applied-ai-018 commited on
Commit
04d7a84
·
verified ·
1 Parent(s): 49bd343

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/15.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step20/zero/23.attention.query_key_value.weight/exp_avg.pt +3 -0
  3. lm-evaluation-harness/tests/testdata/arithmetic_1dc-v0-res.json +1 -0
  4. lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-loglikelihood +1 -0
  5. lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relative_clause-v0-res.json +1 -0
  6. lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-res.json +1 -0
  7. lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_2-v0-res.json +1 -0
  8. lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-res.json +1 -0
  9. lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_1-v0-res.json +1 -0
  10. lm-evaluation-harness/tests/testdata/crows_pairs_french_autre-v0-loglikelihood +1 -0
  11. lm-evaluation-harness/tests/testdata/crows_pairs_french_nationality-v0-res.json +1 -0
  12. lm-evaluation-harness/tests/testdata/ethics_utilitarianism-v0-loglikelihood +1 -0
  13. lm-evaluation-harness/tests/testdata/headqa-v0-loglikelihood +1 -0
  14. lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_european_history-v0-res.json +1 -0
  15. lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_microeconomics-v0-res.json +1 -0
  16. lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-loglikelihood +1 -0
  17. lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-loglikelihood +1 -0
  18. lm-evaluation-harness/tests/testdata/lambada_openai_mt_de-v0-loglikelihood +1 -0
  19. lm-evaluation-harness/tests/testdata/lambada_openai_mt_de-v0-res.json +1 -0
  20. lm-evaluation-harness/tests/testdata/mnli-v0-res.json +1 -0
  21. lm-evaluation-harness/tests/testdata/multirc-v0-res.json +1 -0
  22. lm-evaluation-harness/tests/testdata/pile_arxiv-v0-res.json +1 -0
  23. lm-evaluation-harness/tests/testdata/pile_gutenberg-v0-loglikelihood_rolling +1 -0
  24. lm-evaluation-harness/tests/testdata/pile_nih-exporter-v1-loglikelihood_rolling +1 -0
  25. lm-evaluation-harness/tests/testdata/pile_openwebtext2-v1-res.json +1 -0
  26. lm-evaluation-harness/tests/testdata/rte-v0-res.json +1 -0
  27. lm-evaluation-harness/tests/testdata/squad2-v0-greedy_until +1 -0
  28. lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-res.json +1 -0
  29. lm-evaluation-harness/tests/testdata/wmt16-ro-en-v0-greedy_until +1 -0
  30. lm-evaluation-harness/tests/testdata/wmt20-en-cs-v0-greedy_until +1 -0
  31. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py +88 -0
  32. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py +468 -0
  40. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py +134 -0
  41. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py +33 -0
  42. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py +331 -0
  43. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py +1562 -0
  44. venv/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py +141 -0
  45. venv/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/transformers/models/regnet/__init__.py +111 -0
  47. venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/__init__.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/configuration_regnet.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/convert_regnet_seer_10b_to_pytorch.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/convert_regnet_to_pytorch.cpython-310.pyc +0 -0
ckpts/universal/global_step20/zero/15.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34dde773c9a78fd0f839b9560dab3b6957ca7ed78513e86d75d8a5bb7cb63a9
3
+ size 33555533
ckpts/universal/global_step20/zero/23.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:949e9a6e5d9bf691cc6df3e867ec014eca39783a3c03eafa619cbe639962e2bc
3
+ size 50332828
lm-evaluation-harness/tests/testdata/arithmetic_1dc-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"arithmetic_1dc": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"arithmetic_1dc": 0}}
lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ ddb24ddfaebe076b3aa7107937d71bf5f4503a78283bc889e39200368603681e
lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relative_clause-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_distractor_agreement_relative_clause": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_distractor_agreement_relative_clause": 0}}
lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_drop_argument": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_drop_argument": 0}}
lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_2-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_existential_there_quantifiers_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_existential_there_quantifiers_2": 0}}
lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_principle_A_reconstruction": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_principle_A_reconstruction": 0}}
lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_1-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_superlative_quantifiers_1": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_superlative_quantifiers_1": 0}}
lm-evaluation-harness/tests/testdata/crows_pairs_french_autre-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ f145ad5086da0bf8c76f0730258529fa243efe32b7ab792d3c4716284b4b5495
lm-evaluation-harness/tests/testdata/crows_pairs_french_nationality-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"crows_pairs_french_nationality": {"likelihood_difference": 0.33534193269044926, "likelihood_difference_stderr": 0.01429836309463257, "pct_stereotype": 0.4743083003952569, "pct_stereotype_stderr": 0.031455431847992904}}, "versions": {"crows_pairs_french_nationality": 0}}
lm-evaluation-harness/tests/testdata/ethics_utilitarianism-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 88872f1ed1b203f9649a4ced4fb4627d18c17af455d713de6e17c05eced4ec60
lm-evaluation-harness/tests/testdata/headqa-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 767ca34d9714edd9fb030ddbcc35a64e5180d1e247b0cb557fbb22fdf971ad1f
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_european_history-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"hendrycksTest-high_school_european_history": {"acc": 0.23636363636363636, "acc_norm": 0.24242424242424243, "acc_norm_stderr": 0.03346409881055953, "acc_stderr": 0.033175059300091805}}, "versions": {"hendrycksTest-high_school_european_history": 0}}
lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_microeconomics-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"hendrycksTest-high_school_microeconomics": {"acc": 0.24369747899159663, "acc_norm": 0.22268907563025211, "acc_norm_stderr": 0.027025433498882378, "acc_stderr": 0.027886828078380558}}, "versions": {"hendrycksTest-high_school_microeconomics": 0}}
lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 7a7138821a66ef946e427b40344cf7f1a916a2926995a85ef731a3bee40cb7ce
lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 847418f7b22cd9b499e95fd73c40a2fbc40076895280cc2c560199c0c4c4f433
lm-evaluation-harness/tests/testdata/lambada_openai_mt_de-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 5ad125e1708499832b2cee8c3388f89f9c0277010fd96fbd3359039ce8105984
lm-evaluation-harness/tests/testdata/lambada_openai_mt_de-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"lambada_openai_mt_de": {"acc": 0.0, "acc_stderr": 0.0, "ppl": 1.6479047769869253, "ppl_stderr": 0.006497321146240192}}, "versions": {"lambada_openai_mt_de": 0}}
lm-evaluation-harness/tests/testdata/mnli-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"mnli": {"acc": 0.32868059093224655, "acc_stderr": 0.004741640290753859}}, "versions": {"mnli": 0}}
lm-evaluation-harness/tests/testdata/multirc-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"multirc": {"acc": 0.07450157397691501, "acc_stderr": 0.008510441526175931}}, "versions": {"multirc": 0}}
lm-evaluation-harness/tests/testdata/pile_arxiv-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"pile_arxiv": {"bits_per_byte": 1.0750412350569374e-05, "byte_perplexity": 1.0000107504701365, "word_perplexity": 1.0000819333090385}}, "versions": {"pile_arxiv": 0}}
lm-evaluation-harness/tests/testdata/pile_gutenberg-v0-loglikelihood_rolling ADDED
@@ -0,0 +1 @@
 
 
1
+ 02a559f74a9105145e7d4d9c5ddea372b5b4938f5368dc8ffafc39cbe3b4c7ef
lm-evaluation-harness/tests/testdata/pile_nih-exporter-v1-loglikelihood_rolling ADDED
@@ -0,0 +1 @@
 
 
1
+ 520ea6e04e8a39dc0b5f63a837429a78a40e63d39d109096101feb8c5b2cf8d8
lm-evaluation-harness/tests/testdata/pile_openwebtext2-v1-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"pile_openwebtext2": {"bits_per_byte": 0.000184802319359215, "byte_perplexity": 1.000128103411166, "word_perplexity": 1.0007951516532847}}, "versions": {"pile_openwebtext2": 1}}
lm-evaluation-harness/tests/testdata/rte-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"rte": {"acc": 0.5379061371841155, "acc_stderr": 0.030009848912529117}}, "versions": {"rte": 0}}
lm-evaluation-harness/tests/testdata/squad2-v0-greedy_until ADDED
@@ -0,0 +1 @@
 
 
1
+ b261e8885c11750ce6911bb11e8693de03d53758297c26fb14cfc1ef508862cb
lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"wmt14-fr-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.01275083169440515, "chrf_stderr": 8.45474998563806e-05, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt14-fr-en": 0}}
lm-evaluation-harness/tests/testdata/wmt16-ro-en-v0-greedy_until ADDED
@@ -0,0 +1 @@
 
 
1
+ d1b7c50751b0d5d7470b7f49f2bab9d09792c91460fc92cc34f06617013d7c65
lm-evaluation-harness/tests/testdata/wmt20-en-cs-v0-greedy_until ADDED
@@ -0,0 +1 @@
 
 
1
+ 5a34e6863bf6965afd31653de50bac5fecf58db65dbaba46921504a2b7463786
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_chinese_clip": [
21
+ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "ChineseCLIPConfig",
23
+ "ChineseCLIPOnnxConfig",
24
+ "ChineseCLIPTextConfig",
25
+ "ChineseCLIPVisionConfig",
26
+ ],
27
+ "processing_chinese_clip": ["ChineseCLIPProcessor"],
28
+ }
29
+
30
+ try:
31
+ if not is_vision_available():
32
+ raise OptionalDependencyNotAvailable()
33
+ except OptionalDependencyNotAvailable:
34
+ pass
35
+ else:
36
+ _import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
37
+ _import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
38
+
39
+ try:
40
+ if not is_torch_available():
41
+ raise OptionalDependencyNotAvailable()
42
+ except OptionalDependencyNotAvailable:
43
+ pass
44
+ else:
45
+ _import_structure["modeling_chinese_clip"] = [
46
+ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
47
+ "ChineseCLIPModel",
48
+ "ChineseCLIPPreTrainedModel",
49
+ "ChineseCLIPTextModel",
50
+ "ChineseCLIPVisionModel",
51
+ ]
52
+
53
+ if TYPE_CHECKING:
54
+ from .configuration_chinese_clip import (
55
+ CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
56
+ ChineseCLIPConfig,
57
+ ChineseCLIPOnnxConfig,
58
+ ChineseCLIPTextConfig,
59
+ ChineseCLIPVisionConfig,
60
+ )
61
+ from .processing_chinese_clip import ChineseCLIPProcessor
62
+
63
+ try:
64
+ if not is_vision_available():
65
+ raise OptionalDependencyNotAvailable()
66
+ except OptionalDependencyNotAvailable:
67
+ pass
68
+ else:
69
+ from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
70
+
71
+ try:
72
+ if not is_torch_available():
73
+ raise OptionalDependencyNotAvailable()
74
+ except OptionalDependencyNotAvailable:
75
+ pass
76
+ else:
77
+ from .modeling_chinese_clip import (
78
+ CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
79
+ ChineseCLIPModel,
80
+ ChineseCLIPPreTrainedModel,
81
+ ChineseCLIPTextModel,
82
+ ChineseCLIPVisionModel,
83
+ )
84
+
85
+ else:
86
+ import sys
87
+
88
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.48 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc ADDED
Binary file (48.5 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc ADDED
Binary file (6.02 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Chinese-CLIP model configuration"""
16
+
17
+ import os
18
+ from collections import OrderedDict
19
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
20
+
21
+
22
+ if TYPE_CHECKING:
23
+ from ...processing_utils import ProcessorMixin
24
+ from ...utils import TensorType
25
+
26
+ from ...configuration_utils import PretrainedConfig
27
+ from ...onnx import OnnxConfig
28
+ from ...utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ from ..deprecated._archive_maps import CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
35
+
36
+
37
+ class ChineseCLIPTextConfig(PretrainedConfig):
38
+ r"""
39
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
40
+ Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
41
+ configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
42
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
43
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
44
+
45
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
46
+ documentation from [`PretrainedConfig`] for more information.
47
+
48
+
49
+ Args:
50
+ vocab_size (`int`, *optional*, defaults to 30522):
51
+ Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
52
+ by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
53
+ hidden_size (`int`, *optional*, defaults to 768):
54
+ Dimensionality of the encoder layers and the pooler layer.
55
+ num_hidden_layers (`int`, *optional*, defaults to 12):
56
+ Number of hidden layers in the Transformer encoder.
57
+ num_attention_heads (`int`, *optional*, defaults to 12):
58
+ Number of attention heads for each attention layer in the Transformer encoder.
59
+ intermediate_size (`int`, *optional*, defaults to 3072):
60
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
61
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
62
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
63
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
64
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
66
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
67
+ The dropout ratio for the attention probabilities.
68
+ max_position_embeddings (`int`, *optional*, defaults to 512):
69
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
70
+ just in case (e.g., 512 or 1024 or 2048).
71
+ type_vocab_size (`int`, *optional*, defaults to 2):
72
+ The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
73
+ initializer_range (`float`, *optional*, defaults to 0.02):
74
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
75
+ initializer_factor (`float`, *optional*, defaults to 1.0):
76
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
77
+ testing).
78
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
79
+ The epsilon used by the layer normalization layers.
80
+ pad_token_id (`int`, *optional*, defaults to 0):
81
+ Padding token id.
82
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
83
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
84
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
85
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
86
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
87
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
88
+ use_cache (`bool`, *optional*, defaults to `True`):
89
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
90
+ relevant if `config.is_decoder=True`.
91
+
92
+ Example:
93
+
94
+ ```python
95
+ >>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
96
+
97
+ >>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
98
+ >>> configuration = ChineseCLIPTextConfig()
99
+
100
+ >>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
101
+ >>> model = ChineseCLIPTextModel(configuration)
102
+
103
+ >>> # Accessing the model configuration
104
+ >>> configuration = model.config
105
+ ```"""
106
+
107
+ model_type = "chinese_clip_text_model"
108
+
109
+ def __init__(
110
+ self,
111
+ vocab_size=30522,
112
+ hidden_size=768,
113
+ num_hidden_layers=12,
114
+ num_attention_heads=12,
115
+ intermediate_size=3072,
116
+ hidden_act="gelu",
117
+ hidden_dropout_prob=0.1,
118
+ attention_probs_dropout_prob=0.1,
119
+ max_position_embeddings=512,
120
+ type_vocab_size=2,
121
+ initializer_range=0.02,
122
+ initializer_factor=1.0,
123
+ layer_norm_eps=1e-12,
124
+ pad_token_id=0,
125
+ position_embedding_type="absolute",
126
+ use_cache=True,
127
+ **kwargs,
128
+ ):
129
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
130
+
131
+ self.vocab_size = vocab_size
132
+ self.hidden_size = hidden_size
133
+ self.num_hidden_layers = num_hidden_layers
134
+ self.num_attention_heads = num_attention_heads
135
+ self.hidden_act = hidden_act
136
+ self.intermediate_size = intermediate_size
137
+ self.hidden_dropout_prob = hidden_dropout_prob
138
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
139
+ self.max_position_embeddings = max_position_embeddings
140
+ self.type_vocab_size = type_vocab_size
141
+ self.initializer_range = initializer_range
142
+ self.initializer_factor = initializer_factor
143
+ self.layer_norm_eps = layer_norm_eps
144
+ self.position_embedding_type = position_embedding_type
145
+ self.use_cache = use_cache
146
+
147
+ @classmethod
148
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
149
+ cls._set_token_in_kwargs(kwargs)
150
+
151
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
152
+
153
+ # get the vision config dict if we are loading from ChineseCLIPConfig
154
+ if config_dict.get("model_type") == "chinese_clip":
155
+ config_dict = config_dict["text_config"]
156
+
157
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
158
+ logger.warning(
159
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
160
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
161
+ )
162
+
163
+ return cls.from_dict(config_dict, **kwargs)
164
+
165
+
166
+ class ChineseCLIPVisionConfig(PretrainedConfig):
167
+ r"""
168
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
169
+ ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
170
+ configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
171
+ [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
172
+
173
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
174
+ documentation from [`PretrainedConfig`] for more information.
175
+
176
+
177
+ Args:
178
+ hidden_size (`int`, *optional*, defaults to 768):
179
+ Dimensionality of the encoder layers and the pooler layer.
180
+ intermediate_size (`int`, *optional*, defaults to 3072):
181
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
182
+ projection_dim (`int`, *optional*, defaults to 512):
183
+ Dimentionality of text and vision projection layers.
184
+ num_hidden_layers (`int`, *optional*, defaults to 12):
185
+ Number of hidden layers in the Transformer encoder.
186
+ num_attention_heads (`int`, *optional*, defaults to 12):
187
+ Number of attention heads for each attention layer in the Transformer encoder.
188
+ num_channels (`int`, *optional*, defaults to 3):
189
+ The number of input channels.
190
+ image_size (`int`, *optional*, defaults to 224):
191
+ The size (resolution) of each image.
192
+ patch_size (`int`, *optional*, defaults to 32):
193
+ The size (resolution) of each patch.
194
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
195
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
196
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
197
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
198
+ The epsilon used by the layer normalization layers.
199
+ attention_dropout (`float`, *optional*, defaults to 0.0):
200
+ The dropout ratio for the attention probabilities.
201
+ initializer_range (`float`, *optional*, defaults to 0.02):
202
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
203
+ initializer_factor (`float`, *optional*, defaults to 1.0):
204
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
205
+ testing).
206
+ Example:
207
+ ```python
208
+ >>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
209
+
210
+ >>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
211
+ >>> configuration = ChineseCLIPVisionConfig()
212
+
213
+ >>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
214
+ >>> model = ChineseCLIPVisionModel(configuration)
215
+
216
+ >>> # Accessing the model configuration
217
+ >>> configuration = model.config
218
+ ```"""
219
+
220
+ model_type = "chinese_clip_vision_model"
221
+
222
+ def __init__(
223
+ self,
224
+ hidden_size=768,
225
+ intermediate_size=3072,
226
+ projection_dim=512,
227
+ num_hidden_layers=12,
228
+ num_attention_heads=12,
229
+ num_channels=3,
230
+ image_size=224,
231
+ patch_size=32,
232
+ hidden_act="quick_gelu",
233
+ layer_norm_eps=1e-5,
234
+ attention_dropout=0.0,
235
+ initializer_range=0.02,
236
+ initializer_factor=1.0,
237
+ **kwargs,
238
+ ):
239
+ super().__init__(**kwargs)
240
+
241
+ self.hidden_size = hidden_size
242
+ self.intermediate_size = intermediate_size
243
+ self.projection_dim = projection_dim
244
+ self.num_hidden_layers = num_hidden_layers
245
+ self.num_attention_heads = num_attention_heads
246
+ self.num_channels = num_channels
247
+ self.patch_size = patch_size
248
+ self.image_size = image_size
249
+ self.initializer_range = initializer_range
250
+ self.initializer_factor = initializer_factor
251
+ self.attention_dropout = attention_dropout
252
+ self.layer_norm_eps = layer_norm_eps
253
+ self.hidden_act = hidden_act
254
+
255
+ @classmethod
256
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
257
+ cls._set_token_in_kwargs(kwargs)
258
+
259
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
260
+
261
+ # get the vision config dict if we are loading from ChineseCLIPConfig
262
+ if config_dict.get("model_type") == "chinese_clip":
263
+ config_dict = config_dict["vision_config"]
264
+
265
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
266
+ logger.warning(
267
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
268
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
269
+ )
270
+
271
+ return cls.from_dict(config_dict, **kwargs)
272
+
273
+
274
+ class ChineseCLIPConfig(PretrainedConfig):
275
+ r"""
276
+ [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
277
+ to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
278
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
279
+ Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
280
+ architecture.
281
+
282
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
283
+ documentation from [`PretrainedConfig`] for more information.
284
+
285
+ Args:
286
+ text_config (`dict`, *optional*):
287
+ Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
288
+ vision_config (`dict`, *optional*):
289
+ Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
290
+ projection_dim (`int`, *optional*, defaults to 512):
291
+ Dimentionality of text and vision projection layers.
292
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
293
+ The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
294
+ implementation.
295
+ kwargs (*optional*):
296
+ Dictionary of keyword arguments.
297
+
298
+ Example:
299
+
300
+ ```python
301
+ >>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
302
+
303
+ >>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
304
+ >>> configuration = ChineseCLIPConfig()
305
+
306
+ >>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
307
+ >>> model = ChineseCLIPModel(configuration)
308
+
309
+ >>> # Accessing the model configuration
310
+ >>> configuration = model.config
311
+
312
+ >>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
313
+
314
+ >>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
315
+ >>> config_text = ChineseCLIPTextConfig()
316
+ >>> config_vision = ChineseCLIPVisionConfig()
317
+
318
+ >>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
319
+ ```"""
320
+
321
+ model_type = "chinese_clip"
322
+
323
+ def __init__(
324
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
325
+ ):
326
+ # If `_config_dict` exist, we use them for the backward compatibility.
327
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
328
+ # of confusion!).
329
+ text_config_dict = kwargs.pop("text_config_dict", None)
330
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
331
+
332
+ super().__init__(**kwargs)
333
+
334
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
335
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
336
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
337
+ if text_config_dict is not None:
338
+ if text_config is None:
339
+ text_config = {}
340
+
341
+ # This is the complete result when using `text_config_dict`.
342
+ _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
343
+
344
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
345
+ for key, value in _text_config_dict.items():
346
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
347
+ # If specified in `text_config_dict`
348
+ if key in text_config_dict:
349
+ message = (
350
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
351
+ f'The value `text_config_dict["{key}"]` will be used instead.'
352
+ )
353
+ # If inferred from default argument values (just to be super careful)
354
+ else:
355
+ message = (
356
+ f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
357
+ f'The value `text_config["{key}"]` will be overriden.'
358
+ )
359
+ logger.info(message)
360
+
361
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
362
+ text_config.update(_text_config_dict)
363
+
364
+ if vision_config_dict is not None:
365
+ if vision_config is None:
366
+ vision_config = {}
367
+
368
+ # This is the complete result when using `vision_config_dict`.
369
+ _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
370
+ # convert keys to string instead of integer
371
+ if "id2label" in _vision_config_dict:
372
+ _vision_config_dict["id2label"] = {
373
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
374
+ }
375
+
376
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
377
+ for key, value in _vision_config_dict.items():
378
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
379
+ # If specified in `vision_config_dict`
380
+ if key in vision_config_dict:
381
+ message = (
382
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
383
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
384
+ )
385
+ # If inferred from default argument values (just to be super careful)
386
+ else:
387
+ message = (
388
+ f"`vision_config_dict` is provided which will be used to initialize "
389
+ f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
390
+ )
391
+ logger.info(message)
392
+
393
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
394
+ vision_config.update(_vision_config_dict)
395
+
396
+ if text_config is None:
397
+ text_config = {}
398
+ logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
399
+
400
+ if vision_config is None:
401
+ vision_config = {}
402
+ logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
403
+
404
+ self.text_config = ChineseCLIPTextConfig(**text_config)
405
+ self.vision_config = ChineseCLIPVisionConfig(**vision_config)
406
+
407
+ self.projection_dim = projection_dim
408
+ self.logit_scale_init_value = logit_scale_init_value
409
+ self.initializer_factor = 1.0
410
+ self.initializer_range = 0.02
411
+
412
+ @classmethod
413
+ def from_text_vision_configs(
414
+ cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
415
+ ):
416
+ r"""
417
+ Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
418
+ Chinese-CLIP vision model configuration. Returns:
419
+ [`ChineseCLIPConfig`]: An instance of a configuration object
420
+ """
421
+
422
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
423
+
424
+
425
+ class ChineseCLIPOnnxConfig(OnnxConfig):
426
+ @property
427
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
428
+ return OrderedDict(
429
+ [
430
+ ("input_ids", {0: "batch", 1: "sequence"}),
431
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
432
+ ("attention_mask", {0: "batch", 1: "sequence"}),
433
+ ]
434
+ )
435
+
436
+ @property
437
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
438
+ return OrderedDict(
439
+ [
440
+ ("logits_per_image", {0: "batch"}),
441
+ ("logits_per_text", {0: "batch"}),
442
+ ("text_embeds", {0: "batch"}),
443
+ ("image_embeds", {0: "batch"}),
444
+ ]
445
+ )
446
+
447
+ @property
448
+ def atol_for_validation(self) -> float:
449
+ return 1e-4
450
+
451
+ def generate_dummy_inputs(
452
+ self,
453
+ processor: "ProcessorMixin",
454
+ batch_size: int = -1,
455
+ seq_length: int = -1,
456
+ framework: Optional["TensorType"] = None,
457
+ ) -> Mapping[str, Any]:
458
+ text_input_dict = super().generate_dummy_inputs(
459
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
460
+ )
461
+ image_input_dict = super().generate_dummy_inputs(
462
+ processor.image_processor, batch_size=batch_size, framework=framework
463
+ )
464
+ return {**text_input_dict, **image_input_dict}
465
+
466
+ @property
467
+ def default_onnx_opset(self) -> int:
468
+ return 14
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/convert_chinese_clip_original_pytorch_to_hf.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import argparse
17
+
18
+ import torch
19
+
20
+ from transformers import ChineseCLIPConfig, ChineseCLIPModel
21
+
22
+
23
+ def copy_attn_layer(hf_attn_layer, pt_weights, prefix):
24
+ q_proj, k_proj, v_proj = pt_weights[f"{prefix}.in_proj_weight"].chunk(3, dim=0)
25
+ q_proj_bias, k_proj_bias, v_proj_bias = pt_weights[f"{prefix}.in_proj_bias"].chunk(3, dim=0)
26
+
27
+ out_proj_weights = pt_weights[f"{prefix}.out_proj.weight"]
28
+ out_proj_bias = pt_weights[f"{prefix}.out_proj.bias"]
29
+
30
+ hf_attn_layer.q_proj.weight.data = q_proj
31
+ hf_attn_layer.q_proj.bias.data = q_proj_bias
32
+
33
+ hf_attn_layer.k_proj.weight.data = k_proj
34
+ hf_attn_layer.k_proj.bias.data = k_proj_bias
35
+
36
+ hf_attn_layer.v_proj.weight.data = v_proj
37
+ hf_attn_layer.v_proj.bias.data = v_proj_bias
38
+
39
+ hf_attn_layer.out_proj.weight.data = out_proj_weights
40
+ hf_attn_layer.out_proj.bias.data = out_proj_bias
41
+
42
+
43
+ def copy_mlp(hf_mlp, pt_weights, prefix):
44
+ copy_linear(hf_mlp.fc1, pt_weights, f"{prefix}.c_fc")
45
+ copy_linear(hf_mlp.fc2, pt_weights, f"{prefix}.c_proj")
46
+
47
+
48
+ def copy_linear(hf_linear, pt_weights, prefix):
49
+ hf_linear.weight.data = pt_weights[f"{prefix}.weight"].data
50
+ hf_linear.bias.data = pt_weights[f"{prefix}.bias"].data
51
+
52
+
53
+ def copy_layer(hf_layer, pt_weights, prefix):
54
+ # copy layer norms
55
+ copy_linear(hf_layer.layer_norm1, pt_weights, f"{prefix}.ln_1")
56
+ copy_linear(hf_layer.layer_norm2, pt_weights, f"{prefix}.ln_2")
57
+
58
+ # copy MLP
59
+ copy_mlp(hf_layer.mlp, pt_weights, f"{prefix}.mlp")
60
+
61
+ # copy attn
62
+ copy_attn_layer(hf_layer.self_attn, pt_weights, f"{prefix}.attn")
63
+
64
+
65
+ def copy_layers(hf_layers, pt_weights, prefix):
66
+ for layer_id, hf_layer in enumerate(hf_layers):
67
+ copy_layer(hf_layer, pt_weights, f"{prefix}.{layer_id}")
68
+
69
+
70
+ def copy_text_model_and_projection(hf_model, pt_weights):
71
+ # copy projection
72
+ hf_model.text_projection.weight.data = pt_weights["text_projection"].data.T
73
+
74
+ # copy text encoder
75
+ for name, param in hf_model.text_model.named_parameters():
76
+ param.data = pt_weights[f"bert.{name}"].data
77
+
78
+
79
+ def copy_vision_model_and_projection(hf_model, pt_weights):
80
+ # copy projection
81
+ hf_model.visual_projection.weight.data = pt_weights["visual.proj"].data.T
82
+
83
+ # copy layer norms
84
+ copy_linear(hf_model.vision_model.pre_layrnorm, pt_weights, "visual.ln_pre")
85
+ copy_linear(hf_model.vision_model.post_layernorm, pt_weights, "visual.ln_post")
86
+
87
+ # copy embeddings
88
+ hf_model.vision_model.embeddings.patch_embedding.weight.data = pt_weights["visual.conv1.weight"].data
89
+ hf_model.vision_model.embeddings.class_embedding.data = pt_weights["visual.class_embedding"].data
90
+ hf_model.vision_model.embeddings.position_embedding.weight.data = pt_weights["visual.positional_embedding"].data
91
+
92
+ # copy encoder
93
+ copy_layers(hf_model.vision_model.encoder.layers, pt_weights, "visual.transformer.resblocks")
94
+
95
+
96
+ @torch.no_grad()
97
+ def convert_chinese_clip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None):
98
+ """
99
+ Copy/paste/tweak model's weights to transformers design.
100
+ """
101
+
102
+ assert config_path is not None, "Please specify the ChineseCLIP model config of the corresponding model size."
103
+ config = ChineseCLIPConfig.from_pretrained(config_path)
104
+
105
+ hf_model = ChineseCLIPModel(config).eval()
106
+
107
+ pt_weights = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
108
+ pt_weights = {(name[7:] if name.startswith("module.") else name): value for name, value in pt_weights.items()}
109
+
110
+ copy_text_model_and_projection(hf_model, pt_weights)
111
+ copy_vision_model_and_projection(hf_model, pt_weights)
112
+ hf_model.logit_scale.data = pt_weights["logit_scale"].data
113
+
114
+ hf_model.save_pretrained(pytorch_dump_folder_path)
115
+
116
+
117
+ if __name__ == "__main__":
118
+ parser = argparse.ArgumentParser()
119
+ parser.add_argument(
120
+ "--pytorch_dump_folder_path",
121
+ default=None,
122
+ type=str,
123
+ help="Path to the output folder storing converted hf PyTorch model.",
124
+ )
125
+ parser.add_argument(
126
+ "--checkpoint_path", default=None, type=str, help="Path to original github format ChineseCLIP checkpoint."
127
+ )
128
+ parser.add_argument(
129
+ "--config_path", default=None, required=True, type=str, help="Path to hf config.json of model to convert."
130
+ )
131
+ args = parser.parse_args()
132
+
133
+ convert_chinese_clip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
134
+ print("The conversion is finished!")
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/feature_extraction_chinese_clip.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for Chinese-CLIP."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_chinese_clip import ChineseCLIPImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class ChineseCLIPFeatureExtractor(ChineseCLIPImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
30
+ " Please use ChineseCLIPImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for Chinese-CLIP."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import (
23
+ convert_to_rgb,
24
+ get_resize_output_image_size,
25
+ resize,
26
+ to_channel_dimension_format,
27
+ )
28
+ from ...image_utils import (
29
+ OPENAI_CLIP_MEAN,
30
+ OPENAI_CLIP_STD,
31
+ ChannelDimension,
32
+ ImageInput,
33
+ PILImageResampling,
34
+ infer_channel_dimension_format,
35
+ is_scaled_image,
36
+ make_list_of_images,
37
+ to_numpy_array,
38
+ valid_images,
39
+ validate_kwargs,
40
+ validate_preprocess_arguments,
41
+ )
42
+ from ...utils import TensorType, is_vision_available, logging
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ if is_vision_available():
49
+ import PIL
50
+
51
+
52
+ class ChineseCLIPImageProcessor(BaseImageProcessor):
53
+ r"""
54
+ Constructs a Chinese-CLIP image processor.
55
+
56
+ Args:
57
+ do_resize (`bool`, *optional*, defaults to `True`):
58
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
59
+ `do_resize` in the `preprocess` method.
60
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
61
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
62
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
63
+ method.
64
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
65
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
66
+ do_center_crop (`bool`, *optional*, defaults to `True`):
67
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
68
+ `preprocess` method.
69
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
70
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
71
+ method.
72
+ do_rescale (`bool`, *optional*, defaults to `True`):
73
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
74
+ the `preprocess` method.
75
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
76
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
77
+ method.
78
+ do_normalize (`bool`, *optional*, defaults to `True`):
79
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
80
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
81
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
82
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
83
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
84
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
85
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
86
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
87
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
88
+ Whether to convert the image to RGB.
89
+ """
90
+
91
+ model_input_names = ["pixel_values"]
92
+
93
+ def __init__(
94
+ self,
95
+ do_resize: bool = True,
96
+ size: Dict[str, int] = None,
97
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
98
+ do_center_crop: bool = True,
99
+ crop_size: Dict[str, int] = None,
100
+ do_rescale: bool = True,
101
+ rescale_factor: Union[int, float] = 1 / 255,
102
+ do_normalize: bool = True,
103
+ image_mean: Optional[Union[float, List[float]]] = None,
104
+ image_std: Optional[Union[float, List[float]]] = None,
105
+ do_convert_rgb: bool = True,
106
+ **kwargs,
107
+ ) -> None:
108
+ super().__init__(**kwargs)
109
+ size = size if size is not None else {"shortest_edge": 224}
110
+ size = get_size_dict(size, default_to_square=False)
111
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
112
+ crop_size = get_size_dict(crop_size)
113
+
114
+ self.do_resize = do_resize
115
+ self.size = size
116
+ self.resample = resample
117
+ self.do_center_crop = do_center_crop
118
+ self.crop_size = crop_size
119
+ self.do_rescale = do_rescale
120
+ self.rescale_factor = rescale_factor
121
+ self.do_normalize = do_normalize
122
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
123
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
124
+ self.do_convert_rgb = do_convert_rgb
125
+ self._valid_processor_keys = [
126
+ "images",
127
+ "do_resize",
128
+ "size",
129
+ "resample",
130
+ "do_center_crop",
131
+ "crop_size",
132
+ "do_rescale",
133
+ "rescale_factor",
134
+ "do_normalize",
135
+ "image_mean",
136
+ "image_std",
137
+ "do_convert_rgb",
138
+ "return_tensors",
139
+ "data_format",
140
+ "input_data_format",
141
+ ]
142
+
143
+ def resize(
144
+ self,
145
+ image: np.ndarray,
146
+ size: Dict[str, int],
147
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
148
+ data_format: Optional[Union[str, ChannelDimension]] = None,
149
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
150
+ **kwargs,
151
+ ) -> np.ndarray:
152
+ """
153
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
154
+ resized to keep the input aspect ratio.
155
+
156
+ Args:
157
+ image (`np.ndarray`):
158
+ Image to resize.
159
+ size (`Dict[str, int]`):
160
+ Size of the output image.
161
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
162
+ Resampling filter to use when resiizing the image.
163
+ data_format (`str` or `ChannelDimension`, *optional*):
164
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
165
+ input_data_format (`ChannelDimension` or `str`, *optional*):
166
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
167
+ image.
168
+ """
169
+ size = get_size_dict(size, default_to_square=False)
170
+ output_size = get_resize_output_image_size(
171
+ image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
172
+ )
173
+ return resize(
174
+ image,
175
+ size=output_size,
176
+ resample=resample,
177
+ data_format=data_format,
178
+ input_data_format=input_data_format,
179
+ **kwargs,
180
+ )
181
+
182
+ def preprocess(
183
+ self,
184
+ images: ImageInput,
185
+ do_resize: bool = None,
186
+ size: Dict[str, int] = None,
187
+ resample: PILImageResampling = None,
188
+ do_center_crop: bool = None,
189
+ crop_size: int = None,
190
+ do_rescale: bool = None,
191
+ rescale_factor: float = None,
192
+ do_normalize: bool = None,
193
+ image_mean: Optional[Union[float, List[float]]] = None,
194
+ image_std: Optional[Union[float, List[float]]] = None,
195
+ do_convert_rgb: bool = None,
196
+ return_tensors: Optional[Union[str, TensorType]] = None,
197
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
198
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
199
+ **kwargs,
200
+ ) -> PIL.Image.Image:
201
+ """
202
+ Preprocess an image or batch of images.
203
+
204
+ Args:
205
+ images (`ImageInput`):
206
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
207
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
208
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
209
+ Whether to resize the image.
210
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
211
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
212
+ the longest edge resized to keep the input aspect ratio.
213
+ resample (`int`, *optional*, defaults to `self.resample`):
214
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
215
+ has an effect if `do_resize` is set to `True`.
216
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
217
+ Whether to center crop the image.
218
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
219
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
220
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
221
+ Whether to rescale the image.
222
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
223
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
224
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
225
+ Whether to normalize the image.
226
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
227
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
228
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
229
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
230
+ `True`.
231
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
232
+ Whether to convert the image to RGB.
233
+ return_tensors (`str` or `TensorType`, *optional*):
234
+ The type of tensors to return. Can be one of:
235
+ - Unset: Return a list of `np.ndarray`.
236
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
237
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
238
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
239
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
240
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
241
+ The channel dimension format for the output image. Can be one of:
242
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
243
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
244
+ - Unset: Use the channel dimension format of the input image.
245
+ input_data_format (`ChannelDimension` or `str`, *optional*):
246
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
247
+ from the input image. Can be one of:
248
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
249
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
250
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
251
+ """
252
+ do_resize = do_resize if do_resize is not None else self.do_resize
253
+ size = size if size is not None else self.size
254
+ size = get_size_dict(size, default_to_square=False)
255
+ resample = resample if resample is not None else self.resample
256
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
257
+ crop_size = crop_size if crop_size is not None else self.crop_size
258
+ crop_size = get_size_dict(crop_size)
259
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
260
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
261
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
262
+ image_mean = image_mean if image_mean is not None else self.image_mean
263
+ image_std = image_std if image_std is not None else self.image_std
264
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
265
+
266
+ images = make_list_of_images(images)
267
+
268
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
269
+
270
+ if not valid_images(images):
271
+ raise ValueError(
272
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
273
+ "torch.Tensor, tf.Tensor or jax.ndarray."
274
+ )
275
+ validate_preprocess_arguments(
276
+ do_rescale=do_rescale,
277
+ rescale_factor=rescale_factor,
278
+ do_normalize=do_normalize,
279
+ image_mean=image_mean,
280
+ image_std=image_std,
281
+ do_center_crop=do_center_crop,
282
+ crop_size=crop_size,
283
+ do_resize=do_resize,
284
+ size=size,
285
+ resample=resample,
286
+ )
287
+ if do_convert_rgb:
288
+ images = [convert_to_rgb(image) for image in images]
289
+
290
+ # All transformations expect numpy arrays.
291
+ images = [to_numpy_array(image) for image in images]
292
+
293
+ if is_scaled_image(images[0]) and do_rescale:
294
+ logger.warning_once(
295
+ "It looks like you are trying to rescale already rescaled images. If the input"
296
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
297
+ )
298
+
299
+ if input_data_format is None:
300
+ # We assume that all images have the same channel dimension format.
301
+ input_data_format = infer_channel_dimension_format(images[0])
302
+
303
+ if do_resize:
304
+ images = [
305
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
306
+ for image in images
307
+ ]
308
+
309
+ if do_center_crop:
310
+ images = [
311
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
312
+ ]
313
+
314
+ if do_rescale:
315
+ images = [
316
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
317
+ for image in images
318
+ ]
319
+
320
+ if do_normalize:
321
+ images = [
322
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
323
+ for image in images
324
+ ]
325
+
326
+ images = [
327
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
328
+ ]
329
+
330
+ data = {"pixel_values": images}
331
+ return BatchFeature(data=data, tensor_type=return_tensors)
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py ADDED
@@ -0,0 +1,1562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Chinese-CLIP model."""
16
+
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import Any, List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from ...activations import ACT2FN
27
+ from ...modeling_outputs import (
28
+ BaseModelOutput,
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPooling,
31
+ BaseModelOutputWithPoolingAndCrossAttentions,
32
+ )
33
+ from ...modeling_utils import PreTrainedModel
34
+ from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
35
+ from ...utils import (
36
+ ModelOutput,
37
+ add_code_sample_docstrings,
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+ from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
44
+
45
+
46
+ logger = logging.get_logger(__name__)
47
+
48
+ _CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
49
+ _CONFIG_FOR_DOC = "ChineseCLIPConfig"
50
+
51
+
52
+ from ..deprecated._archive_maps import CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
53
+
54
+
55
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
56
+ # Copied from transformers.models.clip.modeling_clip.contrastive_loss
57
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
58
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
59
+
60
+
61
+ def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
62
+ caption_loss = contrastive_loss(similarity)
63
+ image_loss = contrastive_loss(similarity.t())
64
+ return (caption_loss + image_loss) / 2.0
65
+
66
+
67
+ @dataclass
68
+ class ChineseCLIPOutput(ModelOutput):
69
+ """
70
+ Args:
71
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
72
+ Contrastive loss for image-text similarity.
73
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
74
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
75
+ similarity scores.
76
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
77
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
78
+ similarity scores.
79
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
80
+ The text embeddings obtained by applying the projection layer to the pooled output of
81
+ [`ChineseCLIPTextModel`].
82
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
83
+ The image embeddings obtained by applying the projection layer to the pooled output of
84
+ [`ChineseCLIPVisionModel`].
85
+ text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
86
+ The output of the [`ChineseCLIPTextModel`].
87
+ vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
88
+ The output of the [`ChineseCLIPVisionModel`].
89
+ """
90
+
91
+ loss: Optional[torch.FloatTensor] = None
92
+ logits_per_image: torch.FloatTensor = None
93
+ logits_per_text: torch.FloatTensor = None
94
+ text_embeds: torch.FloatTensor = None
95
+ image_embeds: torch.FloatTensor = None
96
+ text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
97
+ vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
98
+
99
+ def to_tuple(self) -> Tuple[Any]:
100
+ return tuple(
101
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
102
+ for k in self.keys()
103
+ )
104
+
105
+
106
+ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
107
+ class ChineseCLIPTextEmbeddings(nn.Module):
108
+ """Construct the embeddings from word, position and token_type embeddings."""
109
+
110
+ def __init__(self, config):
111
+ super().__init__()
112
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
113
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
114
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
115
+
116
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
117
+ # any TensorFlow checkpoint file
118
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
119
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
120
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
121
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
122
+ self.register_buffer(
123
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
124
+ )
125
+ self.register_buffer(
126
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
127
+ )
128
+
129
+ def forward(
130
+ self,
131
+ input_ids: Optional[torch.LongTensor] = None,
132
+ token_type_ids: Optional[torch.LongTensor] = None,
133
+ position_ids: Optional[torch.LongTensor] = None,
134
+ inputs_embeds: Optional[torch.FloatTensor] = None,
135
+ past_key_values_length: int = 0,
136
+ ) -> torch.Tensor:
137
+ if input_ids is not None:
138
+ input_shape = input_ids.size()
139
+ else:
140
+ input_shape = inputs_embeds.size()[:-1]
141
+
142
+ seq_length = input_shape[1]
143
+
144
+ if position_ids is None:
145
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
146
+
147
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
148
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
149
+ # issue #5664
150
+ if token_type_ids is None:
151
+ if hasattr(self, "token_type_ids"):
152
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
153
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
154
+ token_type_ids = buffered_token_type_ids_expanded
155
+ else:
156
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
157
+
158
+ if inputs_embeds is None:
159
+ inputs_embeds = self.word_embeddings(input_ids)
160
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
161
+
162
+ embeddings = inputs_embeds + token_type_embeddings
163
+ if self.position_embedding_type == "absolute":
164
+ position_embeddings = self.position_embeddings(position_ids)
165
+ embeddings += position_embeddings
166
+ embeddings = self.LayerNorm(embeddings)
167
+ embeddings = self.dropout(embeddings)
168
+ return embeddings
169
+
170
+
171
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
172
+ class ChineseCLIPVisionEmbeddings(nn.Module):
173
+ def __init__(self, config: ChineseCLIPVisionConfig):
174
+ super().__init__()
175
+ self.config = config
176
+ self.embed_dim = config.hidden_size
177
+ self.image_size = config.image_size
178
+ self.patch_size = config.patch_size
179
+
180
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
181
+
182
+ self.patch_embedding = nn.Conv2d(
183
+ in_channels=config.num_channels,
184
+ out_channels=self.embed_dim,
185
+ kernel_size=self.patch_size,
186
+ stride=self.patch_size,
187
+ bias=False,
188
+ )
189
+
190
+ self.num_patches = (self.image_size // self.patch_size) ** 2
191
+ self.num_positions = self.num_patches + 1
192
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
193
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
194
+
195
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
196
+ batch_size = pixel_values.shape[0]
197
+ target_dtype = self.patch_embedding.weight.dtype
198
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
199
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
200
+
201
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
202
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
203
+ embeddings = embeddings + self.position_embedding(self.position_ids)
204
+ return embeddings
205
+
206
+
207
+ # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
208
+ class ChineseCLIPTextSelfAttention(nn.Module):
209
+ def __init__(self, config, position_embedding_type=None):
210
+ super().__init__()
211
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
212
+ raise ValueError(
213
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
214
+ f"heads ({config.num_attention_heads})"
215
+ )
216
+
217
+ self.num_attention_heads = config.num_attention_heads
218
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
219
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
220
+
221
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
222
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
223
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
224
+
225
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
226
+ self.position_embedding_type = position_embedding_type or getattr(
227
+ config, "position_embedding_type", "absolute"
228
+ )
229
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
230
+ self.max_position_embeddings = config.max_position_embeddings
231
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
232
+
233
+ self.is_decoder = config.is_decoder
234
+
235
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
236
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
237
+ x = x.view(new_x_shape)
238
+ return x.permute(0, 2, 1, 3)
239
+
240
+ def forward(
241
+ self,
242
+ hidden_states: torch.Tensor,
243
+ attention_mask: Optional[torch.FloatTensor] = None,
244
+ head_mask: Optional[torch.FloatTensor] = None,
245
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
246
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
247
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
248
+ output_attentions: Optional[bool] = False,
249
+ ) -> Tuple[torch.Tensor]:
250
+ mixed_query_layer = self.query(hidden_states)
251
+
252
+ # If this is instantiated as a cross-attention module, the keys
253
+ # and values come from an encoder; the attention mask needs to be
254
+ # such that the encoder's padding tokens are not attended to.
255
+ is_cross_attention = encoder_hidden_states is not None
256
+
257
+ if is_cross_attention and past_key_value is not None:
258
+ # reuse k,v, cross_attentions
259
+ key_layer = past_key_value[0]
260
+ value_layer = past_key_value[1]
261
+ attention_mask = encoder_attention_mask
262
+ elif is_cross_attention:
263
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
264
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
265
+ attention_mask = encoder_attention_mask
266
+ elif past_key_value is not None:
267
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
268
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
269
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
270
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
271
+ else:
272
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
273
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
274
+
275
+ query_layer = self.transpose_for_scores(mixed_query_layer)
276
+
277
+ use_cache = past_key_value is not None
278
+ if self.is_decoder:
279
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
280
+ # Further calls to cross_attention layer can then reuse all cross-attention
281
+ # key/value_states (first "if" case)
282
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
283
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
284
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
285
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
286
+ past_key_value = (key_layer, value_layer)
287
+
288
+ # Take the dot product between "query" and "key" to get the raw attention scores.
289
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
290
+
291
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
292
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
293
+ if use_cache:
294
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
295
+ -1, 1
296
+ )
297
+ else:
298
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
299
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
300
+ distance = position_ids_l - position_ids_r
301
+
302
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
303
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
304
+
305
+ if self.position_embedding_type == "relative_key":
306
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
307
+ attention_scores = attention_scores + relative_position_scores
308
+ elif self.position_embedding_type == "relative_key_query":
309
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
310
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
311
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
312
+
313
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
314
+ if attention_mask is not None:
315
+ # Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
316
+ attention_scores = attention_scores + attention_mask
317
+
318
+ # Normalize the attention scores to probabilities.
319
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
320
+
321
+ # This is actually dropping out entire tokens to attend to, which might
322
+ # seem a bit unusual, but is taken from the original Transformer paper.
323
+ attention_probs = self.dropout(attention_probs)
324
+
325
+ # Mask heads if we want to
326
+ if head_mask is not None:
327
+ attention_probs = attention_probs * head_mask
328
+
329
+ context_layer = torch.matmul(attention_probs, value_layer)
330
+
331
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
332
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
333
+ context_layer = context_layer.view(new_context_layer_shape)
334
+
335
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
336
+
337
+ if self.is_decoder:
338
+ outputs = outputs + (past_key_value,)
339
+ return outputs
340
+
341
+
342
+ # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
343
+ class ChineseCLIPTextSelfOutput(nn.Module):
344
+ def __init__(self, config):
345
+ super().__init__()
346
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
347
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
348
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
349
+
350
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
351
+ hidden_states = self.dense(hidden_states)
352
+ hidden_states = self.dropout(hidden_states)
353
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
354
+ return hidden_states
355
+
356
+
357
+ # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
358
+ class ChineseCLIPTextAttention(nn.Module):
359
+ def __init__(self, config, position_embedding_type=None):
360
+ super().__init__()
361
+ self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
362
+ self.output = ChineseCLIPTextSelfOutput(config)
363
+ self.pruned_heads = set()
364
+
365
+ def prune_heads(self, heads):
366
+ if len(heads) == 0:
367
+ return
368
+ heads, index = find_pruneable_heads_and_indices(
369
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
370
+ )
371
+
372
+ # Prune linear layers
373
+ self.self.query = prune_linear_layer(self.self.query, index)
374
+ self.self.key = prune_linear_layer(self.self.key, index)
375
+ self.self.value = prune_linear_layer(self.self.value, index)
376
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
377
+
378
+ # Update hyper params and store pruned heads
379
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
380
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
381
+ self.pruned_heads = self.pruned_heads.union(heads)
382
+
383
+ def forward(
384
+ self,
385
+ hidden_states: torch.Tensor,
386
+ attention_mask: Optional[torch.FloatTensor] = None,
387
+ head_mask: Optional[torch.FloatTensor] = None,
388
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
389
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
390
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
391
+ output_attentions: Optional[bool] = False,
392
+ ) -> Tuple[torch.Tensor]:
393
+ self_outputs = self.self(
394
+ hidden_states,
395
+ attention_mask,
396
+ head_mask,
397
+ encoder_hidden_states,
398
+ encoder_attention_mask,
399
+ past_key_value,
400
+ output_attentions,
401
+ )
402
+ attention_output = self.output(self_outputs[0], hidden_states)
403
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
404
+ return outputs
405
+
406
+
407
+ class ChineseCLIPVisionAttention(nn.Module):
408
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
409
+
410
+ def __init__(self, config):
411
+ super().__init__()
412
+ self.config = config
413
+ self.embed_dim = config.hidden_size
414
+ self.num_heads = config.num_attention_heads
415
+ self.head_dim = self.embed_dim // self.num_heads
416
+ if self.head_dim * self.num_heads != self.embed_dim:
417
+ raise ValueError(
418
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
419
+ f" {self.num_heads})."
420
+ )
421
+ self.scale = self.head_dim**-0.5
422
+ self.dropout = config.attention_dropout
423
+
424
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
425
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
426
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
427
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
428
+
429
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
430
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
431
+
432
+ def forward(
433
+ self,
434
+ hidden_states: torch.Tensor,
435
+ output_attentions: Optional[bool] = False,
436
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
437
+ """Input shape: Batch x Time x Channel"""
438
+
439
+ bsz, tgt_len, embed_dim = hidden_states.size()
440
+
441
+ # get query proj
442
+ query_states = self.q_proj(hidden_states) * self.scale
443
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
444
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
445
+
446
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
447
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
448
+ key_states = key_states.view(*proj_shape)
449
+ value_states = value_states.view(*proj_shape)
450
+
451
+ src_len = key_states.size(1)
452
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
453
+
454
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
455
+ raise ValueError(
456
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
457
+ f" {attn_weights.size()}"
458
+ )
459
+
460
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
461
+
462
+ if output_attentions:
463
+ # this operation is a bit akward, but it's required to
464
+ # make sure that attn_weights keeps its gradient.
465
+ # In order to do so, attn_weights have to reshaped
466
+ # twice and have to be reused in the following
467
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
468
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
469
+ else:
470
+ attn_weights_reshaped = None
471
+
472
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
473
+
474
+ attn_output = torch.bmm(attn_probs, value_states)
475
+
476
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
477
+ raise ValueError(
478
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
479
+ f" {attn_output.size()}"
480
+ )
481
+
482
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
483
+ attn_output = attn_output.transpose(1, 2)
484
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
485
+
486
+ attn_output = self.out_proj(attn_output)
487
+
488
+ return attn_output, attn_weights_reshaped
489
+
490
+
491
+ # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
492
+ class ChineseCLIPTextIntermediate(nn.Module):
493
+ def __init__(self, config):
494
+ super().__init__()
495
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
496
+ if isinstance(config.hidden_act, str):
497
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
498
+ else:
499
+ self.intermediate_act_fn = config.hidden_act
500
+
501
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
502
+ hidden_states = self.dense(hidden_states)
503
+ hidden_states = self.intermediate_act_fn(hidden_states)
504
+ return hidden_states
505
+
506
+
507
+ # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
508
+ class ChineseCLIPTextOutput(nn.Module):
509
+ def __init__(self, config):
510
+ super().__init__()
511
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
512
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
513
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
514
+
515
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
516
+ hidden_states = self.dense(hidden_states)
517
+ hidden_states = self.dropout(hidden_states)
518
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
519
+ return hidden_states
520
+
521
+
522
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
523
+ class ChineseCLIPVisionMLP(nn.Module):
524
+ def __init__(self, config):
525
+ super().__init__()
526
+ self.config = config
527
+ self.activation_fn = ACT2FN[config.hidden_act]
528
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
529
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
530
+
531
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
532
+ hidden_states = self.fc1(hidden_states)
533
+ hidden_states = self.activation_fn(hidden_states)
534
+ hidden_states = self.fc2(hidden_states)
535
+ return hidden_states
536
+
537
+
538
+ # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
539
+ class ChineseCLIPTextLayer(nn.Module):
540
+ def __init__(self, config):
541
+ super().__init__()
542
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
543
+ self.seq_len_dim = 1
544
+ self.attention = ChineseCLIPTextAttention(config)
545
+ self.is_decoder = config.is_decoder
546
+ self.add_cross_attention = config.add_cross_attention
547
+ if self.add_cross_attention:
548
+ if not self.is_decoder:
549
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
550
+ self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
551
+ self.intermediate = ChineseCLIPTextIntermediate(config)
552
+ self.output = ChineseCLIPTextOutput(config)
553
+
554
+ def forward(
555
+ self,
556
+ hidden_states: torch.Tensor,
557
+ attention_mask: Optional[torch.FloatTensor] = None,
558
+ head_mask: Optional[torch.FloatTensor] = None,
559
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
560
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
561
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
562
+ output_attentions: Optional[bool] = False,
563
+ ) -> Tuple[torch.Tensor]:
564
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
565
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
566
+ self_attention_outputs = self.attention(
567
+ hidden_states,
568
+ attention_mask,
569
+ head_mask,
570
+ output_attentions=output_attentions,
571
+ past_key_value=self_attn_past_key_value,
572
+ )
573
+ attention_output = self_attention_outputs[0]
574
+
575
+ # if decoder, the last output is tuple of self-attn cache
576
+ if self.is_decoder:
577
+ outputs = self_attention_outputs[1:-1]
578
+ present_key_value = self_attention_outputs[-1]
579
+ else:
580
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
581
+
582
+ cross_attn_present_key_value = None
583
+ if self.is_decoder and encoder_hidden_states is not None:
584
+ if not hasattr(self, "crossattention"):
585
+ raise ValueError(
586
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
587
+ " by setting `config.add_cross_attention=True`"
588
+ )
589
+
590
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
591
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
592
+ cross_attention_outputs = self.crossattention(
593
+ attention_output,
594
+ attention_mask,
595
+ head_mask,
596
+ encoder_hidden_states,
597
+ encoder_attention_mask,
598
+ cross_attn_past_key_value,
599
+ output_attentions,
600
+ )
601
+ attention_output = cross_attention_outputs[0]
602
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
603
+
604
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
605
+ cross_attn_present_key_value = cross_attention_outputs[-1]
606
+ present_key_value = present_key_value + cross_attn_present_key_value
607
+
608
+ layer_output = apply_chunking_to_forward(
609
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
610
+ )
611
+ outputs = (layer_output,) + outputs
612
+
613
+ # if decoder, return the attn key/values as the last output
614
+ if self.is_decoder:
615
+ outputs = outputs + (present_key_value,)
616
+
617
+ return outputs
618
+
619
+ def feed_forward_chunk(self, attention_output):
620
+ intermediate_output = self.intermediate(attention_output)
621
+ layer_output = self.output(intermediate_output, attention_output)
622
+ return layer_output
623
+
624
+
625
+ class ChineseCLIPVisionLayer(nn.Module):
626
+ def __init__(self, config: ChineseCLIPConfig):
627
+ super().__init__()
628
+ self.embed_dim = config.hidden_size
629
+ self.self_attn = ChineseCLIPVisionAttention(config)
630
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
631
+ self.mlp = ChineseCLIPVisionMLP(config)
632
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
633
+
634
+ def forward(
635
+ self,
636
+ hidden_states: torch.Tensor,
637
+ output_attentions: Optional[bool] = False,
638
+ ) -> Tuple[torch.FloatTensor]:
639
+ """
640
+ Args:
641
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
642
+ output_attentions (`bool`, *optional*):
643
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
644
+ returned tensors for more detail.
645
+ """
646
+ residual = hidden_states
647
+
648
+ hidden_states = self.layer_norm1(hidden_states)
649
+ hidden_states, attn_weights = self.self_attn(
650
+ hidden_states=hidden_states,
651
+ output_attentions=output_attentions,
652
+ )
653
+ hidden_states = residual + hidden_states
654
+
655
+ residual = hidden_states
656
+ hidden_states = self.layer_norm2(hidden_states)
657
+ hidden_states = self.mlp(hidden_states)
658
+ hidden_states = residual + hidden_states
659
+
660
+ outputs = (hidden_states,)
661
+
662
+ if output_attentions:
663
+ outputs += (attn_weights,)
664
+
665
+ return outputs
666
+
667
+
668
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
669
+ class ChineseCLIPTextPooler(nn.Module):
670
+ def __init__(self, config):
671
+ super().__init__()
672
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
673
+ self.activation = nn.Tanh()
674
+
675
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
676
+ # We "pool" the model by simply taking the hidden state corresponding
677
+ # to the first token.
678
+ first_token_tensor = hidden_states[:, 0]
679
+ pooled_output = self.dense(first_token_tensor)
680
+ pooled_output = self.activation(pooled_output)
681
+ return pooled_output
682
+
683
+
684
+ class ChineseCLIPPreTrainedModel(PreTrainedModel):
685
+ """
686
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
687
+ models.
688
+ """
689
+
690
+ config_class = ChineseCLIPConfig
691
+ base_model_prefix = "chinese_clip"
692
+ supports_gradient_checkpointing = True
693
+
694
+ def _init_weights(self, module):
695
+ """Initialize the weights"""
696
+ factor = self.config.initializer_factor
697
+ if isinstance(module, ChineseCLIPVisionEmbeddings):
698
+ factor = self.config.initializer_factor
699
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
700
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
701
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
702
+ elif isinstance(module, ChineseCLIPTextEmbeddings):
703
+ nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
704
+ nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
705
+ nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
706
+ for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
707
+ if embedding.padding_idx is not None:
708
+ embedding.weight.data[embedding.padding_idx].zero_()
709
+ elif isinstance(module, ChineseCLIPVisionAttention):
710
+ factor = self.config.initializer_factor
711
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
712
+ out_proj_std = (module.embed_dim**-0.5) * factor
713
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
714
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
715
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
716
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
717
+ elif isinstance(module, ChineseCLIPVisionMLP):
718
+ factor = self.config.initializer_factor
719
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
720
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
721
+ nn.init.normal_(module.fc1.weight, std=fc_std)
722
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
723
+ elif isinstance(module, ChineseCLIPModel):
724
+ nn.init.normal_(
725
+ module.text_projection.weight,
726
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
727
+ )
728
+ nn.init.normal_(
729
+ module.visual_projection.weight,
730
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
731
+ )
732
+
733
+ if isinstance(module, nn.LayerNorm):
734
+ module.bias.data.zero_()
735
+ module.weight.data.fill_(1.0)
736
+ if isinstance(module, nn.Linear):
737
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
738
+ if module.bias is not None:
739
+ module.bias.data.zero_()
740
+
741
+
742
+ CHINESE_CLIP_START_DOCSTRING = r"""
743
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
744
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
745
+ behavior.
746
+
747
+ Parameters:
748
+ config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
749
+ Initializing with a config file does not load the weights associated with the model, only the
750
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
751
+ """
752
+
753
+ CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
754
+ Args:
755
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
756
+ Indices of input sequence tokens in the vocabulary.
757
+
758
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
759
+ [`PreTrainedTokenizer.__call__`] for details.
760
+
761
+ [What are input IDs?](../glossary#input-ids)
762
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
763
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
764
+
765
+ - 1 for tokens that are **not masked**,
766
+ - 0 for tokens that are **masked**.
767
+
768
+ [What are attention masks?](../glossary#attention-mask)
769
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
770
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
771
+ 1]`:
772
+
773
+ - 0 corresponds to a *sentence A* token,
774
+ - 1 corresponds to a *sentence B* token.
775
+
776
+ [What are token type IDs?](../glossary#token-type-ids)
777
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
778
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
779
+ config.max_position_embeddings - 1]`.
780
+
781
+ [What are position IDs?](../glossary#position-ids)
782
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
783
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
784
+
785
+ - 1 indicates the head is **not masked**,
786
+ - 0 indicates the head is **masked**.
787
+
788
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
789
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
790
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
791
+ model's internal embedding lookup matrix.
792
+ output_attentions (`bool`, *optional*):
793
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
794
+ tensors for more detail.
795
+ output_hidden_states (`bool`, *optional*):
796
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
797
+ more detail.
798
+ return_dict (`bool`, *optional*):
799
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
800
+ """
801
+
802
+ CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
803
+ Args:
804
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
805
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
806
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
807
+ output_attentions (`bool`, *optional*):
808
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
809
+ tensors for more detail.
810
+ output_hidden_states (`bool`, *optional*):
811
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
812
+ more detail.
813
+ return_dict (`bool`, *optional*):
814
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
815
+ """
816
+
817
+ CHINESE_CLIP_INPUTS_DOCSTRING = r"""
818
+ Args:
819
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
820
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
821
+ it.
822
+
823
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
824
+ [`PreTrainedTokenizer.__call__`] for details.
825
+
826
+ [What are input IDs?](../glossary#input-ids)
827
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
828
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
829
+
830
+ - 1 for tokens that are **not masked**,
831
+ - 0 for tokens that are **masked**.
832
+
833
+ [What are attention masks?](../glossary#attention-mask)
834
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
835
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
836
+ 1]`:
837
+
838
+ - 0 corresponds to a *sentence A* token,
839
+ - 1 corresponds to a *sentence B* token.
840
+
841
+ [What are token type IDs?](../glossary#token-type-ids)
842
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
843
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
844
+ config.max_position_embeddings - 1]`.
845
+
846
+ [What are position IDs?](../glossary#position-ids)
847
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
848
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
849
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
850
+ return_loss (`bool`, *optional*):
851
+ Whether or not to return the contrastive loss.
852
+ output_attentions (`bool`, *optional*):
853
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
854
+ tensors for more detail.
855
+ output_hidden_states (`bool`, *optional*):
856
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
857
+ more detail.
858
+ return_dict (`bool`, *optional*):
859
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
860
+ """
861
+
862
+
863
+ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
864
+ class ChineseCLIPTextEncoder(nn.Module):
865
+ def __init__(self, config):
866
+ super().__init__()
867
+ self.config = config
868
+ self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
869
+ self.gradient_checkpointing = False
870
+
871
+ def forward(
872
+ self,
873
+ hidden_states: torch.Tensor,
874
+ attention_mask: Optional[torch.FloatTensor] = None,
875
+ head_mask: Optional[torch.FloatTensor] = None,
876
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
877
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
878
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
879
+ use_cache: Optional[bool] = None,
880
+ output_attentions: Optional[bool] = False,
881
+ output_hidden_states: Optional[bool] = False,
882
+ return_dict: Optional[bool] = True,
883
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
884
+ all_hidden_states = () if output_hidden_states else None
885
+ all_self_attentions = () if output_attentions else None
886
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
887
+
888
+ if self.gradient_checkpointing and self.training:
889
+ if use_cache:
890
+ logger.warning_once(
891
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
892
+ )
893
+ use_cache = False
894
+
895
+ next_decoder_cache = () if use_cache else None
896
+ for i, layer_module in enumerate(self.layer):
897
+ if output_hidden_states:
898
+ all_hidden_states = all_hidden_states + (hidden_states,)
899
+
900
+ layer_head_mask = head_mask[i] if head_mask is not None else None
901
+ past_key_value = past_key_values[i] if past_key_values is not None else None
902
+
903
+ if self.gradient_checkpointing and self.training:
904
+ layer_outputs = self._gradient_checkpointing_func(
905
+ layer_module.__call__,
906
+ hidden_states,
907
+ attention_mask,
908
+ layer_head_mask,
909
+ encoder_hidden_states,
910
+ encoder_attention_mask,
911
+ past_key_value,
912
+ output_attentions,
913
+ )
914
+ else:
915
+ layer_outputs = layer_module(
916
+ hidden_states,
917
+ attention_mask,
918
+ layer_head_mask,
919
+ encoder_hidden_states,
920
+ encoder_attention_mask,
921
+ past_key_value,
922
+ output_attentions,
923
+ )
924
+
925
+ hidden_states = layer_outputs[0]
926
+ if use_cache:
927
+ next_decoder_cache += (layer_outputs[-1],)
928
+ if output_attentions:
929
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
930
+ if self.config.add_cross_attention:
931
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
932
+
933
+ if output_hidden_states:
934
+ all_hidden_states = all_hidden_states + (hidden_states,)
935
+
936
+ if not return_dict:
937
+ return tuple(
938
+ v
939
+ for v in [
940
+ hidden_states,
941
+ next_decoder_cache,
942
+ all_hidden_states,
943
+ all_self_attentions,
944
+ all_cross_attentions,
945
+ ]
946
+ if v is not None
947
+ )
948
+ return BaseModelOutputWithPastAndCrossAttentions(
949
+ last_hidden_state=hidden_states,
950
+ past_key_values=next_decoder_cache,
951
+ hidden_states=all_hidden_states,
952
+ attentions=all_self_attentions,
953
+ cross_attentions=all_cross_attentions,
954
+ )
955
+
956
+
957
+ class ChineseCLIPVisionEncoder(nn.Module):
958
+ """
959
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
960
+ [`ChineseCLIPVisionEncoderLayer`].
961
+
962
+ Args:
963
+ config: ChineseCLIPConfig
964
+ """
965
+
966
+ def __init__(self, config: ChineseCLIPConfig):
967
+ super().__init__()
968
+ self.config = config
969
+ self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
970
+ self.gradient_checkpointing = False
971
+
972
+ def forward(
973
+ self,
974
+ inputs_embeds,
975
+ output_attentions: Optional[bool] = None,
976
+ output_hidden_states: Optional[bool] = None,
977
+ return_dict: Optional[bool] = None,
978
+ ) -> Union[Tuple, BaseModelOutput]:
979
+ r"""
980
+ Args:
981
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
982
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
983
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
984
+ than the model's internal embedding lookup matrix.
985
+ output_attentions (`bool`, *optional*):
986
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
987
+ returned tensors for more detail.
988
+ output_hidden_states (`bool`, *optional*):
989
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
990
+ for more detail.
991
+ return_dict (`bool`, *optional*):
992
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
993
+ """
994
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
995
+ output_hidden_states = (
996
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
997
+ )
998
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
999
+
1000
+ encoder_states = () if output_hidden_states else None
1001
+ all_attentions = () if output_attentions else None
1002
+
1003
+ hidden_states = inputs_embeds
1004
+ for idx, encoder_layer in enumerate(self.layers):
1005
+ if output_hidden_states:
1006
+ encoder_states = encoder_states + (hidden_states,)
1007
+ if self.gradient_checkpointing and self.training:
1008
+ layer_outputs = self._gradient_checkpointing_func(
1009
+ encoder_layer.__call__,
1010
+ hidden_states,
1011
+ output_attentions,
1012
+ )
1013
+ else:
1014
+ layer_outputs = encoder_layer(
1015
+ hidden_states,
1016
+ output_attentions=output_attentions,
1017
+ )
1018
+
1019
+ hidden_states = layer_outputs[0]
1020
+
1021
+ if output_attentions:
1022
+ all_attentions = all_attentions + (layer_outputs[1],)
1023
+
1024
+ if output_hidden_states:
1025
+ encoder_states = encoder_states + (hidden_states,)
1026
+
1027
+ if not return_dict:
1028
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
1029
+ return BaseModelOutput(
1030
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
1031
+ )
1032
+
1033
+
1034
+ class ChineseCLIPVisionTransformer(nn.Module):
1035
+ def __init__(self, config: ChineseCLIPVisionConfig):
1036
+ super().__init__()
1037
+ self.config = config
1038
+ embed_dim = config.hidden_size
1039
+
1040
+ self.embeddings = ChineseCLIPVisionEmbeddings(config)
1041
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1042
+ self.encoder = ChineseCLIPVisionEncoder(config)
1043
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1044
+
1045
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1046
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1047
+ def forward(
1048
+ self,
1049
+ pixel_values: Optional[torch.FloatTensor] = None,
1050
+ output_attentions: Optional[bool] = None,
1051
+ output_hidden_states: Optional[bool] = None,
1052
+ return_dict: Optional[bool] = None,
1053
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1054
+ r"""
1055
+ Returns:
1056
+ """
1057
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1058
+ output_hidden_states = (
1059
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1060
+ )
1061
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1062
+
1063
+ if pixel_values is None:
1064
+ raise ValueError("You have to specify pixel_values")
1065
+
1066
+ hidden_states = self.embeddings(pixel_values)
1067
+ hidden_states = self.pre_layrnorm(hidden_states)
1068
+
1069
+ encoder_outputs = self.encoder(
1070
+ inputs_embeds=hidden_states,
1071
+ output_attentions=output_attentions,
1072
+ output_hidden_states=output_hidden_states,
1073
+ return_dict=return_dict,
1074
+ )
1075
+
1076
+ last_hidden_state = encoder_outputs[0]
1077
+ pooled_output = last_hidden_state[:, 0, :]
1078
+ pooled_output = self.post_layernorm(pooled_output)
1079
+
1080
+ if not return_dict:
1081
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
1082
+
1083
+ return BaseModelOutputWithPooling(
1084
+ last_hidden_state=last_hidden_state,
1085
+ pooler_output=pooled_output,
1086
+ hidden_states=encoder_outputs.hidden_states,
1087
+ attentions=encoder_outputs.attentions,
1088
+ )
1089
+
1090
+
1091
+ @add_start_docstrings(
1092
+ "The text model from CHINESE_CLIP without any head or projection on top.",
1093
+ CHINESE_CLIP_START_DOCSTRING,
1094
+ )
1095
+ class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
1096
+ """
1097
+
1098
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
1099
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
1100
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
1101
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
1102
+
1103
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
1104
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
1105
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
1106
+ """
1107
+
1108
+ config_class = ChineseCLIPTextConfig
1109
+
1110
+ def __init__(self, config, add_pooling_layer=True):
1111
+ super().__init__(config)
1112
+ self.config = config
1113
+
1114
+ self.embeddings = ChineseCLIPTextEmbeddings(config)
1115
+ self.encoder = ChineseCLIPTextEncoder(config)
1116
+
1117
+ self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
1118
+
1119
+ # Initialize weights and apply final processing
1120
+ self.post_init()
1121
+
1122
+ def get_input_embeddings(self):
1123
+ return self.embeddings.word_embeddings
1124
+
1125
+ def set_input_embeddings(self, value):
1126
+ self.embeddings.word_embeddings = value
1127
+
1128
+ def _prune_heads(self, heads_to_prune):
1129
+ """
1130
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
1131
+ class PreTrainedModel
1132
+ """
1133
+ for layer, heads in heads_to_prune.items():
1134
+ self.encoder.layer[layer].attention.prune_heads(heads)
1135
+
1136
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1137
+ @add_code_sample_docstrings(
1138
+ checkpoint=_CHECKPOINT_FOR_DOC,
1139
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
1140
+ config_class=_CONFIG_FOR_DOC,
1141
+ )
1142
+ def forward(
1143
+ self,
1144
+ input_ids: Optional[torch.Tensor] = None,
1145
+ attention_mask: Optional[torch.Tensor] = None,
1146
+ token_type_ids: Optional[torch.Tensor] = None,
1147
+ position_ids: Optional[torch.Tensor] = None,
1148
+ head_mask: Optional[torch.Tensor] = None,
1149
+ inputs_embeds: Optional[torch.Tensor] = None,
1150
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1151
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1152
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1153
+ use_cache: Optional[bool] = None,
1154
+ output_attentions: Optional[bool] = None,
1155
+ output_hidden_states: Optional[bool] = None,
1156
+ return_dict: Optional[bool] = None,
1157
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
1158
+ r"""
1159
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1160
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
1161
+ the model is configured as a decoder.
1162
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1163
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
1164
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
1165
+
1166
+ - 1 for tokens that are **not masked**,
1167
+ - 0 for tokens that are **masked**.
1168
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
1169
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
1170
+
1171
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1172
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1173
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1174
+ use_cache (`bool`, *optional*):
1175
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1176
+ `past_key_values`).
1177
+ """
1178
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1179
+ output_hidden_states = (
1180
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1181
+ )
1182
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1183
+
1184
+ if self.config.is_decoder:
1185
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1186
+ else:
1187
+ use_cache = False
1188
+
1189
+ if input_ids is not None and inputs_embeds is not None:
1190
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1191
+ elif input_ids is not None:
1192
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
1193
+ input_shape = input_ids.size()
1194
+ elif inputs_embeds is not None:
1195
+ input_shape = inputs_embeds.size()[:-1]
1196
+ else:
1197
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1198
+
1199
+ batch_size, seq_length = input_shape
1200
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1201
+
1202
+ # past_key_values_length
1203
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1204
+
1205
+ if attention_mask is None:
1206
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
1207
+
1208
+ if token_type_ids is None:
1209
+ if hasattr(self.embeddings, "token_type_ids"):
1210
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
1211
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
1212
+ token_type_ids = buffered_token_type_ids_expanded
1213
+ else:
1214
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
1215
+
1216
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
1217
+ # ourselves in which case we just need to make it broadcastable to all heads.
1218
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
1219
+
1220
+ # If a 2D or 3D attention mask is provided for the cross-attention
1221
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1222
+ if self.config.is_decoder and encoder_hidden_states is not None:
1223
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
1224
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1225
+ if encoder_attention_mask is None:
1226
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1227
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
1228
+ else:
1229
+ encoder_extended_attention_mask = None
1230
+
1231
+ # Prepare head mask if needed
1232
+ # 1.0 in head_mask indicate we keep the head
1233
+ # attention_probs has shape bsz x n_heads x N x N
1234
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1235
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1236
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1237
+
1238
+ embedding_output = self.embeddings(
1239
+ input_ids=input_ids,
1240
+ position_ids=position_ids,
1241
+ token_type_ids=token_type_ids,
1242
+ inputs_embeds=inputs_embeds,
1243
+ past_key_values_length=past_key_values_length,
1244
+ )
1245
+ encoder_outputs = self.encoder(
1246
+ embedding_output,
1247
+ attention_mask=extended_attention_mask,
1248
+ head_mask=head_mask,
1249
+ encoder_hidden_states=encoder_hidden_states,
1250
+ encoder_attention_mask=encoder_extended_attention_mask,
1251
+ past_key_values=past_key_values,
1252
+ use_cache=use_cache,
1253
+ output_attentions=output_attentions,
1254
+ output_hidden_states=output_hidden_states,
1255
+ return_dict=return_dict,
1256
+ )
1257
+ sequence_output = encoder_outputs[0]
1258
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1259
+
1260
+ if not return_dict:
1261
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1262
+
1263
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1264
+ last_hidden_state=sequence_output,
1265
+ pooler_output=pooled_output,
1266
+ past_key_values=encoder_outputs.past_key_values,
1267
+ hidden_states=encoder_outputs.hidden_states,
1268
+ attentions=encoder_outputs.attentions,
1269
+ cross_attentions=encoder_outputs.cross_attentions,
1270
+ )
1271
+
1272
+
1273
+ @add_start_docstrings(
1274
+ """The vision model from CHINESE_CLIP without any head or projection on top.""",
1275
+ CHINESE_CLIP_START_DOCSTRING,
1276
+ )
1277
+ class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
1278
+ config_class = ChineseCLIPVisionConfig
1279
+ main_input_name = "pixel_values"
1280
+
1281
+ def __init__(self, config: ChineseCLIPVisionConfig):
1282
+ super().__init__(config)
1283
+ self.vision_model = ChineseCLIPVisionTransformer(config)
1284
+ # Initialize weights and apply final processing
1285
+ self.post_init()
1286
+
1287
+ def get_input_embeddings(self) -> nn.Module:
1288
+ return self.vision_model.embeddings.patch_embedding
1289
+
1290
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1291
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
1292
+ def forward(
1293
+ self,
1294
+ pixel_values: Optional[torch.FloatTensor] = None,
1295
+ output_attentions: Optional[bool] = None,
1296
+ output_hidden_states: Optional[bool] = None,
1297
+ return_dict: Optional[bool] = None,
1298
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1299
+ r"""
1300
+ Returns:
1301
+
1302
+ Examples:
1303
+
1304
+ ```python
1305
+ >>> from PIL import Image
1306
+ >>> import requests
1307
+ >>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
1308
+
1309
+ >>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1310
+ >>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1311
+
1312
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1313
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1314
+
1315
+ >>> inputs = processor(images=image, return_tensors="pt")
1316
+
1317
+ >>> outputs = model(**inputs)
1318
+ >>> last_hidden_state = outputs.last_hidden_state
1319
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1320
+ ```"""
1321
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1322
+
1323
+ return self.vision_model(
1324
+ pixel_values=pixel_values,
1325
+ output_attentions=output_attentions,
1326
+ output_hidden_states=output_hidden_states,
1327
+ return_dict=return_dict,
1328
+ )
1329
+
1330
+
1331
+ @add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
1332
+ class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
1333
+ config_class = ChineseCLIPConfig
1334
+
1335
+ def __init__(self, config: ChineseCLIPConfig):
1336
+ super().__init__(config)
1337
+
1338
+ if not isinstance(config.text_config, ChineseCLIPTextConfig):
1339
+ raise ValueError(
1340
+ "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
1341
+ f" {type(config.text_config)}."
1342
+ )
1343
+
1344
+ if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
1345
+ raise ValueError(
1346
+ "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
1347
+ f" {type(config.vision_config)}."
1348
+ )
1349
+
1350
+ text_config = config.text_config
1351
+ vision_config = config.vision_config
1352
+
1353
+ self.projection_dim = config.projection_dim
1354
+ self.text_embed_dim = text_config.hidden_size
1355
+ self.vision_embed_dim = vision_config.hidden_size
1356
+
1357
+ self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
1358
+ self.vision_model = ChineseCLIPVisionTransformer(vision_config)
1359
+
1360
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
1361
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
1362
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
1363
+
1364
+ # Initialize weights and apply final processing
1365
+ self.post_init()
1366
+
1367
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
1368
+ def get_text_features(
1369
+ self,
1370
+ input_ids: Optional[torch.Tensor] = None,
1371
+ attention_mask: Optional[torch.Tensor] = None,
1372
+ token_type_ids: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.Tensor] = None,
1374
+ output_attentions: Optional[bool] = None,
1375
+ output_hidden_states: Optional[bool] = None,
1376
+ return_dict: Optional[bool] = None,
1377
+ ) -> torch.FloatTensor:
1378
+ r"""
1379
+ Returns:
1380
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
1381
+ applying the projection layer to the final [CLS] hidden state of Text-Transformer.
1382
+
1383
+ Examples:
1384
+
1385
+ ```python
1386
+ >>> from transformers import AutoTokenizer, ChineseCLIPModel
1387
+
1388
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1389
+ >>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1390
+
1391
+ >>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
1392
+ >>> text_features = model.get_text_features(**inputs)
1393
+ >>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
1394
+ ```"""
1395
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1396
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1397
+ output_hidden_states = (
1398
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1399
+ )
1400
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1401
+
1402
+ text_outputs = self.text_model(
1403
+ input_ids=input_ids,
1404
+ attention_mask=attention_mask,
1405
+ token_type_ids=token_type_ids,
1406
+ position_ids=position_ids,
1407
+ output_attentions=output_attentions,
1408
+ output_hidden_states=output_hidden_states,
1409
+ return_dict=return_dict,
1410
+ )
1411
+
1412
+ pooled_output = text_outputs[0][:, 0, :]
1413
+ text_features = self.text_projection(pooled_output)
1414
+
1415
+ return text_features
1416
+
1417
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
1418
+ def get_image_features(
1419
+ self,
1420
+ pixel_values: Optional[torch.FloatTensor] = None,
1421
+ output_attentions: Optional[bool] = None,
1422
+ output_hidden_states: Optional[bool] = None,
1423
+ return_dict: Optional[bool] = None,
1424
+ ) -> torch.FloatTensor:
1425
+ r"""
1426
+ Returns:
1427
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1428
+ applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
1429
+
1430
+ Examples:
1431
+
1432
+ ```python
1433
+ >>> from PIL import Image
1434
+ >>> import requests
1435
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1436
+
1437
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1438
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1439
+
1440
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1441
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1442
+
1443
+ >>> inputs = processor(images=image, return_tensors="pt")
1444
+
1445
+ >>> image_features = model.get_image_features(**inputs)
1446
+ >>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
1447
+ ```"""
1448
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1449
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1450
+ output_hidden_states = (
1451
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1452
+ )
1453
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1454
+
1455
+ vision_outputs = self.vision_model(
1456
+ pixel_values=pixel_values,
1457
+ output_attentions=output_attentions,
1458
+ output_hidden_states=output_hidden_states,
1459
+ return_dict=return_dict,
1460
+ )
1461
+
1462
+ pooled_output = vision_outputs[1] # pooled_output
1463
+ image_features = self.visual_projection(pooled_output)
1464
+
1465
+ return image_features
1466
+
1467
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
1468
+ @replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
1469
+ def forward(
1470
+ self,
1471
+ input_ids: Optional[torch.LongTensor] = None,
1472
+ pixel_values: Optional[torch.FloatTensor] = None,
1473
+ attention_mask: Optional[torch.Tensor] = None,
1474
+ token_type_ids: Optional[torch.Tensor] = None,
1475
+ position_ids: Optional[torch.LongTensor] = None,
1476
+ return_loss: Optional[bool] = None,
1477
+ output_attentions: Optional[bool] = None,
1478
+ output_hidden_states: Optional[bool] = None,
1479
+ return_dict: Optional[bool] = None,
1480
+ ) -> Union[Tuple, ChineseCLIPOutput]:
1481
+ r"""
1482
+ Returns:
1483
+
1484
+ Examples:
1485
+
1486
+ ```python
1487
+ >>> from PIL import Image
1488
+ >>> import requests
1489
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
1490
+
1491
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1492
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
1493
+
1494
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
1495
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1496
+
1497
+ >>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
1498
+
1499
+ >>> outputs = model(**inputs)
1500
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
1501
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
1502
+ ```"""
1503
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
1504
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1505
+ output_hidden_states = (
1506
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1507
+ )
1508
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1509
+
1510
+ vision_outputs = self.vision_model(
1511
+ pixel_values=pixel_values,
1512
+ output_attentions=output_attentions,
1513
+ output_hidden_states=output_hidden_states,
1514
+ return_dict=return_dict,
1515
+ )
1516
+
1517
+ text_outputs = self.text_model(
1518
+ input_ids=input_ids,
1519
+ attention_mask=attention_mask,
1520
+ token_type_ids=token_type_ids,
1521
+ position_ids=position_ids,
1522
+ output_attentions=output_attentions,
1523
+ output_hidden_states=output_hidden_states,
1524
+ return_dict=return_dict,
1525
+ )
1526
+
1527
+ image_embeds = vision_outputs[1]
1528
+ image_embeds = self.visual_projection(image_embeds)
1529
+
1530
+ text_embeds = text_outputs[0][:, 0, :]
1531
+ text_embeds = self.text_projection(text_embeds)
1532
+
1533
+ # normalized features
1534
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1535
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1536
+
1537
+ # cosine similarity as logits
1538
+ logit_scale = self.logit_scale.exp()
1539
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
1540
+ logits_per_image = logits_per_text.t()
1541
+
1542
+ loss = None
1543
+ if return_loss:
1544
+ loss = chinese_clip_loss(logits_per_text)
1545
+
1546
+ if not return_dict:
1547
+ # fix the None pooled_output of text_outputs to conform with dict_output
1548
+ pooled_output = text_outputs[1]
1549
+ if pooled_output is None:
1550
+ text_outputs = (text_outputs[0],) + text_outputs[2:]
1551
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
1552
+ return ((loss,) + output) if loss is not None else output
1553
+
1554
+ return ChineseCLIPOutput(
1555
+ loss=loss,
1556
+ logits_per_image=logits_per_image,
1557
+ logits_per_text=logits_per_text,
1558
+ text_embeds=text_embeds,
1559
+ image_embeds=image_embeds,
1560
+ text_model_output=text_outputs,
1561
+ vision_model_output=vision_outputs,
1562
+ )
venv/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for Chinese-CLIP
17
+ """
18
+
19
+ import warnings
20
+
21
+ from ...processing_utils import ProcessorMixin
22
+ from ...tokenization_utils_base import BatchEncoding
23
+
24
+
25
+ class ChineseCLIPProcessor(ProcessorMixin):
26
+ r"""
27
+ Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
28
+ single processor.
29
+
30
+ [`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
31
+ See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
32
+
33
+ Args:
34
+ image_processor ([`ChineseCLIPImageProcessor`], *optional*):
35
+ The image processor is a required input.
36
+ tokenizer ([`BertTokenizerFast`], *optional*):
37
+ The tokenizer is a required input.
38
+ """
39
+
40
+ attributes = ["image_processor", "tokenizer"]
41
+ image_processor_class = "ChineseCLIPImageProcessor"
42
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
43
+
44
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
45
+ feature_extractor = None
46
+ if "feature_extractor" in kwargs:
47
+ warnings.warn(
48
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
49
+ " instead.",
50
+ FutureWarning,
51
+ )
52
+ feature_extractor = kwargs.pop("feature_extractor")
53
+
54
+ image_processor = image_processor if image_processor is not None else feature_extractor
55
+ if image_processor is None:
56
+ raise ValueError("You need to specify an `image_processor`.")
57
+ if tokenizer is None:
58
+ raise ValueError("You need to specify a `tokenizer`.")
59
+
60
+ super().__init__(image_processor, tokenizer)
61
+ self.current_processor = self.image_processor
62
+
63
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
64
+ """
65
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
66
+ and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
67
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
68
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
69
+ of the above two methods for more information.
70
+
71
+ Args:
72
+ text (`str`, `List[str]`, `List[List[str]]`):
73
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
74
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
75
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
76
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
77
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
78
+ tensor. Both channels-first and channels-last formats are supported.
79
+
80
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
81
+ If set, will return tensors of a particular framework. Acceptable values are:
82
+
83
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
84
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
85
+ - `'np'`: Return NumPy `np.ndarray` objects.
86
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
87
+
88
+ Returns:
89
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
90
+
91
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
92
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
93
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
94
+ `None`).
95
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
96
+ """
97
+
98
+ if text is None and images is None:
99
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
100
+
101
+ if text is not None:
102
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
103
+
104
+ if images is not None:
105
+ image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
106
+
107
+ if text is not None and images is not None:
108
+ encoding["pixel_values"] = image_features.pixel_values
109
+ return encoding
110
+ elif text is not None:
111
+ return encoding
112
+ else:
113
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
114
+
115
+ def batch_decode(self, *args, **kwargs):
116
+ """
117
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
118
+ refer to the docstring of this method for more information.
119
+ """
120
+ return self.tokenizer.batch_decode(*args, **kwargs)
121
+
122
+ def decode(self, *args, **kwargs):
123
+ """
124
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
125
+ the docstring of this method for more information.
126
+ """
127
+ return self.tokenizer.decode(*args, **kwargs)
128
+
129
+ @property
130
+ def model_input_names(self):
131
+ tokenizer_input_names = self.tokenizer.model_input_names
132
+ image_processor_input_names = self.image_processor.model_input_names
133
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
134
+
135
+ @property
136
+ def feature_extractor_class(self):
137
+ warnings.warn(
138
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
139
+ FutureWarning,
140
+ )
141
+ return self.image_processor_class
venv/lib/python3.10/site-packages/transformers/models/glpn/__pycache__/feature_extraction_glpn.cpython-310.pyc ADDED
Binary file (997 Bytes). View file
 
venv/lib/python3.10/site-packages/transformers/models/regnet/__init__.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_flax_available,
20
+ is_tf_available,
21
+ is_torch_available,
22
+ )
23
+
24
+
25
+ _import_structure = {"configuration_regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"]}
26
+
27
+ try:
28
+ if not is_torch_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["modeling_regnet"] = [
34
+ "REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
35
+ "RegNetForImageClassification",
36
+ "RegNetModel",
37
+ "RegNetPreTrainedModel",
38
+ ]
39
+
40
+ try:
41
+ if not is_tf_available():
42
+ raise OptionalDependencyNotAvailable()
43
+ except OptionalDependencyNotAvailable:
44
+ pass
45
+ else:
46
+ _import_structure["modeling_tf_regnet"] = [
47
+ "TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST",
48
+ "TFRegNetForImageClassification",
49
+ "TFRegNetModel",
50
+ "TFRegNetPreTrainedModel",
51
+ ]
52
+
53
+ try:
54
+ if not is_flax_available():
55
+ raise OptionalDependencyNotAvailable()
56
+ except OptionalDependencyNotAvailable:
57
+ pass
58
+ else:
59
+ _import_structure["modeling_flax_regnet"] = [
60
+ "FlaxRegNetForImageClassification",
61
+ "FlaxRegNetModel",
62
+ "FlaxRegNetPreTrainedModel",
63
+ ]
64
+
65
+
66
+ if TYPE_CHECKING:
67
+ from .configuration_regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig
68
+
69
+ try:
70
+ if not is_torch_available():
71
+ raise OptionalDependencyNotAvailable()
72
+ except OptionalDependencyNotAvailable:
73
+ pass
74
+ else:
75
+ from .modeling_regnet import (
76
+ REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
77
+ RegNetForImageClassification,
78
+ RegNetModel,
79
+ RegNetPreTrainedModel,
80
+ )
81
+
82
+ try:
83
+ if not is_tf_available():
84
+ raise OptionalDependencyNotAvailable()
85
+ except OptionalDependencyNotAvailable:
86
+ pass
87
+ else:
88
+ from .modeling_tf_regnet import (
89
+ TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST,
90
+ TFRegNetForImageClassification,
91
+ TFRegNetModel,
92
+ TFRegNetPreTrainedModel,
93
+ )
94
+
95
+ try:
96
+ if not is_flax_available():
97
+ raise OptionalDependencyNotAvailable()
98
+ except OptionalDependencyNotAvailable:
99
+ pass
100
+ else:
101
+ from .modeling_flax_regnet import (
102
+ FlaxRegNetForImageClassification,
103
+ FlaxRegNetModel,
104
+ FlaxRegNetPreTrainedModel,
105
+ )
106
+
107
+
108
+ else:
109
+ import sys
110
+
111
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/configuration_regnet.cpython-310.pyc ADDED
Binary file (3.54 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/convert_regnet_seer_10b_to_pytorch.cpython-310.pyc ADDED
Binary file (9.51 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/regnet/__pycache__/convert_regnet_to_pytorch.cpython-310.pyc ADDED
Binary file (15.3 kB). View file