Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/cluster/__init__.py +31 -0
- venv/lib/python3.10/site-packages/scipy/cluster/_hierarchy.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/_optimal_leaf_ordering.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/_vq.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/hierarchy.py +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/hierarchy_test_data.py +145 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/test_hierarchy.py +1225 -0
- venv/lib/python3.10/site-packages/scipy/cluster/vq.py +835 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_bsr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_compressed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_construct.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_coo.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_csc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_csr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dia.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dok.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_extract.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_index.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_lil.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_matrix.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_matrix_io.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_spfuncs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_sputils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/bsr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/compressed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/construct.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/coo.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/csc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/csr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/dia.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/dok.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/extract.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/lil.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/sparsetools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/spfuncs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/sputils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/linsolve.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py +153 -0
- venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so +0 -0
ckpts/universal/global_step40/zero/11.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f744b2dee30f8590d57d433571c451f71516cfc0d8dda4aeb56cdb49f8ab3e69
|
3 |
+
size 9293
|
ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a33f07f55c8a1ab36bf4ff987be5711b50931635a3de9d5197d6759952d70b87
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cba805c3aad0e844d7f976deb1110bd57596a4c1fbc043a118bcb534d97dea9
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/scipy/cluster/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=========================================
|
3 |
+
Clustering package (:mod:`scipy.cluster`)
|
4 |
+
=========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.cluster
|
7 |
+
|
8 |
+
.. toctree::
|
9 |
+
:hidden:
|
10 |
+
|
11 |
+
cluster.vq
|
12 |
+
cluster.hierarchy
|
13 |
+
|
14 |
+
Clustering algorithms are useful in information theory, target detection,
|
15 |
+
communications, compression, and other areas. The `vq` module only
|
16 |
+
supports vector quantization and the k-means algorithms.
|
17 |
+
|
18 |
+
The `hierarchy` module provides functions for hierarchical and
|
19 |
+
agglomerative clustering. Its features include generating hierarchical
|
20 |
+
clusters from distance matrices,
|
21 |
+
calculating statistics on clusters, cutting linkages
|
22 |
+
to generate flat clusters, and visualizing clusters with dendrograms.
|
23 |
+
|
24 |
+
"""
|
25 |
+
__all__ = ['vq', 'hierarchy']
|
26 |
+
|
27 |
+
from . import vq, hierarchy
|
28 |
+
|
29 |
+
from scipy._lib._testutils import PytestTester
|
30 |
+
test = PytestTester(__name__)
|
31 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/scipy/cluster/_hierarchy.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (423 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/_optimal_leaf_ordering.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (356 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/_vq.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (128 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/hierarchy.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/hierarchy_test_data.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import array
|
2 |
+
|
3 |
+
|
4 |
+
Q_X = array([[5.26563660e-01, 3.14160190e-01, 8.00656370e-02],
|
5 |
+
[7.50205180e-01, 4.60299830e-01, 8.98696460e-01],
|
6 |
+
[6.65461230e-01, 6.94011420e-01, 9.10465700e-01],
|
7 |
+
[9.64047590e-01, 1.43082200e-03, 7.39874220e-01],
|
8 |
+
[1.08159060e-01, 5.53028790e-01, 6.63804780e-02],
|
9 |
+
[9.31359130e-01, 8.25424910e-01, 9.52315440e-01],
|
10 |
+
[6.78086960e-01, 3.41903970e-01, 5.61481950e-01],
|
11 |
+
[9.82730940e-01, 7.04605210e-01, 8.70978630e-02],
|
12 |
+
[6.14691610e-01, 4.69989230e-02, 6.02406450e-01],
|
13 |
+
[5.80161260e-01, 9.17354970e-01, 5.88163850e-01],
|
14 |
+
[1.38246310e+00, 1.96358160e+00, 1.94437880e+00],
|
15 |
+
[2.10675860e+00, 1.67148730e+00, 1.34854480e+00],
|
16 |
+
[1.39880070e+00, 1.66142050e+00, 1.32224550e+00],
|
17 |
+
[1.71410460e+00, 1.49176380e+00, 1.45432170e+00],
|
18 |
+
[1.54102340e+00, 1.84374950e+00, 1.64658950e+00],
|
19 |
+
[2.08512480e+00, 1.84524350e+00, 2.17340850e+00],
|
20 |
+
[1.30748740e+00, 1.53801650e+00, 2.16007740e+00],
|
21 |
+
[1.41447700e+00, 1.99329070e+00, 1.99107420e+00],
|
22 |
+
[1.61943490e+00, 1.47703280e+00, 1.89788160e+00],
|
23 |
+
[1.59880600e+00, 1.54988980e+00, 1.57563350e+00],
|
24 |
+
[3.37247380e+00, 2.69635310e+00, 3.39981700e+00],
|
25 |
+
[3.13705120e+00, 3.36528090e+00, 3.06089070e+00],
|
26 |
+
[3.29413250e+00, 3.19619500e+00, 2.90700170e+00],
|
27 |
+
[2.65510510e+00, 3.06785900e+00, 2.97198540e+00],
|
28 |
+
[3.30941040e+00, 2.59283970e+00, 2.57714110e+00],
|
29 |
+
[2.59557220e+00, 3.33477370e+00, 3.08793190e+00],
|
30 |
+
[2.58206180e+00, 3.41615670e+00, 3.26441990e+00],
|
31 |
+
[2.71127000e+00, 2.77032450e+00, 2.63466500e+00],
|
32 |
+
[2.79617850e+00, 3.25473720e+00, 3.41801560e+00],
|
33 |
+
[2.64741750e+00, 2.54538040e+00, 3.25354110e+00]])
|
34 |
+
|
35 |
+
ytdist = array([662., 877., 255., 412., 996., 295., 468., 268., 400., 754.,
|
36 |
+
564., 138., 219., 869., 669.])
|
37 |
+
|
38 |
+
linkage_ytdist_single = array([[2., 5., 138., 2.],
|
39 |
+
[3., 4., 219., 2.],
|
40 |
+
[0., 7., 255., 3.],
|
41 |
+
[1., 8., 268., 4.],
|
42 |
+
[6., 9., 295., 6.]])
|
43 |
+
|
44 |
+
linkage_ytdist_complete = array([[2., 5., 138., 2.],
|
45 |
+
[3., 4., 219., 2.],
|
46 |
+
[1., 6., 400., 3.],
|
47 |
+
[0., 7., 412., 3.],
|
48 |
+
[8., 9., 996., 6.]])
|
49 |
+
|
50 |
+
linkage_ytdist_average = array([[2., 5., 138., 2.],
|
51 |
+
[3., 4., 219., 2.],
|
52 |
+
[0., 7., 333.5, 3.],
|
53 |
+
[1., 6., 347.5, 3.],
|
54 |
+
[8., 9., 680.77777778, 6.]])
|
55 |
+
|
56 |
+
linkage_ytdist_weighted = array([[2., 5., 138., 2.],
|
57 |
+
[3., 4., 219., 2.],
|
58 |
+
[0., 7., 333.5, 3.],
|
59 |
+
[1., 6., 347.5, 3.],
|
60 |
+
[8., 9., 670.125, 6.]])
|
61 |
+
|
62 |
+
# the optimal leaf ordering of linkage_ytdist_single
|
63 |
+
linkage_ytdist_single_olo = array([[5., 2., 138., 2.],
|
64 |
+
[4., 3., 219., 2.],
|
65 |
+
[7., 0., 255., 3.],
|
66 |
+
[1., 8., 268., 4.],
|
67 |
+
[6., 9., 295., 6.]])
|
68 |
+
|
69 |
+
X = array([[1.43054825, -7.5693489],
|
70 |
+
[6.95887839, 6.82293382],
|
71 |
+
[2.87137846, -9.68248579],
|
72 |
+
[7.87974764, -6.05485803],
|
73 |
+
[8.24018364, -6.09495602],
|
74 |
+
[7.39020262, 8.54004355]])
|
75 |
+
|
76 |
+
linkage_X_centroid = array([[3., 4., 0.36265956, 2.],
|
77 |
+
[1., 5., 1.77045373, 2.],
|
78 |
+
[0., 2., 2.55760419, 2.],
|
79 |
+
[6., 8., 6.43614494, 4.],
|
80 |
+
[7., 9., 15.17363237, 6.]])
|
81 |
+
|
82 |
+
linkage_X_median = array([[3., 4., 0.36265956, 2.],
|
83 |
+
[1., 5., 1.77045373, 2.],
|
84 |
+
[0., 2., 2.55760419, 2.],
|
85 |
+
[6., 8., 6.43614494, 4.],
|
86 |
+
[7., 9., 15.17363237, 6.]])
|
87 |
+
|
88 |
+
linkage_X_ward = array([[3., 4., 0.36265956, 2.],
|
89 |
+
[1., 5., 1.77045373, 2.],
|
90 |
+
[0., 2., 2.55760419, 2.],
|
91 |
+
[6., 8., 9.10208346, 4.],
|
92 |
+
[7., 9., 24.7784379, 6.]])
|
93 |
+
|
94 |
+
# the optimal leaf ordering of linkage_X_ward
|
95 |
+
linkage_X_ward_olo = array([[4., 3., 0.36265956, 2.],
|
96 |
+
[5., 1., 1.77045373, 2.],
|
97 |
+
[2., 0., 2.55760419, 2.],
|
98 |
+
[6., 8., 9.10208346, 4.],
|
99 |
+
[7., 9., 24.7784379, 6.]])
|
100 |
+
|
101 |
+
inconsistent_ytdist = {
|
102 |
+
1: array([[138., 0., 1., 0.],
|
103 |
+
[219., 0., 1., 0.],
|
104 |
+
[255., 0., 1., 0.],
|
105 |
+
[268., 0., 1., 0.],
|
106 |
+
[295., 0., 1., 0.]]),
|
107 |
+
2: array([[138., 0., 1., 0.],
|
108 |
+
[219., 0., 1., 0.],
|
109 |
+
[237., 25.45584412, 2., 0.70710678],
|
110 |
+
[261.5, 9.19238816, 2., 0.70710678],
|
111 |
+
[233.66666667, 83.9424406, 3., 0.7306594]]),
|
112 |
+
3: array([[138., 0., 1., 0.],
|
113 |
+
[219., 0., 1., 0.],
|
114 |
+
[237., 25.45584412, 2., 0.70710678],
|
115 |
+
[247.33333333, 25.38372182, 3., 0.81417007],
|
116 |
+
[239., 69.36377537, 4., 0.80733783]]),
|
117 |
+
4: array([[138., 0., 1., 0.],
|
118 |
+
[219., 0., 1., 0.],
|
119 |
+
[237., 25.45584412, 2., 0.70710678],
|
120 |
+
[247.33333333, 25.38372182, 3., 0.81417007],
|
121 |
+
[235., 60.73302232, 5., 0.98793042]])}
|
122 |
+
|
123 |
+
fcluster_inconsistent = {
|
124 |
+
0.8: array([6, 2, 2, 4, 6, 2, 3, 7, 3, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1,
|
125 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
126 |
+
1.0: array([6, 2, 2, 4, 6, 2, 3, 7, 3, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1,
|
127 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
128 |
+
2.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
129 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
130 |
+
|
131 |
+
fcluster_distance = {
|
132 |
+
0.6: array([4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 3,
|
133 |
+
1, 1, 1, 2, 1, 1, 1, 1, 1]),
|
134 |
+
1.0: array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1,
|
135 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
136 |
+
2.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
137 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
138 |
+
|
139 |
+
fcluster_maxclust = {
|
140 |
+
8.0: array([5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 4,
|
141 |
+
1, 1, 1, 3, 1, 1, 1, 1, 2]),
|
142 |
+
4.0: array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2,
|
143 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1]),
|
144 |
+
1.0: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
145 |
+
1, 1, 1, 1, 1, 1, 1, 1, 1])}
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/test_hierarchy.py
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Author: Damian Eads
|
3 |
+
# Date: April 17, 2008
|
4 |
+
#
|
5 |
+
# Copyright (C) 2008 Damian Eads
|
6 |
+
#
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions
|
9 |
+
# are met:
|
10 |
+
#
|
11 |
+
# 1. Redistributions of source code must retain the above copyright
|
12 |
+
# notice, this list of conditions and the following disclaimer.
|
13 |
+
#
|
14 |
+
# 2. Redistributions in binary form must reproduce the above
|
15 |
+
# copyright notice, this list of conditions and the following
|
16 |
+
# disclaimer in the documentation and/or other materials provided
|
17 |
+
# with the distribution.
|
18 |
+
#
|
19 |
+
# 3. The name of the author may not be used to endorse or promote
|
20 |
+
# products derived from this software without specific prior
|
21 |
+
# written permission.
|
22 |
+
#
|
23 |
+
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
24 |
+
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
25 |
+
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
26 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
27 |
+
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
28 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
29 |
+
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
30 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
31 |
+
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
32 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
33 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34 |
+
import numpy as np
|
35 |
+
from numpy.testing import assert_allclose, assert_equal, assert_, assert_warns
|
36 |
+
import pytest
|
37 |
+
from pytest import raises as assert_raises
|
38 |
+
|
39 |
+
import scipy.cluster.hierarchy
|
40 |
+
from scipy.cluster.hierarchy import (
|
41 |
+
ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage,
|
42 |
+
num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster,
|
43 |
+
is_isomorphic, single, leaders,
|
44 |
+
correspond, is_monotonic, maxdists, maxinconsts, maxRstat,
|
45 |
+
is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram,
|
46 |
+
set_link_color_palette, cut_tree, optimal_leaf_ordering,
|
47 |
+
_order_cluster_tree, _hierarchy, _LINKAGE_METHODS)
|
48 |
+
from scipy.spatial.distance import pdist
|
49 |
+
from scipy.cluster._hierarchy import Heap
|
50 |
+
from scipy.conftest import array_api_compatible
|
51 |
+
from scipy._lib._array_api import xp_assert_close, xp_assert_equal
|
52 |
+
|
53 |
+
from . import hierarchy_test_data
|
54 |
+
|
55 |
+
|
56 |
+
# Matplotlib is not a scipy dependency but is optionally used in dendrogram, so
|
57 |
+
# check if it's available
|
58 |
+
try:
|
59 |
+
import matplotlib
|
60 |
+
# and set the backend to be Agg (no gui)
|
61 |
+
matplotlib.use('Agg')
|
62 |
+
# before importing pyplot
|
63 |
+
import matplotlib.pyplot as plt
|
64 |
+
have_matplotlib = True
|
65 |
+
except Exception:
|
66 |
+
have_matplotlib = False
|
67 |
+
|
68 |
+
|
69 |
+
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")]
|
70 |
+
skip_if_array_api = pytest.mark.skip_if_array_api
|
71 |
+
|
72 |
+
|
73 |
+
class TestLinkage:
|
74 |
+
|
75 |
+
@skip_if_array_api(cpu_only=True)
|
76 |
+
def test_linkage_non_finite_elements_in_distance_matrix(self, xp):
|
77 |
+
# Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf).
|
78 |
+
# Exception expected.
|
79 |
+
y = xp.zeros((6,))
|
80 |
+
y[0] = xp.nan
|
81 |
+
assert_raises(ValueError, linkage, y)
|
82 |
+
|
83 |
+
@skip_if_array_api(cpu_only=True)
|
84 |
+
def test_linkage_empty_distance_matrix(self, xp):
|
85 |
+
# Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected.
|
86 |
+
y = xp.zeros((0,))
|
87 |
+
assert_raises(ValueError, linkage, y)
|
88 |
+
|
89 |
+
@skip_if_array_api(cpu_only=True)
|
90 |
+
def test_linkage_tdist(self, xp):
|
91 |
+
for method in ['single', 'complete', 'average', 'weighted']:
|
92 |
+
self.check_linkage_tdist(method, xp)
|
93 |
+
|
94 |
+
def check_linkage_tdist(self, method, xp):
|
95 |
+
# Tests linkage(Y, method) on the tdist data set.
|
96 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), method)
|
97 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method)
|
98 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
99 |
+
|
100 |
+
@skip_if_array_api(cpu_only=True)
|
101 |
+
def test_linkage_X(self, xp):
|
102 |
+
for method in ['centroid', 'median', 'ward']:
|
103 |
+
self.check_linkage_q(method, xp)
|
104 |
+
|
105 |
+
def check_linkage_q(self, method, xp):
|
106 |
+
# Tests linkage(Y, method) on the Q data set.
|
107 |
+
Z = linkage(xp.asarray(hierarchy_test_data.X), method)
|
108 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method)
|
109 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
110 |
+
|
111 |
+
y = scipy.spatial.distance.pdist(hierarchy_test_data.X,
|
112 |
+
metric="euclidean")
|
113 |
+
Z = linkage(xp.asarray(y), method)
|
114 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
115 |
+
|
116 |
+
@skip_if_array_api(cpu_only=True)
|
117 |
+
def test_compare_with_trivial(self, xp):
|
118 |
+
rng = np.random.RandomState(0)
|
119 |
+
n = 20
|
120 |
+
X = rng.rand(n, 2)
|
121 |
+
d = pdist(X)
|
122 |
+
|
123 |
+
for method, code in _LINKAGE_METHODS.items():
|
124 |
+
Z_trivial = _hierarchy.linkage(d, n, code)
|
125 |
+
Z = linkage(xp.asarray(d), method)
|
126 |
+
xp_assert_close(Z, xp.asarray(Z_trivial), rtol=1e-14, atol=1e-15)
|
127 |
+
|
128 |
+
@skip_if_array_api(cpu_only=True)
|
129 |
+
def test_optimal_leaf_ordering(self, xp):
|
130 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), optimal_ordering=True)
|
131 |
+
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_single_olo')
|
132 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
133 |
+
|
134 |
+
|
135 |
+
@skip_if_array_api(cpu_only=True)
|
136 |
+
class TestLinkageTies:
|
137 |
+
|
138 |
+
_expectations = {
|
139 |
+
'single': np.array([[0, 1, 1.41421356, 2],
|
140 |
+
[2, 3, 1.41421356, 3]]),
|
141 |
+
'complete': np.array([[0, 1, 1.41421356, 2],
|
142 |
+
[2, 3, 2.82842712, 3]]),
|
143 |
+
'average': np.array([[0, 1, 1.41421356, 2],
|
144 |
+
[2, 3, 2.12132034, 3]]),
|
145 |
+
'weighted': np.array([[0, 1, 1.41421356, 2],
|
146 |
+
[2, 3, 2.12132034, 3]]),
|
147 |
+
'centroid': np.array([[0, 1, 1.41421356, 2],
|
148 |
+
[2, 3, 2.12132034, 3]]),
|
149 |
+
'median': np.array([[0, 1, 1.41421356, 2],
|
150 |
+
[2, 3, 2.12132034, 3]]),
|
151 |
+
'ward': np.array([[0, 1, 1.41421356, 2],
|
152 |
+
[2, 3, 2.44948974, 3]]),
|
153 |
+
}
|
154 |
+
|
155 |
+
def test_linkage_ties(self, xp):
|
156 |
+
for method in ['single', 'complete', 'average', 'weighted',
|
157 |
+
'centroid', 'median', 'ward']:
|
158 |
+
self.check_linkage_ties(method, xp)
|
159 |
+
|
160 |
+
def check_linkage_ties(self, method, xp):
|
161 |
+
X = xp.asarray([[-1, -1], [0, 0], [1, 1]])
|
162 |
+
Z = linkage(X, method=method)
|
163 |
+
expectedZ = self._expectations[method]
|
164 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
165 |
+
|
166 |
+
|
167 |
+
@skip_if_array_api(cpu_only=True)
|
168 |
+
class TestInconsistent:
|
169 |
+
|
170 |
+
def test_inconsistent_tdist(self, xp):
|
171 |
+
for depth in hierarchy_test_data.inconsistent_ytdist:
|
172 |
+
self.check_inconsistent_tdist(depth, xp)
|
173 |
+
|
174 |
+
def check_inconsistent_tdist(self, depth, xp):
|
175 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
176 |
+
xp_assert_close(inconsistent(Z, depth),
|
177 |
+
xp.asarray(hierarchy_test_data.inconsistent_ytdist[depth]))
|
178 |
+
|
179 |
+
|
180 |
+
@skip_if_array_api(cpu_only=True)
|
181 |
+
class TestCopheneticDistance:
|
182 |
+
|
183 |
+
def test_linkage_cophenet_tdist_Z(self, xp):
|
184 |
+
# Tests cophenet(Z) on tdist data set.
|
185 |
+
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
|
186 |
+
295, 138, 219, 295, 295])
|
187 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
188 |
+
M = cophenet(Z)
|
189 |
+
xp_assert_close(M, xp.asarray(expectedM, dtype=xp.float64), atol=1e-10)
|
190 |
+
|
191 |
+
def test_linkage_cophenet_tdist_Z_Y(self, xp):
|
192 |
+
# Tests cophenet(Z, Y) on tdist data set.
|
193 |
+
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
|
194 |
+
(c, M) = cophenet(Z, xp.asarray(hierarchy_test_data.ytdist))
|
195 |
+
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
|
196 |
+
295, 138, 219, 295, 295], dtype=xp.float64)
|
197 |
+
expectedc = xp.asarray(0.639931296433393415057366837573, dtype=xp.float64)[()]
|
198 |
+
xp_assert_close(c, expectedc, atol=1e-10)
|
199 |
+
xp_assert_close(M, expectedM, atol=1e-10)
|
200 |
+
|
201 |
+
|
202 |
+
class TestMLabLinkageConversion:
|
203 |
+
|
204 |
+
def test_mlab_linkage_conversion_empty(self, xp):
|
205 |
+
# Tests from/to_mlab_linkage on empty linkage array.
|
206 |
+
X = xp.asarray([], dtype=xp.float64)
|
207 |
+
xp_assert_equal(from_mlab_linkage(X), X)
|
208 |
+
xp_assert_equal(to_mlab_linkage(X), X)
|
209 |
+
|
210 |
+
@skip_if_array_api(cpu_only=True)
|
211 |
+
def test_mlab_linkage_conversion_single_row(self, xp):
|
212 |
+
# Tests from/to_mlab_linkage on linkage array with single row.
|
213 |
+
Z = xp.asarray([[0., 1., 3., 2.]])
|
214 |
+
Zm = xp.asarray([[1, 2, 3]])
|
215 |
+
xp_assert_close(from_mlab_linkage(Zm), xp.asarray(Z, dtype=xp.float64),
|
216 |
+
rtol=1e-15)
|
217 |
+
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
|
218 |
+
rtol=1e-15)
|
219 |
+
|
220 |
+
@skip_if_array_api(cpu_only=True)
|
221 |
+
def test_mlab_linkage_conversion_multiple_rows(self, xp):
|
222 |
+
# Tests from/to_mlab_linkage on linkage array with multiple rows.
|
223 |
+
Zm = xp.asarray([[3, 6, 138], [4, 5, 219],
|
224 |
+
[1, 8, 255], [2, 9, 268], [7, 10, 295]])
|
225 |
+
Z = xp.asarray([[2., 5., 138., 2.],
|
226 |
+
[3., 4., 219., 2.],
|
227 |
+
[0., 7., 255., 3.],
|
228 |
+
[1., 8., 268., 4.],
|
229 |
+
[6., 9., 295., 6.]],
|
230 |
+
dtype=xp.float64)
|
231 |
+
xp_assert_close(from_mlab_linkage(Zm), Z, rtol=1e-15)
|
232 |
+
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
|
233 |
+
rtol=1e-15)
|
234 |
+
|
235 |
+
|
236 |
+
@skip_if_array_api(cpu_only=True)
|
237 |
+
class TestFcluster:
|
238 |
+
|
239 |
+
def test_fclusterdata(self, xp):
|
240 |
+
for t in hierarchy_test_data.fcluster_inconsistent:
|
241 |
+
self.check_fclusterdata(t, 'inconsistent', xp)
|
242 |
+
for t in hierarchy_test_data.fcluster_distance:
|
243 |
+
self.check_fclusterdata(t, 'distance', xp)
|
244 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
245 |
+
self.check_fclusterdata(t, 'maxclust', xp)
|
246 |
+
|
247 |
+
def check_fclusterdata(self, t, criterion, xp):
|
248 |
+
# Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set
|
249 |
+
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
|
250 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
251 |
+
T = fclusterdata(X, criterion=criterion, t=t)
|
252 |
+
assert_(is_isomorphic(T, expectedT))
|
253 |
+
|
254 |
+
def test_fcluster(self, xp):
|
255 |
+
for t in hierarchy_test_data.fcluster_inconsistent:
|
256 |
+
self.check_fcluster(t, 'inconsistent', xp)
|
257 |
+
for t in hierarchy_test_data.fcluster_distance:
|
258 |
+
self.check_fcluster(t, 'distance', xp)
|
259 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
260 |
+
self.check_fcluster(t, 'maxclust', xp)
|
261 |
+
|
262 |
+
def check_fcluster(self, t, criterion, xp):
|
263 |
+
# Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set.
|
264 |
+
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
|
265 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
266 |
+
T = fcluster(Z, criterion=criterion, t=t)
|
267 |
+
assert_(is_isomorphic(T, expectedT))
|
268 |
+
|
269 |
+
def test_fcluster_monocrit(self, xp):
|
270 |
+
for t in hierarchy_test_data.fcluster_distance:
|
271 |
+
self.check_fcluster_monocrit(t, xp)
|
272 |
+
for t in hierarchy_test_data.fcluster_maxclust:
|
273 |
+
self.check_fcluster_maxclust_monocrit(t, xp)
|
274 |
+
|
275 |
+
def check_fcluster_monocrit(self, t, xp):
|
276 |
+
expectedT = xp.asarray(hierarchy_test_data.fcluster_distance[t])
|
277 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
278 |
+
T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z))
|
279 |
+
assert_(is_isomorphic(T, expectedT))
|
280 |
+
|
281 |
+
def check_fcluster_maxclust_monocrit(self, t, xp):
|
282 |
+
expectedT = xp.asarray(hierarchy_test_data.fcluster_maxclust[t])
|
283 |
+
Z = single(xp.asarray(hierarchy_test_data.Q_X))
|
284 |
+
T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z))
|
285 |
+
assert_(is_isomorphic(T, expectedT))
|
286 |
+
|
287 |
+
|
288 |
+
@skip_if_array_api(cpu_only=True)
|
289 |
+
class TestLeaders:
|
290 |
+
|
291 |
+
def test_leaders_single(self, xp):
|
292 |
+
# Tests leaders using a flat clustering generated by single linkage.
|
293 |
+
X = hierarchy_test_data.Q_X
|
294 |
+
Y = pdist(X)
|
295 |
+
Y = xp.asarray(Y)
|
296 |
+
Z = linkage(Y)
|
297 |
+
T = fcluster(Z, criterion='maxclust', t=3)
|
298 |
+
Lright = (xp.asarray([53, 55, 56]), xp.asarray([2, 3, 1]))
|
299 |
+
T = xp.asarray(T, dtype=xp.int32)
|
300 |
+
L = leaders(Z, T)
|
301 |
+
assert_allclose(np.concatenate(L), np.concatenate(Lright), rtol=1e-15)
|
302 |
+
|
303 |
+
|
304 |
+
@skip_if_array_api(np_only=True,
|
305 |
+
reasons=['`is_isomorphic` only supports NumPy backend'])
|
306 |
+
class TestIsIsomorphic:
|
307 |
+
|
308 |
+
@skip_if_array_api(np_only=True,
|
309 |
+
reasons=['array-likes only supported for NumPy backend'])
|
310 |
+
def test_array_like(self, xp):
|
311 |
+
assert is_isomorphic([1, 1, 1], [2, 2, 2])
|
312 |
+
assert is_isomorphic([], [])
|
313 |
+
|
314 |
+
def test_is_isomorphic_1(self, xp):
|
315 |
+
# Tests is_isomorphic on test case #1 (one flat cluster, different labellings)
|
316 |
+
a = xp.asarray([1, 1, 1])
|
317 |
+
b = xp.asarray([2, 2, 2])
|
318 |
+
assert is_isomorphic(a, b)
|
319 |
+
assert is_isomorphic(b, a)
|
320 |
+
|
321 |
+
def test_is_isomorphic_2(self, xp):
|
322 |
+
# Tests is_isomorphic on test case #2 (two flat clusters, different labelings)
|
323 |
+
a = xp.asarray([1, 7, 1])
|
324 |
+
b = xp.asarray([2, 3, 2])
|
325 |
+
assert is_isomorphic(a, b)
|
326 |
+
assert is_isomorphic(b, a)
|
327 |
+
|
328 |
+
def test_is_isomorphic_3(self, xp):
|
329 |
+
# Tests is_isomorphic on test case #3 (no flat clusters)
|
330 |
+
a = xp.asarray([])
|
331 |
+
b = xp.asarray([])
|
332 |
+
assert is_isomorphic(a, b)
|
333 |
+
|
334 |
+
def test_is_isomorphic_4A(self, xp):
|
335 |
+
# Tests is_isomorphic on test case #4A
|
336 |
+
# (3 flat clusters, different labelings, isomorphic)
|
337 |
+
a = xp.asarray([1, 2, 3])
|
338 |
+
b = xp.asarray([1, 3, 2])
|
339 |
+
assert is_isomorphic(a, b)
|
340 |
+
assert is_isomorphic(b, a)
|
341 |
+
|
342 |
+
def test_is_isomorphic_4B(self, xp):
|
343 |
+
# Tests is_isomorphic on test case #4B
|
344 |
+
# (3 flat clusters, different labelings, nonisomorphic)
|
345 |
+
a = xp.asarray([1, 2, 3, 3])
|
346 |
+
b = xp.asarray([1, 3, 2, 3])
|
347 |
+
assert is_isomorphic(a, b) is False
|
348 |
+
assert is_isomorphic(b, a) is False
|
349 |
+
|
350 |
+
def test_is_isomorphic_4C(self, xp):
|
351 |
+
# Tests is_isomorphic on test case #4C
|
352 |
+
# (3 flat clusters, different labelings, isomorphic)
|
353 |
+
a = xp.asarray([7, 2, 3])
|
354 |
+
b = xp.asarray([6, 3, 2])
|
355 |
+
assert is_isomorphic(a, b)
|
356 |
+
assert is_isomorphic(b, a)
|
357 |
+
|
358 |
+
def test_is_isomorphic_5(self, xp):
|
359 |
+
# Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random
|
360 |
+
# clusters, random permutation of the labeling).
|
361 |
+
for nc in [2, 3, 5]:
|
362 |
+
self.help_is_isomorphic_randperm(1000, nc, xp=xp)
|
363 |
+
|
364 |
+
def test_is_isomorphic_6(self, xp):
|
365 |
+
# Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random
|
366 |
+
# clusters, random permutation of the labeling, slightly
|
367 |
+
# nonisomorphic.)
|
368 |
+
for nc in [2, 3, 5]:
|
369 |
+
self.help_is_isomorphic_randperm(1000, nc, True, 5, xp=xp)
|
370 |
+
|
371 |
+
def test_is_isomorphic_7(self, xp):
|
372 |
+
# Regression test for gh-6271
|
373 |
+
a = xp.asarray([1, 2, 3])
|
374 |
+
b = xp.asarray([1, 1, 1])
|
375 |
+
assert not is_isomorphic(a, b)
|
376 |
+
|
377 |
+
def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0,
|
378 |
+
*, xp):
|
379 |
+
for k in range(3):
|
380 |
+
a = (np.random.rand(nobs) * nclusters).astype(int)
|
381 |
+
b = np.zeros(a.size, dtype=int)
|
382 |
+
P = np.random.permutation(nclusters)
|
383 |
+
for i in range(0, a.shape[0]):
|
384 |
+
b[i] = P[a[i]]
|
385 |
+
if noniso:
|
386 |
+
Q = np.random.permutation(nobs)
|
387 |
+
b[Q[0:nerrors]] += 1
|
388 |
+
b[Q[0:nerrors]] %= nclusters
|
389 |
+
a = xp.asarray(a)
|
390 |
+
b = xp.asarray(b)
|
391 |
+
assert is_isomorphic(a, b) == (not noniso)
|
392 |
+
assert is_isomorphic(b, a) == (not noniso)
|
393 |
+
|
394 |
+
|
395 |
+
@skip_if_array_api(cpu_only=True)
|
396 |
+
class TestIsValidLinkage:
|
397 |
+
|
398 |
+
def test_is_valid_linkage_various_size(self, xp):
|
399 |
+
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
|
400 |
+
(1, 4, True), (2, 4, True)]:
|
401 |
+
self.check_is_valid_linkage_various_size(nrow, ncol, valid, xp)
|
402 |
+
|
403 |
+
def check_is_valid_linkage_various_size(self, nrow, ncol, valid, xp):
|
404 |
+
# Tests is_valid_linkage(Z) with linkage matrices of various sizes
|
405 |
+
Z = xp.asarray([[0, 1, 3.0, 2, 5],
|
406 |
+
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
|
407 |
+
Z = Z[:nrow, :ncol]
|
408 |
+
assert_(is_valid_linkage(Z) == valid)
|
409 |
+
if not valid:
|
410 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
411 |
+
|
412 |
+
def test_is_valid_linkage_int_type(self, xp):
|
413 |
+
# Tests is_valid_linkage(Z) with integer type.
|
414 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
415 |
+
[3, 2, 4.0, 3]], dtype=xp.int64)
|
416 |
+
assert_(is_valid_linkage(Z) is False)
|
417 |
+
assert_raises(TypeError, is_valid_linkage, Z, throw=True)
|
418 |
+
|
419 |
+
def test_is_valid_linkage_empty(self, xp):
|
420 |
+
# Tests is_valid_linkage(Z) with empty linkage.
|
421 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
422 |
+
assert_(is_valid_linkage(Z) is False)
|
423 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
424 |
+
|
425 |
+
def test_is_valid_linkage_4_and_up(self, xp):
|
426 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
427 |
+
# sizes 4 and 15 (step size 3).
|
428 |
+
for i in range(4, 15, 3):
|
429 |
+
y = np.random.rand(i*(i-1)//2)
|
430 |
+
y = xp.asarray(y)
|
431 |
+
Z = linkage(y)
|
432 |
+
assert_(is_valid_linkage(Z) is True)
|
433 |
+
|
434 |
+
def test_is_valid_linkage_4_and_up_neg_index_left(self, xp):
|
435 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
436 |
+
# sizes 4 and 15 (step size 3) with negative indices (left).
|
437 |
+
for i in range(4, 15, 3):
|
438 |
+
y = np.random.rand(i*(i-1)//2)
|
439 |
+
y = xp.asarray(y)
|
440 |
+
Z = linkage(y)
|
441 |
+
Z[i//2,0] = -2
|
442 |
+
assert_(is_valid_linkage(Z) is False)
|
443 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
444 |
+
|
445 |
+
def test_is_valid_linkage_4_and_up_neg_index_right(self, xp):
|
446 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
447 |
+
# sizes 4 and 15 (step size 3) with negative indices (right).
|
448 |
+
for i in range(4, 15, 3):
|
449 |
+
y = np.random.rand(i*(i-1)//2)
|
450 |
+
y = xp.asarray(y)
|
451 |
+
Z = linkage(y)
|
452 |
+
Z[i//2,1] = -2
|
453 |
+
assert_(is_valid_linkage(Z) is False)
|
454 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
455 |
+
|
456 |
+
def test_is_valid_linkage_4_and_up_neg_dist(self, xp):
|
457 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
458 |
+
# sizes 4 and 15 (step size 3) with negative distances.
|
459 |
+
for i in range(4, 15, 3):
|
460 |
+
y = np.random.rand(i*(i-1)//2)
|
461 |
+
y = xp.asarray(y)
|
462 |
+
Z = linkage(y)
|
463 |
+
Z[i//2,2] = -0.5
|
464 |
+
assert_(is_valid_linkage(Z) is False)
|
465 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
466 |
+
|
467 |
+
def test_is_valid_linkage_4_and_up_neg_counts(self, xp):
|
468 |
+
# Tests is_valid_linkage(Z) on linkage on observation sets between
|
469 |
+
# sizes 4 and 15 (step size 3) with negative counts.
|
470 |
+
for i in range(4, 15, 3):
|
471 |
+
y = np.random.rand(i*(i-1)//2)
|
472 |
+
y = xp.asarray(y)
|
473 |
+
Z = linkage(y)
|
474 |
+
Z[i//2,3] = -2
|
475 |
+
assert_(is_valid_linkage(Z) is False)
|
476 |
+
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
|
477 |
+
|
478 |
+
|
479 |
+
@skip_if_array_api(cpu_only=True)
|
480 |
+
class TestIsValidInconsistent:
|
481 |
+
|
482 |
+
def test_is_valid_im_int_type(self, xp):
|
483 |
+
# Tests is_valid_im(R) with integer type.
|
484 |
+
R = xp.asarray([[0, 1, 3.0, 2],
|
485 |
+
[3, 2, 4.0, 3]], dtype=xp.int64)
|
486 |
+
assert_(is_valid_im(R) is False)
|
487 |
+
assert_raises(TypeError, is_valid_im, R, throw=True)
|
488 |
+
|
489 |
+
def test_is_valid_im_various_size(self, xp):
|
490 |
+
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
|
491 |
+
(1, 4, True), (2, 4, True)]:
|
492 |
+
self.check_is_valid_im_various_size(nrow, ncol, valid, xp)
|
493 |
+
|
494 |
+
def check_is_valid_im_various_size(self, nrow, ncol, valid, xp):
|
495 |
+
# Tests is_valid_im(R) with linkage matrices of various sizes
|
496 |
+
R = xp.asarray([[0, 1, 3.0, 2, 5],
|
497 |
+
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
|
498 |
+
R = R[:nrow, :ncol]
|
499 |
+
assert_(is_valid_im(R) == valid)
|
500 |
+
if not valid:
|
501 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
502 |
+
|
503 |
+
def test_is_valid_im_empty(self, xp):
|
504 |
+
# Tests is_valid_im(R) with empty inconsistency matrix.
|
505 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
506 |
+
assert_(is_valid_im(R) is False)
|
507 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
508 |
+
|
509 |
+
def test_is_valid_im_4_and_up(self, xp):
|
510 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
511 |
+
# (step size 3).
|
512 |
+
for i in range(4, 15, 3):
|
513 |
+
y = np.random.rand(i*(i-1)//2)
|
514 |
+
y = xp.asarray(y)
|
515 |
+
Z = linkage(y)
|
516 |
+
R = inconsistent(Z)
|
517 |
+
assert_(is_valid_im(R) is True)
|
518 |
+
|
519 |
+
def test_is_valid_im_4_and_up_neg_index_left(self, xp):
|
520 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
521 |
+
# (step size 3) with negative link height means.
|
522 |
+
for i in range(4, 15, 3):
|
523 |
+
y = np.random.rand(i*(i-1)//2)
|
524 |
+
y = xp.asarray(y)
|
525 |
+
Z = linkage(y)
|
526 |
+
R = inconsistent(Z)
|
527 |
+
R[i//2,0] = -2.0
|
528 |
+
assert_(is_valid_im(R) is False)
|
529 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
530 |
+
|
531 |
+
def test_is_valid_im_4_and_up_neg_index_right(self, xp):
|
532 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
533 |
+
# (step size 3) with negative link height standard deviations.
|
534 |
+
for i in range(4, 15, 3):
|
535 |
+
y = np.random.rand(i*(i-1)//2)
|
536 |
+
y = xp.asarray(y)
|
537 |
+
Z = linkage(y)
|
538 |
+
R = inconsistent(Z)
|
539 |
+
R[i//2,1] = -2.0
|
540 |
+
assert_(is_valid_im(R) is False)
|
541 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
542 |
+
|
543 |
+
def test_is_valid_im_4_and_up_neg_dist(self, xp):
|
544 |
+
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
|
545 |
+
# (step size 3) with negative link counts.
|
546 |
+
for i in range(4, 15, 3):
|
547 |
+
y = np.random.rand(i*(i-1)//2)
|
548 |
+
y = xp.asarray(y)
|
549 |
+
Z = linkage(y)
|
550 |
+
R = inconsistent(Z)
|
551 |
+
R[i//2,2] = -0.5
|
552 |
+
assert_(is_valid_im(R) is False)
|
553 |
+
assert_raises(ValueError, is_valid_im, R, throw=True)
|
554 |
+
|
555 |
+
|
556 |
+
class TestNumObsLinkage:
|
557 |
+
|
558 |
+
@skip_if_array_api(cpu_only=True)
|
559 |
+
def test_num_obs_linkage_empty(self, xp):
|
560 |
+
# Tests num_obs_linkage(Z) with empty linkage.
|
561 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
562 |
+
assert_raises(ValueError, num_obs_linkage, Z)
|
563 |
+
|
564 |
+
def test_num_obs_linkage_1x4(self, xp):
|
565 |
+
# Tests num_obs_linkage(Z) on linkage over 2 observations.
|
566 |
+
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
|
567 |
+
assert_equal(num_obs_linkage(Z), 2)
|
568 |
+
|
569 |
+
def test_num_obs_linkage_2x4(self, xp):
|
570 |
+
# Tests num_obs_linkage(Z) on linkage over 3 observations.
|
571 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
572 |
+
[3, 2, 4.0, 3]], dtype=xp.float64)
|
573 |
+
assert_equal(num_obs_linkage(Z), 3)
|
574 |
+
|
575 |
+
@skip_if_array_api(cpu_only=True)
|
576 |
+
def test_num_obs_linkage_4_and_up(self, xp):
|
577 |
+
# Tests num_obs_linkage(Z) on linkage on observation sets between sizes
|
578 |
+
# 4 and 15 (step size 3).
|
579 |
+
for i in range(4, 15, 3):
|
580 |
+
y = np.random.rand(i*(i-1)//2)
|
581 |
+
y = xp.asarray(y)
|
582 |
+
Z = linkage(y)
|
583 |
+
assert_equal(num_obs_linkage(Z), i)
|
584 |
+
|
585 |
+
|
586 |
+
@skip_if_array_api(cpu_only=True)
|
587 |
+
class TestLeavesList:
|
588 |
+
|
589 |
+
def test_leaves_list_1x4(self, xp):
|
590 |
+
# Tests leaves_list(Z) on a 1x4 linkage.
|
591 |
+
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
|
592 |
+
to_tree(Z)
|
593 |
+
assert_allclose(leaves_list(Z), [0, 1], rtol=1e-15)
|
594 |
+
|
595 |
+
def test_leaves_list_2x4(self, xp):
|
596 |
+
# Tests leaves_list(Z) on a 2x4 linkage.
|
597 |
+
Z = xp.asarray([[0, 1, 3.0, 2],
|
598 |
+
[3, 2, 4.0, 3]], dtype=xp.float64)
|
599 |
+
to_tree(Z)
|
600 |
+
assert_allclose(leaves_list(Z), [0, 1, 2], rtol=1e-15)
|
601 |
+
|
602 |
+
def test_leaves_list_Q(self, xp):
|
603 |
+
for method in ['single', 'complete', 'average', 'weighted', 'centroid',
|
604 |
+
'median', 'ward']:
|
605 |
+
self.check_leaves_list_Q(method, xp)
|
606 |
+
|
607 |
+
def check_leaves_list_Q(self, method, xp):
|
608 |
+
# Tests leaves_list(Z) on the Q data set
|
609 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
610 |
+
Z = linkage(X, method)
|
611 |
+
node = to_tree(Z)
|
612 |
+
assert_allclose(node.pre_order(), leaves_list(Z), rtol=1e-15)
|
613 |
+
|
614 |
+
def test_Q_subtree_pre_order(self, xp):
|
615 |
+
# Tests that pre_order() works when called on sub-trees.
|
616 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
617 |
+
Z = linkage(X, 'single')
|
618 |
+
node = to_tree(Z)
|
619 |
+
assert_allclose(node.pre_order(), (node.get_left().pre_order()
|
620 |
+
+ node.get_right().pre_order()),
|
621 |
+
rtol=1e-15)
|
622 |
+
|
623 |
+
|
624 |
+
@skip_if_array_api(cpu_only=True)
|
625 |
+
class TestCorrespond:
|
626 |
+
|
627 |
+
def test_correspond_empty(self, xp):
|
628 |
+
# Tests correspond(Z, y) with empty linkage and condensed distance matrix.
|
629 |
+
y = xp.zeros((0,), dtype=xp.float64)
|
630 |
+
Z = xp.zeros((0,4), dtype=xp.float64)
|
631 |
+
assert_raises(ValueError, correspond, Z, y)
|
632 |
+
|
633 |
+
def test_correspond_2_and_up(self, xp):
|
634 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
635 |
+
# different sizes.
|
636 |
+
for i in range(2, 4):
|
637 |
+
y = np.random.rand(i*(i-1)//2)
|
638 |
+
y = xp.asarray(y)
|
639 |
+
Z = linkage(y)
|
640 |
+
assert_(correspond(Z, y))
|
641 |
+
for i in range(4, 15, 3):
|
642 |
+
y = np.random.rand(i*(i-1)//2)
|
643 |
+
y = xp.asarray(y)
|
644 |
+
Z = linkage(y)
|
645 |
+
assert_(correspond(Z, y))
|
646 |
+
|
647 |
+
def test_correspond_4_and_up(self, xp):
|
648 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
649 |
+
# different sizes. Correspondence should be false.
|
650 |
+
for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) +
|
651 |
+
list(zip(list(range(3, 5)), list(range(2, 4))))):
|
652 |
+
y = np.random.rand(i*(i-1)//2)
|
653 |
+
y2 = np.random.rand(j*(j-1)//2)
|
654 |
+
y = xp.asarray(y)
|
655 |
+
y2 = xp.asarray(y2)
|
656 |
+
Z = linkage(y)
|
657 |
+
Z2 = linkage(y2)
|
658 |
+
assert not correspond(Z, y2)
|
659 |
+
assert not correspond(Z2, y)
|
660 |
+
|
661 |
+
def test_correspond_4_and_up_2(self, xp):
|
662 |
+
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
|
663 |
+
# different sizes. Correspondence should be false.
|
664 |
+
for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) +
|
665 |
+
list(zip(list(range(2, 7)), list(range(16, 21))))):
|
666 |
+
y = np.random.rand(i*(i-1)//2)
|
667 |
+
y2 = np.random.rand(j*(j-1)//2)
|
668 |
+
y = xp.asarray(y)
|
669 |
+
y2 = xp.asarray(y2)
|
670 |
+
Z = linkage(y)
|
671 |
+
Z2 = linkage(y2)
|
672 |
+
assert not correspond(Z, y2)
|
673 |
+
assert not correspond(Z2, y)
|
674 |
+
|
675 |
+
def test_num_obs_linkage_multi_matrix(self, xp):
|
676 |
+
# Tests num_obs_linkage with observation matrices of multiple sizes.
|
677 |
+
for n in range(2, 10):
|
678 |
+
X = np.random.rand(n, 4)
|
679 |
+
Y = pdist(X)
|
680 |
+
Y = xp.asarray(Y)
|
681 |
+
Z = linkage(Y)
|
682 |
+
assert_equal(num_obs_linkage(Z), n)
|
683 |
+
|
684 |
+
|
685 |
+
@skip_if_array_api(cpu_only=True)
|
686 |
+
class TestIsMonotonic:
|
687 |
+
|
688 |
+
def test_is_monotonic_empty(self, xp):
|
689 |
+
# Tests is_monotonic(Z) on an empty linkage.
|
690 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
691 |
+
assert_raises(ValueError, is_monotonic, Z)
|
692 |
+
|
693 |
+
def test_is_monotonic_1x4(self, xp):
|
694 |
+
# Tests is_monotonic(Z) on 1x4 linkage. Expecting True.
|
695 |
+
Z = xp.asarray([[0, 1, 0.3, 2]], dtype=xp.float64)
|
696 |
+
assert is_monotonic(Z)
|
697 |
+
|
698 |
+
def test_is_monotonic_2x4_T(self, xp):
|
699 |
+
# Tests is_monotonic(Z) on 2x4 linkage. Expecting True.
|
700 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
701 |
+
[2, 3, 0.4, 3]], dtype=xp.float64)
|
702 |
+
assert is_monotonic(Z)
|
703 |
+
|
704 |
+
def test_is_monotonic_2x4_F(self, xp):
|
705 |
+
# Tests is_monotonic(Z) on 2x4 linkage. Expecting False.
|
706 |
+
Z = xp.asarray([[0, 1, 0.4, 2],
|
707 |
+
[2, 3, 0.3, 3]], dtype=xp.float64)
|
708 |
+
assert not is_monotonic(Z)
|
709 |
+
|
710 |
+
def test_is_monotonic_3x4_T(self, xp):
|
711 |
+
# Tests is_monotonic(Z) on 3x4 linkage. Expecting True.
|
712 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
713 |
+
[2, 3, 0.4, 2],
|
714 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
715 |
+
assert is_monotonic(Z)
|
716 |
+
|
717 |
+
def test_is_monotonic_3x4_F1(self, xp):
|
718 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False.
|
719 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
720 |
+
[2, 3, 0.2, 2],
|
721 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
722 |
+
assert not is_monotonic(Z)
|
723 |
+
|
724 |
+
def test_is_monotonic_3x4_F2(self, xp):
|
725 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False.
|
726 |
+
Z = xp.asarray([[0, 1, 0.8, 2],
|
727 |
+
[2, 3, 0.4, 2],
|
728 |
+
[4, 5, 0.6, 4]], dtype=xp.float64)
|
729 |
+
assert not is_monotonic(Z)
|
730 |
+
|
731 |
+
def test_is_monotonic_3x4_F3(self, xp):
|
732 |
+
# Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False
|
733 |
+
Z = xp.asarray([[0, 1, 0.3, 2],
|
734 |
+
[2, 3, 0.4, 2],
|
735 |
+
[4, 5, 0.2, 4]], dtype=xp.float64)
|
736 |
+
assert not is_monotonic(Z)
|
737 |
+
|
738 |
+
def test_is_monotonic_tdist_linkage1(self, xp):
|
739 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
740 |
+
# tdist data set. Expecting True.
|
741 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
742 |
+
assert is_monotonic(Z)
|
743 |
+
|
744 |
+
def test_is_monotonic_tdist_linkage2(self, xp):
|
745 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
746 |
+
# tdist data set. Perturbing. Expecting False.
|
747 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
748 |
+
Z[2,2] = 0.0
|
749 |
+
assert not is_monotonic(Z)
|
750 |
+
|
751 |
+
def test_is_monotonic_Q_linkage(self, xp):
|
752 |
+
# Tests is_monotonic(Z) on clustering generated by single linkage on
|
753 |
+
# Q data set. Expecting True.
|
754 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
755 |
+
Z = linkage(X, 'single')
|
756 |
+
assert is_monotonic(Z)
|
757 |
+
|
758 |
+
|
759 |
+
@skip_if_array_api(cpu_only=True)
|
760 |
+
class TestMaxDists:
|
761 |
+
|
762 |
+
def test_maxdists_empty_linkage(self, xp):
|
763 |
+
# Tests maxdists(Z) on empty linkage. Expecting exception.
|
764 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
765 |
+
assert_raises(ValueError, maxdists, Z)
|
766 |
+
|
767 |
+
def test_maxdists_one_cluster_linkage(self, xp):
|
768 |
+
# Tests maxdists(Z) on linkage with one cluster.
|
769 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
770 |
+
MD = maxdists(Z)
|
771 |
+
expectedMD = calculate_maximum_distances(Z, xp)
|
772 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
773 |
+
|
774 |
+
def test_maxdists_Q_linkage(self, xp):
|
775 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
776 |
+
self.check_maxdists_Q_linkage(method, xp)
|
777 |
+
|
778 |
+
def check_maxdists_Q_linkage(self, method, xp):
|
779 |
+
# Tests maxdists(Z) on the Q data set
|
780 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
781 |
+
Z = linkage(X, method)
|
782 |
+
MD = maxdists(Z)
|
783 |
+
expectedMD = calculate_maximum_distances(Z, xp)
|
784 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
785 |
+
|
786 |
+
|
787 |
+
class TestMaxInconsts:
|
788 |
+
|
789 |
+
@skip_if_array_api(cpu_only=True)
|
790 |
+
def test_maxinconsts_empty_linkage(self, xp):
|
791 |
+
# Tests maxinconsts(Z, R) on empty linkage. Expecting exception.
|
792 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
793 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
794 |
+
assert_raises(ValueError, maxinconsts, Z, R)
|
795 |
+
|
796 |
+
def test_maxinconsts_difrow_linkage(self, xp):
|
797 |
+
# Tests maxinconsts(Z, R) on linkage and inconsistency matrices with
|
798 |
+
# different numbers of clusters. Expecting exception.
|
799 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
800 |
+
R = np.random.rand(2, 4)
|
801 |
+
R = xp.asarray(R)
|
802 |
+
assert_raises(ValueError, maxinconsts, Z, R)
|
803 |
+
|
804 |
+
@skip_if_array_api(cpu_only=True)
|
805 |
+
def test_maxinconsts_one_cluster_linkage(self, xp):
|
806 |
+
# Tests maxinconsts(Z, R) on linkage with one cluster.
|
807 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
808 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
809 |
+
MD = maxinconsts(Z, R)
|
810 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
|
811 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
812 |
+
|
813 |
+
@skip_if_array_api(cpu_only=True)
|
814 |
+
def test_maxinconsts_Q_linkage(self, xp):
|
815 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
816 |
+
self.check_maxinconsts_Q_linkage(method, xp)
|
817 |
+
|
818 |
+
def check_maxinconsts_Q_linkage(self, method, xp):
|
819 |
+
# Tests maxinconsts(Z, R) on the Q data set
|
820 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
821 |
+
Z = linkage(X, method)
|
822 |
+
R = inconsistent(Z)
|
823 |
+
MD = maxinconsts(Z, R)
|
824 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
|
825 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
826 |
+
|
827 |
+
|
828 |
+
class TestMaxRStat:
|
829 |
+
|
830 |
+
def test_maxRstat_invalid_index(self, xp):
|
831 |
+
for i in [3.3, -1, 4]:
|
832 |
+
self.check_maxRstat_invalid_index(i, xp)
|
833 |
+
|
834 |
+
def check_maxRstat_invalid_index(self, i, xp):
|
835 |
+
# Tests maxRstat(Z, R, i). Expecting exception.
|
836 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
837 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
838 |
+
if isinstance(i, int):
|
839 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
840 |
+
else:
|
841 |
+
assert_raises(TypeError, maxRstat, Z, R, i)
|
842 |
+
|
843 |
+
@skip_if_array_api(cpu_only=True)
|
844 |
+
def test_maxRstat_empty_linkage(self, xp):
|
845 |
+
for i in range(4):
|
846 |
+
self.check_maxRstat_empty_linkage(i, xp)
|
847 |
+
|
848 |
+
def check_maxRstat_empty_linkage(self, i, xp):
|
849 |
+
# Tests maxRstat(Z, R, i) on empty linkage. Expecting exception.
|
850 |
+
Z = xp.zeros((0, 4), dtype=xp.float64)
|
851 |
+
R = xp.zeros((0, 4), dtype=xp.float64)
|
852 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
853 |
+
|
854 |
+
def test_maxRstat_difrow_linkage(self, xp):
|
855 |
+
for i in range(4):
|
856 |
+
self.check_maxRstat_difrow_linkage(i, xp)
|
857 |
+
|
858 |
+
def check_maxRstat_difrow_linkage(self, i, xp):
|
859 |
+
# Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with
|
860 |
+
# different numbers of clusters. Expecting exception.
|
861 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
862 |
+
R = np.random.rand(2, 4)
|
863 |
+
R = xp.asarray(R)
|
864 |
+
assert_raises(ValueError, maxRstat, Z, R, i)
|
865 |
+
|
866 |
+
@skip_if_array_api(cpu_only=True)
|
867 |
+
def test_maxRstat_one_cluster_linkage(self, xp):
|
868 |
+
for i in range(4):
|
869 |
+
self.check_maxRstat_one_cluster_linkage(i, xp)
|
870 |
+
|
871 |
+
def check_maxRstat_one_cluster_linkage(self, i, xp):
|
872 |
+
# Tests maxRstat(Z, R, i) on linkage with one cluster.
|
873 |
+
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
|
874 |
+
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
|
875 |
+
MD = maxRstat(Z, R, 1)
|
876 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
|
877 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
878 |
+
|
879 |
+
@skip_if_array_api(cpu_only=True)
|
880 |
+
def test_maxRstat_Q_linkage(self, xp):
|
881 |
+
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
|
882 |
+
for i in range(4):
|
883 |
+
self.check_maxRstat_Q_linkage(method, i, xp)
|
884 |
+
|
885 |
+
def check_maxRstat_Q_linkage(self, method, i, xp):
|
886 |
+
# Tests maxRstat(Z, R, i) on the Q data set
|
887 |
+
X = xp.asarray(hierarchy_test_data.Q_X)
|
888 |
+
Z = linkage(X, method)
|
889 |
+
R = inconsistent(Z)
|
890 |
+
MD = maxRstat(Z, R, 1)
|
891 |
+
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
|
892 |
+
xp_assert_close(MD, expectedMD, atol=1e-15)
|
893 |
+
|
894 |
+
|
895 |
+
@skip_if_array_api(cpu_only=True)
|
896 |
+
class TestDendrogram:
|
897 |
+
|
898 |
+
def test_dendrogram_single_linkage_tdist(self, xp):
|
899 |
+
# Tests dendrogram calculation on single linkage of the tdist data set.
|
900 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
901 |
+
R = dendrogram(Z, no_plot=True)
|
902 |
+
leaves = R["leaves"]
|
903 |
+
assert_equal(leaves, [2, 5, 1, 0, 3, 4])
|
904 |
+
|
905 |
+
def test_valid_orientation(self, xp):
|
906 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
907 |
+
assert_raises(ValueError, dendrogram, Z, orientation="foo")
|
908 |
+
|
909 |
+
def test_labels_as_array_or_list(self, xp):
|
910 |
+
# test for gh-12418
|
911 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
912 |
+
labels = xp.asarray([1, 3, 2, 6, 4, 5])
|
913 |
+
result1 = dendrogram(Z, labels=labels, no_plot=True)
|
914 |
+
result2 = dendrogram(Z, labels=list(labels), no_plot=True)
|
915 |
+
assert result1 == result2
|
916 |
+
|
917 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
918 |
+
def test_valid_label_size(self, xp):
|
919 |
+
link = xp.asarray([
|
920 |
+
[0, 1, 1.0, 4],
|
921 |
+
[2, 3, 1.0, 5],
|
922 |
+
[4, 5, 2.0, 6],
|
923 |
+
])
|
924 |
+
plt.figure()
|
925 |
+
with pytest.raises(ValueError) as exc_info:
|
926 |
+
dendrogram(link, labels=list(range(100)))
|
927 |
+
assert "Dimensions of Z and labels must be consistent."\
|
928 |
+
in str(exc_info.value)
|
929 |
+
|
930 |
+
with pytest.raises(
|
931 |
+
ValueError,
|
932 |
+
match="Dimensions of Z and labels must be consistent."):
|
933 |
+
dendrogram(link, labels=[])
|
934 |
+
|
935 |
+
plt.close()
|
936 |
+
|
937 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
938 |
+
def test_dendrogram_plot(self, xp):
|
939 |
+
for orientation in ['top', 'bottom', 'left', 'right']:
|
940 |
+
self.check_dendrogram_plot(orientation, xp)
|
941 |
+
|
942 |
+
def check_dendrogram_plot(self, orientation, xp):
|
943 |
+
# Tests dendrogram plotting.
|
944 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
945 |
+
expected = {'color_list': ['C1', 'C0', 'C0', 'C0', 'C0'],
|
946 |
+
'dcoord': [[0.0, 138.0, 138.0, 0.0],
|
947 |
+
[0.0, 219.0, 219.0, 0.0],
|
948 |
+
[0.0, 255.0, 255.0, 219.0],
|
949 |
+
[0.0, 268.0, 268.0, 255.0],
|
950 |
+
[138.0, 295.0, 295.0, 268.0]],
|
951 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0],
|
952 |
+
[45.0, 45.0, 55.0, 55.0],
|
953 |
+
[35.0, 35.0, 50.0, 50.0],
|
954 |
+
[25.0, 25.0, 42.5, 42.5],
|
955 |
+
[10.0, 10.0, 33.75, 33.75]],
|
956 |
+
'ivl': ['2', '5', '1', '0', '3', '4'],
|
957 |
+
'leaves': [2, 5, 1, 0, 3, 4],
|
958 |
+
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0', 'C0'],
|
959 |
+
}
|
960 |
+
|
961 |
+
fig = plt.figure()
|
962 |
+
ax = fig.add_subplot(221)
|
963 |
+
|
964 |
+
# test that dendrogram accepts ax keyword
|
965 |
+
R1 = dendrogram(Z, ax=ax, orientation=orientation)
|
966 |
+
R1['dcoord'] = np.asarray(R1['dcoord'])
|
967 |
+
assert_equal(R1, expected)
|
968 |
+
|
969 |
+
# test that dendrogram accepts and handle the leaf_font_size and
|
970 |
+
# leaf_rotation keywords
|
971 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
972 |
+
leaf_font_size=20, leaf_rotation=90)
|
973 |
+
testlabel = (
|
974 |
+
ax.get_xticklabels()[0]
|
975 |
+
if orientation in ['top', 'bottom']
|
976 |
+
else ax.get_yticklabels()[0]
|
977 |
+
)
|
978 |
+
assert_equal(testlabel.get_rotation(), 90)
|
979 |
+
assert_equal(testlabel.get_size(), 20)
|
980 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
981 |
+
leaf_rotation=90)
|
982 |
+
testlabel = (
|
983 |
+
ax.get_xticklabels()[0]
|
984 |
+
if orientation in ['top', 'bottom']
|
985 |
+
else ax.get_yticklabels()[0]
|
986 |
+
)
|
987 |
+
assert_equal(testlabel.get_rotation(), 90)
|
988 |
+
dendrogram(Z, ax=ax, orientation=orientation,
|
989 |
+
leaf_font_size=20)
|
990 |
+
testlabel = (
|
991 |
+
ax.get_xticklabels()[0]
|
992 |
+
if orientation in ['top', 'bottom']
|
993 |
+
else ax.get_yticklabels()[0]
|
994 |
+
)
|
995 |
+
assert_equal(testlabel.get_size(), 20)
|
996 |
+
plt.close()
|
997 |
+
|
998 |
+
# test plotting to gca (will import pylab)
|
999 |
+
R2 = dendrogram(Z, orientation=orientation)
|
1000 |
+
plt.close()
|
1001 |
+
R2['dcoord'] = np.asarray(R2['dcoord'])
|
1002 |
+
assert_equal(R2, expected)
|
1003 |
+
|
1004 |
+
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
|
1005 |
+
def test_dendrogram_truncate_mode(self, xp):
|
1006 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
1007 |
+
|
1008 |
+
R = dendrogram(Z, 2, 'lastp', show_contracted=True)
|
1009 |
+
plt.close()
|
1010 |
+
R['dcoord'] = np.asarray(R['dcoord'])
|
1011 |
+
assert_equal(R, {'color_list': ['C0'],
|
1012 |
+
'dcoord': [[0.0, 295.0, 295.0, 0.0]],
|
1013 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0]],
|
1014 |
+
'ivl': ['(2)', '(4)'],
|
1015 |
+
'leaves': [6, 9],
|
1016 |
+
'leaves_color_list': ['C0', 'C0'],
|
1017 |
+
})
|
1018 |
+
|
1019 |
+
R = dendrogram(Z, 2, 'mtica', show_contracted=True)
|
1020 |
+
plt.close()
|
1021 |
+
R['dcoord'] = np.asarray(R['dcoord'])
|
1022 |
+
assert_equal(R, {'color_list': ['C1', 'C0', 'C0', 'C0'],
|
1023 |
+
'dcoord': [[0.0, 138.0, 138.0, 0.0],
|
1024 |
+
[0.0, 255.0, 255.0, 0.0],
|
1025 |
+
[0.0, 268.0, 268.0, 255.0],
|
1026 |
+
[138.0, 295.0, 295.0, 268.0]],
|
1027 |
+
'icoord': [[5.0, 5.0, 15.0, 15.0],
|
1028 |
+
[35.0, 35.0, 45.0, 45.0],
|
1029 |
+
[25.0, 25.0, 40.0, 40.0],
|
1030 |
+
[10.0, 10.0, 32.5, 32.5]],
|
1031 |
+
'ivl': ['2', '5', '1', '0', '(2)'],
|
1032 |
+
'leaves': [2, 5, 1, 0, 7],
|
1033 |
+
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0'],
|
1034 |
+
})
|
1035 |
+
|
1036 |
+
def test_dendrogram_colors(self, xp):
|
1037 |
+
# Tests dendrogram plots with alternate colors
|
1038 |
+
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
|
1039 |
+
|
1040 |
+
set_link_color_palette(['c', 'm', 'y', 'k'])
|
1041 |
+
R = dendrogram(Z, no_plot=True,
|
1042 |
+
above_threshold_color='g', color_threshold=250)
|
1043 |
+
set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k'])
|
1044 |
+
|
1045 |
+
color_list = R['color_list']
|
1046 |
+
assert_equal(color_list, ['c', 'm', 'g', 'g', 'g'])
|
1047 |
+
|
1048 |
+
# reset color palette (global list)
|
1049 |
+
set_link_color_palette(None)
|
1050 |
+
|
1051 |
+
def test_dendrogram_leaf_colors_zero_dist(self, xp):
|
1052 |
+
# tests that the colors of leafs are correct for tree
|
1053 |
+
# with two identical points
|
1054 |
+
x = xp.asarray([[1, 0, 0],
|
1055 |
+
[0, 0, 1],
|
1056 |
+
[0, 2, 0],
|
1057 |
+
[0, 0, 1],
|
1058 |
+
[0, 1, 0],
|
1059 |
+
[0, 1, 0]])
|
1060 |
+
z = linkage(x, "single")
|
1061 |
+
d = dendrogram(z, no_plot=True)
|
1062 |
+
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
|
1063 |
+
colors = d["leaves_color_list"]
|
1064 |
+
assert_equal(colors, exp_colors)
|
1065 |
+
|
1066 |
+
def test_dendrogram_leaf_colors(self, xp):
|
1067 |
+
# tests that the colors are correct for a tree
|
1068 |
+
# with two near points ((0, 0, 1.1) and (0, 0, 1))
|
1069 |
+
x = xp.asarray([[1, 0, 0],
|
1070 |
+
[0, 0, 1.1],
|
1071 |
+
[0, 2, 0],
|
1072 |
+
[0, 0, 1],
|
1073 |
+
[0, 1, 0],
|
1074 |
+
[0, 1, 0]])
|
1075 |
+
z = linkage(x, "single")
|
1076 |
+
d = dendrogram(z, no_plot=True)
|
1077 |
+
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
|
1078 |
+
colors = d["leaves_color_list"]
|
1079 |
+
assert_equal(colors, exp_colors)
|
1080 |
+
|
1081 |
+
|
1082 |
+
def calculate_maximum_distances(Z, xp):
|
1083 |
+
# Used for testing correctness of maxdists.
|
1084 |
+
n = Z.shape[0] + 1
|
1085 |
+
B = xp.zeros((n-1,), dtype=Z.dtype)
|
1086 |
+
q = xp.zeros((3,))
|
1087 |
+
for i in range(0, n - 1):
|
1088 |
+
q[:] = 0.0
|
1089 |
+
left = Z[i, 0]
|
1090 |
+
right = Z[i, 1]
|
1091 |
+
if left >= n:
|
1092 |
+
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
|
1093 |
+
if right >= n:
|
1094 |
+
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
|
1095 |
+
q[2] = Z[i, 2]
|
1096 |
+
B[i] = xp.max(q)
|
1097 |
+
return B
|
1098 |
+
|
1099 |
+
|
1100 |
+
def calculate_maximum_inconsistencies(Z, R, k=3, xp=np):
|
1101 |
+
# Used for testing correctness of maxinconsts.
|
1102 |
+
n = Z.shape[0] + 1
|
1103 |
+
dtype = xp.result_type(Z, R)
|
1104 |
+
B = xp.zeros((n-1,), dtype=dtype)
|
1105 |
+
q = xp.zeros((3,))
|
1106 |
+
for i in range(0, n - 1):
|
1107 |
+
q[:] = 0.0
|
1108 |
+
left = Z[i, 0]
|
1109 |
+
right = Z[i, 1]
|
1110 |
+
if left >= n:
|
1111 |
+
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
|
1112 |
+
if right >= n:
|
1113 |
+
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
|
1114 |
+
q[2] = R[i, k]
|
1115 |
+
B[i] = xp.max(q)
|
1116 |
+
return B
|
1117 |
+
|
1118 |
+
|
1119 |
+
@skip_if_array_api(cpu_only=True)
|
1120 |
+
def test_unsupported_uncondensed_distance_matrix_linkage_warning(xp):
|
1121 |
+
assert_warns(ClusterWarning, linkage, xp.asarray([[0, 1], [1, 0]]))
|
1122 |
+
|
1123 |
+
|
1124 |
+
def test_euclidean_linkage_value_error(xp):
|
1125 |
+
for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS:
|
1126 |
+
assert_raises(ValueError, linkage, xp.asarray([[1, 1], [1, 1]]),
|
1127 |
+
method=method, metric='cityblock')
|
1128 |
+
|
1129 |
+
|
1130 |
+
@skip_if_array_api(cpu_only=True)
|
1131 |
+
def test_2x2_linkage(xp):
|
1132 |
+
Z1 = linkage(xp.asarray([1]), method='single', metric='euclidean')
|
1133 |
+
Z2 = linkage(xp.asarray([[0, 1], [0, 0]]), method='single', metric='euclidean')
|
1134 |
+
xp_assert_close(Z1, Z2, rtol=1e-15)
|
1135 |
+
|
1136 |
+
|
1137 |
+
@skip_if_array_api(cpu_only=True)
|
1138 |
+
def test_node_compare(xp):
|
1139 |
+
np.random.seed(23)
|
1140 |
+
nobs = 50
|
1141 |
+
X = np.random.randn(nobs, 4)
|
1142 |
+
X = xp.asarray(X)
|
1143 |
+
Z = scipy.cluster.hierarchy.ward(X)
|
1144 |
+
tree = to_tree(Z)
|
1145 |
+
assert_(tree > tree.get_left())
|
1146 |
+
assert_(tree.get_right() > tree.get_left())
|
1147 |
+
assert_(tree.get_right() == tree.get_right())
|
1148 |
+
assert_(tree.get_right() != tree.get_left())
|
1149 |
+
|
1150 |
+
|
1151 |
+
@skip_if_array_api(np_only=True, reasons=['`cut_tree` uses non-standard indexing'])
|
1152 |
+
def test_cut_tree(xp):
|
1153 |
+
np.random.seed(23)
|
1154 |
+
nobs = 50
|
1155 |
+
X = np.random.randn(nobs, 4)
|
1156 |
+
X = xp.asarray(X)
|
1157 |
+
Z = scipy.cluster.hierarchy.ward(X)
|
1158 |
+
cutree = cut_tree(Z)
|
1159 |
+
|
1160 |
+
# cutree.dtype varies between int32 and int64 over platforms
|
1161 |
+
xp_assert_close(cutree[:, 0], xp.arange(nobs), rtol=1e-15, check_dtype=False)
|
1162 |
+
xp_assert_close(cutree[:, -1], xp.zeros(nobs), rtol=1e-15, check_dtype=False)
|
1163 |
+
assert_equal(np.asarray(cutree).max(0), np.arange(nobs - 1, -1, -1))
|
1164 |
+
|
1165 |
+
xp_assert_close(cutree[:, [-5]], cut_tree(Z, n_clusters=5), rtol=1e-15)
|
1166 |
+
xp_assert_close(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10]), rtol=1e-15)
|
1167 |
+
xp_assert_close(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5]), rtol=1e-15)
|
1168 |
+
|
1169 |
+
nodes = _order_cluster_tree(Z)
|
1170 |
+
heights = xp.asarray([node.dist for node in nodes])
|
1171 |
+
|
1172 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [5])],
|
1173 |
+
cut_tree(Z, height=5), rtol=1e-15)
|
1174 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [5, 10])],
|
1175 |
+
cut_tree(Z, height=[5, 10]), rtol=1e-15)
|
1176 |
+
xp_assert_close(cutree[:, np.searchsorted(heights, [10, 5])],
|
1177 |
+
cut_tree(Z, height=[10, 5]), rtol=1e-15)
|
1178 |
+
|
1179 |
+
|
1180 |
+
@skip_if_array_api(cpu_only=True)
|
1181 |
+
def test_optimal_leaf_ordering(xp):
|
1182 |
+
# test with the distance vector y
|
1183 |
+
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.ytdist)),
|
1184 |
+
xp.asarray(hierarchy_test_data.ytdist))
|
1185 |
+
expectedZ = hierarchy_test_data.linkage_ytdist_single_olo
|
1186 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
|
1187 |
+
|
1188 |
+
# test with the observation matrix X
|
1189 |
+
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.X), 'ward'),
|
1190 |
+
xp.asarray(hierarchy_test_data.X))
|
1191 |
+
expectedZ = hierarchy_test_data.linkage_X_ward_olo
|
1192 |
+
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@skip_if_array_api(np_only=True, reasons=['`Heap` only supports NumPy backend'])
|
1196 |
+
def test_Heap(xp):
|
1197 |
+
values = xp.asarray([2, -1, 0, -1.5, 3])
|
1198 |
+
heap = Heap(values)
|
1199 |
+
|
1200 |
+
pair = heap.get_min()
|
1201 |
+
assert_equal(pair['key'], 3)
|
1202 |
+
assert_equal(pair['value'], -1.5)
|
1203 |
+
|
1204 |
+
heap.remove_min()
|
1205 |
+
pair = heap.get_min()
|
1206 |
+
assert_equal(pair['key'], 1)
|
1207 |
+
assert_equal(pair['value'], -1)
|
1208 |
+
|
1209 |
+
heap.change_value(1, 2.5)
|
1210 |
+
pair = heap.get_min()
|
1211 |
+
assert_equal(pair['key'], 2)
|
1212 |
+
assert_equal(pair['value'], 0)
|
1213 |
+
|
1214 |
+
heap.remove_min()
|
1215 |
+
heap.remove_min()
|
1216 |
+
|
1217 |
+
heap.change_value(1, 10)
|
1218 |
+
pair = heap.get_min()
|
1219 |
+
assert_equal(pair['key'], 4)
|
1220 |
+
assert_equal(pair['value'], 3)
|
1221 |
+
|
1222 |
+
heap.remove_min()
|
1223 |
+
pair = heap.get_min()
|
1224 |
+
assert_equal(pair['key'], 1)
|
1225 |
+
assert_equal(pair['value'], 10)
|
venv/lib/python3.10/site-packages/scipy/cluster/vq.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
K-means clustering and vector quantization (:mod:`scipy.cluster.vq`)
|
3 |
+
====================================================================
|
4 |
+
|
5 |
+
Provides routines for k-means clustering, generating code books
|
6 |
+
from k-means models and quantizing vectors by comparing them with
|
7 |
+
centroids in a code book.
|
8 |
+
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
whiten -- Normalize a group of observations so each feature has unit variance
|
13 |
+
vq -- Calculate code book membership of a set of observation vectors
|
14 |
+
kmeans -- Perform k-means on a set of observation vectors forming k clusters
|
15 |
+
kmeans2 -- A different implementation of k-means with more methods
|
16 |
+
-- for initializing centroids
|
17 |
+
|
18 |
+
Background information
|
19 |
+
----------------------
|
20 |
+
The k-means algorithm takes as input the number of clusters to
|
21 |
+
generate, k, and a set of observation vectors to cluster. It
|
22 |
+
returns a set of centroids, one for each of the k clusters. An
|
23 |
+
observation vector is classified with the cluster number or
|
24 |
+
centroid index of the centroid closest to it.
|
25 |
+
|
26 |
+
A vector v belongs to cluster i if it is closer to centroid i than
|
27 |
+
any other centroid. If v belongs to i, we say centroid i is the
|
28 |
+
dominating centroid of v. The k-means algorithm tries to
|
29 |
+
minimize distortion, which is defined as the sum of the squared distances
|
30 |
+
between each observation vector and its dominating centroid.
|
31 |
+
The minimization is achieved by iteratively reclassifying
|
32 |
+
the observations into clusters and recalculating the centroids until
|
33 |
+
a configuration is reached in which the centroids are stable. One can
|
34 |
+
also define a maximum number of iterations.
|
35 |
+
|
36 |
+
Since vector quantization is a natural application for k-means,
|
37 |
+
information theory terminology is often used. The centroid index
|
38 |
+
or cluster index is also referred to as a "code" and the table
|
39 |
+
mapping codes to centroids and, vice versa, is often referred to as a
|
40 |
+
"code book". The result of k-means, a set of centroids, can be
|
41 |
+
used to quantize vectors. Quantization aims to find an encoding of
|
42 |
+
vectors that reduces the expected distortion.
|
43 |
+
|
44 |
+
All routines expect obs to be an M by N array, where the rows are
|
45 |
+
the observation vectors. The codebook is a k by N array, where the
|
46 |
+
ith row is the centroid of code word i. The observation vectors
|
47 |
+
and centroids have the same feature dimension.
|
48 |
+
|
49 |
+
As an example, suppose we wish to compress a 24-bit color image
|
50 |
+
(each pixel is represented by one byte for red, one for blue, and
|
51 |
+
one for green) before sending it over the web. By using a smaller
|
52 |
+
8-bit encoding, we can reduce the amount of data by two
|
53 |
+
thirds. Ideally, the colors for each of the 256 possible 8-bit
|
54 |
+
encoding values should be chosen to minimize distortion of the
|
55 |
+
color. Running k-means with k=256 generates a code book of 256
|
56 |
+
codes, which fills up all possible 8-bit sequences. Instead of
|
57 |
+
sending a 3-byte value for each pixel, the 8-bit centroid index
|
58 |
+
(or code word) of the dominating centroid is transmitted. The code
|
59 |
+
book is also sent over the wire so each 8-bit code can be
|
60 |
+
translated back to a 24-bit pixel value representation. If the
|
61 |
+
image of interest was of an ocean, we would expect many 24-bit
|
62 |
+
blues to be represented by 8-bit codes. If it was an image of a
|
63 |
+
human face, more flesh-tone colors would be represented in the
|
64 |
+
code book.
|
65 |
+
|
66 |
+
"""
|
67 |
+
import warnings
|
68 |
+
import numpy as np
|
69 |
+
from collections import deque
|
70 |
+
from scipy._lib._array_api import (
|
71 |
+
_asarray, array_namespace, size, atleast_nd, copy, cov
|
72 |
+
)
|
73 |
+
from scipy._lib._util import check_random_state, rng_integers
|
74 |
+
from scipy.spatial.distance import cdist
|
75 |
+
|
76 |
+
from . import _vq
|
77 |
+
|
78 |
+
__docformat__ = 'restructuredtext'
|
79 |
+
|
80 |
+
__all__ = ['whiten', 'vq', 'kmeans', 'kmeans2']
|
81 |
+
|
82 |
+
|
83 |
+
class ClusterError(Exception):
|
84 |
+
pass
|
85 |
+
|
86 |
+
|
87 |
+
def whiten(obs, check_finite=True):
|
88 |
+
"""
|
89 |
+
Normalize a group of observations on a per feature basis.
|
90 |
+
|
91 |
+
Before running k-means, it is beneficial to rescale each feature
|
92 |
+
dimension of the observation set by its standard deviation (i.e. "whiten"
|
93 |
+
it - as in "white noise" where each frequency has equal power).
|
94 |
+
Each feature is divided by its standard deviation across all observations
|
95 |
+
to give it unit variance.
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
obs : ndarray
|
100 |
+
Each row of the array is an observation. The
|
101 |
+
columns are the features seen during each observation.
|
102 |
+
|
103 |
+
>>> # f0 f1 f2
|
104 |
+
>>> obs = [[ 1., 1., 1.], #o0
|
105 |
+
... [ 2., 2., 2.], #o1
|
106 |
+
... [ 3., 3., 3.], #o2
|
107 |
+
... [ 4., 4., 4.]] #o3
|
108 |
+
|
109 |
+
check_finite : bool, optional
|
110 |
+
Whether to check that the input matrices contain only finite numbers.
|
111 |
+
Disabling may give a performance gain, but may result in problems
|
112 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
113 |
+
Default: True
|
114 |
+
|
115 |
+
Returns
|
116 |
+
-------
|
117 |
+
result : ndarray
|
118 |
+
Contains the values in `obs` scaled by the standard deviation
|
119 |
+
of each column.
|
120 |
+
|
121 |
+
Examples
|
122 |
+
--------
|
123 |
+
>>> import numpy as np
|
124 |
+
>>> from scipy.cluster.vq import whiten
|
125 |
+
>>> features = np.array([[1.9, 2.3, 1.7],
|
126 |
+
... [1.5, 2.5, 2.2],
|
127 |
+
... [0.8, 0.6, 1.7,]])
|
128 |
+
>>> whiten(features)
|
129 |
+
array([[ 4.17944278, 2.69811351, 7.21248917],
|
130 |
+
[ 3.29956009, 2.93273208, 9.33380951],
|
131 |
+
[ 1.75976538, 0.7038557 , 7.21248917]])
|
132 |
+
|
133 |
+
"""
|
134 |
+
xp = array_namespace(obs)
|
135 |
+
obs = _asarray(obs, check_finite=check_finite, xp=xp)
|
136 |
+
std_dev = xp.std(obs, axis=0)
|
137 |
+
zero_std_mask = std_dev == 0
|
138 |
+
if xp.any(zero_std_mask):
|
139 |
+
std_dev[zero_std_mask] = 1.0
|
140 |
+
warnings.warn("Some columns have standard deviation zero. "
|
141 |
+
"The values of these columns will not change.",
|
142 |
+
RuntimeWarning, stacklevel=2)
|
143 |
+
return obs / std_dev
|
144 |
+
|
145 |
+
|
146 |
+
def vq(obs, code_book, check_finite=True):
|
147 |
+
"""
|
148 |
+
Assign codes from a code book to observations.
|
149 |
+
|
150 |
+
Assigns a code from a code book to each observation. Each
|
151 |
+
observation vector in the 'M' by 'N' `obs` array is compared with the
|
152 |
+
centroids in the code book and assigned the code of the closest
|
153 |
+
centroid.
|
154 |
+
|
155 |
+
The features in `obs` should have unit variance, which can be
|
156 |
+
achieved by passing them through the whiten function. The code
|
157 |
+
book can be created with the k-means algorithm or a different
|
158 |
+
encoding algorithm.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
obs : ndarray
|
163 |
+
Each row of the 'M' x 'N' array is an observation. The columns are
|
164 |
+
the "features" seen during each observation. The features must be
|
165 |
+
whitened first using the whiten function or something equivalent.
|
166 |
+
code_book : ndarray
|
167 |
+
The code book is usually generated using the k-means algorithm.
|
168 |
+
Each row of the array holds a different code, and the columns are
|
169 |
+
the features of the code.
|
170 |
+
|
171 |
+
>>> # f0 f1 f2 f3
|
172 |
+
>>> code_book = [
|
173 |
+
... [ 1., 2., 3., 4.], #c0
|
174 |
+
... [ 1., 2., 3., 4.], #c1
|
175 |
+
... [ 1., 2., 3., 4.]] #c2
|
176 |
+
|
177 |
+
check_finite : bool, optional
|
178 |
+
Whether to check that the input matrices contain only finite numbers.
|
179 |
+
Disabling may give a performance gain, but may result in problems
|
180 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
181 |
+
Default: True
|
182 |
+
|
183 |
+
Returns
|
184 |
+
-------
|
185 |
+
code : ndarray
|
186 |
+
A length M array holding the code book index for each observation.
|
187 |
+
dist : ndarray
|
188 |
+
The distortion (distance) between the observation and its nearest
|
189 |
+
code.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
--------
|
193 |
+
>>> import numpy as np
|
194 |
+
>>> from scipy.cluster.vq import vq
|
195 |
+
>>> code_book = np.array([[1., 1., 1.],
|
196 |
+
... [2., 2., 2.]])
|
197 |
+
>>> features = np.array([[1.9, 2.3, 1.7],
|
198 |
+
... [1.5, 2.5, 2.2],
|
199 |
+
... [0.8, 0.6, 1.7]])
|
200 |
+
>>> vq(features, code_book)
|
201 |
+
(array([1, 1, 0], dtype=int32), array([0.43588989, 0.73484692, 0.83066239]))
|
202 |
+
|
203 |
+
"""
|
204 |
+
xp = array_namespace(obs, code_book)
|
205 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
206 |
+
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
|
207 |
+
ct = xp.result_type(obs, code_book)
|
208 |
+
|
209 |
+
c_obs = xp.astype(obs, ct, copy=False)
|
210 |
+
c_code_book = xp.astype(code_book, ct, copy=False)
|
211 |
+
|
212 |
+
if xp.isdtype(ct, kind='real floating'):
|
213 |
+
c_obs = np.asarray(c_obs)
|
214 |
+
c_code_book = np.asarray(c_code_book)
|
215 |
+
result = _vq.vq(c_obs, c_code_book)
|
216 |
+
return xp.asarray(result[0]), xp.asarray(result[1])
|
217 |
+
return py_vq(obs, code_book, check_finite=False)
|
218 |
+
|
219 |
+
|
220 |
+
def py_vq(obs, code_book, check_finite=True):
|
221 |
+
""" Python version of vq algorithm.
|
222 |
+
|
223 |
+
The algorithm computes the Euclidean distance between each
|
224 |
+
observation and every frame in the code_book.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
obs : ndarray
|
229 |
+
Expects a rank 2 array. Each row is one observation.
|
230 |
+
code_book : ndarray
|
231 |
+
Code book to use. Same format than obs. Should have same number of
|
232 |
+
features (e.g., columns) than obs.
|
233 |
+
check_finite : bool, optional
|
234 |
+
Whether to check that the input matrices contain only finite numbers.
|
235 |
+
Disabling may give a performance gain, but may result in problems
|
236 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
237 |
+
Default: True
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
code : ndarray
|
242 |
+
code[i] gives the label of the ith obversation; its code is
|
243 |
+
code_book[code[i]].
|
244 |
+
mind_dist : ndarray
|
245 |
+
min_dist[i] gives the distance between the ith observation and its
|
246 |
+
corresponding code.
|
247 |
+
|
248 |
+
Notes
|
249 |
+
-----
|
250 |
+
This function is slower than the C version but works for
|
251 |
+
all input types. If the inputs have the wrong types for the
|
252 |
+
C versions of the function, this one is called as a last resort.
|
253 |
+
|
254 |
+
It is about 20 times slower than the C version.
|
255 |
+
|
256 |
+
"""
|
257 |
+
xp = array_namespace(obs, code_book)
|
258 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
259 |
+
code_book = _asarray(code_book, xp=xp, check_finite=check_finite)
|
260 |
+
|
261 |
+
if obs.ndim != code_book.ndim:
|
262 |
+
raise ValueError("Observation and code_book should have the same rank")
|
263 |
+
|
264 |
+
if obs.ndim == 1:
|
265 |
+
obs = obs[:, xp.newaxis]
|
266 |
+
code_book = code_book[:, xp.newaxis]
|
267 |
+
|
268 |
+
# Once `cdist` has array API support, this `xp.asarray` call can be removed
|
269 |
+
dist = xp.asarray(cdist(obs, code_book))
|
270 |
+
code = xp.argmin(dist, axis=1)
|
271 |
+
min_dist = xp.min(dist, axis=1)
|
272 |
+
return code, min_dist
|
273 |
+
|
274 |
+
|
275 |
+
def _kmeans(obs, guess, thresh=1e-5, xp=None):
|
276 |
+
""" "raw" version of k-means.
|
277 |
+
|
278 |
+
Returns
|
279 |
+
-------
|
280 |
+
code_book
|
281 |
+
The lowest distortion codebook found.
|
282 |
+
avg_dist
|
283 |
+
The average distance a observation is from a code in the book.
|
284 |
+
Lower means the code_book matches the data better.
|
285 |
+
|
286 |
+
See Also
|
287 |
+
--------
|
288 |
+
kmeans : wrapper around k-means
|
289 |
+
|
290 |
+
Examples
|
291 |
+
--------
|
292 |
+
Note: not whitened in this example.
|
293 |
+
|
294 |
+
>>> import numpy as np
|
295 |
+
>>> from scipy.cluster.vq import _kmeans
|
296 |
+
>>> features = np.array([[ 1.9,2.3],
|
297 |
+
... [ 1.5,2.5],
|
298 |
+
... [ 0.8,0.6],
|
299 |
+
... [ 0.4,1.8],
|
300 |
+
... [ 1.0,1.0]])
|
301 |
+
>>> book = np.array((features[0],features[2]))
|
302 |
+
>>> _kmeans(features,book)
|
303 |
+
(array([[ 1.7 , 2.4 ],
|
304 |
+
[ 0.73333333, 1.13333333]]), 0.40563916697728591)
|
305 |
+
|
306 |
+
"""
|
307 |
+
xp = np if xp is None else xp
|
308 |
+
code_book = guess
|
309 |
+
diff = xp.inf
|
310 |
+
prev_avg_dists = deque([diff], maxlen=2)
|
311 |
+
while diff > thresh:
|
312 |
+
# compute membership and distances between obs and code_book
|
313 |
+
obs_code, distort = vq(obs, code_book, check_finite=False)
|
314 |
+
prev_avg_dists.append(xp.mean(distort, axis=-1))
|
315 |
+
# recalc code_book as centroids of associated obs
|
316 |
+
obs = np.asarray(obs)
|
317 |
+
obs_code = np.asarray(obs_code)
|
318 |
+
code_book, has_members = _vq.update_cluster_means(obs, obs_code,
|
319 |
+
code_book.shape[0])
|
320 |
+
obs = xp.asarray(obs)
|
321 |
+
obs_code = xp.asarray(obs_code)
|
322 |
+
code_book = xp.asarray(code_book)
|
323 |
+
has_members = xp.asarray(has_members)
|
324 |
+
code_book = code_book[has_members]
|
325 |
+
diff = xp.abs(prev_avg_dists[0] - prev_avg_dists[1])
|
326 |
+
|
327 |
+
return code_book, prev_avg_dists[1]
|
328 |
+
|
329 |
+
|
330 |
+
def kmeans(obs, k_or_guess, iter=20, thresh=1e-5, check_finite=True,
|
331 |
+
*, seed=None):
|
332 |
+
"""
|
333 |
+
Performs k-means on a set of observation vectors forming k clusters.
|
334 |
+
|
335 |
+
The k-means algorithm adjusts the classification of the observations
|
336 |
+
into clusters and updates the cluster centroids until the position of
|
337 |
+
the centroids is stable over successive iterations. In this
|
338 |
+
implementation of the algorithm, the stability of the centroids is
|
339 |
+
determined by comparing the absolute value of the change in the average
|
340 |
+
Euclidean distance between the observations and their corresponding
|
341 |
+
centroids against a threshold. This yields
|
342 |
+
a code book mapping centroids to codes and vice versa.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
obs : ndarray
|
347 |
+
Each row of the M by N array is an observation vector. The
|
348 |
+
columns are the features seen during each observation.
|
349 |
+
The features must be whitened first with the `whiten` function.
|
350 |
+
|
351 |
+
k_or_guess : int or ndarray
|
352 |
+
The number of centroids to generate. A code is assigned to
|
353 |
+
each centroid, which is also the row index of the centroid
|
354 |
+
in the code_book matrix generated.
|
355 |
+
|
356 |
+
The initial k centroids are chosen by randomly selecting
|
357 |
+
observations from the observation matrix. Alternatively,
|
358 |
+
passing a k by N array specifies the initial k centroids.
|
359 |
+
|
360 |
+
iter : int, optional
|
361 |
+
The number of times to run k-means, returning the codebook
|
362 |
+
with the lowest distortion. This argument is ignored if
|
363 |
+
initial centroids are specified with an array for the
|
364 |
+
``k_or_guess`` parameter. This parameter does not represent the
|
365 |
+
number of iterations of the k-means algorithm.
|
366 |
+
|
367 |
+
thresh : float, optional
|
368 |
+
Terminates the k-means algorithm if the change in
|
369 |
+
distortion since the last k-means iteration is less than
|
370 |
+
or equal to threshold.
|
371 |
+
|
372 |
+
check_finite : bool, optional
|
373 |
+
Whether to check that the input matrices contain only finite numbers.
|
374 |
+
Disabling may give a performance gain, but may result in problems
|
375 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
376 |
+
Default: True
|
377 |
+
|
378 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
379 |
+
Seed for initializing the pseudo-random number generator.
|
380 |
+
If `seed` is None (or `numpy.random`), the `numpy.random.RandomState`
|
381 |
+
singleton is used.
|
382 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
383 |
+
seeded with `seed`.
|
384 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
385 |
+
that instance is used.
|
386 |
+
The default is None.
|
387 |
+
|
388 |
+
Returns
|
389 |
+
-------
|
390 |
+
codebook : ndarray
|
391 |
+
A k by N array of k centroids. The ith centroid
|
392 |
+
codebook[i] is represented with the code i. The centroids
|
393 |
+
and codes generated represent the lowest distortion seen,
|
394 |
+
not necessarily the globally minimal distortion.
|
395 |
+
Note that the number of centroids is not necessarily the same as the
|
396 |
+
``k_or_guess`` parameter, because centroids assigned to no observations
|
397 |
+
are removed during iterations.
|
398 |
+
|
399 |
+
distortion : float
|
400 |
+
The mean (non-squared) Euclidean distance between the observations
|
401 |
+
passed and the centroids generated. Note the difference to the standard
|
402 |
+
definition of distortion in the context of the k-means algorithm, which
|
403 |
+
is the sum of the squared distances.
|
404 |
+
|
405 |
+
See Also
|
406 |
+
--------
|
407 |
+
kmeans2 : a different implementation of k-means clustering
|
408 |
+
with more methods for generating initial centroids but without
|
409 |
+
using a distortion change threshold as a stopping criterion.
|
410 |
+
|
411 |
+
whiten : must be called prior to passing an observation matrix
|
412 |
+
to kmeans.
|
413 |
+
|
414 |
+
Notes
|
415 |
+
-----
|
416 |
+
For more functionalities or optimal performance, you can use
|
417 |
+
`sklearn.cluster.KMeans <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html>`_.
|
418 |
+
`This <https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html#comparison-of-high-performance-implementations>`_
|
419 |
+
is a benchmark result of several implementations.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
--------
|
423 |
+
>>> import numpy as np
|
424 |
+
>>> from scipy.cluster.vq import vq, kmeans, whiten
|
425 |
+
>>> import matplotlib.pyplot as plt
|
426 |
+
>>> features = np.array([[ 1.9,2.3],
|
427 |
+
... [ 1.5,2.5],
|
428 |
+
... [ 0.8,0.6],
|
429 |
+
... [ 0.4,1.8],
|
430 |
+
... [ 0.1,0.1],
|
431 |
+
... [ 0.2,1.8],
|
432 |
+
... [ 2.0,0.5],
|
433 |
+
... [ 0.3,1.5],
|
434 |
+
... [ 1.0,1.0]])
|
435 |
+
>>> whitened = whiten(features)
|
436 |
+
>>> book = np.array((whitened[0],whitened[2]))
|
437 |
+
>>> kmeans(whitened,book)
|
438 |
+
(array([[ 2.3110306 , 2.86287398], # random
|
439 |
+
[ 0.93218041, 1.24398691]]), 0.85684700941625547)
|
440 |
+
|
441 |
+
>>> codes = 3
|
442 |
+
>>> kmeans(whitened,codes)
|
443 |
+
(array([[ 2.3110306 , 2.86287398], # random
|
444 |
+
[ 1.32544402, 0.65607529],
|
445 |
+
[ 0.40782893, 2.02786907]]), 0.5196582527686241)
|
446 |
+
|
447 |
+
>>> # Create 50 datapoints in two clusters a and b
|
448 |
+
>>> pts = 50
|
449 |
+
>>> rng = np.random.default_rng()
|
450 |
+
>>> a = rng.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
|
451 |
+
>>> b = rng.multivariate_normal([30, 10],
|
452 |
+
... [[10, 2], [2, 1]],
|
453 |
+
... size=pts)
|
454 |
+
>>> features = np.concatenate((a, b))
|
455 |
+
>>> # Whiten data
|
456 |
+
>>> whitened = whiten(features)
|
457 |
+
>>> # Find 2 clusters in the data
|
458 |
+
>>> codebook, distortion = kmeans(whitened, 2)
|
459 |
+
>>> # Plot whitened data and cluster centers in red
|
460 |
+
>>> plt.scatter(whitened[:, 0], whitened[:, 1])
|
461 |
+
>>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
|
462 |
+
>>> plt.show()
|
463 |
+
|
464 |
+
"""
|
465 |
+
if isinstance(k_or_guess, int):
|
466 |
+
xp = array_namespace(obs)
|
467 |
+
else:
|
468 |
+
xp = array_namespace(obs, k_or_guess)
|
469 |
+
obs = _asarray(obs, xp=xp, check_finite=check_finite)
|
470 |
+
guess = _asarray(k_or_guess, xp=xp, check_finite=check_finite)
|
471 |
+
if iter < 1:
|
472 |
+
raise ValueError("iter must be at least 1, got %s" % iter)
|
473 |
+
|
474 |
+
# Determine whether a count (scalar) or an initial guess (array) was passed.
|
475 |
+
if size(guess) != 1:
|
476 |
+
if size(guess) < 1:
|
477 |
+
raise ValueError("Asked for 0 clusters. Initial book was %s" %
|
478 |
+
guess)
|
479 |
+
return _kmeans(obs, guess, thresh=thresh, xp=xp)
|
480 |
+
|
481 |
+
# k_or_guess is a scalar, now verify that it's an integer
|
482 |
+
k = int(guess)
|
483 |
+
if k != guess:
|
484 |
+
raise ValueError("If k_or_guess is a scalar, it must be an integer.")
|
485 |
+
if k < 1:
|
486 |
+
raise ValueError("Asked for %d clusters." % k)
|
487 |
+
|
488 |
+
rng = check_random_state(seed)
|
489 |
+
|
490 |
+
# initialize best distance value to a large value
|
491 |
+
best_dist = xp.inf
|
492 |
+
for i in range(iter):
|
493 |
+
# the initial code book is randomly selected from observations
|
494 |
+
guess = _kpoints(obs, k, rng, xp)
|
495 |
+
book, dist = _kmeans(obs, guess, thresh=thresh, xp=xp)
|
496 |
+
if dist < best_dist:
|
497 |
+
best_book = book
|
498 |
+
best_dist = dist
|
499 |
+
return best_book, best_dist
|
500 |
+
|
501 |
+
|
502 |
+
def _kpoints(data, k, rng, xp):
|
503 |
+
"""Pick k points at random in data (one row = one observation).
|
504 |
+
|
505 |
+
Parameters
|
506 |
+
----------
|
507 |
+
data : ndarray
|
508 |
+
Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
|
509 |
+
dimensional data, rank 2 multidimensional data, in which case one
|
510 |
+
row is one observation.
|
511 |
+
k : int
|
512 |
+
Number of samples to generate.
|
513 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
514 |
+
Random number generator.
|
515 |
+
|
516 |
+
Returns
|
517 |
+
-------
|
518 |
+
x : ndarray
|
519 |
+
A 'k' by 'N' containing the initial centroids
|
520 |
+
|
521 |
+
"""
|
522 |
+
idx = rng.choice(data.shape[0], size=int(k), replace=False)
|
523 |
+
# convert to array with default integer dtype (avoids numpy#25607)
|
524 |
+
idx = xp.asarray(idx, dtype=xp.asarray([1]).dtype)
|
525 |
+
return xp.take(data, idx, axis=0)
|
526 |
+
|
527 |
+
|
528 |
+
def _krandinit(data, k, rng, xp):
|
529 |
+
"""Returns k samples of a random variable whose parameters depend on data.
|
530 |
+
|
531 |
+
More precisely, it returns k observations sampled from a Gaussian random
|
532 |
+
variable whose mean and covariances are the ones estimated from the data.
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
----------
|
536 |
+
data : ndarray
|
537 |
+
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
538 |
+
data, rank 2 multidimensional data, in which case one
|
539 |
+
row is one observation.
|
540 |
+
k : int
|
541 |
+
Number of samples to generate.
|
542 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
543 |
+
Random number generator.
|
544 |
+
|
545 |
+
Returns
|
546 |
+
-------
|
547 |
+
x : ndarray
|
548 |
+
A 'k' by 'N' containing the initial centroids
|
549 |
+
|
550 |
+
"""
|
551 |
+
mu = xp.mean(data, axis=0)
|
552 |
+
k = np.asarray(k)
|
553 |
+
|
554 |
+
if data.ndim == 1:
|
555 |
+
_cov = cov(data)
|
556 |
+
x = rng.standard_normal(size=k)
|
557 |
+
x = xp.asarray(x)
|
558 |
+
x *= xp.sqrt(_cov)
|
559 |
+
elif data.shape[1] > data.shape[0]:
|
560 |
+
# initialize when the covariance matrix is rank deficient
|
561 |
+
_, s, vh = xp.linalg.svd(data - mu, full_matrices=False)
|
562 |
+
x = rng.standard_normal(size=(k, size(s)))
|
563 |
+
x = xp.asarray(x)
|
564 |
+
sVh = s[:, None] * vh / xp.sqrt(data.shape[0] - xp.asarray(1.))
|
565 |
+
x = x @ sVh
|
566 |
+
else:
|
567 |
+
_cov = atleast_nd(cov(data.T), ndim=2)
|
568 |
+
|
569 |
+
# k rows, d cols (one row = one obs)
|
570 |
+
# Generate k sample of a random variable ~ Gaussian(mu, cov)
|
571 |
+
x = rng.standard_normal(size=(k, size(mu)))
|
572 |
+
x = xp.asarray(x)
|
573 |
+
x = x @ xp.linalg.cholesky(_cov).T
|
574 |
+
|
575 |
+
x += mu
|
576 |
+
return x
|
577 |
+
|
578 |
+
|
579 |
+
def _kpp(data, k, rng, xp):
|
580 |
+
""" Picks k points in the data based on the kmeans++ method.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
data : ndarray
|
585 |
+
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D
|
586 |
+
data, rank 2 multidimensional data, in which case one
|
587 |
+
row is one observation.
|
588 |
+
k : int
|
589 |
+
Number of samples to generate.
|
590 |
+
rng : `numpy.random.Generator` or `numpy.random.RandomState`
|
591 |
+
Random number generator.
|
592 |
+
|
593 |
+
Returns
|
594 |
+
-------
|
595 |
+
init : ndarray
|
596 |
+
A 'k' by 'N' containing the initial centroids.
|
597 |
+
|
598 |
+
References
|
599 |
+
----------
|
600 |
+
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
601 |
+
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
602 |
+
on Discrete Algorithms, 2007.
|
603 |
+
"""
|
604 |
+
|
605 |
+
ndim = len(data.shape)
|
606 |
+
if ndim == 1:
|
607 |
+
data = data[:, None]
|
608 |
+
|
609 |
+
dims = data.shape[1]
|
610 |
+
|
611 |
+
init = xp.empty((int(k), dims))
|
612 |
+
|
613 |
+
for i in range(k):
|
614 |
+
if i == 0:
|
615 |
+
init[i, :] = data[rng_integers(rng, data.shape[0]), :]
|
616 |
+
|
617 |
+
else:
|
618 |
+
D2 = cdist(init[:i,:], data, metric='sqeuclidean').min(axis=0)
|
619 |
+
probs = D2/D2.sum()
|
620 |
+
cumprobs = probs.cumsum()
|
621 |
+
r = rng.uniform()
|
622 |
+
cumprobs = np.asarray(cumprobs)
|
623 |
+
init[i, :] = data[np.searchsorted(cumprobs, r), :]
|
624 |
+
|
625 |
+
if ndim == 1:
|
626 |
+
init = init[:, 0]
|
627 |
+
return init
|
628 |
+
|
629 |
+
|
630 |
+
_valid_init_meth = {'random': _krandinit, 'points': _kpoints, '++': _kpp}
|
631 |
+
|
632 |
+
|
633 |
+
def _missing_warn():
|
634 |
+
"""Print a warning when called."""
|
635 |
+
warnings.warn("One of the clusters is empty. "
|
636 |
+
"Re-run kmeans with a different initialization.",
|
637 |
+
stacklevel=3)
|
638 |
+
|
639 |
+
|
640 |
+
def _missing_raise():
|
641 |
+
"""Raise a ClusterError when called."""
|
642 |
+
raise ClusterError("One of the clusters is empty. "
|
643 |
+
"Re-run kmeans with a different initialization.")
|
644 |
+
|
645 |
+
|
646 |
+
_valid_miss_meth = {'warn': _missing_warn, 'raise': _missing_raise}
|
647 |
+
|
648 |
+
|
649 |
+
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random',
|
650 |
+
missing='warn', check_finite=True, *, seed=None):
|
651 |
+
"""
|
652 |
+
Classify a set of observations into k clusters using the k-means algorithm.
|
653 |
+
|
654 |
+
The algorithm attempts to minimize the Euclidean distance between
|
655 |
+
observations and centroids. Several initialization methods are
|
656 |
+
included.
|
657 |
+
|
658 |
+
Parameters
|
659 |
+
----------
|
660 |
+
data : ndarray
|
661 |
+
A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length
|
662 |
+
'M' array of 'M' 1-D observations.
|
663 |
+
k : int or ndarray
|
664 |
+
The number of clusters to form as well as the number of
|
665 |
+
centroids to generate. If `minit` initialization string is
|
666 |
+
'matrix', or if a ndarray is given instead, it is
|
667 |
+
interpreted as initial cluster to use instead.
|
668 |
+
iter : int, optional
|
669 |
+
Number of iterations of the k-means algorithm to run. Note
|
670 |
+
that this differs in meaning from the iters parameter to
|
671 |
+
the kmeans function.
|
672 |
+
thresh : float, optional
|
673 |
+
(not used yet)
|
674 |
+
minit : str, optional
|
675 |
+
Method for initialization. Available methods are 'random',
|
676 |
+
'points', '++' and 'matrix':
|
677 |
+
|
678 |
+
'random': generate k centroids from a Gaussian with mean and
|
679 |
+
variance estimated from the data.
|
680 |
+
|
681 |
+
'points': choose k observations (rows) at random from data for
|
682 |
+
the initial centroids.
|
683 |
+
|
684 |
+
'++': choose k observations accordingly to the kmeans++ method
|
685 |
+
(careful seeding)
|
686 |
+
|
687 |
+
'matrix': interpret the k parameter as a k by M (or length k
|
688 |
+
array for 1-D data) array of initial centroids.
|
689 |
+
missing : str, optional
|
690 |
+
Method to deal with empty clusters. Available methods are
|
691 |
+
'warn' and 'raise':
|
692 |
+
|
693 |
+
'warn': give a warning and continue.
|
694 |
+
|
695 |
+
'raise': raise an ClusterError and terminate the algorithm.
|
696 |
+
check_finite : bool, optional
|
697 |
+
Whether to check that the input matrices contain only finite numbers.
|
698 |
+
Disabling may give a performance gain, but may result in problems
|
699 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
700 |
+
Default: True
|
701 |
+
seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
702 |
+
Seed for initializing the pseudo-random number generator.
|
703 |
+
If `seed` is None (or `numpy.random`), the `numpy.random.RandomState`
|
704 |
+
singleton is used.
|
705 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
706 |
+
seeded with `seed`.
|
707 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
708 |
+
that instance is used.
|
709 |
+
The default is None.
|
710 |
+
|
711 |
+
Returns
|
712 |
+
-------
|
713 |
+
centroid : ndarray
|
714 |
+
A 'k' by 'N' array of centroids found at the last iteration of
|
715 |
+
k-means.
|
716 |
+
label : ndarray
|
717 |
+
label[i] is the code or index of the centroid the
|
718 |
+
ith observation is closest to.
|
719 |
+
|
720 |
+
See Also
|
721 |
+
--------
|
722 |
+
kmeans
|
723 |
+
|
724 |
+
References
|
725 |
+
----------
|
726 |
+
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
|
727 |
+
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
|
728 |
+
on Discrete Algorithms, 2007.
|
729 |
+
|
730 |
+
Examples
|
731 |
+
--------
|
732 |
+
>>> from scipy.cluster.vq import kmeans2
|
733 |
+
>>> import matplotlib.pyplot as plt
|
734 |
+
>>> import numpy as np
|
735 |
+
|
736 |
+
Create z, an array with shape (100, 2) containing a mixture of samples
|
737 |
+
from three multivariate normal distributions.
|
738 |
+
|
739 |
+
>>> rng = np.random.default_rng()
|
740 |
+
>>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
|
741 |
+
>>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
|
742 |
+
>>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
|
743 |
+
>>> z = np.concatenate((a, b, c))
|
744 |
+
>>> rng.shuffle(z)
|
745 |
+
|
746 |
+
Compute three clusters.
|
747 |
+
|
748 |
+
>>> centroid, label = kmeans2(z, 3, minit='points')
|
749 |
+
>>> centroid
|
750 |
+
array([[ 2.22274463, -0.61666946], # may vary
|
751 |
+
[ 0.54069047, 5.86541444],
|
752 |
+
[ 6.73846769, 4.01991898]])
|
753 |
+
|
754 |
+
How many points are in each cluster?
|
755 |
+
|
756 |
+
>>> counts = np.bincount(label)
|
757 |
+
>>> counts
|
758 |
+
array([29, 51, 20]) # may vary
|
759 |
+
|
760 |
+
Plot the clusters.
|
761 |
+
|
762 |
+
>>> w0 = z[label == 0]
|
763 |
+
>>> w1 = z[label == 1]
|
764 |
+
>>> w2 = z[label == 2]
|
765 |
+
>>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
|
766 |
+
>>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
|
767 |
+
>>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
|
768 |
+
>>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids')
|
769 |
+
>>> plt.axis('equal')
|
770 |
+
>>> plt.legend(shadow=True)
|
771 |
+
>>> plt.show()
|
772 |
+
|
773 |
+
"""
|
774 |
+
if int(iter) < 1:
|
775 |
+
raise ValueError("Invalid iter (%s), "
|
776 |
+
"must be a positive integer." % iter)
|
777 |
+
try:
|
778 |
+
miss_meth = _valid_miss_meth[missing]
|
779 |
+
except KeyError as e:
|
780 |
+
raise ValueError(f"Unknown missing method {missing!r}") from e
|
781 |
+
|
782 |
+
if isinstance(k, int):
|
783 |
+
xp = array_namespace(data)
|
784 |
+
else:
|
785 |
+
xp = array_namespace(data, k)
|
786 |
+
data = _asarray(data, xp=xp, check_finite=check_finite)
|
787 |
+
code_book = copy(k, xp=xp)
|
788 |
+
if data.ndim == 1:
|
789 |
+
d = 1
|
790 |
+
elif data.ndim == 2:
|
791 |
+
d = data.shape[1]
|
792 |
+
else:
|
793 |
+
raise ValueError("Input of rank > 2 is not supported.")
|
794 |
+
|
795 |
+
if size(data) < 1 or size(code_book) < 1:
|
796 |
+
raise ValueError("Empty input is not supported.")
|
797 |
+
|
798 |
+
# If k is not a single value, it should be compatible with data's shape
|
799 |
+
if minit == 'matrix' or size(code_book) > 1:
|
800 |
+
if data.ndim != code_book.ndim:
|
801 |
+
raise ValueError("k array doesn't match data rank")
|
802 |
+
nc = code_book.shape[0]
|
803 |
+
if data.ndim > 1 and code_book.shape[1] != d:
|
804 |
+
raise ValueError("k array doesn't match data dimension")
|
805 |
+
else:
|
806 |
+
nc = int(code_book)
|
807 |
+
|
808 |
+
if nc < 1:
|
809 |
+
raise ValueError("Cannot ask kmeans2 for %d clusters"
|
810 |
+
" (k was %s)" % (nc, code_book))
|
811 |
+
elif nc != code_book:
|
812 |
+
warnings.warn("k was not an integer, was converted.", stacklevel=2)
|
813 |
+
|
814 |
+
try:
|
815 |
+
init_meth = _valid_init_meth[minit]
|
816 |
+
except KeyError as e:
|
817 |
+
raise ValueError(f"Unknown init method {minit!r}") from e
|
818 |
+
else:
|
819 |
+
rng = check_random_state(seed)
|
820 |
+
code_book = init_meth(data, code_book, rng, xp)
|
821 |
+
|
822 |
+
data = np.asarray(data)
|
823 |
+
code_book = np.asarray(code_book)
|
824 |
+
for i in range(iter):
|
825 |
+
# Compute the nearest neighbor for each obs using the current code book
|
826 |
+
label = vq(data, code_book, check_finite=check_finite)[0]
|
827 |
+
# Update the code book by computing centroids
|
828 |
+
new_code_book, has_members = _vq.update_cluster_means(data, label, nc)
|
829 |
+
if not has_members.all():
|
830 |
+
miss_meth()
|
831 |
+
# Set the empty clusters to their previous positions
|
832 |
+
new_code_book[~has_members] = code_book[~has_members]
|
833 |
+
code_book = new_code_book
|
834 |
+
|
835 |
+
return xp.asarray(code_book), xp.asarray(label)
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_base.cpython-310.pyc
ADDED
Binary file (46.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_bsr.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_compressed.cpython-310.pyc
ADDED
Binary file (33.4 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_construct.cpython-310.pyc
ADDED
Binary file (42.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_coo.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_csc.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_csr.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_data.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dia.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dok.cpython-310.pyc
ADDED
Binary file (22.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_extract.cpython-310.pyc
ADDED
Binary file (5.02 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_index.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_lil.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_matrix.cpython-310.pyc
ADDED
Binary file (4.22 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_matrix_io.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_spfuncs.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/_sputils.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/base.cpython-310.pyc
ADDED
Binary file (786 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/bsr.cpython-310.pyc
ADDED
Binary file (787 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/compressed.cpython-310.pyc
ADDED
Binary file (950 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/construct.cpython-310.pyc
ADDED
Binary file (859 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/coo.cpython-310.pyc
ADDED
Binary file (814 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/csc.cpython-310.pyc
ADDED
Binary file (651 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/csr.cpython-310.pyc
ADDED
Binary file (688 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/data.cpython-310.pyc
ADDED
Binary file (627 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/dia.cpython-310.pyc
ADDED
Binary file (707 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/dok.cpython-310.pyc
ADDED
Binary file (733 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/extract.cpython-310.pyc
ADDED
Binary file (625 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/lil.cpython-310.pyc
ADDED
Binary file (740 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/sparsetools.cpython-310.pyc
ADDED
Binary file (1.78 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/spfuncs.cpython-310.pyc
ADDED
Binary file (647 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/__pycache__/sputils.cpython-310.pyc
ADDED
Binary file (905 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Linear Solvers
|
3 |
+
==============
|
4 |
+
|
5 |
+
The default solver is SuperLU (included in the scipy distribution),
|
6 |
+
which can solve real or complex linear systems in both single and
|
7 |
+
double precisions. It is automatically replaced by UMFPACK, if
|
8 |
+
available. Note that UMFPACK works in double precision only, so
|
9 |
+
switch it off by::
|
10 |
+
|
11 |
+
>>> from scipy.sparse.linalg import spsolve, use_solver
|
12 |
+
>>> use_solver(useUmfpack=False)
|
13 |
+
|
14 |
+
to solve in the single precision. See also use_solver documentation.
|
15 |
+
|
16 |
+
Example session::
|
17 |
+
|
18 |
+
>>> from scipy.sparse import csc_matrix, spdiags
|
19 |
+
>>> from numpy import array
|
20 |
+
>>>
|
21 |
+
>>> print("Inverting a sparse linear system:")
|
22 |
+
>>> print("The sparse matrix (constructed from diagonals):")
|
23 |
+
>>> a = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
|
24 |
+
>>> b = array([1, 2, 3, 4, 5])
|
25 |
+
>>> print("Solve: single precision complex:")
|
26 |
+
>>> use_solver( useUmfpack = False )
|
27 |
+
>>> a = a.astype('F')
|
28 |
+
>>> x = spsolve(a, b)
|
29 |
+
>>> print(x)
|
30 |
+
>>> print("Error: ", a@x-b)
|
31 |
+
>>>
|
32 |
+
>>> print("Solve: double precision complex:")
|
33 |
+
>>> use_solver( useUmfpack = True )
|
34 |
+
>>> a = a.astype('D')
|
35 |
+
>>> x = spsolve(a, b)
|
36 |
+
>>> print(x)
|
37 |
+
>>> print("Error: ", a@x-b)
|
38 |
+
>>>
|
39 |
+
>>> print("Solve: double precision:")
|
40 |
+
>>> a = a.astype('d')
|
41 |
+
>>> x = spsolve(a, b)
|
42 |
+
>>> print(x)
|
43 |
+
>>> print("Error: ", a@x-b)
|
44 |
+
>>>
|
45 |
+
>>> print("Solve: single precision:")
|
46 |
+
>>> use_solver( useUmfpack = False )
|
47 |
+
>>> a = a.astype('f')
|
48 |
+
>>> x = spsolve(a, b.astype('f'))
|
49 |
+
>>> print(x)
|
50 |
+
>>> print("Error: ", a@x-b)
|
51 |
+
|
52 |
+
"""
|
53 |
+
|
54 |
+
#import umfpack
|
55 |
+
#__doc__ = '\n\n'.join( (__doc__, umfpack.__doc__) )
|
56 |
+
#del umfpack
|
57 |
+
|
58 |
+
from .linsolve import *
|
59 |
+
from ._superlu import SuperLU
|
60 |
+
from . import _add_newdocs
|
61 |
+
from . import linsolve
|
62 |
+
|
63 |
+
__all__ = [
|
64 |
+
'MatrixRankWarning', 'SuperLU', 'factorized',
|
65 |
+
'spilu', 'splu', 'spsolve',
|
66 |
+
'spsolve_triangular', 'use_solver'
|
67 |
+
]
|
68 |
+
|
69 |
+
from scipy._lib._testutils import PytestTester
|
70 |
+
test = PytestTester(__name__)
|
71 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/linsolve.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.lib import add_newdoc
|
2 |
+
|
3 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU',
|
4 |
+
"""
|
5 |
+
LU factorization of a sparse matrix.
|
6 |
+
|
7 |
+
Factorization is represented as::
|
8 |
+
|
9 |
+
Pr @ A @ Pc = L @ U
|
10 |
+
|
11 |
+
To construct these `SuperLU` objects, call the `splu` and `spilu`
|
12 |
+
functions.
|
13 |
+
|
14 |
+
Attributes
|
15 |
+
----------
|
16 |
+
shape
|
17 |
+
nnz
|
18 |
+
perm_c
|
19 |
+
perm_r
|
20 |
+
L
|
21 |
+
U
|
22 |
+
|
23 |
+
Methods
|
24 |
+
-------
|
25 |
+
solve
|
26 |
+
|
27 |
+
Notes
|
28 |
+
-----
|
29 |
+
|
30 |
+
.. versionadded:: 0.14.0
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
The LU decomposition can be used to solve matrix equations. Consider:
|
35 |
+
|
36 |
+
>>> import numpy as np
|
37 |
+
>>> from scipy.sparse import csc_matrix
|
38 |
+
>>> from scipy.sparse.linalg import splu
|
39 |
+
>>> A = csc_matrix([[1,2,0,4], [1,0,0,1], [1,0,2,1], [2,2,1,0.]])
|
40 |
+
|
41 |
+
This can be solved for a given right-hand side:
|
42 |
+
|
43 |
+
>>> lu = splu(A)
|
44 |
+
>>> b = np.array([1, 2, 3, 4])
|
45 |
+
>>> x = lu.solve(b)
|
46 |
+
>>> A.dot(x)
|
47 |
+
array([ 1., 2., 3., 4.])
|
48 |
+
|
49 |
+
The ``lu`` object also contains an explicit representation of the
|
50 |
+
decomposition. The permutations are represented as mappings of
|
51 |
+
indices:
|
52 |
+
|
53 |
+
>>> lu.perm_r
|
54 |
+
array([2, 1, 3, 0], dtype=int32) # may vary
|
55 |
+
>>> lu.perm_c
|
56 |
+
array([0, 1, 3, 2], dtype=int32) # may vary
|
57 |
+
|
58 |
+
The L and U factors are sparse matrices in CSC format:
|
59 |
+
|
60 |
+
>>> lu.L.toarray()
|
61 |
+
array([[ 1. , 0. , 0. , 0. ], # may vary
|
62 |
+
[ 0.5, 1. , 0. , 0. ],
|
63 |
+
[ 0.5, -1. , 1. , 0. ],
|
64 |
+
[ 0.5, 1. , 0. , 1. ]])
|
65 |
+
>>> lu.U.toarray()
|
66 |
+
array([[ 2. , 2. , 0. , 1. ], # may vary
|
67 |
+
[ 0. , -1. , 1. , -0.5],
|
68 |
+
[ 0. , 0. , 5. , -1. ],
|
69 |
+
[ 0. , 0. , 0. , 2. ]])
|
70 |
+
|
71 |
+
The permutation matrices can be constructed:
|
72 |
+
|
73 |
+
>>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4))))
|
74 |
+
>>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c)))
|
75 |
+
|
76 |
+
We can reassemble the original matrix:
|
77 |
+
|
78 |
+
>>> (Pr.T @ (lu.L @ lu.U) @ Pc.T).toarray()
|
79 |
+
array([[ 1., 2., 0., 4.],
|
80 |
+
[ 1., 0., 0., 1.],
|
81 |
+
[ 1., 0., 2., 1.],
|
82 |
+
[ 2., 2., 1., 0.]])
|
83 |
+
""")
|
84 |
+
|
85 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('solve',
|
86 |
+
"""
|
87 |
+
solve(rhs[, trans])
|
88 |
+
|
89 |
+
Solves linear system of equations with one or several right-hand sides.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
rhs : ndarray, shape (n,) or (n, k)
|
94 |
+
Right hand side(s) of equation
|
95 |
+
trans : {'N', 'T', 'H'}, optional
|
96 |
+
Type of system to solve::
|
97 |
+
|
98 |
+
'N': A @ x == rhs (default)
|
99 |
+
'T': A^T @ x == rhs
|
100 |
+
'H': A^H @ x == rhs
|
101 |
+
|
102 |
+
i.e., normal, transposed, and hermitian conjugate.
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
x : ndarray, shape ``rhs.shape``
|
107 |
+
Solution vector(s)
|
108 |
+
"""))
|
109 |
+
|
110 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('L',
|
111 |
+
"""
|
112 |
+
Lower triangular factor with unit diagonal as a
|
113 |
+
`scipy.sparse.csc_matrix`.
|
114 |
+
|
115 |
+
.. versionadded:: 0.14.0
|
116 |
+
"""))
|
117 |
+
|
118 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('U',
|
119 |
+
"""
|
120 |
+
Upper triangular factor as a `scipy.sparse.csc_matrix`.
|
121 |
+
|
122 |
+
.. versionadded:: 0.14.0
|
123 |
+
"""))
|
124 |
+
|
125 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('shape',
|
126 |
+
"""
|
127 |
+
Shape of the original matrix as a tuple of ints.
|
128 |
+
"""))
|
129 |
+
|
130 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('nnz',
|
131 |
+
"""
|
132 |
+
Number of nonzero elements in the matrix.
|
133 |
+
"""))
|
134 |
+
|
135 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_c',
|
136 |
+
"""
|
137 |
+
Permutation Pc represented as an array of indices.
|
138 |
+
|
139 |
+
The column permutation matrix can be reconstructed via:
|
140 |
+
|
141 |
+
>>> Pc = np.zeros((n, n))
|
142 |
+
>>> Pc[np.arange(n), perm_c] = 1
|
143 |
+
"""))
|
144 |
+
|
145 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_r',
|
146 |
+
"""
|
147 |
+
Permutation Pr represented as an array of indices.
|
148 |
+
|
149 |
+
The row permutation matrix can be reconstructed via:
|
150 |
+
|
151 |
+
>>> Pr = np.zeros((n, n))
|
152 |
+
>>> Pr[perm_r, np.arange(n)] = 1
|
153 |
+
"""))
|
venv/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (379 kB). View file
|
|