Any, Any] = {}
|
16 |
+
|
17 |
+
|
18 |
+
# Simplifying assumption: we assume that the batch dim is always the left-most
|
19 |
+
# dim, and the ragged dim is always the second dim.
|
20 |
+
def _outer_to_inner_dim(ndim, dim):
|
21 |
+
assert dim >= 0 and dim < ndim
|
22 |
+
return 0 if dim < 2 else dim - 1
|
23 |
+
|
24 |
+
|
25 |
+
def _wrap_jagged_dim(
|
26 |
+
ndim, dim, op_name, convert_to_inner_dim=True, allow_batch_dim=False
|
27 |
+
):
|
28 |
+
from torch._prims_common import canonicalize_dims
|
29 |
+
|
30 |
+
wrapped = canonicalize_dims(ndim, dim)
|
31 |
+
if wrapped == 1:
|
32 |
+
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=1")
|
33 |
+
elif wrapped == 0 and not allow_batch_dim:
|
34 |
+
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0")
|
35 |
+
return _outer_to_inner_dim(ndim, wrapped) if convert_to_inner_dim else wrapped
|
36 |
+
|
37 |
+
|
38 |
+
def _wrap_jagged_dims(ndim, dims, op_name):
|
39 |
+
# ex: (2, 3, 4) -> (1, 2, 3)
|
40 |
+
# ex: (0, 1, 4) -> (0, 3)
|
41 |
+
from torch._prims_common import canonicalize_dims
|
42 |
+
|
43 |
+
wrapped_dims = [canonicalize_dims(ndim, d) for d in dims]
|
44 |
+
# This logic needs to be done after we canonicalize dims but before we
|
45 |
+
# map to inner dims so we can print a nicer error message.
|
46 |
+
zero_in_dims = 0 in wrapped_dims
|
47 |
+
one_in_dims = 1 in wrapped_dims
|
48 |
+
if zero_in_dims ^ one_in_dims:
|
49 |
+
apply, not_apply = ("batch", "ragged") if zero_in_dims else ("ragged", "batch")
|
50 |
+
raise RuntimeError(
|
51 |
+
f"{op_name}(): applying over the {apply} dimension, but not the {not_apply}"
|
52 |
+
" dimension is not supported for NestedTensor"
|
53 |
+
)
|
54 |
+
return (
|
55 |
+
tuple(_outer_to_inner_dim(ndim, d) for d in dims if d != 0),
|
56 |
+
zero_in_dims,
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def check_schema(schema_str: str, func, *args, **kwargs) -> None:
|
61 |
+
named_arg_types = schema_str.split(", ")
|
62 |
+
num_optional_args = sum([x.endswith("?") for x in named_arg_types])
|
63 |
+
min_args = len(named_arg_types) - num_optional_args
|
64 |
+
|
65 |
+
# special case: ellipses allows for any number of unchecked args at the end
|
66 |
+
if named_arg_types[-1] == "...":
|
67 |
+
named_arg_types = named_arg_types[:-1]
|
68 |
+
else:
|
69 |
+
if not (len(args) >= min_args and len(args) <= len(named_arg_types)):
|
70 |
+
raise ValueError(
|
71 |
+
f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} "
|
72 |
+
f"arguments and at most {len(named_arg_types)} arguments, but got: "
|
73 |
+
f"{len(args)} arguments"
|
74 |
+
)
|
75 |
+
|
76 |
+
arg_type_check_fns = {
|
77 |
+
"t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor),
|
78 |
+
"jt": lambda x: isinstance(x, NestedTensor)
|
79 |
+
and x._lengths is None
|
80 |
+
and x._ragged_idx == 1, # ops with "jt" require contiguous JT only
|
81 |
+
"jt_all": lambda x: isinstance(
|
82 |
+
x, NestedTensor
|
83 |
+
), # ops with "jt_all" can accept all kinds of JT
|
84 |
+
"any": lambda x: True,
|
85 |
+
}
|
86 |
+
for i, named_arg_type in enumerate(named_arg_types):
|
87 |
+
name, arg_type = named_arg_type.split(": ")
|
88 |
+
is_optional = arg_type.endswith("?")
|
89 |
+
normalized_arg_type = arg_type[:-1] if is_optional else arg_type
|
90 |
+
if normalized_arg_type not in arg_type_check_fns.keys():
|
91 |
+
raise AssertionError(f"Unknown arg type: {normalized_arg_type}")
|
92 |
+
|
93 |
+
if i >= len(args):
|
94 |
+
if not is_optional:
|
95 |
+
raise ValueError(
|
96 |
+
f"NestedTensor {func.__name__}({schema_str}) "
|
97 |
+
f"missing required argument: {name}"
|
98 |
+
)
|
99 |
+
continue
|
100 |
+
|
101 |
+
_check_fn = arg_type_check_fns[normalized_arg_type]
|
102 |
+
|
103 |
+
def check_fn(x, is_optional=is_optional):
|
104 |
+
if is_optional:
|
105 |
+
return x is None or _check_fn(x)
|
106 |
+
else:
|
107 |
+
return _check_fn(x)
|
108 |
+
|
109 |
+
if not check_fn(args[i]):
|
110 |
+
type_to_desc = {
|
111 |
+
"t": "tensor",
|
112 |
+
"t?": "optional tensor",
|
113 |
+
"jt": "contiguous jagged layout NestedTensor",
|
114 |
+
"jt_all": "jagged layout NestedTensor",
|
115 |
+
"any": "<any type>",
|
116 |
+
}
|
117 |
+
|
118 |
+
raise ValueError(
|
119 |
+
f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a "
|
120 |
+
f"{type_to_desc[arg_type]}"
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def check_ragged_dim_same(
|
125 |
+
func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str
|
126 |
+
) -> None:
|
127 |
+
# Calling into .shape here
|
128 |
+
if a._size[a._ragged_idx] != b._size[b._ragged_idx]:
|
129 |
+
raise RuntimeError(
|
130 |
+
f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the "
|
131 |
+
"same exact offsets tensor."
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
# returns True if the raggedness-relevant portions of the NT shape
|
136 |
+
# match those of the specified size
|
137 |
+
def raggedness_matches(nt, size):
|
138 |
+
end = nt._ragged_idx + 1
|
139 |
+
nt_ragged = nt._size[:end]
|
140 |
+
size_ragged = size[:end]
|
141 |
+
return len(nt_ragged) == len(size_ragged) and (
|
142 |
+
all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged))
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
def squeeze_leading_ones(t):
|
147 |
+
# Note: [ Squeezing leading ones ]
|
148 |
+
#
|
149 |
+
# Squeeze leading ones from t.
|
150 |
+
#
|
151 |
+
# We want:
|
152 |
+
# (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
|
153 |
+
# (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?) (not yet supported)
|
154 |
+
#
|
155 |
+
# 1) Squeeze extra ones and grab values from NT
|
156 |
+
# (1, 1, ?, ?) -> (?, ?) and (sum(*), ?, ?) -> (B, j0, ?, ?)
|
157 |
+
# 2) Do dense broadcasting:
|
158 |
+
# (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?)
|
159 |
+
# 3) Construct nested tensor
|
160 |
+
# (sum(*), ?, ?) -> (B, j0, ?, ?)
|
161 |
+
#
|
162 |
+
# If unsqueezing on the 0th dim becomes supported, we would unsqueeze
|
163 |
+
# at step (4) and we would need to update this function to record how
|
164 |
+
# many ones we unsqueezed.
|
165 |
+
while t.shape[0] == 1:
|
166 |
+
t = t.squeeze(0)
|
167 |
+
return t
|
168 |
+
|
169 |
+
|
170 |
+
def register_func(tables, aten_ops, schema_str):
|
171 |
+
if not isinstance(aten_ops, list):
|
172 |
+
aten_ops = [aten_ops]
|
173 |
+
if not isinstance(tables, list):
|
174 |
+
tables = [tables]
|
175 |
+
|
176 |
+
def wrapper(func):
|
177 |
+
for aten_op in aten_ops:
|
178 |
+
|
179 |
+
def get_inner(aten_op):
|
180 |
+
def inner(*args, **kwargs):
|
181 |
+
check_schema(schema_str, func, *args, **kwargs)
|
182 |
+
return func(aten_op, *args, **kwargs)
|
183 |
+
|
184 |
+
return inner
|
185 |
+
|
186 |
+
for table in tables:
|
187 |
+
table[aten_op] = get_inner(aten_op)
|
188 |
+
return func
|
189 |
+
|
190 |
+
return wrapper
|
191 |
+
|
192 |
+
|
193 |
+
register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE)
|
194 |
+
|
195 |
+
|
196 |
+
def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]:
|
197 |
+
dispatch_func = JAGGED_OPS_TABLE.get(func, None)
|
198 |
+
if dispatch_func is not None:
|
199 |
+
return dispatch_func
|
200 |
+
|
201 |
+
# Handle pointwise fallbacks
|
202 |
+
if torch.Tag.pointwise in func.tags:
|
203 |
+
# Assume there aren't additional tensors that aren't the "unary/binary" args
|
204 |
+
num_tensor_args = sum([isinstance(x, torch.Tensor) for x in args])
|
205 |
+
if num_tensor_args == 1:
|
206 |
+
check_schema("self: jt_all, ...", func, *args, **kwargs)
|
207 |
+
return functools.partial(jagged_unary_pointwise, func)
|
208 |
+
elif num_tensor_args == 2:
|
209 |
+
check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs)
|
210 |
+
return functools.partial(jagged_binary_pointwise, func)
|
211 |
+
|
212 |
+
return None
|
213 |
+
|
214 |
+
|
215 |
+
def extract_kwargs(arg):
|
216 |
+
kwargs = {
|
217 |
+
"offsets": arg.offsets(),
|
218 |
+
"_metadata_cache": arg._metadata_cache,
|
219 |
+
"_ragged_idx": arg._ragged_idx,
|
220 |
+
}
|
221 |
+
return kwargs
|
222 |
+
|
223 |
+
|
224 |
+
def jagged_unary_pointwise(func, *args, **kwargs):
|
225 |
+
return NestedTensor(
|
226 |
+
func(args[0]._values, *args[1:], **kwargs), **extract_kwargs(args[0])
|
227 |
+
)
|
228 |
+
|
229 |
+
|
230 |
+
def jagged_binary_pointwise(func, *args, **kwargs):
|
231 |
+
a, b = args[0], args[1]
|
232 |
+
assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor)
|
233 |
+
|
234 |
+
mismatch_error_msg = (
|
235 |
+
"cannot call binary pointwise function {} with inputs of shapes {} and {}"
|
236 |
+
)
|
237 |
+
# a is NT, b is NT
|
238 |
+
if isinstance(a, NestedTensor) and isinstance(b, NestedTensor):
|
239 |
+
# ex: (B, j0, D) + (B, j0, D)
|
240 |
+
# ex: (B, j0, D) + (B, j0, 1)
|
241 |
+
if raggedness_matches(a, b._size):
|
242 |
+
return NestedTensor(
|
243 |
+
func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a)
|
244 |
+
)
|
245 |
+
raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size))
|
246 |
+
# either a is NT or b is NT at this point
|
247 |
+
a_is_nt = isinstance(a, NestedTensor)
|
248 |
+
extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b)
|
249 |
+
|
250 |
+
# === Handle broadcasting across the batch / ragged dims ===
|
251 |
+
|
252 |
+
# Easy case: take advantage of pre-existing broadcasting logic
|
253 |
+
# ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
|
254 |
+
# ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
|
255 |
+
# ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
|
256 |
+
nt, t = (a, b) if a_is_nt else (b, a)
|
257 |
+
# See Note: [ Squeezing leading ones ]
|
258 |
+
if t.dim() > nt.dim():
|
259 |
+
raise NotImplementedError("NYI: broadcasting NT with T with larger dim")
|
260 |
+
t_squeezed = squeeze_leading_ones(t)
|
261 |
+
if nt.dim() >= t_squeezed.dim() + 2:
|
262 |
+
lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values)
|
263 |
+
return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs)
|
264 |
+
|
265 |
+
# Harder case: do manual broadcasting over unbound components
|
266 |
+
# when NT dim == non-NT dim
|
267 |
+
# ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1)
|
268 |
+
if a.dim() == b.dim():
|
269 |
+
# ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should
|
270 |
+
# be (B, j0, D_0, D_1) but not yet supported
|
271 |
+
if a.shape[0] != b.shape[0]:
|
272 |
+
raise RuntimeError(
|
273 |
+
mismatch_error_msg.format(func.__name__, a.shape, b.shape)
|
274 |
+
)
|
275 |
+
|
276 |
+
# need to use offsets to broadcast across ragged dim properly
|
277 |
+
# NB: inefficient fallback here; Triton codegen can help this
|
278 |
+
# TODO: Make this work with autograd
|
279 |
+
outputs = []
|
280 |
+
for a_comp, b_comp in zip(a.unbind(), b.unbind()):
|
281 |
+
outputs.append(func(a_comp, b_comp, *args[2:], **kwargs))
|
282 |
+
new_values = torch.cat(outputs, dim=0)
|
283 |
+
return NestedTensor(new_values, **extracted_kwargs)
|
284 |
+
|
285 |
+
# ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant
|
286 |
+
# that ragged dim is wrt left-most batch dim
|
287 |
+
raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape))
|
288 |
+
|
289 |
+
|
290 |
+
def jagged_torch_function(func, *args, **kwargs):
|
291 |
+
# SDPA has special kernels that handle nested tensors.
|
292 |
+
# Dispatch to the correct implementation here
|
293 |
+
if func is torch._C._nn.scaled_dot_product_attention:
|
294 |
+
return jagged_scaled_dot_product_attention(*args, **kwargs)
|
295 |
+
|
296 |
+
# Handle flatten() here because it's CompositeImplicit.
|
297 |
+
if func.__name__ == "flatten":
|
298 |
+
|
299 |
+
def _flatten_sig(input, start_dim=0, end_dim=-1):
|
300 |
+
pass
|
301 |
+
|
302 |
+
_, new_kwargs = normalize_function(
|
303 |
+
_flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
304 |
+
)
|
305 |
+
|
306 |
+
inp = new_kwargs.pop("input")
|
307 |
+
|
308 |
+
# NB: stay in outer dim space because we're going to redispatch on a NT input
|
309 |
+
start_dim = _wrap_jagged_dim(
|
310 |
+
inp.dim(), new_kwargs["start_dim"], "flatten", convert_to_inner_dim=False
|
311 |
+
)
|
312 |
+
end_dim = _wrap_jagged_dim(
|
313 |
+
inp.dim(), new_kwargs["end_dim"], "flatten", convert_to_inner_dim=False
|
314 |
+
)
|
315 |
+
|
316 |
+
if start_dim == end_dim:
|
317 |
+
return inp
|
318 |
+
|
319 |
+
product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1])
|
320 |
+
new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :])
|
321 |
+
|
322 |
+
return inp.reshape(*new_shape)
|
323 |
+
|
324 |
+
raise NotImplementedError(func)
|
325 |
+
|
326 |
+
|
327 |
+
@register_jagged_func(
|
328 |
+
[
|
329 |
+
torch.ops.aten.is_non_overlapping_and_dense.default,
|
330 |
+
torch.ops.aten.sym_size.default,
|
331 |
+
torch.ops.aten.dim.default,
|
332 |
+
torch.ops.aten.sym_numel.default,
|
333 |
+
torch.ops.aten.sym_stride.default,
|
334 |
+
torch.ops.aten.sym_storage_offset.default,
|
335 |
+
],
|
336 |
+
"self: jt_all",
|
337 |
+
)
|
338 |
+
def tensor_attr_supported_getter(func, *args, **kwargs):
|
339 |
+
if func == torch.ops.aten.is_non_overlapping_and_dense.default:
|
340 |
+
return False
|
341 |
+
|
342 |
+
if func == torch.ops.aten.sym_size.default:
|
343 |
+
return args[0]._size
|
344 |
+
|
345 |
+
if func == torch.ops.aten.dim.default:
|
346 |
+
return len(args[0]._size)
|
347 |
+
|
348 |
+
if func == torch.ops.aten.sym_numel.default:
|
349 |
+
if args[0]._lengths is not None:
|
350 |
+
return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:]))
|
351 |
+
return args[0]._values.numel()
|
352 |
+
|
353 |
+
if func == torch.ops.aten.sym_stride.default:
|
354 |
+
return args[0]._strides
|
355 |
+
|
356 |
+
if func == torch.ops.aten.sym_storage_offset.default:
|
357 |
+
return args[0]._values.storage_offset()
|
358 |
+
|
359 |
+
|
360 |
+
@register_jagged_func(torch.ops.prim.layout.default, "self: jt_all")
|
361 |
+
def prim_layout_default(func, *args, **kwargs):
|
362 |
+
return torch.jagged
|
363 |
+
|
364 |
+
|
365 |
+
@register_jagged_func(
|
366 |
+
[torch.ops.aten.size.default],
|
367 |
+
"self: jt_all",
|
368 |
+
)
|
369 |
+
def tensor_attr_unsupported_getter(func, *args, **kwargs):
|
370 |
+
if func == torch.ops.aten.size.default:
|
371 |
+
raise RuntimeError(
|
372 |
+
"NestedTensors does not support directly calling torch.ops.aten.size "
|
373 |
+
"please use `nested_tensor.size()` instead."
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
@register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all")
|
378 |
+
def is_contiguous_general(func, *args, **kwargs):
|
379 |
+
from torch._prims_common import is_contiguous_for_memory_format
|
380 |
+
|
381 |
+
_, new_kwargs = normalize_function(
|
382 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
383 |
+
)
|
384 |
+
inp = new_kwargs.pop("input")
|
385 |
+
|
386 |
+
# If created from narrow() check for lengths
|
387 |
+
if inp.lengths() is not None:
|
388 |
+
return False
|
389 |
+
|
390 |
+
new_kwargs["memory_format"] = new_kwargs.get(
|
391 |
+
"memory_format", torch.contiguous_format
|
392 |
+
)
|
393 |
+
if new_kwargs["memory_format"] == torch.preserve_format:
|
394 |
+
return True
|
395 |
+
return is_contiguous_for_memory_format(inp._values, **new_kwargs)
|
396 |
+
|
397 |
+
|
398 |
+
register_jagged_func(
|
399 |
+
torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?"
|
400 |
+
)(is_contiguous_general)
|
401 |
+
|
402 |
+
|
403 |
+
@register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?")
|
404 |
+
def linear_default(func, *args, **kwargs):
|
405 |
+
_, new_kwargs = normalize_function(
|
406 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
407 |
+
)
|
408 |
+
|
409 |
+
inp = new_kwargs.pop("input")
|
410 |
+
|
411 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
412 |
+
|
413 |
+
|
414 |
+
@register_jagged_func(
|
415 |
+
torch.ops.aten.linear_backward.default,
|
416 |
+
"self: jt, grad_output: jt, weight: t, output_mask: any",
|
417 |
+
)
|
418 |
+
def linear_backward_default(func, *args, **kwargs):
|
419 |
+
_, new_kwargs = normalize_function(
|
420 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
421 |
+
)
|
422 |
+
|
423 |
+
inp = new_kwargs.pop("input")
|
424 |
+
grad_output = new_kwargs.pop("grad_output")
|
425 |
+
weight = new_kwargs.pop("weight")
|
426 |
+
|
427 |
+
check_ragged_dim_same(func, inp, "self", grad_output, "grad_output")
|
428 |
+
ds = NestedTensor(
|
429 |
+
torch.mm(grad_output._values, weight), **extract_kwargs(grad_output)
|
430 |
+
)
|
431 |
+
dw = torch.mm(grad_output._values.T, inp._values)
|
432 |
+
db = None # NYI: gradient for bias, need to reduce over ragged dim
|
433 |
+
return (ds, dw, db)
|
434 |
+
|
435 |
+
|
436 |
+
@register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all")
|
437 |
+
def to_copy_default(func, *args, **kwargs):
|
438 |
+
_, new_kwargs = normalize_function(
|
439 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
440 |
+
)
|
441 |
+
|
442 |
+
inp = new_kwargs.pop("input")
|
443 |
+
# don't change layout
|
444 |
+
new_kwargs.pop("layout")
|
445 |
+
|
446 |
+
new_values = func(inp._values, **new_kwargs)
|
447 |
+
# NB: Purposefully keep offsets on the old device.
|
448 |
+
return NestedTensor(new_values, **extract_kwargs(inp))
|
449 |
+
|
450 |
+
|
451 |
+
register_jagged_func(
|
452 |
+
[
|
453 |
+
torch.ops.aten.empty_like.default,
|
454 |
+
torch.ops.aten.ones_like.default,
|
455 |
+
torch.ops.aten.zeros_like.default,
|
456 |
+
torch.ops.aten.randn_like.default,
|
457 |
+
torch.ops.aten.detach.default,
|
458 |
+
],
|
459 |
+
"self: jt_all",
|
460 |
+
)(jagged_unary_pointwise)
|
461 |
+
|
462 |
+
|
463 |
+
register_jagged_func(
|
464 |
+
torch.ops.aten._softmax.default, "self: jt, dim: any, half_to_float: any"
|
465 |
+
)(jagged_unary_pointwise)
|
466 |
+
|
467 |
+
|
468 |
+
@register_jagged_func(
|
469 |
+
torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?"
|
470 |
+
)
|
471 |
+
def native_dropout_default(func, *args, **kwargs):
|
472 |
+
_, new_kwargs = normalize_function(
|
473 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
474 |
+
)
|
475 |
+
|
476 |
+
inp = new_kwargs.pop("input")
|
477 |
+
out1, out2 = func(inp._values, **new_kwargs)
|
478 |
+
return (
|
479 |
+
NestedTensor(out1, **extract_kwargs(inp)),
|
480 |
+
NestedTensor(out2, **extract_kwargs(inp)),
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
@register_jagged_func(
|
485 |
+
torch.ops.aten.native_dropout_backward.default,
|
486 |
+
"grad_output: jt, mask: jt, scale: any",
|
487 |
+
)
|
488 |
+
def native_dropout_backward_default(func, *args, **kwargs):
|
489 |
+
_, new_kwargs = normalize_function(
|
490 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
491 |
+
)
|
492 |
+
grad_output = new_kwargs.pop("grad_output")
|
493 |
+
mask = new_kwargs.pop("mask")
|
494 |
+
return NestedTensor(
|
495 |
+
func(grad_output._values, mask._values, **new_kwargs),
|
496 |
+
**extract_kwargs(grad_output),
|
497 |
+
)
|
498 |
+
|
499 |
+
|
500 |
+
@register_jagged_func(torch.ops.aten.prod.dim_int, "self: jt, dim: any, keepdim: any?")
|
501 |
+
def prod_dim_int(func, *args, **kwargs):
|
502 |
+
_, new_kwargs = normalize_function(
|
503 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
504 |
+
)
|
505 |
+
|
506 |
+
inp = new_kwargs.pop("input")
|
507 |
+
# TODO: Figure out how to handle this better
|
508 |
+
# keep_dim is required to keep it in jagged format
|
509 |
+
if not new_kwargs["keepdim"]:
|
510 |
+
raise RuntimeError("prod(): keepdim=True must be set for NestedTensor")
|
511 |
+
dim = new_kwargs["dim"]
|
512 |
+
new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), dim, "prod")
|
513 |
+
|
514 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(args[0]))
|
515 |
+
|
516 |
+
|
517 |
+
@register_jagged_func(
|
518 |
+
torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any"
|
519 |
+
)
|
520 |
+
def split_tensor(func, *args, **kwargs):
|
521 |
+
_, new_kwargs = normalize_function(
|
522 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
523 |
+
)
|
524 |
+
|
525 |
+
inp = new_kwargs.pop("input")
|
526 |
+
|
527 |
+
new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "split")
|
528 |
+
|
529 |
+
return tuple(
|
530 |
+
NestedTensor(values=x, **extract_kwargs(inp))
|
531 |
+
for x in func(inp._values, **new_kwargs)
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
@register_jagged_func(
|
536 |
+
torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any"
|
537 |
+
)
|
538 |
+
def split_with_sizes_default(func, *args, **kwargs):
|
539 |
+
_, new_kwargs = normalize_function(
|
540 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
541 |
+
)
|
542 |
+
|
543 |
+
inp = new_kwargs.pop("input")
|
544 |
+
|
545 |
+
new_kwargs["dim"] = _wrap_jagged_dim(
|
546 |
+
inp.dim(), new_kwargs["dim"], "split_with_sizes"
|
547 |
+
)
|
548 |
+
|
549 |
+
return [
|
550 |
+
NestedTensor(values=x, **extract_kwargs(inp))
|
551 |
+
for x in func(inp._values, **new_kwargs)
|
552 |
+
]
|
553 |
+
|
554 |
+
|
555 |
+
@register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?")
|
556 |
+
def chunk_default(func, *args, **kwargs):
|
557 |
+
_, new_kwargs = normalize_function(
|
558 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
559 |
+
)
|
560 |
+
|
561 |
+
inp = new_kwargs.pop("input")
|
562 |
+
|
563 |
+
new_kwargs["dim"] = _wrap_jagged_dim(
|
564 |
+
inp.dim(), new_kwargs["dim"], "chunk", allow_batch_dim=True
|
565 |
+
)
|
566 |
+
|
567 |
+
if new_kwargs["dim"] == 0:
|
568 |
+
chunks = new_kwargs["chunks"]
|
569 |
+
dim0_size = inp._size[0]
|
570 |
+
chunk_size = math.ceil(dim0_size / chunks)
|
571 |
+
|
572 |
+
# get _offsets of the chunks
|
573 |
+
lengths = inp._offsets.diff()
|
574 |
+
chunked_lengths = lengths.chunk(chunks)
|
575 |
+
chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths]
|
576 |
+
chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets]
|
577 |
+
nested_kwargs = [
|
578 |
+
{"offsets": per_offsets, "_ragged_idx": inp._ragged_idx}
|
579 |
+
for per_offsets in chunked_offsets
|
580 |
+
]
|
581 |
+
|
582 |
+
# get _values of the chunks
|
583 |
+
split_sizes = [x.sum().item() for x in chunked_lengths]
|
584 |
+
chunk_values = inp._values.split(split_sizes)
|
585 |
+
|
586 |
+
return [
|
587 |
+
NestedTensor(values=chunk_values[i], **(nested_kwargs[i]))
|
588 |
+
for i in range(0, chunk_size)
|
589 |
+
]
|
590 |
+
else:
|
591 |
+
return [
|
592 |
+
NestedTensor(values=x, **extract_kwargs(inp))
|
593 |
+
for x in func(inp._values, **new_kwargs)
|
594 |
+
]
|
595 |
+
|
596 |
+
|
597 |
+
@register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?")
|
598 |
+
def unbind_int(func, *args, **kwargs):
|
599 |
+
# Note that this specializes on the length of the offsets
|
600 |
+
_, new_kwargs = normalize_function(
|
601 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
602 |
+
)
|
603 |
+
|
604 |
+
dim = new_kwargs["dim"]
|
605 |
+
if dim != 0:
|
606 |
+
raise RuntimeError("unbind(): only supported for NestedTensor on dim=0")
|
607 |
+
|
608 |
+
inp = new_kwargs.pop("input")
|
609 |
+
values = inp.values()
|
610 |
+
offsets = inp.offsets()
|
611 |
+
lengths = inp.lengths()
|
612 |
+
|
613 |
+
if inp._ragged_idx != 1:
|
614 |
+
raise RuntimeError(
|
615 |
+
"unbind(): only supported for NestedTensor when jagged dimension is 1"
|
616 |
+
)
|
617 |
+
|
618 |
+
if lengths is None:
|
619 |
+
return torch.split(values, offsets.diff().tolist())
|
620 |
+
return [
|
621 |
+
values[offsets[i] : (offsets[i] + lengths[i])] for i in range(lengths.shape[0])
|
622 |
+
]
|
623 |
+
|
624 |
+
|
625 |
+
@register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any")
|
626 |
+
def squeeze_dim(func, *args, **kwargs):
|
627 |
+
_, new_kwargs = normalize_function(
|
628 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
629 |
+
)
|
630 |
+
|
631 |
+
inp = new_kwargs.pop("input")
|
632 |
+
values = inp._values
|
633 |
+
|
634 |
+
new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size), new_kwargs["dim"], "squeeze")
|
635 |
+
return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))
|
636 |
+
|
637 |
+
|
638 |
+
@register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt, dim: any")
|
639 |
+
def unsqueeze_default(func, *args, **kwargs):
|
640 |
+
_, new_kwargs = normalize_function(
|
641 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
642 |
+
)
|
643 |
+
|
644 |
+
inp = new_kwargs.pop("input")
|
645 |
+
values = inp._values
|
646 |
+
|
647 |
+
# Account for collapsed jagged dim
|
648 |
+
dim = new_kwargs["dim"]
|
649 |
+
new_kwargs["dim"] = _wrap_jagged_dim(len(inp._size) + 1, dim, "unsqueeze")
|
650 |
+
return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))
|
651 |
+
|
652 |
+
|
653 |
+
@register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any")
|
654 |
+
def cat_default(func, *args, **kwargs):
|
655 |
+
_, new_kwargs = normalize_function(
|
656 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
657 |
+
)
|
658 |
+
|
659 |
+
tensors = new_kwargs.pop("tensors")
|
660 |
+
|
661 |
+
# Convert any non-nested to nested
|
662 |
+
nested = [t for t in tensors if t.is_nested]
|
663 |
+
assert len(nested) > 0
|
664 |
+
first = nested[0]
|
665 |
+
tensors = [t if t.is_nested else t.expand_as(first) for t in tensors]
|
666 |
+
|
667 |
+
# Account for collapsed jagged dim
|
668 |
+
dim = new_kwargs["dim"]
|
669 |
+
new_kwargs["dim"] = _wrap_jagged_dim(len(first.shape), dim, "cat")
|
670 |
+
|
671 |
+
return NestedTensor(
|
672 |
+
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
|
673 |
+
)
|
674 |
+
|
675 |
+
|
676 |
+
@register_jagged_func(torch.ops.aten.matmul.default, "self: jt, other: any")
|
677 |
+
def matmul_default(func, *args, **kwargs):
|
678 |
+
_, new_kwargs = normalize_function(
|
679 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
680 |
+
)
|
681 |
+
|
682 |
+
inp = new_kwargs.pop("input")
|
683 |
+
other = new_kwargs.pop("other")
|
684 |
+
|
685 |
+
if inp.is_nested and not other.is_nested:
|
686 |
+
return NestedTensor(
|
687 |
+
func(inp._values, other, **new_kwargs), **extract_kwargs(inp)
|
688 |
+
)
|
689 |
+
elif inp.is_nested and other.is_nested:
|
690 |
+
# BMM with equivalent ragged dims between the two inputs
|
691 |
+
if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size):
|
692 |
+
return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp))
|
693 |
+
|
694 |
+
raise RuntimeError(
|
695 |
+
f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}"
|
696 |
+
)
|
697 |
+
|
698 |
+
|
699 |
+
@register_jagged_func(
|
700 |
+
torch.ops.aten.expand.default, "self: jt, size: any, implicit: any?"
|
701 |
+
)
|
702 |
+
def expand_default(func, *args, **kwargs):
|
703 |
+
_, new_kwargs = normalize_function(
|
704 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
705 |
+
)
|
706 |
+
|
707 |
+
inp = new_kwargs.pop("input")
|
708 |
+
size = new_kwargs["size"]
|
709 |
+
|
710 |
+
assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit"))
|
711 |
+
if not raggedness_matches(inp, size):
|
712 |
+
raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}")
|
713 |
+
|
714 |
+
expand_arg = [-1, *size[2:]]
|
715 |
+
return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp))
|
716 |
+
|
717 |
+
|
718 |
+
@register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt")
|
719 |
+
def expand_as_default(func, *args, **kwargs):
|
720 |
+
_, new_kwargs = normalize_function(
|
721 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
722 |
+
)
|
723 |
+
|
724 |
+
inp = new_kwargs.pop("input")
|
725 |
+
other = new_kwargs.pop("other")
|
726 |
+
|
727 |
+
return NestedTensor(func(inp, other._values), **extract_kwargs(other))
|
728 |
+
|
729 |
+
|
730 |
+
@register_jagged_func(torch.ops.aten.where.self, "condition: jt, self: jt, other: jt")
|
731 |
+
def where_self(func, *args, **kwargs):
|
732 |
+
_, new_kwargs = normalize_function(
|
733 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
734 |
+
)
|
735 |
+
|
736 |
+
condition = new_kwargs.pop("condition")
|
737 |
+
inp = new_kwargs.pop("input")
|
738 |
+
other = new_kwargs.pop("other")
|
739 |
+
|
740 |
+
assert condition._size == other._size == inp._size
|
741 |
+
|
742 |
+
return NestedTensor(
|
743 |
+
func(condition._values, inp._values, other._values, **new_kwargs),
|
744 |
+
**extract_kwargs(condition),
|
745 |
+
)
|
746 |
+
|
747 |
+
|
748 |
+
@register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?")
|
749 |
+
def _pin_memory_default(func, *args, **kwargs):
|
750 |
+
_, new_kwargs = normalize_function(
|
751 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
752 |
+
)
|
753 |
+
|
754 |
+
inp = new_kwargs.pop("input")
|
755 |
+
|
756 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
757 |
+
|
758 |
+
|
759 |
+
@register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?")
|
760 |
+
def is_pinned_default(func, *args, **kwargs):
|
761 |
+
_, new_kwargs = normalize_function(
|
762 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
763 |
+
)
|
764 |
+
|
765 |
+
inp = new_kwargs.pop("input")
|
766 |
+
|
767 |
+
return func(inp._values, **new_kwargs)
|
768 |
+
|
769 |
+
|
770 |
+
@register_jagged_func(
|
771 |
+
torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all"
|
772 |
+
)
|
773 |
+
def is_same_size_default(func, *args, **kwargs):
|
774 |
+
return args[0]._size == args[1]._size
|
775 |
+
|
776 |
+
|
777 |
+
@register_jagged_func(
|
778 |
+
torch.ops.aten.sum.dim_IntList, "self: jt, dim: any?, keepdim: any?, dtype: any?"
|
779 |
+
)
|
780 |
+
def sum_dim_IntList(func, *args, **kwargs):
|
781 |
+
# sum_dim_IntList can produce a NT or a T depending on whether the ragged dims
|
782 |
+
# are reduced away.
|
783 |
+
_, new_kwargs = normalize_function(
|
784 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
785 |
+
)
|
786 |
+
inp = new_kwargs.pop("input")
|
787 |
+
assert inp._ragged_idx == 1
|
788 |
+
new_kwargs["dim"], ragged_reduced_away = _wrap_jagged_dims(
|
789 |
+
inp.dim(), new_kwargs["dim"], "sum"
|
790 |
+
)
|
791 |
+
|
792 |
+
if not ragged_reduced_away:
|
793 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
794 |
+
else:
|
795 |
+
# Don't wrap because we reduced away the raggedness
|
796 |
+
out = func(inp._values, **new_kwargs)
|
797 |
+
if new_kwargs["keepdim"]:
|
798 |
+
out = out.unsqueeze(0)
|
799 |
+
return out
|
800 |
+
|
801 |
+
|
802 |
+
@register_jagged_func(
|
803 |
+
torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any"
|
804 |
+
)
|
805 |
+
def transpose_int(func, *args, **kwargs):
|
806 |
+
_, new_kwargs = normalize_function(
|
807 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
808 |
+
)
|
809 |
+
|
810 |
+
from torch._prims_common import canonicalize_dims
|
811 |
+
|
812 |
+
inp = new_kwargs.pop("input")
|
813 |
+
dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"]))
|
814 |
+
|
815 |
+
if inp._lengths is not None:
|
816 |
+
raise ValueError(
|
817 |
+
"transpose(): not supported on jagged layout nested tensor with holes"
|
818 |
+
)
|
819 |
+
|
820 |
+
# To support the SDPA API, inputs need to have the ragged idx transposed to dim 2
|
821 |
+
# instead of 1, although the internal Flash and mem-effn implementations will
|
822 |
+
# use the inputs with raggedness in dim 1.
|
823 |
+
if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx:
|
824 |
+
if dim0 == 0 or dim1 == 0:
|
825 |
+
raise ValueError(
|
826 |
+
"Transpose is not supported on the batch dimension for jagged NT"
|
827 |
+
)
|
828 |
+
if dim0 == inp._ragged_idx:
|
829 |
+
to_dim = dim1
|
830 |
+
else:
|
831 |
+
to_dim = dim0
|
832 |
+
inp_kwargs = extract_kwargs(inp)
|
833 |
+
inp_kwargs["_ragged_idx"] = to_dim
|
834 |
+
return NestedTensor(
|
835 |
+
inp.values().transpose(
|
836 |
+
_outer_to_inner_dim(len(inp._size), dim0),
|
837 |
+
_outer_to_inner_dim(len(inp._size), dim1),
|
838 |
+
),
|
839 |
+
**inp_kwargs,
|
840 |
+
)
|
841 |
+
|
842 |
+
new_kwargs["dim0"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim0"], "transpose")
|
843 |
+
new_kwargs["dim1"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim1"], "transpose")
|
844 |
+
|
845 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
846 |
+
|
847 |
+
|
848 |
+
@register_jagged_func(
|
849 |
+
[torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default],
|
850 |
+
"self: jt_all, size: any",
|
851 |
+
)
|
852 |
+
def view_default(func, *args, **kwargs):
|
853 |
+
_, new_kwargs = normalize_function(
|
854 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
855 |
+
)
|
856 |
+
|
857 |
+
inp = new_kwargs.pop("input")
|
858 |
+
size = new_kwargs.pop("size")
|
859 |
+
|
860 |
+
if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size):
|
861 |
+
raise RuntimeError(
|
862 |
+
f"view(): does not support ragged_idx != 1 except when inp._size == size. "
|
863 |
+
f"inp._size is ({inp._size}) and size is ({size})."
|
864 |
+
)
|
865 |
+
|
866 |
+
# Ensure specified size still includes batch and ragged dims
|
867 |
+
if len(size) < 3 or not raggedness_matches(inp, size):
|
868 |
+
raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}")
|
869 |
+
|
870 |
+
# outer size: the size of the NT, e.g. [3, j0, 10]
|
871 |
+
# inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8])
|
872 |
+
# this function gets inner_size[inner_idx] for a given inner_idx.
|
873 |
+
#
|
874 |
+
# example: for outer size [a, b, c, j0, d, e, f]
|
875 |
+
# assume that j0 is ragged, other are concrete integers
|
876 |
+
# and ragged_idx=3
|
877 |
+
# inner size will be [b, c, inp._values.size(ragged_idx), d, e, f]
|
878 |
+
# therefore:
|
879 |
+
# inner_size[0] = outer_size[1]
|
880 |
+
# inner_size[1] = outer_size[2]
|
881 |
+
# inner_size[0] = inp._values.size(ragged_idx - 1)
|
882 |
+
# inner_size[3] = outer_size[4]
|
883 |
+
# inner_size[4] = outer_size[5]
|
884 |
+
def get_inner_size(inner_idx):
|
885 |
+
nonlocal inp, size
|
886 |
+
if inner_idx == inp._ragged_idx - 1:
|
887 |
+
return inp._values.size(inner_idx)
|
888 |
+
else:
|
889 |
+
return size[inner_idx + 1]
|
890 |
+
|
891 |
+
inner_size = [get_inner_size(i) for i in range(len(size) - 1)]
|
892 |
+
|
893 |
+
return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp))
|
894 |
+
|
895 |
+
|
896 |
+
@register_jagged_func(
|
897 |
+
torch.ops.aten.native_layer_norm.default,
|
898 |
+
"input: jt, normalized_shape: any, weight: any?, bias: any?, eps: any",
|
899 |
+
)
|
900 |
+
def native_layer_norm_default(func, *args, **kwargs):
|
901 |
+
_, new_kwargs = normalize_function(
|
902 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
903 |
+
)
|
904 |
+
|
905 |
+
inp = new_kwargs.pop("input")
|
906 |
+
normalized_shape = new_kwargs["normalized_shape"]
|
907 |
+
|
908 |
+
# Ensure we're not trying to normalize over the ragged dim
|
909 |
+
if inp.dim() < 3 or (inp.dim() - len(normalized_shape)) < 2:
|
910 |
+
raise RuntimeError(
|
911 |
+
"layer_norm(): normalizing over ragged dim not supported for nested tensors"
|
912 |
+
)
|
913 |
+
|
914 |
+
output, mean, std = func(inp._values, **new_kwargs)
|
915 |
+
return (NestedTensor(output, **extract_kwargs(inp)), mean, std)
|
916 |
+
|
917 |
+
|
918 |
+
@register_jagged_func(
|
919 |
+
torch.ops.aten.native_layer_norm_backward.default,
|
920 |
+
"grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any",
|
921 |
+
)
|
922 |
+
def native_layer_norm_backward_default(func, *args, **kwargs):
|
923 |
+
_, new_kwargs = normalize_function(
|
924 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
925 |
+
)
|
926 |
+
grad_out = new_kwargs.pop("grad_out")
|
927 |
+
inp = new_kwargs.pop("input")
|
928 |
+
d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs)
|
929 |
+
if d_input is None:
|
930 |
+
return (None, d_gamma, d_beta)
|
931 |
+
|
932 |
+
return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta)
|
933 |
+
|
934 |
+
|
935 |
+
@register_jagged_func(torch.ops.aten.select.int, "self: jt, dim: any, index: any")
|
936 |
+
def select_int(func, *args, **kwargs):
|
937 |
+
_, new_kwargs = normalize_function(
|
938 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
939 |
+
)
|
940 |
+
|
941 |
+
inp = new_kwargs.pop("input")
|
942 |
+
new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "select")
|
943 |
+
|
944 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
945 |
+
|
946 |
+
|
947 |
+
@register_jagged_func(
|
948 |
+
torch.ops.aten.slice.Tensor,
|
949 |
+
"self: jt, dim: any?, start: any?, end: any?, step: any?",
|
950 |
+
)
|
951 |
+
def slice_tensor(func, *args, **kwargs):
|
952 |
+
_, new_kwargs = normalize_function(
|
953 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
954 |
+
)
|
955 |
+
|
956 |
+
inp = new_kwargs.pop("input")
|
957 |
+
new_kwargs["dim"] = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], "slice")
|
958 |
+
|
959 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
960 |
+
|
961 |
+
|
962 |
+
@register_jagged_func(
|
963 |
+
torch.ops.aten.convolution.default,
|
964 |
+
"input: jt, weight: t, bias: t?, stride: any, padding: any, "
|
965 |
+
"dilation: any, transposed: any, output_padding: any, groups: any",
|
966 |
+
)
|
967 |
+
def convolution_default(func, *args, **kwargs):
|
968 |
+
_, new_kwargs = normalize_function(
|
969 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
970 |
+
)
|
971 |
+
|
972 |
+
inp = new_kwargs.pop("input")
|
973 |
+
|
974 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
975 |
+
|
976 |
+
|
977 |
+
@register_jagged_func(
|
978 |
+
torch.ops.aten.mean.dim, "self: jt, dim: any?, keepdim: any, dtype: any?"
|
979 |
+
)
|
980 |
+
def mean_dim(func, *args, **kwargs):
|
981 |
+
_, new_kwargs = normalize_function(
|
982 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
983 |
+
)
|
984 |
+
|
985 |
+
inp = new_kwargs.pop("input")
|
986 |
+
# NB: mean expects dim as a single item list of ints for some reason
|
987 |
+
new_kwargs["dim"] = [_wrap_jagged_dim(inp.dim(), new_kwargs["dim"][0], "mean")]
|
988 |
+
|
989 |
+
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
990 |
+
|
991 |
+
|
992 |
+
@register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any")
|
993 |
+
def stack_default(func, *args, **kwargs):
|
994 |
+
_, new_kwargs = normalize_function(
|
995 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
996 |
+
)
|
997 |
+
|
998 |
+
# guaranteed this is non-empty if we got here
|
999 |
+
tensors = new_kwargs.pop("tensors")
|
1000 |
+
for t in tensors:
|
1001 |
+
if not isinstance(t, NestedTensor):
|
1002 |
+
raise RuntimeError("stack(): expected all nested tensors inputs")
|
1003 |
+
|
1004 |
+
if t.dim() != tensors[0].dim():
|
1005 |
+
raise RuntimeError(
|
1006 |
+
"stack(): expected all nested tensors to have the same dim"
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
if not raggedness_matches(t, tensors[0].shape):
|
1010 |
+
raise RuntimeError(
|
1011 |
+
"stack(): expected all nested tensors to have the same nested structure"
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
new_kwargs["dim"] = _wrap_jagged_dim(
|
1015 |
+
tensors[0].dim() + 1, new_kwargs["dim"], "stack"
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
return NestedTensor(
|
1019 |
+
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
|
1023 |
+
@register_jagged_func(
|
1024 |
+
torch.ops.aten.embedding.default,
|
1025 |
+
"weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?",
|
1026 |
+
)
|
1027 |
+
def embedding_default(func, *args, **kwargs):
|
1028 |
+
_, new_kwargs = normalize_function(
|
1029 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
# guaranteed this is non-empty if we got here
|
1033 |
+
indices = new_kwargs.pop("indices")
|
1034 |
+
weight = new_kwargs.pop("weight")
|
1035 |
+
|
1036 |
+
return NestedTensor(
|
1037 |
+
func(weight, indices._values, **new_kwargs), **extract_kwargs(indices)
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
|
1041 |
+
@register_jagged_func(
|
1042 |
+
[
|
1043 |
+
torch.ops.aten.values.default,
|
1044 |
+
torch.ops.aten._nested_get_values.default,
|
1045 |
+
],
|
1046 |
+
"self: jt_all",
|
1047 |
+
)
|
1048 |
+
def values_default(func, *args, **kwargs):
|
1049 |
+
_, new_kwargs = normalize_function(
|
1050 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
inp = new_kwargs.pop("input")
|
1054 |
+
|
1055 |
+
# TODO: Handle inference mode properly.
|
1056 |
+
# See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292
|
1057 |
+
return inp._values.detach()
|
1058 |
+
|
1059 |
+
|
1060 |
+
@register_jagged_func(
|
1061 |
+
torch.ops.aten._nested_view_from_jagged.default,
|
1062 |
+
"values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?",
|
1063 |
+
)
|
1064 |
+
def _nested_view_from_jagged_default(func, *args, **kwargs):
|
1065 |
+
_, new_kwargs = normalize_function(
|
1066 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
values, offsets, lengths = (
|
1070 |
+
new_kwargs["input"],
|
1071 |
+
new_kwargs["offsets"],
|
1072 |
+
new_kwargs["lengths"],
|
1073 |
+
)
|
1074 |
+
ragged_idx = new_kwargs["ragged_idx"]
|
1075 |
+
|
1076 |
+
return NestedTensor(values, offsets, lengths=lengths, _ragged_idx=ragged_idx)
|
1077 |
+
|
1078 |
+
|
1079 |
+
@register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all")
|
1080 |
+
def _nested_get_offsets(func, *args, **kwargs):
|
1081 |
+
_, new_kwargs = normalize_function(
|
1082 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
inp = new_kwargs.pop("input")
|
1086 |
+
return inp._offsets
|
1087 |
+
|
1088 |
+
|
1089 |
+
@register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all")
|
1090 |
+
def _nested_get_lengths(func, *args, **kwargs):
|
1091 |
+
_, new_kwargs = normalize_function(
|
1092 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
inp = new_kwargs.pop("input")
|
1096 |
+
return inp._lengths
|
1097 |
+
|
1098 |
+
|
1099 |
+
@register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all")
|
1100 |
+
def _nested_get_ragged_idx(func, *args, **kwargs):
|
1101 |
+
_, new_kwargs = normalize_function(
|
1102 |
+
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
inp = new_kwargs.pop("input")
|
1106 |
+
return inp._ragged_idx
|
1107 |
+
|
1108 |
+
|
1109 |
+
# Make the dummy available on the C++ side.
|
1110 |
+
@register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any")
|
1111 |
+
def _nested_get_jagged_dummy(func, *args, **kwargs):
|
1112 |
+
from torch.nested._internal.nested_tensor import _nt_view_dummy
|
1113 |
+
|
1114 |
+
return _nt_view_dummy
|
1115 |
+
|
1116 |
+
|
1117 |
+
with torch.library._scoped_library("aten", "IMPL") as aten:
|
1118 |
+
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU")
|
1119 |
+
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA")
|
1120 |
+
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")
|
venv/lib/python3.10/site-packages/torch/nested/_internal/sdpa.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.backends.cuda import (
|
8 |
+
can_use_efficient_attention,
|
9 |
+
can_use_flash_attention,
|
10 |
+
flash_sdp_enabled,
|
11 |
+
math_sdp_enabled,
|
12 |
+
mem_efficient_sdp_enabled,
|
13 |
+
SDPAParams,
|
14 |
+
)
|
15 |
+
|
16 |
+
from torch.nn.attention import SDPBackend
|
17 |
+
from .nested_tensor import NestedTensor
|
18 |
+
|
19 |
+
log = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
def _validate_sdpa_input(
|
23 |
+
query: torch.Tensor,
|
24 |
+
key: torch.Tensor,
|
25 |
+
value: torch.Tensor,
|
26 |
+
attn_mask: Optional[torch.Tensor] = None,
|
27 |
+
dropout_p=0.0,
|
28 |
+
is_causal=False,
|
29 |
+
scale=None,
|
30 |
+
):
|
31 |
+
if (
|
32 |
+
not isinstance(query, NestedTensor)
|
33 |
+
or not isinstance(key, NestedTensor)
|
34 |
+
or not isinstance(value, NestedTensor)
|
35 |
+
):
|
36 |
+
raise ValueError(
|
37 |
+
f"Expected query, key, and value to be nested tensors, "
|
38 |
+
f"but got query.is_nested: {query.is_nested}, key.is_nested: {key.is_nested}, "
|
39 |
+
f"and value.is_nested: {value.is_nested} instead."
|
40 |
+
)
|
41 |
+
if query.dtype != key.dtype or query.dtype != value.dtype:
|
42 |
+
raise ValueError(
|
43 |
+
f"Expected query, key, and value to have the same dtype, "
|
44 |
+
f"but got query.dtype: {query.dtype}, key.dtype: {key.dtype}, "
|
45 |
+
f"and value.dtype: {value.dtype} instead."
|
46 |
+
)
|
47 |
+
if query.device != key.device or query.device != value.device:
|
48 |
+
raise ValueError(
|
49 |
+
f"Expected query, key, and value to have the same device type, "
|
50 |
+
f"but got query.device: {query.device}, key.device: {key.device}, "
|
51 |
+
f"and value.device: {value.device} instead."
|
52 |
+
)
|
53 |
+
if query.dim() < 2 or key.dim() < 2 or value.dim() < 2:
|
54 |
+
raise ValueError(
|
55 |
+
f"Expected query, key, and value to all be at least 2 dimensional, but got query.dim: "
|
56 |
+
f"{query.dim()}, key.dim: {key.dim()} and value.dim: {value.dim()} instead."
|
57 |
+
)
|
58 |
+
if query._ragged_idx != key._ragged_idx or query._ragged_idx != value._ragged_idx:
|
59 |
+
raise ValueError(
|
60 |
+
f"Expected query, key, and value to all be ragged on the same dimension, but got ragged "
|
61 |
+
f"dims {query._ragged_idx}, {key._ragged_idx}, and {value._ragged_idx}, respectively."
|
62 |
+
)
|
63 |
+
if attn_mask is not None:
|
64 |
+
# TODO: Figure out whether masks are actually supported for this layout or not
|
65 |
+
raise ValueError("Masks are not yet supported!")
|
66 |
+
if attn_mask.dtype != torch.bool and attn_mask.dtype != query.dtype:
|
67 |
+
raise ValueError(
|
68 |
+
f"Expected attn_mask dtype to be bool or to match query dtype, but got attn_mask.dtype: "
|
69 |
+
f"{attn_mask.dtype}, and query.dtype: {query.dtype} instead."
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def _check_batch_size_nested(params: SDPAParams, debug=False) -> bool:
|
74 |
+
# This is expected to be called after check_tensor_shapes ensuring that the
|
75 |
+
# size() calls won't error since the inputs are all 4 dimensional
|
76 |
+
q_batch_size = params.query.size(0)
|
77 |
+
k_batch_size = params.key.size(0)
|
78 |
+
v_batch_size = params.value.size(0)
|
79 |
+
|
80 |
+
# num_heads logic for nested input is checked in
|
81 |
+
# check_for_seq_len_0_nested_tensor as there is handling there to make sure
|
82 |
+
# num_heads is not ragged
|
83 |
+
return q_batch_size == k_batch_size and q_batch_size == v_batch_size
|
84 |
+
|
85 |
+
|
86 |
+
def _check_head_dim_size_flash_nested(params: SDPAParams, debug=False) -> bool:
|
87 |
+
max_size = 256
|
88 |
+
query_size_last = params.query.size(-1)
|
89 |
+
key_size_last = params.key.size(-1)
|
90 |
+
value_size_last = params.value.size(-1)
|
91 |
+
same_head_dim_size = (
|
92 |
+
query_size_last == key_size_last and query_size_last == value_size_last
|
93 |
+
)
|
94 |
+
if not (
|
95 |
+
same_head_dim_size
|
96 |
+
and (query_size_last % 8 == 0)
|
97 |
+
and (query_size_last <= max_size)
|
98 |
+
):
|
99 |
+
if debug:
|
100 |
+
log.warning(
|
101 |
+
"For NestedTensor inputs, Flash attention requires q,k,v to have the same "
|
102 |
+
"last dimension and to be a multiple of 8 and less than or equal to 256. "
|
103 |
+
"Got Query.size(-1): %d, Key.size(-1): %d, Value.size(-1): %d instead.",
|
104 |
+
query_size_last,
|
105 |
+
key_size_last,
|
106 |
+
value_size_last,
|
107 |
+
)
|
108 |
+
return False
|
109 |
+
return True
|
110 |
+
|
111 |
+
|
112 |
+
def _check_for_seq_len_0_and_consistent_head_dim_nested_helper(
|
113 |
+
param: torch.Tensor, param_name: str, debug=False
|
114 |
+
) -> bool:
|
115 |
+
assert isinstance(param, NestedTensor), "param should be a jagged NT"
|
116 |
+
|
117 |
+
if param._ragged_idx == 1:
|
118 |
+
# num_head_dims is ragged
|
119 |
+
if debug:
|
120 |
+
log.warning(
|
121 |
+
"Fused kernels do not support ragged num_head_dims, %s has a ragged num_heads.",
|
122 |
+
param_name,
|
123 |
+
)
|
124 |
+
return False
|
125 |
+
|
126 |
+
# This is being called inside sdp with shape [batch, heads, {seq_len}, dim]
|
127 |
+
if param._min_seqlen == 0:
|
128 |
+
if debug:
|
129 |
+
log.warning(
|
130 |
+
"Fused kernels do not support seq_len == 0, %s has a seq len of 0.",
|
131 |
+
param_name,
|
132 |
+
)
|
133 |
+
return False
|
134 |
+
|
135 |
+
return True
|
136 |
+
|
137 |
+
|
138 |
+
def _try_broadcast_param_size(q_size, k_size, v_size, param_name, debug=False) -> bool:
|
139 |
+
max_size = max(q_size, k_size, v_size)
|
140 |
+
if (
|
141 |
+
(q_size != max_size and q_size != 1)
|
142 |
+
or (k_size != max_size and k_size != 1)
|
143 |
+
or (v_size != max_size and v_size != 1)
|
144 |
+
):
|
145 |
+
if debug:
|
146 |
+
log.warning(
|
147 |
+
"Both fused kernels require query, key and value to have broadcastable %s, "
|
148 |
+
"got Query %s %d, Key %s %d, Value %s %d instead.",
|
149 |
+
param_name,
|
150 |
+
param_name,
|
151 |
+
q_size,
|
152 |
+
param_name,
|
153 |
+
k_size,
|
154 |
+
param_name,
|
155 |
+
v_size,
|
156 |
+
)
|
157 |
+
return False
|
158 |
+
return True
|
159 |
+
|
160 |
+
|
161 |
+
def _check_for_seq_len_0_nested(params: SDPAParams, debug=False) -> bool:
|
162 |
+
# When this function is called we are assured that the nt is dim==4
|
163 |
+
q_is_safe = (
|
164 |
+
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
|
165 |
+
params.query, "query", debug
|
166 |
+
)
|
167 |
+
if params.query.is_nested
|
168 |
+
else True
|
169 |
+
)
|
170 |
+
# short circuit if any is unsafe
|
171 |
+
if not q_is_safe:
|
172 |
+
return False
|
173 |
+
|
174 |
+
k_is_safe = (
|
175 |
+
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
|
176 |
+
params.key, "key", debug
|
177 |
+
)
|
178 |
+
if params.key.is_nested
|
179 |
+
else True
|
180 |
+
)
|
181 |
+
# short circuit if any is unsafe
|
182 |
+
if not k_is_safe:
|
183 |
+
return False
|
184 |
+
|
185 |
+
v_is_safe = (
|
186 |
+
_check_for_seq_len_0_and_consistent_head_dim_nested_helper(
|
187 |
+
params.value, "value", debug
|
188 |
+
)
|
189 |
+
if params.value.is_nested
|
190 |
+
else True
|
191 |
+
)
|
192 |
+
# short circuit if any is unsafe
|
193 |
+
if not v_is_safe:
|
194 |
+
return False
|
195 |
+
|
196 |
+
# We now know none of the inputs have ragged num_heads, so we can safely
|
197 |
+
# access .size(1)
|
198 |
+
q_num_heads = params.query.size(1)
|
199 |
+
k_num_heads = params.key.size(1)
|
200 |
+
v_num_heads = params.value.size(1)
|
201 |
+
same_num_heads = q_num_heads == k_num_heads and q_num_heads == v_num_heads
|
202 |
+
|
203 |
+
if not same_num_heads:
|
204 |
+
if (
|
205 |
+
params.query.requires_grad
|
206 |
+
or params.key.requires_grad
|
207 |
+
or params.value.requires_grad
|
208 |
+
):
|
209 |
+
if debug:
|
210 |
+
log.warning(
|
211 |
+
"Both fused kernels do not support training with broadcasted NT inputs."
|
212 |
+
)
|
213 |
+
return False
|
214 |
+
return _try_broadcast_param_size(
|
215 |
+
q_num_heads, k_num_heads, v_num_heads, "num heads", debug
|
216 |
+
)
|
217 |
+
return True
|
218 |
+
|
219 |
+
|
220 |
+
def _can_use_flash_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
|
221 |
+
constraints = (
|
222 |
+
_check_batch_size_nested,
|
223 |
+
_check_head_dim_size_flash_nested,
|
224 |
+
_check_for_seq_len_0_nested,
|
225 |
+
)
|
226 |
+
for constraint in constraints:
|
227 |
+
if not constraint(params, debug):
|
228 |
+
return False
|
229 |
+
return True
|
230 |
+
|
231 |
+
|
232 |
+
def _can_use_efficient_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
|
233 |
+
constraints = (
|
234 |
+
_check_batch_size_nested,
|
235 |
+
_check_for_seq_len_0_nested,
|
236 |
+
)
|
237 |
+
for constraint in constraints:
|
238 |
+
if not constraint(params, debug):
|
239 |
+
return False
|
240 |
+
return True
|
241 |
+
|
242 |
+
|
243 |
+
def _can_use_math_sdpa_jagged(params: SDPAParams, debug=False) -> bool:
|
244 |
+
if (
|
245 |
+
not params.query.transpose(1, 2).is_contiguous()
|
246 |
+
or not params.key.transpose(1, 2).is_contiguous()
|
247 |
+
or not params.value.transpose(1, 2).is_contiguous()
|
248 |
+
):
|
249 |
+
if debug:
|
250 |
+
log.warning(
|
251 |
+
"If inputs are nested tensors they must be contiguous after transposing."
|
252 |
+
)
|
253 |
+
return False
|
254 |
+
if params.is_causal:
|
255 |
+
if debug:
|
256 |
+
log.warning(
|
257 |
+
"Nested tensors for query / key are not supported when is_causal=True."
|
258 |
+
)
|
259 |
+
return False
|
260 |
+
return True
|
261 |
+
|
262 |
+
|
263 |
+
def _select_sdp_backend(query, key, value, attn_mask, dropout, is_causal):
|
264 |
+
if (
|
265 |
+
not flash_sdp_enabled()
|
266 |
+
and not mem_efficient_sdp_enabled()
|
267 |
+
and not math_sdp_enabled()
|
268 |
+
):
|
269 |
+
return SDPBackend.ERROR
|
270 |
+
|
271 |
+
ordering = (
|
272 |
+
SDPBackend.FLASH_ATTENTION,
|
273 |
+
SDPBackend.EFFICIENT_ATTENTION,
|
274 |
+
SDPBackend.MATH,
|
275 |
+
)
|
276 |
+
|
277 |
+
params = SDPAParams(query, key, value, attn_mask, dropout, is_causal)
|
278 |
+
|
279 |
+
for backend in ordering:
|
280 |
+
if backend == SDPBackend.FLASH_ATTENTION:
|
281 |
+
if can_use_flash_attention(params) and _can_use_flash_sdpa_jagged(params):
|
282 |
+
return SDPBackend.FLASH_ATTENTION
|
283 |
+
if backend == SDPBackend.EFFICIENT_ATTENTION:
|
284 |
+
if can_use_efficient_attention(params) and _can_use_efficient_sdpa_jagged(
|
285 |
+
params
|
286 |
+
):
|
287 |
+
return SDPBackend.EFFICIENT_ATTENTION
|
288 |
+
if backend == SDPBackend.MATH:
|
289 |
+
if math_sdp_enabled() and _can_use_math_sdpa_jagged(params):
|
290 |
+
return SDPBackend.MATH
|
291 |
+
|
292 |
+
log.warning("Memory efficient kernel not used because:")
|
293 |
+
can_use_efficient_attention(params, debug=True)
|
294 |
+
_can_use_efficient_sdpa_jagged(params, debug=True)
|
295 |
+
log.warning("Flash attention kernel not used because:")
|
296 |
+
can_use_flash_attention(params, debug=True)
|
297 |
+
_can_use_flash_sdpa_jagged(params, debug=True)
|
298 |
+
log.warning("Math attention kernel not used because:")
|
299 |
+
_can_use_math_sdpa_jagged(params, debug=True)
|
300 |
+
return SDPBackend.ERROR
|
301 |
+
|
302 |
+
|
303 |
+
def _cumulative_and_max_seq_len_nnz(qkv: torch.Tensor) -> Tuple[torch.Tensor, int, int]:
|
304 |
+
# This function is used to calculate two pieces of metadata that are needed
|
305 |
+
# for use with flash-attention and efficient_attention kernels. They are the
|
306 |
+
# cumulative sequence_length over a batch of sequences and the maximum
|
307 |
+
# sequence length.
|
308 |
+
|
309 |
+
# It returns a tuple of cumulative sequence lengths and the maximum sequence
|
310 |
+
# length, and the last element in the cumulative_sequence_lengths
|
311 |
+
if not isinstance(qkv, NestedTensor):
|
312 |
+
raise ValueError("QKV must be nested for flash cumulative_seq_len calculation.")
|
313 |
+
|
314 |
+
if qkv.lengths() is None:
|
315 |
+
# TODO: Explore performance impact of copying
|
316 |
+
cumulative_seqlen = qkv.offsets().to(dtype=torch.int32, device=qkv.device)
|
317 |
+
max_seqlen = qkv._max_seqlen
|
318 |
+
n_elem = qkv.values().shape[0]
|
319 |
+
else:
|
320 |
+
# TODO: Explore performance impact of copying
|
321 |
+
cumulative_seqlen = (
|
322 |
+
qkv.lengths().cumsum(0).to(dtype=torch.int32, device=qkv.device)
|
323 |
+
)
|
324 |
+
batch_size = qkv.size(0)
|
325 |
+
max_seqlen = qkv._max_seqlen
|
326 |
+
# TODO: Explore performance impact when compiling
|
327 |
+
n_elem = int(cumulative_seqlen[-1].item())
|
328 |
+
return cumulative_seqlen, max_seqlen, n_elem
|
329 |
+
|
330 |
+
|
331 |
+
def _is_safe_to_get_storage_as_tensor(tensor: torch.Tensor):
|
332 |
+
# This function checks if a nested tensor is valid for
|
333 |
+
# use with the flash-attention and efficient_attention kernels without
|
334 |
+
# needing to call contiguous on the nested tensor input.
|
335 |
+
# It checks that the storage offsets' adjacent_differences are a constant
|
336 |
+
# mutiple of the previous tensor in the nested tensor and that the strides
|
337 |
+
# are monitonically decreasing. This check is done after calling transpose on
|
338 |
+
# the nested tensor resulting in a Nt of shape [bsz, {seq_len}, num_heads, dim]
|
339 |
+
|
340 |
+
# Returns a boolean indicating if contiguous needs to be called for input
|
341 |
+
assert isinstance(tensor, NestedTensor)
|
342 |
+
offsets = tensor.offsets()
|
343 |
+
strides = tensor._strides
|
344 |
+
|
345 |
+
n_tensors = offsets.size(0) - 1
|
346 |
+
if n_tensors <= 1:
|
347 |
+
return True
|
348 |
+
|
349 |
+
# Check initially that the tensor strides are in strictly descending order
|
350 |
+
prev_stride = strides[1]
|
351 |
+
for stride in strides[2:]:
|
352 |
+
if prev_stride <= stride:
|
353 |
+
# This would mean that the last stride is greater than the seq_len
|
354 |
+
# stride
|
355 |
+
return False
|
356 |
+
prev_stride = stride
|
357 |
+
|
358 |
+
# Congrats you made it!
|
359 |
+
return True
|
360 |
+
|
361 |
+
|
362 |
+
def _view_as_dense(
|
363 |
+
tensor: torch.Tensor, Nnz: int, num_heads: int, head_dim: int
|
364 |
+
) -> torch.Tensor:
|
365 |
+
if tensor.is_nested:
|
366 |
+
return tensor.values()
|
367 |
+
return tensor.view(Nnz, num_heads, head_dim)
|
368 |
+
|
369 |
+
|
370 |
+
# TODO: Next iteration should add test cases and check it works
|
371 |
+
# def _sdpa_nested_preprocessing_with_broadcast(query, key, value):
|
372 |
+
# # Query (Batch x Num_heads x {Q_seq_len} x Dim_per_head)
|
373 |
+
# # Key (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
|
374 |
+
# # Value (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
|
375 |
+
# q_batch_size = query.size(0)
|
376 |
+
# k_batch_size = key.size(0)
|
377 |
+
# v_batch_size = value.size(0)
|
378 |
+
|
379 |
+
# output_batch_size = max(q_batch_size, k_batch_size, v_batch_size)
|
380 |
+
|
381 |
+
# q_num_heads = query.size(1)
|
382 |
+
# k_num_heads = key.size(1)
|
383 |
+
# v_num_heads = value.size(1)
|
384 |
+
|
385 |
+
# output_num_heads = max(q_num_heads, k_num_heads, v_num_heads)
|
386 |
+
|
387 |
+
# head_dim_qk = query.size(3)
|
388 |
+
# head_dim_v = value.size(3)
|
389 |
+
|
390 |
+
# q_t = query.transpose(1, 2)
|
391 |
+
# k_t = key.transpose(1, 2)
|
392 |
+
# v_t = value.transpose(1, 2)
|
393 |
+
|
394 |
+
# # Checks in sdp_utils ensure that if {*}_batch_size/{*}_num_heads !=
|
395 |
+
# # output_batch_size/num_heads then they are 1
|
396 |
+
# q_batch_size_needs_broadcast = q_batch_size != output_batch_size
|
397 |
+
# k_batch_size_needs_broadcast = k_batch_size != output_batch_size
|
398 |
+
# v_batch_size_needs_broadcast = v_batch_size != output_batch_size
|
399 |
+
|
400 |
+
# # If {*}_batch_size_needs_broadcast, then
|
401 |
+
# # (1) max_seqlen_batch_{*} is given by {*}_t.size(1)
|
402 |
+
# # this is because needs_broadcast indicates that the batch_size is 1
|
403 |
+
# # and hence there is only 1 value for seq_len
|
404 |
+
# # (2) The cum_seq_lens are given by [0, {*}_t.size(1), 2 * {*}_t.size(1),
|
405 |
+
# # ..., outut_batch_size * {*}_t.size(1)]
|
406 |
+
# # (3) Nnz_{*} is given by output_batch_size * {*}_t.size(1)
|
407 |
+
|
408 |
+
# if q_batch_size_needs_broadcast or not q_t.is_nested:
|
409 |
+
# max_seqlen_batch_q = q_t.size(1)
|
410 |
+
# cumulative_sequence_length_q = torch.arange(
|
411 |
+
# 0,
|
412 |
+
# (output_batch_size + 1) * max_seqlen_batch_q,
|
413 |
+
# max_seqlen_batch_q,
|
414 |
+
# device=q_t.device,
|
415 |
+
# dtype=torch.int32,
|
416 |
+
# )
|
417 |
+
# Nnz_q = output_batch_size * max_seqlen_batch_q
|
418 |
+
# else:
|
419 |
+
# (
|
420 |
+
# cumulative_sequence_length_q,
|
421 |
+
# max_seqlen_batch_q,
|
422 |
+
# Nnz_q,
|
423 |
+
# ) = _cumulative_and_max_seq_len_nnz(q_t)
|
424 |
+
|
425 |
+
# if k_batch_size_needs_broadcast and v_batch_size_needs_broadcast:
|
426 |
+
# assert k_t.size(1) == v_t.size(1)
|
427 |
+
# max_seqlen_batch_kv = k_t.size(1)
|
428 |
+
# cumulative_sequence_length_kv = torch.arange(
|
429 |
+
# 0,
|
430 |
+
# (output_batch_size + 1) * max_seqlen_batch_kv,
|
431 |
+
# max_seqlen_batch_kv,
|
432 |
+
# device=k_t.device,
|
433 |
+
# dtype=torch.int32,
|
434 |
+
# )
|
435 |
+
# Nnz_kv = output_batch_size * max_seqlen_batch_kv
|
436 |
+
# else:
|
437 |
+
# cumulative_sequence_length_kv, max_seqlen_batch_kv, Nnz_kv = (
|
438 |
+
# _cumulative_and_max_seq_len_nnz(v_t)
|
439 |
+
# if k_batch_size_needs_broadcast
|
440 |
+
# else _cumulative_and_max_seq_len_nnz(k_t)
|
441 |
+
# )
|
442 |
+
|
443 |
+
# q_num_heads_needs_broadcast = q_num_heads != output_num_heads
|
444 |
+
# k_num_heads_needs_broadcast = k_num_heads != output_num_heads
|
445 |
+
# v_num_heads_needs_broadcast = v_num_heads != output_num_heads
|
446 |
+
|
447 |
+
# if not q_t.is_nested:
|
448 |
+
# query_buffer_reshaped = q_t.expand(
|
449 |
+
# output_batch_size, q_t.size(1), output_num_heads, head_dim_qk
|
450 |
+
# )
|
451 |
+
# query_buffer_reshaped = query_buffer_reshaped.reshape(
|
452 |
+
# Nnz_q, output_num_heads, head_dim_qk
|
453 |
+
# )
|
454 |
+
# else:
|
455 |
+
# if not q_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(q_t):
|
456 |
+
# q_t = q_t.contiguous()
|
457 |
+
# # If we are broadcasting then Nnz_q will be the output_batch_size since
|
458 |
+
# # seq_len is 1
|
459 |
+
# effective_batch_size_q = (
|
460 |
+
# output_batch_size if q_batch_size_needs_broadcast else Nnz_q
|
461 |
+
# )
|
462 |
+
# query_buffer_reshaped = _view_as_dense(
|
463 |
+
# q_t, effective_batch_size_q, output_num_heads, head_dim_qk
|
464 |
+
# )
|
465 |
+
|
466 |
+
# # If the physical layout of the NestedTensor's storage
|
467 |
+
# # is not: batch, {seq_len}, num_heads, head_dim then we need
|
468 |
+
# # to call contiguous
|
469 |
+
# if not k_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(k_t):
|
470 |
+
# k_t = k_t.contiguous()
|
471 |
+
# if not v_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(v_t):
|
472 |
+
# v_t = v_t.contiguous()
|
473 |
+
|
474 |
+
# effective_batch_size_k = (
|
475 |
+
# output_batch_size if k_batch_size_needs_broadcast else Nnz_kv
|
476 |
+
# )
|
477 |
+
# key_buffer_reshaped = _view_as_dense(
|
478 |
+
# k_t, effective_batch_size_k, output_num_heads, head_dim_qk
|
479 |
+
# )
|
480 |
+
|
481 |
+
# effective_batch_size_v = (
|
482 |
+
# output_batch_size if v_batch_size_needs_broadcast else Nnz_kv
|
483 |
+
# )
|
484 |
+
# value_buffer_reshaped = _view_as_dense(
|
485 |
+
# v_t, effective_batch_size_v, output_num_heads, head_dim_v
|
486 |
+
# )
|
487 |
+
|
488 |
+
# if not q_batch_size_needs_broadcast:
|
489 |
+
# output_shape = q_t._size
|
490 |
+
# if head_dim_v != head_dim_qk:
|
491 |
+
# output_shape[-1] = head_dim_v
|
492 |
+
# if q_num_heads_needs_broadcast:
|
493 |
+
# output_shape[1] = output_num_heads
|
494 |
+
# else:
|
495 |
+
# output_shape = torch.empty(3, dtype=torch.int64, device=torch.device("cpu"))
|
496 |
+
# output_shape[0] = q_t.size(1)
|
497 |
+
# output_shape[1] = output_num_heads
|
498 |
+
# output_shape[2] = head_dim_v
|
499 |
+
|
500 |
+
# return (
|
501 |
+
# query_buffer_reshaped,
|
502 |
+
# key_buffer_reshaped,
|
503 |
+
# value_buffer_reshaped,
|
504 |
+
# cumulative_sequence_length_q,
|
505 |
+
# cumulative_sequence_length_kv,
|
506 |
+
# max_seqlen_batch_q,
|
507 |
+
# max_seqlen_batch_kv,
|
508 |
+
# output_shape,
|
509 |
+
# )
|
510 |
+
|
511 |
+
|
512 |
+
def _sdpa_nested_preprocessing(query, key, value):
|
513 |
+
# Query (Batch x Num_heads x {Q_seq_len} x Dim_per_head)
|
514 |
+
# Key (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
|
515 |
+
# Value (Batch x Num_heads x {KV_seq_len} x Dim_per_head)
|
516 |
+
q_batch_size = query.size(0)
|
517 |
+
k_batch_size = key.size(0)
|
518 |
+
v_batch_size = value.size(0)
|
519 |
+
|
520 |
+
q_num_heads = query.size(1)
|
521 |
+
k_num_heads = key.size(1)
|
522 |
+
v_num_heads = value.size(1)
|
523 |
+
|
524 |
+
if not (q_batch_size == k_batch_size and q_batch_size == v_batch_size) or not (
|
525 |
+
q_num_heads == k_num_heads and k_num_heads == v_num_heads
|
526 |
+
):
|
527 |
+
raise RuntimeError(
|
528 |
+
"This path is currently not implemented for jagged layout NT."
|
529 |
+
)
|
530 |
+
# return _sdpa_nested_preprocessing_with_broadcast(query, key, value)
|
531 |
+
|
532 |
+
num_heads = query.size(1)
|
533 |
+
head_dim_qk = query.size(3)
|
534 |
+
head_dim_v = value.size(3)
|
535 |
+
q_t = query.transpose(1, 2)
|
536 |
+
k_t = key.transpose(1, 2)
|
537 |
+
v_t = value.transpose(1, 2)
|
538 |
+
|
539 |
+
(
|
540 |
+
cumulative_sequence_length_q,
|
541 |
+
max_seqlen_batch_q,
|
542 |
+
Nnz_q,
|
543 |
+
) = _cumulative_and_max_seq_len_nnz(q_t)
|
544 |
+
(
|
545 |
+
cumulative_sequence_length_kv,
|
546 |
+
max_seqlen_batch_kv,
|
547 |
+
Nnz_kv,
|
548 |
+
) = _cumulative_and_max_seq_len_nnz(k_t)
|
549 |
+
|
550 |
+
# [TODO] K and V have to have the same Nnz, should probably torch_check
|
551 |
+
# assume in order to not iterate over v
|
552 |
+
|
553 |
+
# If the physical layout of the NestedTensor's storage
|
554 |
+
# is not: batch, {seq_len}, num_heads, head_dim then we need
|
555 |
+
# to call contiguous
|
556 |
+
if not q_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(q_t):
|
557 |
+
q_t = q_t.contiguous()
|
558 |
+
if not k_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(k_t):
|
559 |
+
k_t = k_t.contiguous()
|
560 |
+
if not v_t.is_contiguous() and not _is_safe_to_get_storage_as_tensor(v_t):
|
561 |
+
v_t = v_t.contiguous()
|
562 |
+
|
563 |
+
query_buffer_reshaped = _view_as_dense(q_t, Nnz_q, num_heads, head_dim_qk)
|
564 |
+
key_buffer_reshaped = _view_as_dense(k_t, Nnz_kv, num_heads, head_dim_qk)
|
565 |
+
value_buffer_reshaped = _view_as_dense(v_t, Nnz_kv, num_heads, head_dim_v)
|
566 |
+
|
567 |
+
output_nt_info = {
|
568 |
+
"offsets": q_t.offsets(),
|
569 |
+
"_max_seqlen": q_t._max_seqlen,
|
570 |
+
"_min_seqlen": q_t._min_seqlen,
|
571 |
+
}
|
572 |
+
|
573 |
+
return (
|
574 |
+
query_buffer_reshaped,
|
575 |
+
key_buffer_reshaped,
|
576 |
+
value_buffer_reshaped,
|
577 |
+
cumulative_sequence_length_q,
|
578 |
+
cumulative_sequence_length_kv,
|
579 |
+
max_seqlen_batch_q,
|
580 |
+
max_seqlen_batch_kv,
|
581 |
+
output_nt_info,
|
582 |
+
)
|
583 |
+
|
584 |
+
|
585 |
+
def _pad_last_dim(
|
586 |
+
tensor: torch.Tensor, alignment_size: int, slice: bool
|
587 |
+
) -> torch.Tensor:
|
588 |
+
# FlashAttentionV2 requires that head dimension be a multiple of 8
|
589 |
+
# This was previously done within the kernel, however
|
590 |
+
# This causes the kernel to maybe alias query, key, value
|
591 |
+
# So instead we pad the head_dimensions to be a multiple of 8
|
592 |
+
# in the composite region
|
593 |
+
last_dim_size = tensor.size(-1)
|
594 |
+
if last_dim_size % alignment_size == 0:
|
595 |
+
return tensor
|
596 |
+
pad_count = alignment_size - (last_dim_size % alignment_size)
|
597 |
+
tensor = torch.nn.functional.pad(tensor, [0, pad_count])
|
598 |
+
if slice:
|
599 |
+
return tensor[..., 0:last_dim_size]
|
600 |
+
return tensor
|
601 |
+
|
602 |
+
|
603 |
+
# TODO: coalesce with torch/nn/utils/attention.py
|
604 |
+
def _calculate_scale(query, scale):
|
605 |
+
# TODO: Investigate why math.sqrt() isn't properly handled by Dynamo?
|
606 |
+
softmax_scale = scale if scale is not None else torch.sym_sqrt(1.0 / query.size(-1))
|
607 |
+
return softmax_scale
|
608 |
+
|
609 |
+
|
610 |
+
def _post_process_flash_output(out: torch.Tensor, og_size):
|
611 |
+
if not out.is_nested and out.size(-1) != og_size:
|
612 |
+
out = out[..., 0:og_size]
|
613 |
+
return out
|
614 |
+
|
615 |
+
|
616 |
+
def jagged_scaled_dot_product_attention(
|
617 |
+
query: torch.Tensor,
|
618 |
+
key: torch.Tensor,
|
619 |
+
value: torch.Tensor,
|
620 |
+
attn_mask: Optional[torch.Tensor] = None,
|
621 |
+
dropout_p=0.0,
|
622 |
+
is_causal=False,
|
623 |
+
scale=None,
|
624 |
+
):
|
625 |
+
_validate_sdpa_input(query, key, value, attn_mask, dropout_p, is_causal, scale)
|
626 |
+
# for mypy, ugh
|
627 |
+
assert (
|
628 |
+
isinstance(query, NestedTensor)
|
629 |
+
and isinstance(key, NestedTensor)
|
630 |
+
and isinstance(value, NestedTensor)
|
631 |
+
)
|
632 |
+
|
633 |
+
# Special path for non-ragged sequence length (e.g. for SAM where we have a ragged
|
634 |
+
# second batch dim instead). For this case, we can just send the dense buffers through
|
635 |
+
# vanilla SDPA.
|
636 |
+
if query.dim() > 3 and key.dim() > 3 and value.dim() > 3 and query._ragged_idx == 1:
|
637 |
+
from torch.nested._internal.ops import extract_kwargs
|
638 |
+
|
639 |
+
output = F.scaled_dot_product_attention(
|
640 |
+
query._values,
|
641 |
+
key._values,
|
642 |
+
value._values,
|
643 |
+
attn_mask=(
|
644 |
+
attn_mask._values if isinstance(attn_mask, NestedTensor) else attn_mask
|
645 |
+
),
|
646 |
+
dropout_p=dropout_p,
|
647 |
+
is_causal=is_causal,
|
648 |
+
scale=scale,
|
649 |
+
)
|
650 |
+
|
651 |
+
return NestedTensor(output, **extract_kwargs(query))
|
652 |
+
|
653 |
+
compute_logsumexp = query.requires_grad or key.requires_grad or value.requires_grad
|
654 |
+
|
655 |
+
backend_choice = _select_sdp_backend(
|
656 |
+
query, key, value, attn_mask, dropout_p, is_causal
|
657 |
+
)
|
658 |
+
|
659 |
+
if backend_choice == SDPBackend.FLASH_ATTENTION:
|
660 |
+
og_size = query.size(-1)
|
661 |
+
query_padded = _pad_last_dim(query, 8, False)
|
662 |
+
key_padded = _pad_last_dim(key, 8, False)
|
663 |
+
value_padded = _pad_last_dim(value, 8, False)
|
664 |
+
# We need to calculate the scale based off the OG head dim size
|
665 |
+
og_scale = _calculate_scale(query, scale)
|
666 |
+
(
|
667 |
+
query_buffer_reshaped,
|
668 |
+
key_buffer_reshaped,
|
669 |
+
value_buffer_reshaped,
|
670 |
+
cumulative_sequence_length_q,
|
671 |
+
cumulative_sequence_length_kv,
|
672 |
+
max_seqlen_batch_q,
|
673 |
+
max_seqlen_batch_kv,
|
674 |
+
output_nt_info,
|
675 |
+
) = _sdpa_nested_preprocessing(query_padded, key_padded, value_padded)
|
676 |
+
|
677 |
+
(
|
678 |
+
attention,
|
679 |
+
logsumexp,
|
680 |
+
philox_seed,
|
681 |
+
philox_offset,
|
682 |
+
debug_attn_mask,
|
683 |
+
) = torch.ops.aten._flash_attention_forward(
|
684 |
+
query_buffer_reshaped,
|
685 |
+
key_buffer_reshaped,
|
686 |
+
value_buffer_reshaped,
|
687 |
+
cumulative_sequence_length_q,
|
688 |
+
cumulative_sequence_length_kv,
|
689 |
+
max_seqlen_batch_q,
|
690 |
+
max_seqlen_batch_kv,
|
691 |
+
dropout_p,
|
692 |
+
is_causal,
|
693 |
+
False,
|
694 |
+
scale=og_scale,
|
695 |
+
)
|
696 |
+
# Reshape output to convert nnz to batch_size and seq_len
|
697 |
+
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
|
698 |
+
|
699 |
+
attention = nested_view_from_values_offsets(
|
700 |
+
attention.squeeze(0), output_nt_info["offsets"]
|
701 |
+
).transpose(1, 2)
|
702 |
+
return _post_process_flash_output(attention, og_size)
|
703 |
+
elif backend_choice == SDPBackend.EFFICIENT_ATTENTION:
|
704 |
+
(
|
705 |
+
query_reshaped,
|
706 |
+
key_reshaped,
|
707 |
+
value_reshaped,
|
708 |
+
cumulative_sequence_length_q,
|
709 |
+
cumulative_sequence_length_kv,
|
710 |
+
max_seqlen_batch_q,
|
711 |
+
max_seqlen_batch_kv,
|
712 |
+
output_nt_info,
|
713 |
+
) = _sdpa_nested_preprocessing(query, key, value)
|
714 |
+
(
|
715 |
+
attention,
|
716 |
+
log_sumexp,
|
717 |
+
seed,
|
718 |
+
offset,
|
719 |
+
max_seqlen_q,
|
720 |
+
max_seqlen_batch_kv,
|
721 |
+
) = torch.ops.aten._efficient_attention_forward(
|
722 |
+
query_reshaped.unsqueeze(0),
|
723 |
+
key_reshaped.unsqueeze(0),
|
724 |
+
value_reshaped.unsqueeze(0),
|
725 |
+
None,
|
726 |
+
cumulative_sequence_length_q,
|
727 |
+
cumulative_sequence_length_kv,
|
728 |
+
max_seqlen_batch_q,
|
729 |
+
max_seqlen_batch_kv,
|
730 |
+
dropout_p,
|
731 |
+
int(is_causal),
|
732 |
+
compute_logsumexp,
|
733 |
+
scale=scale,
|
734 |
+
)
|
735 |
+
|
736 |
+
# Reshape output to convert nnz to batch_size and seq_len
|
737 |
+
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
|
738 |
+
|
739 |
+
return nested_view_from_values_offsets(
|
740 |
+
attention.squeeze(0), output_nt_info["offsets"]
|
741 |
+
).transpose(1, 2)
|
742 |
+
elif backend_choice == SDPBackend.MATH:
|
743 |
+
# save the offsets and shape of the inputs, so we can reshape the final output
|
744 |
+
# query @ key = attn: [B, D1, j0, D'] @ [B, D1, D' j1] = [B, D1, j0, j1]
|
745 |
+
# attn @ value = out: [B, D1, j0, j1] @ [B, D1, j1, D2] = [B, D1, j0, D2]
|
746 |
+
offsets = query.offsets()
|
747 |
+
d1 = query._size[1]
|
748 |
+
d2 = value._size[-1]
|
749 |
+
|
750 |
+
# convert jagged layout Nested Tensor to strided layout Nested Tensor
|
751 |
+
# which support the math implementation of SDPA
|
752 |
+
def get_strided_layout_nested_tensor(jagged_layout_nt):
|
753 |
+
lengths = jagged_layout_nt._offsets[1:] - jagged_layout_nt._offsets[:-1]
|
754 |
+
transpose = torch.transpose(jagged_layout_nt, 1, 2)
|
755 |
+
tensor_list = transpose.values().split(list(lengths), dim=0)
|
756 |
+
strided_nt = torch.nested.as_nested_tensor(list(tensor_list))
|
757 |
+
strided_nt = strided_nt.transpose(1, 2).contiguous()
|
758 |
+
return strided_nt
|
759 |
+
|
760 |
+
query = get_strided_layout_nested_tensor(query)
|
761 |
+
key = get_strided_layout_nested_tensor(key)
|
762 |
+
value = get_strided_layout_nested_tensor(value)
|
763 |
+
|
764 |
+
attn_out = torch._scaled_dot_product_attention_math(
|
765 |
+
query, key, value, attn_mask, dropout_p, is_causal, scale=scale
|
766 |
+
)[0]
|
767 |
+
|
768 |
+
from torch.nested._internal.nested_tensor import nested_view_from_values_offsets
|
769 |
+
|
770 |
+
# convert strided layout Nested Tensor back to jagged layout Nested Tensor
|
771 |
+
attn_out = attn_out.transpose(1, 2).contiguous().values()
|
772 |
+
attn_out = attn_out.view(-1, d1, d2)
|
773 |
+
attn_out = nested_view_from_values_offsets(attn_out, offsets)
|
774 |
+
attn_out = attn_out.transpose(1, 2)
|
775 |
+
|
776 |
+
return attn_out
|
777 |
+
else:
|
778 |
+
raise RuntimeError(
|
779 |
+
"No viable backend for scaled_dot_product_attention was found."
|
780 |
+
)
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .patcher import ONNXTorchPatcher
|
2 |
+
from .serialization import save_model_with_external_data
|
3 |
+
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"save_model_with_external_data",
|
7 |
+
"ONNXTorchPatcher",
|
8 |
+
]
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (339 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/_pass.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/decomposition_skip.cpython-310.pyc
ADDED
Binary file (6.28 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/decomposition_table.cpython-310.pyc
ADDED
Binary file (3.01 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/diagnostics.cpython-310.pyc
ADDED
Binary file (7.88 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/dynamo_graph_extractor.cpython-310.pyc
ADDED
Binary file (8.19 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/fx_onnx_interpreter.cpython-310.pyc
ADDED
Binary file (17.8 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/fx_symbolic_graph_extractor.cpython-310.pyc
ADDED
Binary file (7.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/onnxfunction_dispatcher.cpython-310.pyc
ADDED
Binary file (24.5 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/op_validation.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/patcher.cpython-310.pyc
ADDED
Binary file (4.02 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/registration.cpython-310.pyc
ADDED
Binary file (3.39 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/serialization.cpython-310.pyc
ADDED
Binary file (6.43 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/torch_export_graph_extractor.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/__pycache__/type_utils.cpython-310.pyc
ADDED
Binary file (6.55 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/onnx/_internal/fx/_pass.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import abc
|
4 |
+
|
5 |
+
import contextlib
|
6 |
+
import dataclasses
|
7 |
+
import difflib
|
8 |
+
|
9 |
+
import io
|
10 |
+
import logging
|
11 |
+
import sys
|
12 |
+
|
13 |
+
from typing import Any, Callable, Optional, Tuple
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.fx
|
17 |
+
from torch._subclasses import fake_tensor
|
18 |
+
from torch.fx.experimental.proxy_tensor import maybe_disable_fake_tensor_mode
|
19 |
+
from torch.onnx._internal import _beartype
|
20 |
+
from torch.onnx._internal.fx import diagnostics, onnxfunction_dispatcher
|
21 |
+
|
22 |
+
|
23 |
+
@dataclasses.dataclass
|
24 |
+
class PackageInfo:
|
25 |
+
package_name: str
|
26 |
+
version: Optional[str]
|
27 |
+
commit_hash: Optional[str]
|
28 |
+
|
29 |
+
def to_onnx_domain_string(self) -> str:
|
30 |
+
return ".".join(
|
31 |
+
filter(None, ("pkg", self.package_name, self.version, self.commit_hash))
|
32 |
+
)
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def from_python_class(cls, python_class: type) -> PackageInfo:
|
36 |
+
package_name = python_class.__module__.split(".")[0]
|
37 |
+
package = __import__(package_name)
|
38 |
+
version = getattr(package, "__version__", None)
|
39 |
+
# TODO: Figure out how to retrieve commit hash.
|
40 |
+
commit_hash = None
|
41 |
+
return cls(package_name, version, commit_hash)
|
42 |
+
|
43 |
+
|
44 |
+
@dataclasses.dataclass
|
45 |
+
class GraphModuleOnnxMeta:
|
46 |
+
package_info: PackageInfo
|
47 |
+
|
48 |
+
|
49 |
+
@contextlib.contextmanager
|
50 |
+
def _patch_difflib_sequence_matcher_init():
|
51 |
+
"""Context patching `difflib.SequenceMatcher` for fx readable graph.
|
52 |
+
|
53 |
+
Under this context, the `autojunk` argument of `difflib.SequenceMatcher` will always
|
54 |
+
be considered as `False`. This is to prevent `difflib.SequenceMatcher` recognizing
|
55 |
+
stacktrace messages in fx readable graph as junk, as these messages tend to be long (>200)
|
56 |
+
and repeat multiple times, which falls under the junk filter criteria.
|
57 |
+
|
58 |
+
`difflib.SequenceMatcher` is used underneath by all sorts of diffing functions
|
59 |
+
in `difflib`, including `difflib.unified_diff`, `difflib.ndiff`, `difflib.context_diff`.
|
60 |
+
Unfortunately, there is no way to pass `autojunk` argument to these functions, and
|
61 |
+
they all default to `True`. This context patching will affect all of them.
|
62 |
+
|
63 |
+
`Reference: Automatic junk heuristic <https://docs.python.org/3/library/difflib.html>`_
|
64 |
+
"""
|
65 |
+
original_init = difflib.SequenceMatcher.__init__
|
66 |
+
|
67 |
+
def patched_init(self, isjunk=None, a="", b="", autojunk=True):
|
68 |
+
original_init(self, isjunk, a, b, autojunk=False)
|
69 |
+
|
70 |
+
difflib.SequenceMatcher.__init__ = patched_init # type: ignore[assignment]
|
71 |
+
try:
|
72 |
+
yield
|
73 |
+
finally:
|
74 |
+
difflib.SequenceMatcher.__init__ = original_init # type: ignore[assignment]
|
75 |
+
|
76 |
+
|
77 |
+
def _unified_diff(a: str, b: str) -> str:
|
78 |
+
"""Return a string containing the unified diff of two strings.
|
79 |
+
|
80 |
+
This function calls a patched version of `difflib.unified_diff` with `autojunk` set
|
81 |
+
to `False` for `difflib.SequenceMatcher` class. More details can be found in
|
82 |
+
`_patch_difflib_sequence_matcher_init` function.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
a: The first string.
|
86 |
+
b: The second string.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
The unified diff of the two strings. If there is no diff, return "<no diff>".
|
90 |
+
|
91 |
+
Example::
|
92 |
+
|
93 |
+
>>> a = '''class GraphModule(torch.nn.Module):
|
94 |
+
... def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor):
|
95 |
+
... # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
|
96 |
+
... view = input_ids.view(-1, 3); input_ids = None
|
97 |
+
... '''
|
98 |
+
>>> b = '''class <lambda>(torch.nn.Module):
|
99 |
+
... def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]):
|
100 |
+
... # File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
|
101 |
+
... view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]); input_ids = None
|
102 |
+
... '''
|
103 |
+
>>> print(_unified_diff(a, b))
|
104 |
+
---
|
105 |
+
+++
|
106 |
+
@@ -1,4 +1,4 @@
|
107 |
+
-class GraphModule(torch.nn.Module):
|
108 |
+
- def forward(self, input_ids : torch.Tensor, attention_mask : torch.Tensor):
|
109 |
+
+class <lambda>(torch.nn.Module):
|
110 |
+
+ def forward(self, input_ids: i64[1, 3], attention_mask: i64[1, 3]):
|
111 |
+
# File: /modeling.py:770, code: input_ids = input_ids.view(-1, input_shape[-1])
|
112 |
+
- view = input_ids.view(-1, 3); input_ids = None
|
113 |
+
+ view: i64[1, 3] = torch.ops.aten.view.default(input_ids, [-1, 3]); input_ids = None
|
114 |
+
"""
|
115 |
+
|
116 |
+
a_list = a.splitlines(keepends=True)
|
117 |
+
b_list = b.splitlines(keepends=True)
|
118 |
+
|
119 |
+
with _patch_difflib_sequence_matcher_init():
|
120 |
+
# Set `n` to `sys.maxsize` to show entire graph when there is a diff.
|
121 |
+
diff = "".join(difflib.unified_diff(a_list, b_list, n=sys.maxsize))
|
122 |
+
|
123 |
+
if not diff:
|
124 |
+
return "<no diff>"
|
125 |
+
return diff
|
126 |
+
|
127 |
+
|
128 |
+
@_beartype.beartype
|
129 |
+
def _transform_diagnose_call_message_formatter(
|
130 |
+
run: Callable,
|
131 |
+
self: Transform,
|
132 |
+
*args: Any,
|
133 |
+
**kwargs: Any,
|
134 |
+
) -> str:
|
135 |
+
return f"Running {self.__class__.__name__} pass. "
|
136 |
+
|
137 |
+
|
138 |
+
def maybe_fx_graph_tabular(graph: torch.fx.Graph) -> Optional[str]:
|
139 |
+
"""Return the Graph nodes in tabular format. Equivalent to stdout of `graph.print_tabular()`.
|
140 |
+
If `tabulate` is not installed, return `None`.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
graph: The Graph to print.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
The Graph printed in a tabular format. None if `tabulate` is not installed.
|
147 |
+
"""
|
148 |
+
f = io.StringIO()
|
149 |
+
with contextlib.redirect_stdout(f):
|
150 |
+
try:
|
151 |
+
graph.print_tabular()
|
152 |
+
except ImportError:
|
153 |
+
return None
|
154 |
+
return f.getvalue()
|
155 |
+
|
156 |
+
|
157 |
+
class Transform(abc.ABC):
|
158 |
+
"""Base class for FX graph transformations to be used by FX-ONNX exporter.
|
159 |
+
|
160 |
+
Similar to `FX Interpreter <https://pytorch.org/docs/stable/fx.html#torch.fx.Interpreter>`_,
|
161 |
+
specializations of this class execute the FX graph Node-by-Node.
|
162 |
+
Methods in the `Transform` class can be overridden to customize the behavior of the model.
|
163 |
+
This pattern can be useful for many things, including writing code transformations as well as analysis passes.
|
164 |
+
|
165 |
+
The following methods can be overridden::
|
166 |
+
|
167 |
+
_run()
|
168 |
+
+-- run_node()
|
169 |
+
+-- placeholder()
|
170 |
+
+-- get_attr()
|
171 |
+
+-- call_function()
|
172 |
+
+-- call_method()
|
173 |
+
+-- call_module()
|
174 |
+
+-- output()
|
175 |
+
|
176 |
+
One important aspect to note is that if the transformation modifies the model input and/or output signature,
|
177 |
+
(e.g. additional inputs/outputs are added to the model), :class:`InputAdaptStep` and/or :class:`OutputAdaptStep`
|
178 |
+
are needed to reconcile :attr:`ONNXProgram.model_signature` and :attr:`ONNXProgram.model_proto`.
|
179 |
+
That is, the model signature and the model representation must match.
|
180 |
+
|
181 |
+
As an additional feature, this class provides builtin support for transformation recording using the diagnostics.
|
182 |
+
The granularity of overriding is up to the user. And it affects the granularity of
|
183 |
+
the diagnostics information. For example, if `_run()` is overridden, the
|
184 |
+
diagnostics information will only contain graph level transformation. Instead,
|
185 |
+
if `call_function()` is overridden, the diagnostics information will additionally
|
186 |
+
contain the node level information of `call_function()`.
|
187 |
+
|
188 |
+
TODO(bowbao): Add more overridable methods in call hierarchy
|
189 |
+
TODO(bowbao): Create an example once more overridable methods are added.
|
190 |
+
"""
|
191 |
+
|
192 |
+
diagnostic_context: diagnostics.DiagnosticContext
|
193 |
+
"""The diagnostic context for recording diagnostics."""
|
194 |
+
|
195 |
+
module: torch.fx.GraphModule
|
196 |
+
"""The module to be transformed."""
|
197 |
+
|
198 |
+
fake_mode: Optional[fake_tensor.FakeTensorMode]
|
199 |
+
"""The existing fake mode detected from `self.module`."""
|
200 |
+
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
diagnostic_context: diagnostics.DiagnosticContext,
|
204 |
+
module: torch.fx.GraphModule,
|
205 |
+
):
|
206 |
+
"""Initialize the transform.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
diagnostic_context: The diagnostic context for recording diagnostics.
|
210 |
+
module: The module to be transformed.
|
211 |
+
"""
|
212 |
+
self.diagnostic_context = diagnostic_context
|
213 |
+
self.module = module
|
214 |
+
self.fake_mode = self._detect_fake_mode()
|
215 |
+
|
216 |
+
def _detect_fake_mode(self) -> Optional[fake_tensor.FakeTensorMode]:
|
217 |
+
"""Detect fake mode from the graph.
|
218 |
+
|
219 |
+
Scan through all nodes in graph and their meta['val'] to detect fake mode.
|
220 |
+
"""
|
221 |
+
fake_tensors = [node.meta.get("val") for node in self.module.graph.nodes]
|
222 |
+
with maybe_disable_fake_tensor_mode():
|
223 |
+
return torch._dynamo.utils.detect_fake_mode(fake_tensors)
|
224 |
+
|
225 |
+
def _maybe_fakefy_args(
|
226 |
+
self, fake_mode: Optional[fake_tensor.FakeTensorMode], *args: Any
|
227 |
+
) -> Tuple[Any, ...]:
|
228 |
+
if fake_mode is None:
|
229 |
+
return args
|
230 |
+
# NB: This should hit the cache if tensors were fakefied before.
|
231 |
+
# E.g., when the fx graph is produced by Dynamo.
|
232 |
+
return tuple(
|
233 |
+
fake_mode.from_tensor(t) if isinstance(t, torch.Tensor) else t for t in args
|
234 |
+
)
|
235 |
+
|
236 |
+
@abc.abstractmethod
|
237 |
+
def _run(self, *args, **kwargs) -> torch.fx.GraphModule:
|
238 |
+
...
|
239 |
+
|
240 |
+
@diagnostics.diagnose_call(
|
241 |
+
diagnostics.rules.fx_pass,
|
242 |
+
diagnostic_message_formatter=_transform_diagnose_call_message_formatter,
|
243 |
+
)
|
244 |
+
def run(self, *args, **kwargs) -> torch.fx.GraphModule:
|
245 |
+
"""Run the transform on `self.module`.
|
246 |
+
|
247 |
+
Note that this method may or may not mutate `self.module`, and the returned
|
248 |
+
`GraphModule` could be either `self.module` or a new `GraphModule`.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
*args: Positional arguments for `self.module` to run.
|
252 |
+
**kwargs: Keyword arguments for `self.module` to run.
|
253 |
+
"""
|
254 |
+
diagnostic = self.diagnostic_context.inflight_diagnostic(
|
255 |
+
rule=diagnostics.rules.fx_pass
|
256 |
+
)
|
257 |
+
diagnostic.info(
|
258 |
+
"For detailed logging of graph modifications by this pass, either set "
|
259 |
+
"`DiagnosticOptions.verbosity_level` to `logging.DEBUG` or use the environment variable "
|
260 |
+
"`TORCH_LOGS='onnx_diagnostics'`."
|
261 |
+
)
|
262 |
+
|
263 |
+
# Gather graph information before transform.
|
264 |
+
graph_diff_log_level = logging.DEBUG
|
265 |
+
if diagnostic.logger.isEnabledFor(graph_diff_log_level):
|
266 |
+
# Cannot use LazyString because the graph may have been mutated at evaluation time.
|
267 |
+
old_readable_graph = self.module.print_readable(print_output=False)
|
268 |
+
old_tabular = maybe_fx_graph_tabular(self.module.graph)
|
269 |
+
else:
|
270 |
+
# Set to empty string to avoid unbound warning. This value should never be
|
271 |
+
# used since the log level is not enabled.
|
272 |
+
old_readable_graph = ""
|
273 |
+
old_tabular = ""
|
274 |
+
|
275 |
+
module = self._run(*args, **kwargs)
|
276 |
+
|
277 |
+
# Gather graph information after transform.
|
278 |
+
if diagnostic.logger.isEnabledFor(graph_diff_log_level):
|
279 |
+
new_readable_graph = module.print_readable(print_output=False)
|
280 |
+
new_tabular = maybe_fx_graph_tabular(module.graph)
|
281 |
+
|
282 |
+
with diagnostic.log_section(graph_diff_log_level, "Graph diff:"):
|
283 |
+
diagnostic.log(
|
284 |
+
graph_diff_log_level,
|
285 |
+
"```\n%s\n```",
|
286 |
+
diagnostics.LazyString(
|
287 |
+
_unified_diff, old_readable_graph, new_readable_graph
|
288 |
+
),
|
289 |
+
)
|
290 |
+
|
291 |
+
with diagnostic.log_section(graph_diff_log_level, "Tabular diff:"):
|
292 |
+
if old_tabular is None or new_tabular is None:
|
293 |
+
diagnostic.log(
|
294 |
+
graph_diff_log_level,
|
295 |
+
"Tabular diff is not available because `tabulate` is not installed.",
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
diagnostic.log(
|
299 |
+
graph_diff_log_level,
|
300 |
+
"```\n%s\n```",
|
301 |
+
diagnostics.LazyString(_unified_diff, old_tabular, new_tabular),
|
302 |
+
)
|
303 |
+
|
304 |
+
return module
|
305 |
+
|
306 |
+
|
307 |
+
class AnalysisResult(abc.ABC): # noqa: B024
|
308 |
+
...
|
309 |
+
|
310 |
+
|
311 |
+
class Analysis(abc.ABC):
|
312 |
+
@_beartype.beartype
|
313 |
+
def __init__(
|
314 |
+
self,
|
315 |
+
diagnostic_context: diagnostics.DiagnosticContext,
|
316 |
+
module: torch.fx.GraphModule,
|
317 |
+
onnxfunction_dispatcher: onnxfunction_dispatcher.OnnxFunctionDispatcher,
|
318 |
+
):
|
319 |
+
self.diagnostic_context = diagnostic_context
|
320 |
+
self.module = module
|
321 |
+
self.onnxfunction_dispatcher = onnxfunction_dispatcher
|
322 |
+
|
323 |
+
@abc.abstractmethod
|
324 |
+
def analyze(self, diagnostic_level: diagnostics.infra.Level) -> AnalysisResult:
|
325 |
+
...
|