diff --git "a/venv/lib/python3.10/site-packages/sympy/core/numbers.py" "b/venv/lib/python3.10/site-packages/sympy/core/numbers.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/sympy/core/numbers.py" @@ -0,0 +1,4596 @@ +from __future__ import annotations + +import numbers +import decimal +import fractions +import math +import re as regex +import sys +from functools import lru_cache + +from .containers import Tuple +from .sympify import (SympifyError, _sympy_converter, sympify, _convert_numpy_types, + _sympify, _is_numpy_instance) +from .singleton import S, Singleton +from .basic import Basic +from .expr import Expr, AtomicExpr +from .evalf import pure_complex +from .cache import cacheit, clear_cache +from .decorators import _sympifyit +from .logic import fuzzy_not +from .kind import NumberKind +from sympy.external.gmpy import SYMPY_INTS, HAS_GMPY, gmpy +from sympy.multipledispatch import dispatch +import mpmath +import mpmath.libmp as mlib +from mpmath.libmp import bitcount, round_nearest as rnd +from mpmath.libmp.backend import MPZ +from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed +from mpmath.ctx_mp import mpnumeric +from mpmath.libmp.libmpf import ( + finf as _mpf_inf, fninf as _mpf_ninf, + fnan as _mpf_nan, fzero, _normalize as mpf_normalize, + prec_to_dps, dps_to_prec) +from sympy.utilities.misc import as_int, debug, filldedent +from .parameters import global_parameters + +_LOG2 = math.log(2) + + +def comp(z1, z2, tol=None): + r"""Return a bool indicating whether the error between z1 and z2 + is $\le$ ``tol``. + + Examples + ======== + + If ``tol`` is ``None`` then ``True`` will be returned if + :math:`|z1 - z2|\times 10^p \le 5` where $p$ is minimum value of the + decimal precision of each value. + + >>> from sympy import comp, pi + >>> pi4 = pi.n(4); pi4 + 3.142 + >>> comp(_, 3.142) + True + >>> comp(pi4, 3.141) + False + >>> comp(pi4, 3.143) + False + + A comparison of strings will be made + if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. + + >>> comp(pi4, 3.1415) + True + >>> comp(pi4, 3.1415, '') + False + + When ``tol`` is provided and $z2$ is non-zero and + :math:`|z1| > 1` the error is normalized by :math:`|z1|`: + + >>> abs(pi4 - 3.14)/pi4 + 0.000509791731426756 + >>> comp(pi4, 3.14, .001) # difference less than 0.1% + True + >>> comp(pi4, 3.14, .0005) # difference less than 0.1% + False + + When :math:`|z1| \le 1` the absolute error is used: + + >>> 1/pi4 + 0.3183 + >>> abs(1/pi4 - 0.3183)/(1/pi4) + 3.07371499106316e-5 + >>> abs(1/pi4 - 0.3183) + 9.78393554684764e-6 + >>> comp(1/pi4, 0.3183, 1e-5) + True + + To see if the absolute error between ``z1`` and ``z2`` is less + than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` + or ``comp(z1 - z2, tol=tol)``: + + >>> abs(pi4 - 3.14) + 0.00160156249999988 + >>> comp(pi4 - 3.14, 0, .002) + True + >>> comp(pi4 - 3.14, 0, .001) + False + """ + if isinstance(z2, str): + if not pure_complex(z1, or_real=True): + raise ValueError('when z2 is a str z1 must be a Number') + return str(z1) == z2 + if not z1: + z1, z2 = z2, z1 + if not z1: + return True + if not tol: + a, b = z1, z2 + if tol == '': + return str(a) == str(b) + if tol is None: + a, b = sympify(a), sympify(b) + if not all(i.is_number for i in (a, b)): + raise ValueError('expecting 2 numbers') + fa = a.atoms(Float) + fb = b.atoms(Float) + if not fa and not fb: + # no floats -- compare exactly + return a == b + # get a to be pure_complex + for _ in range(2): + ca = pure_complex(a, or_real=True) + if not ca: + if fa: + a = a.n(prec_to_dps(min([i._prec for i in fa]))) + ca = pure_complex(a, or_real=True) + break + else: + fa, fb = fb, fa + a, b = b, a + cb = pure_complex(b) + if not cb and fb: + b = b.n(prec_to_dps(min([i._prec for i in fb]))) + cb = pure_complex(b, or_real=True) + if ca and cb and (ca[1] or cb[1]): + return all(comp(i, j) for i, j in zip(ca, cb)) + tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) + return int(abs(a - b)*tol) <= 5 + diff = abs(z1 - z2) + az1 = abs(z1) + if z2 and az1 > 1: + return diff/az1 <= tol + else: + return diff <= tol + + +def mpf_norm(mpf, prec): + """Return the mpf tuple normalized appropriately for the indicated + precision after doing a check to see if zero should be returned or + not when the mantissa is 0. ``mpf_normlize`` always assumes that this + is zero, but it may not be since the mantissa for mpf's values "+inf", + "-inf" and "nan" have a mantissa of zero, too. + + Note: this is not intended to validate a given mpf tuple, so sending + mpf tuples that were not created by mpmath may produce bad results. This + is only a wrapper to ``mpf_normalize`` which provides the check for non- + zero mpfs that have a 0 for the mantissa. + """ + sign, man, expt, bc = mpf + if not man: + # hack for mpf_normalize which does not do this; + # it assumes that if man is zero the result is 0 + # (see issue 6639) + if not bc: + return fzero + else: + # don't change anything; this should already + # be a well formed mpf tuple + return mpf + + # Necessary if mpmath is using the gmpy backend + from mpmath.libmp.backend import MPZ + rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) + return rv + +# TODO: we should use the warnings module +_errdict = {"divide": False} + + +def seterr(divide=False): + """ + Should SymPy raise an exception on 0/0 or return a nan? + + divide == True .... raise an exception + divide == False ... return nan + """ + if _errdict["divide"] != divide: + clear_cache() + _errdict["divide"] = divide + + +def _as_integer_ratio(p): + neg_pow, man, expt, _ = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) + p = [1, -1][neg_pow % 2]*man + if expt < 0: + q = 2**-expt + else: + q = 1 + p *= 2**expt + return int(p), int(q) + + +def _decimal_to_Rational_prec(dec): + """Convert an ordinary decimal instance to a Rational.""" + if not dec.is_finite(): + raise TypeError("dec must be finite, got %s." % dec) + s, d, e = dec.as_tuple() + prec = len(d) + if e >= 0: # it's an integer + rv = Integer(int(dec)) + else: + s = (-1)**s + d = sum([di*10**i for i, di in enumerate(reversed(d))]) + rv = Rational(s*d, 10**-e) + return rv, prec + + +_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") +def _literal_float(f): + """Return True if n starts like a floating point number.""" + return bool(_floatpat.match(f)) + +# (a,b) -> gcd(a,b) + +# TODO caching with decorator, but not to degrade performance + +@lru_cache(1024) +def igcd(*args): + """Computes nonnegative integer greatest common divisor. + + Explanation + =========== + + The algorithm is based on the well known Euclid's algorithm [1]_. To + improve speed, ``igcd()`` has its own caching mechanism. + + Examples + ======== + + >>> from sympy import igcd + >>> igcd(2, 4) + 2 + >>> igcd(5, 10, 15) + 5 + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Euclidean_algorithm + + """ + if len(args) < 2: + raise TypeError( + 'igcd() takes at least 2 arguments (%s given)' % len(args)) + args_temp = [abs(as_int(i)) for i in args] + if 1 in args_temp: + return 1 + a = args_temp.pop() + if HAS_GMPY: # Using gmpy if present to speed up. + for b in args_temp: + a = gmpy.gcd(a, b) if b else a + return as_int(a) + for b in args_temp: + a = math.gcd(a, b) + return a + + +igcd2 = math.gcd + + +def igcd_lehmer(a, b): + r"""Computes greatest common divisor of two integers. + + Explanation + =========== + + Euclid's algorithm for the computation of the greatest + common divisor ``gcd(a, b)`` of two (positive) integers + $a$ and $b$ is based on the division identity + $$ a = q \times b + r$$, + where the quotient $q$ and the remainder $r$ are integers + and $0 \le r < b$. Then each common divisor of $a$ and $b$ + divides $r$, and it follows that ``gcd(a, b) == gcd(b, r)``. + The algorithm works by constructing the sequence + r0, r1, r2, ..., where r0 = a, r1 = b, and each rn + is the remainder from the division of the two preceding + elements. + + In Python, ``q = a // b`` and ``r = a % b`` are obtained by the + floor division and the remainder operations, respectively. + These are the most expensive arithmetic operations, especially + for large a and b. + + Lehmer's algorithm [1]_ is based on the observation that the quotients + ``qn = r(n-1) // rn`` are in general small integers even + when a and b are very large. Hence the quotients can be + usually determined from a relatively small number of most + significant bits. + + The efficiency of the algorithm is further enhanced by not + computing each long remainder in Euclid's sequence. The remainders + are linear combinations of a and b with integer coefficients + derived from the quotients. The coefficients can be computed + as far as the quotients can be determined from the chosen + most significant parts of a and b. Only then a new pair of + consecutive remainders is computed and the algorithm starts + anew with this pair. + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm + + """ + a, b = abs(as_int(a)), abs(as_int(b)) + if a < b: + a, b = b, a + + # The algorithm works by using one or two digit division + # whenever possible. The outer loop will replace the + # pair (a, b) with a pair of shorter consecutive elements + # of the Euclidean gcd sequence until a and b + # fit into two Python (long) int digits. + nbits = 2*sys.int_info.bits_per_digit + + while a.bit_length() > nbits and b != 0: + # Quotients are mostly small integers that can + # be determined from most significant bits. + n = a.bit_length() - nbits + x, y = int(a >> n), int(b >> n) # most significant bits + + # Elements of the Euclidean gcd sequence are linear + # combinations of a and b with integer coefficients. + # Compute the coefficients of consecutive pairs + # a' = A*a + B*b, b' = C*a + D*b + # using small integer arithmetic as far as possible. + A, B, C, D = 1, 0, 0, 1 # initial values + + while True: + # The coefficients alternate in sign while looping. + # The inner loop combines two steps to keep track + # of the signs. + + # At this point we have + # A > 0, B <= 0, C <= 0, D > 0, + # x' = x + B <= x < x" = x + A, + # y' = y + C <= y < y" = y + D, + # and + # x'*N <= a' < x"*N, y'*N <= b' < y"*N, + # where N = 2**n. + + # Now, if y' > 0, and x"//y' and x'//y" agree, + # then their common value is equal to q = a'//b'. + # In addition, + # x'%y" = x' - q*y" < x" - q*y' = x"%y', + # and + # (x'%y")*N < a'%b' < (x"%y')*N. + + # On the other hand, we also have x//y == q, + # and therefore + # x'%y" = x + B - q*(y + D) = x%y + B', + # x"%y' = x + A - q*(y + C) = x%y + A', + # where + # B' = B - q*D < 0, A' = A - q*C > 0. + + if y + C <= 0: + break + q = (x + A) // (y + C) + + # Now x'//y" <= q, and equality holds if + # x' - q*y" = (x - q*y) + (B - q*D) >= 0. + # This is a minor optimization to avoid division. + x_qy, B_qD = x - q*y, B - q*D + if x_qy + B_qD < 0: + break + + # Next step in the Euclidean sequence. + x, y = y, x_qy + A, B, C, D = C, D, A - q*C, B_qD + + # At this point the signs of the coefficients + # change and their roles are interchanged. + # A <= 0, B > 0, C > 0, D < 0, + # x' = x + A <= x < x" = x + B, + # y' = y + D < y < y" = y + C. + + if y + D <= 0: + break + q = (x + B) // (y + D) + x_qy, A_qC = x - q*y, A - q*C + if x_qy + A_qC < 0: + break + + x, y = y, x_qy + A, B, C, D = C, D, A_qC, B - q*D + # Now the conditions on top of the loop + # are again satisfied. + # A > 0, B < 0, C < 0, D > 0. + + if B == 0: + # This can only happen when y == 0 in the beginning + # and the inner loop does nothing. + # Long division is forced. + a, b = b, a % b + continue + + # Compute new long arguments using the coefficients. + a, b = A*a + B*b, C*a + D*b + + # Small divisors. Finish with the standard algorithm. + while b: + a, b = b, a % b + + return a + + +def ilcm(*args): + """Computes integer least common multiple. + + Examples + ======== + + >>> from sympy import ilcm + >>> ilcm(5, 10) + 10 + >>> ilcm(7, 3) + 21 + >>> ilcm(5, 10, 15) + 30 + + """ + if len(args) < 2: + raise TypeError( + 'ilcm() takes at least 2 arguments (%s given)' % len(args)) + if 0 in args: + return 0 + a = args[0] + for b in args[1:]: + a = a // igcd(a, b) * b # since gcd(a,b) | a + return a + + +def igcdex(a, b): + """Returns x, y, g such that g = x*a + y*b = gcd(a, b). + + Examples + ======== + + >>> from sympy.core.numbers import igcdex + >>> igcdex(2, 3) + (-1, 1, 1) + >>> igcdex(10, 12) + (-1, 1, 2) + + >>> x, y, g = igcdex(100, 2004) + >>> x, y, g + (-20, 1, 4) + >>> x*100 + y*2004 + 4 + + """ + if (not a) and (not b): + return (0, 1, 0) + + if not a: + return (0, b//abs(b), abs(b)) + if not b: + return (a//abs(a), 0, abs(a)) + + if a < 0: + a, x_sign = -a, -1 + else: + x_sign = 1 + + if b < 0: + b, y_sign = -b, -1 + else: + y_sign = 1 + + x, y, r, s = 1, 0, 0, 1 + + while b: + (c, q) = (a % b, a // b) + (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) + + return (x*x_sign, y*y_sign, a) + + +def mod_inverse(a, m): + r""" + Return the number $c$ such that, $a \times c = 1 \pmod{m}$ + where $c$ has the same sign as $m$. If no such value exists, + a ValueError is raised. + + Examples + ======== + + >>> from sympy import mod_inverse, S + + Suppose we wish to find multiplicative inverse $x$ of + 3 modulo 11. This is the same as finding $x$ such + that $3x = 1 \pmod{11}$. One value of x that satisfies + this congruence is 4. Because $3 \times 4 = 12$ and $12 = 1 \pmod{11}$. + This is the value returned by ``mod_inverse``: + + >>> mod_inverse(3, 11) + 4 + >>> mod_inverse(-3, 11) + 7 + + When there is a common factor between the numerators of + `a` and `m` the inverse does not exist: + + >>> mod_inverse(2, 4) + Traceback (most recent call last): + ... + ValueError: inverse of 2 mod 4 does not exist + + >>> mod_inverse(S(2)/7, S(5)/2) + 7/2 + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse + .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm + """ + c = None + try: + a, m = as_int(a), as_int(m) + if m != 1 and m != -1: + x, _, g = igcdex(a, m) + if g == 1: + c = x % m + except ValueError: + a, m = sympify(a), sympify(m) + if not (a.is_number and m.is_number): + raise TypeError(filldedent(''' + Expected numbers for arguments; symbolic `mod_inverse` + is not implemented + but symbolic expressions can be handled with the + similar function, + sympy.polys.polytools.invert''')) + big = (m > 1) + if big not in (S.true, S.false): + raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) + elif big: + c = 1/a + if c is None: + raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) + return c + + +class Number(AtomicExpr): + """Represents atomic numbers in SymPy. + + Explanation + =========== + + Floating point numbers are represented by the Float class. + Rational numbers (of any size) are represented by the Rational class. + Integer numbers (of any size) are represented by the Integer class. + Float and Rational are subclasses of Number; Integer is a subclass + of Rational. + + For example, ``2/3`` is represented as ``Rational(2, 3)`` which is + a different object from the floating point number obtained with + Python division ``2/3``. Even for numbers that are exactly + represented in binary, there is a difference between how two forms, + such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. + The rational form is to be preferred in symbolic computations. + + Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or + complex numbers ``3 + 4*I``, are not instances of Number class as + they are not atomic. + + See Also + ======== + + Float, Integer, Rational + """ + is_commutative = True + is_number = True + is_Number = True + + __slots__ = () + + # Used to make max(x._prec, y._prec) return x._prec when only x is a float + _prec = -1 + + kind = NumberKind + + def __new__(cls, *obj): + if len(obj) == 1: + obj = obj[0] + + if isinstance(obj, Number): + return obj + if isinstance(obj, SYMPY_INTS): + return Integer(obj) + if isinstance(obj, tuple) and len(obj) == 2: + return Rational(*obj) + if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): + return Float(obj) + if isinstance(obj, str): + _obj = obj.lower() # float('INF') == float('inf') + if _obj == 'nan': + return S.NaN + elif _obj == 'inf': + return S.Infinity + elif _obj == '+inf': + return S.Infinity + elif _obj == '-inf': + return S.NegativeInfinity + val = sympify(obj) + if isinstance(val, Number): + return val + else: + raise ValueError('String "%s" does not denote a Number' % obj) + msg = "expected str|int|long|float|Decimal|Number object but got %r" + raise TypeError(msg % type(obj).__name__) + + def could_extract_minus_sign(self): + return bool(self.is_extended_negative) + + def invert(self, other, *gens, **args): + from sympy.polys.polytools import invert + if getattr(other, 'is_number', True): + return mod_inverse(self, other) + return invert(self, other, *gens, **args) + + def __divmod__(self, other): + from sympy.functions.elementary.complexes import sign + + try: + other = Number(other) + if self.is_infinite or S.NaN in (self, other): + return (S.NaN, S.NaN) + except TypeError: + return NotImplemented + if not other: + raise ZeroDivisionError('modulo by zero') + if self.is_Integer and other.is_Integer: + return Tuple(*divmod(self.p, other.p)) + elif isinstance(other, Float): + rat = self/Rational(other) + else: + rat = self/other + if other.is_finite: + w = int(rat) if rat >= 0 else int(rat) - 1 + r = self - other*w + else: + w = 0 if not self or (sign(self) == sign(other)) else -1 + r = other if w else self + return Tuple(w, r) + + def __rdivmod__(self, other): + try: + other = Number(other) + except TypeError: + return NotImplemented + return divmod(other, self) + + def _as_mpf_val(self, prec): + """Evaluation of mpf tuple accurate to at least prec bits.""" + raise NotImplementedError('%s needs ._as_mpf_val() method' % + (self.__class__.__name__)) + + def _eval_evalf(self, prec): + return Float._new(self._as_mpf_val(prec), prec) + + def _as_mpf_op(self, prec): + prec = max(prec, self._prec) + return self._as_mpf_val(prec), prec + + def __float__(self): + return mlib.to_float(self._as_mpf_val(53)) + + def floor(self): + raise NotImplementedError('%s needs .floor() method' % + (self.__class__.__name__)) + + def ceiling(self): + raise NotImplementedError('%s needs .ceiling() method' % + (self.__class__.__name__)) + + def __floor__(self): + return self.floor() + + def __ceil__(self): + return self.ceiling() + + def _eval_conjugate(self): + return self + + def _eval_order(self, *symbols): + from sympy.series.order import Order + # Order(5, x, y) -> Order(1,x,y) + return Order(S.One, *symbols) + + def _eval_subs(self, old, new): + if old == -self: + return -new + return self # there is no other possibility + + @classmethod + def class_key(cls): + return 1, 0, 'Number' + + @cacheit + def sort_key(self, order=None): + return self.class_key(), (0, ()), (), self + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.NaN: + return S.NaN + elif other is S.Infinity: + return S.Infinity + elif other is S.NegativeInfinity: + return S.NegativeInfinity + return AtomicExpr.__add__(self, other) + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.NaN: + return S.NaN + elif other is S.Infinity: + return S.NegativeInfinity + elif other is S.NegativeInfinity: + return S.Infinity + return AtomicExpr.__sub__(self, other) + + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.NaN: + return S.NaN + elif other is S.Infinity: + if self.is_zero: + return S.NaN + elif self.is_positive: + return S.Infinity + else: + return S.NegativeInfinity + elif other is S.NegativeInfinity: + if self.is_zero: + return S.NaN + elif self.is_positive: + return S.NegativeInfinity + else: + return S.Infinity + elif isinstance(other, Tuple): + return NotImplemented + return AtomicExpr.__mul__(self, other) + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.NaN: + return S.NaN + elif other in (S.Infinity, S.NegativeInfinity): + return S.Zero + return AtomicExpr.__truediv__(self, other) + + def __eq__(self, other): + raise NotImplementedError('%s needs .__eq__() method' % + (self.__class__.__name__)) + + def __ne__(self, other): + raise NotImplementedError('%s needs .__ne__() method' % + (self.__class__.__name__)) + + def __lt__(self, other): + try: + other = _sympify(other) + except SympifyError: + raise TypeError("Invalid comparison %s < %s" % (self, other)) + raise NotImplementedError('%s needs .__lt__() method' % + (self.__class__.__name__)) + + def __le__(self, other): + try: + other = _sympify(other) + except SympifyError: + raise TypeError("Invalid comparison %s <= %s" % (self, other)) + raise NotImplementedError('%s needs .__le__() method' % + (self.__class__.__name__)) + + def __gt__(self, other): + try: + other = _sympify(other) + except SympifyError: + raise TypeError("Invalid comparison %s > %s" % (self, other)) + return _sympify(other).__lt__(self) + + def __ge__(self, other): + try: + other = _sympify(other) + except SympifyError: + raise TypeError("Invalid comparison %s >= %s" % (self, other)) + return _sympify(other).__le__(self) + + def __hash__(self): + return super().__hash__() + + def is_constant(self, *wrt, **flags): + return True + + def as_coeff_mul(self, *deps, rational=True, **kwargs): + # a -> c*t + if self.is_Rational or not rational: + return self, () + elif self.is_negative: + return S.NegativeOne, (-self,) + return S.One, (self,) + + def as_coeff_add(self, *deps): + # a -> c + t + if self.is_Rational: + return self, () + return S.Zero, (self,) + + def as_coeff_Mul(self, rational=False): + """Efficiently extract the coefficient of a product.""" + if rational and not self.is_Rational: + return S.One, self + return (self, S.One) if self else (S.One, self) + + def as_coeff_Add(self, rational=False): + """Efficiently extract the coefficient of a summation.""" + if not rational: + return self, S.Zero + return S.Zero, self + + def gcd(self, other): + """Compute GCD of `self` and `other`. """ + from sympy.polys.polytools import gcd + return gcd(self, other) + + def lcm(self, other): + """Compute LCM of `self` and `other`. """ + from sympy.polys.polytools import lcm + return lcm(self, other) + + def cofactors(self, other): + """Compute GCD and cofactors of `self` and `other`. """ + from sympy.polys.polytools import cofactors + return cofactors(self, other) + + +class Float(Number): + """Represent a floating-point number of arbitrary precision. + + Examples + ======== + + >>> from sympy import Float + >>> Float(3.5) + 3.50000000000000 + >>> Float(3) + 3.00000000000000 + + Creating Floats from strings (and Python ``int`` and ``long`` + types) will give a minimum precision of 15 digits, but the + precision will automatically increase to capture all digits + entered. + + >>> Float(1) + 1.00000000000000 + >>> Float(10**20) + 100000000000000000000. + >>> Float('1e20') + 100000000000000000000. + + However, *floating-point* numbers (Python ``float`` types) retain + only 15 digits of precision: + + >>> Float(1e20) + 1.00000000000000e+20 + >>> Float(1.23456789123456789) + 1.23456789123457 + + It may be preferable to enter high-precision decimal numbers + as strings: + + >>> Float('1.23456789123456789') + 1.23456789123456789 + + The desired number of digits can also be specified: + + >>> Float('1e-3', 3) + 0.00100 + >>> Float(100, 4) + 100.0 + + Float can automatically count significant figures if a null string + is sent for the precision; spaces or underscores are also allowed. (Auto- + counting is only allowed for strings, ints and longs). + + >>> Float('123 456 789.123_456', '') + 123456789.123456 + >>> Float('12e-3', '') + 0.012 + >>> Float(3, '') + 3. + + If a number is written in scientific notation, only the digits before the + exponent are considered significant if a decimal appears, otherwise the + "e" signifies only how to move the decimal: + + >>> Float('60.e2', '') # 2 digits significant + 6.0e+3 + >>> Float('60e2', '') # 4 digits significant + 6000. + >>> Float('600e-2', '') # 3 digits significant + 6.00 + + Notes + ===== + + Floats are inexact by their nature unless their value is a binary-exact + value. + + >>> approx, exact = Float(.1, 1), Float(.125, 1) + + For calculation purposes, evalf needs to be able to change the precision + but this will not increase the accuracy of the inexact value. The + following is the most accurate 5-digit approximation of a value of 0.1 + that had only 1 digit of precision: + + >>> approx.evalf(5) + 0.099609 + + By contrast, 0.125 is exact in binary (as it is in base 10) and so it + can be passed to Float or evalf to obtain an arbitrary precision with + matching accuracy: + + >>> Float(exact, 5) + 0.12500 + >>> exact.evalf(20) + 0.12500000000000000000 + + Trying to make a high-precision Float from a float is not disallowed, + but one must keep in mind that the *underlying float* (not the apparent + decimal value) is being obtained with high precision. For example, 0.3 + does not have a finite binary representation. The closest rational is + the fraction 5404319552844595/2**54. So if you try to obtain a Float of + 0.3 to 20 digits of precision you will not see the same thing as 0.3 + followed by 19 zeros: + + >>> Float(0.3, 20) + 0.29999999999999998890 + + If you want a 20-digit value of the decimal 0.3 (not the floating point + approximation of 0.3) you should send the 0.3 as a string. The underlying + representation is still binary but a higher precision than Python's float + is used: + + >>> Float('0.3', 20) + 0.30000000000000000000 + + Although you can increase the precision of an existing Float using Float + it will not increase the accuracy -- the underlying value is not changed: + + >>> def show(f): # binary rep of Float + ... from sympy import Mul, Pow + ... s, m, e, b = f._mpf_ + ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) + ... print('%s at prec=%s' % (v, f._prec)) + ... + >>> t = Float('0.3', 3) + >>> show(t) + 4915/2**14 at prec=13 + >>> show(Float(t, 20)) # higher prec, not higher accuracy + 4915/2**14 at prec=70 + >>> show(Float(t, 2)) # lower prec + 307/2**10 at prec=10 + + The same thing happens when evalf is used on a Float: + + >>> show(t.evalf(20)) + 4915/2**14 at prec=70 + >>> show(t.evalf(2)) + 307/2**10 at prec=10 + + Finally, Floats can be instantiated with an mpf tuple (n, c, p) to + produce the number (-1)**n*c*2**p: + + >>> n, c, p = 1, 5, 0 + >>> (-1)**n*c*2**p + -5 + >>> Float((1, 5, 0)) + -5.00000000000000 + + An actual mpf tuple also contains the number of bits in c as the last + element of the tuple: + + >>> _._mpf_ + (1, 5, 0, 3) + + This is not needed for instantiation and is not the same thing as the + precision. The mpf tuple and the precision are two separate quantities + that Float tracks. + + In SymPy, a Float is a number that can be computed with arbitrary + precision. Although floating point 'inf' and 'nan' are not such + numbers, Float can create these numbers: + + >>> Float('-inf') + -oo + >>> _.is_Float + False + + Zero in Float only has a single value. Values are not separate for + positive and negative zeroes. + """ + __slots__ = ('_mpf_', '_prec') + + _mpf_: tuple[int, int, int, int] + + # A Float represents many real numbers, + # both rational and irrational. + is_rational = None + is_irrational = None + is_number = True + + is_real = True + is_extended_real = True + + is_Float = True + + def __new__(cls, num, dps=None, precision=None): + if dps is not None and precision is not None: + raise ValueError('Both decimal and binary precision supplied. ' + 'Supply only one. ') + + if isinstance(num, str): + # Float accepts spaces as digit separators + num = num.replace(' ', '').lower() + if num.startswith('.') and len(num) > 1: + num = '0' + num + elif num.startswith('-.') and len(num) > 2: + num = '-0.' + num[2:] + elif num in ('inf', '+inf'): + return S.Infinity + elif num == '-inf': + return S.NegativeInfinity + elif isinstance(num, float) and num == 0: + num = '0' + elif isinstance(num, float) and num == float('inf'): + return S.Infinity + elif isinstance(num, float) and num == float('-inf'): + return S.NegativeInfinity + elif isinstance(num, float) and math.isnan(num): + return S.NaN + elif isinstance(num, (SYMPY_INTS, Integer)): + num = str(num) + elif num is S.Infinity: + return num + elif num is S.NegativeInfinity: + return num + elif num is S.NaN: + return num + elif _is_numpy_instance(num): # support for numpy datatypes + num = _convert_numpy_types(num) + elif isinstance(num, mpmath.mpf): + if precision is None: + if dps is None: + precision = num.context.prec + num = num._mpf_ + + if dps is None and precision is None: + dps = 15 + if isinstance(num, Float): + return num + if isinstance(num, str) and _literal_float(num): + try: + Num = decimal.Decimal(num) + except decimal.InvalidOperation: + pass + else: + isint = '.' not in num + num, dps = _decimal_to_Rational_prec(Num) + if num.is_Integer and isint: + dps = max(dps, len(str(num).lstrip('-'))) + dps = max(15, dps) + precision = dps_to_prec(dps) + elif precision == '' and dps is None or precision is None and dps == '': + if not isinstance(num, str): + raise ValueError('The null string can only be used when ' + 'the number to Float is passed as a string or an integer.') + ok = None + if _literal_float(num): + try: + Num = decimal.Decimal(num) + except decimal.InvalidOperation: + pass + else: + isint = '.' not in num + num, dps = _decimal_to_Rational_prec(Num) + if num.is_Integer and isint: + dps = max(dps, len(str(num).lstrip('-'))) + precision = dps_to_prec(dps) + ok = True + if ok is None: + raise ValueError('string-float not recognized: %s' % num) + + # decimal precision(dps) is set and maybe binary precision(precision) + # as well.From here on binary precision is used to compute the Float. + # Hence, if supplied use binary precision else translate from decimal + # precision. + + if precision is None or precision == '': + precision = dps_to_prec(dps) + + precision = int(precision) + + if isinstance(num, float): + _mpf_ = mlib.from_float(num, precision, rnd) + elif isinstance(num, str): + _mpf_ = mlib.from_str(num, precision, rnd) + elif isinstance(num, decimal.Decimal): + if num.is_finite(): + _mpf_ = mlib.from_str(str(num), precision, rnd) + elif num.is_nan(): + return S.NaN + elif num.is_infinite(): + if num > 0: + return S.Infinity + return S.NegativeInfinity + else: + raise ValueError("unexpected decimal value %s" % str(num)) + elif isinstance(num, tuple) and len(num) in (3, 4): + if isinstance(num[1], str): + # it's a hexadecimal (coming from a pickled object) + num = list(num) + # If we're loading an object pickled in Python 2 into + # Python 3, we may need to strip a tailing 'L' because + # of a shim for int on Python 3, see issue #13470. + if num[1].endswith('L'): + num[1] = num[1][:-1] + # Strip leading '0x' - gmpy2 only documents such inputs + # with base prefix as valid when the 2nd argument (base) is 0. + # When mpmath uses Sage as the backend, however, it + # ends up including '0x' when preparing the picklable tuple. + # See issue #19690. + if num[1].startswith('0x'): + num[1] = num[1][2:] + # Now we can assume that it is in standard form + num[1] = MPZ(num[1], 16) + _mpf_ = tuple(num) + else: + if len(num) == 4: + # handle normalization hack + return Float._new(num, precision) + else: + if not all(( + num[0] in (0, 1), + num[1] >= 0, + all(type(i) in (int, int) for i in num) + )): + raise ValueError('malformed mpf: %s' % (num,)) + # don't compute number or else it may + # over/underflow + return Float._new( + (num[0], num[1], num[2], bitcount(num[1])), + precision) + else: + try: + _mpf_ = num._as_mpf_val(precision) + except (NotImplementedError, AttributeError): + _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ + + return cls._new(_mpf_, precision, zero=False) + + @classmethod + def _new(cls, _mpf_, _prec, zero=True): + # special cases + if zero and _mpf_ == fzero: + return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 + elif _mpf_ == _mpf_nan: + return S.NaN + elif _mpf_ == _mpf_inf: + return S.Infinity + elif _mpf_ == _mpf_ninf: + return S.NegativeInfinity + + obj = Expr.__new__(cls) + obj._mpf_ = mpf_norm(_mpf_, _prec) + obj._prec = _prec + return obj + + # mpz can't be pickled + def __getnewargs_ex__(self): + return ((mlib.to_pickable(self._mpf_),), {'precision': self._prec}) + + def _hashable_content(self): + return (self._mpf_, self._prec) + + def floor(self): + return Integer(int(mlib.to_int( + mlib.mpf_floor(self._mpf_, self._prec)))) + + def ceiling(self): + return Integer(int(mlib.to_int( + mlib.mpf_ceil(self._mpf_, self._prec)))) + + def __floor__(self): + return self.floor() + + def __ceil__(self): + return self.ceiling() + + @property + def num(self): + return mpmath.mpf(self._mpf_) + + def _as_mpf_val(self, prec): + rv = mpf_norm(self._mpf_, prec) + if rv != self._mpf_ and self._prec == prec: + debug(self._mpf_, rv) + return rv + + def _as_mpf_op(self, prec): + return self._mpf_, max(prec, self._prec) + + def _eval_is_finite(self): + if self._mpf_ in (_mpf_inf, _mpf_ninf): + return False + return True + + def _eval_is_infinite(self): + if self._mpf_ in (_mpf_inf, _mpf_ninf): + return True + return False + + def _eval_is_integer(self): + return self._mpf_ == fzero + + def _eval_is_negative(self): + if self._mpf_ in (_mpf_ninf, _mpf_inf): + return False + return self.num < 0 + + def _eval_is_positive(self): + if self._mpf_ in (_mpf_ninf, _mpf_inf): + return False + return self.num > 0 + + def _eval_is_extended_negative(self): + if self._mpf_ == _mpf_ninf: + return True + if self._mpf_ == _mpf_inf: + return False + return self.num < 0 + + def _eval_is_extended_positive(self): + if self._mpf_ == _mpf_inf: + return True + if self._mpf_ == _mpf_ninf: + return False + return self.num > 0 + + def _eval_is_zero(self): + return self._mpf_ == fzero + + def __bool__(self): + return self._mpf_ != fzero + + def __neg__(self): + if not self: + return self + return Float._new(mlib.mpf_neg(self._mpf_), self._prec) + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) + return Number.__add__(self, other) + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) + return Number.__sub__(self, other) + + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) + return Number.__mul__(self, other) + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + if isinstance(other, Number) and other != 0 and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) + return Number.__truediv__(self, other) + + @_sympifyit('other', NotImplemented) + def __mod__(self, other): + if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate: + # calculate mod with Rationals, *then* round the result + return Float(Rational.__mod__(Rational(self), other), + precision=self._prec) + if isinstance(other, Float) and global_parameters.evaluate: + r = self/other + if r == int(r): + return Float(0, precision=max(self._prec, other._prec)) + if isinstance(other, Number) and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) + return Number.__mod__(self, other) + + @_sympifyit('other', NotImplemented) + def __rmod__(self, other): + if isinstance(other, Float) and global_parameters.evaluate: + return other.__mod__(self) + if isinstance(other, Number) and global_parameters.evaluate: + rhs, prec = other._as_mpf_op(self._prec) + return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) + return Number.__rmod__(self, other) + + def _eval_power(self, expt): + """ + expt is symbolic object but not equal to 0, 1 + + (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> + -> p**r*(sin(Pi*r) + cos(Pi*r)*I) + """ + if equal_valued(self, 0): + if expt.is_extended_positive: + return self + if expt.is_extended_negative: + return S.ComplexInfinity + if isinstance(expt, Number): + if isinstance(expt, Integer): + prec = self._prec + return Float._new( + mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) + elif isinstance(expt, Rational) and \ + expt.p == 1 and expt.q % 2 and self.is_negative: + return Pow(S.NegativeOne, expt, evaluate=False)*( + -self)._eval_power(expt) + expt, prec = expt._as_mpf_op(self._prec) + mpfself = self._mpf_ + try: + y = mpf_pow(mpfself, expt, prec, rnd) + return Float._new(y, prec) + except mlib.ComplexResult: + re, im = mlib.mpc_pow( + (mpfself, fzero), (expt, fzero), prec, rnd) + return Float._new(re, prec) + \ + Float._new(im, prec)*S.ImaginaryUnit + + def __abs__(self): + return Float._new(mlib.mpf_abs(self._mpf_), self._prec) + + def __int__(self): + if self._mpf_ == fzero: + return 0 + return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down + + def __eq__(self, other): + from sympy.logic.boolalg import Boolean + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if isinstance(other, Boolean): + return False + if other.is_NumberSymbol: + if other.is_irrational: + return False + return other.__eq__(self) + if other.is_Float: + # comparison is exact + # so Float(.1, 3) != Float(.1, 33) + return self._mpf_ == other._mpf_ + if other.is_Rational: + return other.__eq__(self) + if other.is_Number: + # numbers should compare at the same precision; + # all _as_mpf_val routines should be sure to abide + # by the request to change the prec if necessary; if + # they don't, the equality test will fail since it compares + # the mpf tuples + ompf = other._as_mpf_val(self._prec) + return bool(mlib.mpf_eq(self._mpf_, ompf)) + if not self: + return not other + return False # Float != non-Number + + def __ne__(self, other): + return not self == other + + def _Frel(self, other, op): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Rational: + # test self*other.q other.p without losing precision + ''' + >>> f = Float(.1,2) + >>> i = 1234567890 + >>> (f*i)._mpf_ + (0, 471, 18, 9) + >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) + (0, 505555550955, -12, 39) + ''' + smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) + ompf = mlib.from_int(other.p) + return _sympify(bool(op(smpf, ompf))) + elif other.is_Float: + return _sympify(bool( + op(self._mpf_, other._mpf_))) + elif other.is_comparable and other not in ( + S.Infinity, S.NegativeInfinity): + other = other.evalf(prec_to_dps(self._prec)) + if other._prec > 1: + if other.is_Number: + return _sympify(bool( + op(self._mpf_, other._as_mpf_val(self._prec)))) + + def __gt__(self, other): + if isinstance(other, NumberSymbol): + return other.__lt__(self) + rv = self._Frel(other, mlib.mpf_gt) + if rv is None: + return Expr.__gt__(self, other) + return rv + + def __ge__(self, other): + if isinstance(other, NumberSymbol): + return other.__le__(self) + rv = self._Frel(other, mlib.mpf_ge) + if rv is None: + return Expr.__ge__(self, other) + return rv + + def __lt__(self, other): + if isinstance(other, NumberSymbol): + return other.__gt__(self) + rv = self._Frel(other, mlib.mpf_lt) + if rv is None: + return Expr.__lt__(self, other) + return rv + + def __le__(self, other): + if isinstance(other, NumberSymbol): + return other.__ge__(self) + rv = self._Frel(other, mlib.mpf_le) + if rv is None: + return Expr.__le__(self, other) + return rv + + def __hash__(self): + return super().__hash__() + + def epsilon_eq(self, other, epsilon="1e-15"): + return abs(self - other) < Float(epsilon) + + def __format__(self, format_spec): + return format(decimal.Decimal(str(self)), format_spec) + + +# Add sympify converters +_sympy_converter[float] = _sympy_converter[decimal.Decimal] = Float + +# this is here to work nicely in Sage +RealNumber = Float + + +class Rational(Number): + """Represents rational numbers (p/q) of any size. + + Examples + ======== + + >>> from sympy import Rational, nsimplify, S, pi + >>> Rational(1, 2) + 1/2 + + Rational is unprejudiced in accepting input. If a float is passed, the + underlying value of the binary representation will be returned: + + >>> Rational(.5) + 1/2 + >>> Rational(.2) + 3602879701896397/18014398509481984 + + If the simpler representation of the float is desired then consider + limiting the denominator to the desired value or convert the float to + a string (which is roughly equivalent to limiting the denominator to + 10**12): + + >>> Rational(str(.2)) + 1/5 + >>> Rational(.2).limit_denominator(10**12) + 1/5 + + An arbitrarily precise Rational is obtained when a string literal is + passed: + + >>> Rational("1.23") + 123/100 + >>> Rational('1e-2') + 1/100 + >>> Rational(".1") + 1/10 + >>> Rational('1e-2/3.2') + 1/320 + + The conversion of other types of strings can be handled by + the sympify() function, and conversion of floats to expressions + or simple fractions can be handled with nsimplify: + + >>> S('.[3]') # repeating digits in brackets + 1/3 + >>> S('3**2/10') # general expressions + 9/10 + >>> nsimplify(.3) # numbers that have a simple form + 3/10 + + But if the input does not reduce to a literal Rational, an error will + be raised: + + >>> Rational(pi) + Traceback (most recent call last): + ... + TypeError: invalid input: pi + + + Low-level + --------- + + Access numerator and denominator as .p and .q: + + >>> r = Rational(3, 4) + >>> r + 3/4 + >>> r.p + 3 + >>> r.q + 4 + + Note that p and q return integers (not SymPy Integers) so some care + is needed when using them in expressions: + + >>> r.p/r.q + 0.75 + + If an unevaluated Rational is desired, ``gcd=1`` can be passed and + this will keep common divisors of the numerator and denominator + from being eliminated. It is not possible, however, to leave a + negative value in the denominator. + + >>> Rational(2, 4, gcd=1) + 2/4 + >>> Rational(2, -4, gcd=1).q + 4 + + See Also + ======== + sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify + """ + is_real = True + is_integer = False + is_rational = True + is_number = True + + __slots__ = ('p', 'q') + + p: int + q: int + + is_Rational = True + + @cacheit + def __new__(cls, p, q=None, gcd=None): + if q is None: + if isinstance(p, Rational): + return p + + if isinstance(p, SYMPY_INTS): + pass + else: + if isinstance(p, (float, Float)): + return Rational(*_as_integer_ratio(p)) + + if not isinstance(p, str): + try: + p = sympify(p) + except (SympifyError, SyntaxError): + pass # error will raise below + else: + if p.count('/') > 1: + raise TypeError('invalid input: %s' % p) + p = p.replace(' ', '') + pq = p.rsplit('/', 1) + if len(pq) == 2: + p, q = pq + fp = fractions.Fraction(p) + fq = fractions.Fraction(q) + p = fp/fq + try: + p = fractions.Fraction(p) + except ValueError: + pass # error will raise below + else: + return Rational(p.numerator, p.denominator, 1) + + if not isinstance(p, Rational): + raise TypeError('invalid input: %s' % p) + + q = 1 + gcd = 1 + Q = 1 + + if not isinstance(p, SYMPY_INTS): + p = Rational(p) + Q *= p.q + p = p.p + else: + p = int(p) + + if not isinstance(q, SYMPY_INTS): + q = Rational(q) + p *= q.q + Q *= q.p + else: + Q *= int(q) + q = Q + + # p and q are now ints + if q == 0: + if p == 0: + if _errdict["divide"]: + raise ValueError("Indeterminate 0/0") + else: + return S.NaN + return S.ComplexInfinity + if q < 0: + q = -q + p = -p + if not gcd: + gcd = igcd(abs(p), q) + if gcd > 1: + p //= gcd + q //= gcd + if q == 1: + return Integer(p) + if p == 1 and q == 2: + return S.Half + obj = Expr.__new__(cls) + obj.p = p + obj.q = q + return obj + + def limit_denominator(self, max_denominator=1000000): + """Closest Rational to self with denominator at most max_denominator. + + Examples + ======== + + >>> from sympy import Rational + >>> Rational('3.141592653589793').limit_denominator(10) + 22/7 + >>> Rational('3.141592653589793').limit_denominator(100) + 311/99 + + """ + f = fractions.Fraction(self.p, self.q) + return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) + + def __getnewargs__(self): + return (self.p, self.q) + + def _hashable_content(self): + return (self.p, self.q) + + def _eval_is_positive(self): + return self.p > 0 + + def _eval_is_zero(self): + return self.p == 0 + + def __neg__(self): + return Rational(-self.p, self.q) + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + return Rational(self.p + self.q*other.p, self.q, 1) + elif isinstance(other, Rational): + #TODO: this can probably be optimized more + return Rational(self.p*other.q + self.q*other.p, self.q*other.q) + elif isinstance(other, Float): + return other + self + else: + return Number.__add__(self, other) + return Number.__add__(self, other) + __radd__ = __add__ + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + return Rational(self.p - self.q*other.p, self.q, 1) + elif isinstance(other, Rational): + return Rational(self.p*other.q - self.q*other.p, self.q*other.q) + elif isinstance(other, Float): + return -other + self + else: + return Number.__sub__(self, other) + return Number.__sub__(self, other) + @_sympifyit('other', NotImplemented) + def __rsub__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + return Rational(self.q*other.p - self.p, self.q, 1) + elif isinstance(other, Rational): + return Rational(self.q*other.p - self.p*other.q, self.q*other.q) + elif isinstance(other, Float): + return -self + other + else: + return Number.__rsub__(self, other) + return Number.__rsub__(self, other) + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) + elif isinstance(other, Rational): + return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) + elif isinstance(other, Float): + return other*self + else: + return Number.__mul__(self, other) + return Number.__mul__(self, other) + __rmul__ = __mul__ + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + if self.p and other.p == S.Zero: + return S.ComplexInfinity + else: + return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) + elif isinstance(other, Rational): + return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) + elif isinstance(other, Float): + return self*(1/other) + else: + return Number.__truediv__(self, other) + return Number.__truediv__(self, other) + @_sympifyit('other', NotImplemented) + def __rtruediv__(self, other): + if global_parameters.evaluate: + if isinstance(other, Integer): + return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) + elif isinstance(other, Rational): + return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) + elif isinstance(other, Float): + return other*(1/self) + else: + return Number.__rtruediv__(self, other) + return Number.__rtruediv__(self, other) + + @_sympifyit('other', NotImplemented) + def __mod__(self, other): + if global_parameters.evaluate: + if isinstance(other, Rational): + n = (self.p*other.q) // (other.p*self.q) + return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) + if isinstance(other, Float): + # calculate mod with Rationals, *then* round the answer + return Float(self.__mod__(Rational(other)), + precision=other._prec) + return Number.__mod__(self, other) + return Number.__mod__(self, other) + + @_sympifyit('other', NotImplemented) + def __rmod__(self, other): + if isinstance(other, Rational): + return Rational.__mod__(other, self) + return Number.__rmod__(self, other) + + def _eval_power(self, expt): + if isinstance(expt, Number): + if isinstance(expt, Float): + return self._eval_evalf(expt._prec)**expt + if expt.is_extended_negative: + # (3/4)**-2 -> (4/3)**2 + ne = -expt + if (ne is S.One): + return Rational(self.q, self.p) + if self.is_negative: + return S.NegativeOne**expt*Rational(self.q, -self.p)**ne + else: + return Rational(self.q, self.p)**ne + if expt is S.Infinity: # -oo already caught by test for negative + if self.p > self.q: + # (3/2)**oo -> oo + return S.Infinity + if self.p < -self.q: + # (-3/2)**oo -> oo + I*oo + return S.Infinity + S.Infinity*S.ImaginaryUnit + return S.Zero + if isinstance(expt, Integer): + # (4/3)**2 -> 4**2 / 3**2 + return Rational(self.p**expt.p, self.q**expt.p, 1) + if isinstance(expt, Rational): + intpart = expt.p // expt.q + if intpart: + intpart += 1 + remfracpart = intpart*expt.q - expt.p + ratfracpart = Rational(remfracpart, expt.q) + if self.p != 1: + return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1) + return Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1) + else: + remfracpart = expt.q - expt.p + ratfracpart = Rational(remfracpart, expt.q) + if self.p != 1: + return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q, 1) + return Integer(self.q)**ratfracpart*Rational(1, self.q, 1) + + if self.is_extended_negative and expt.is_even: + return (-self)**expt + + return + + def _as_mpf_val(self, prec): + return mlib.from_rational(self.p, self.q, prec, rnd) + + def _mpmath_(self, prec, rnd): + return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) + + def __abs__(self): + return Rational(abs(self.p), self.q) + + def __int__(self): + p, q = self.p, self.q + if p < 0: + return -int(-p//q) + return int(p//q) + + def floor(self): + return Integer(self.p // self.q) + + def ceiling(self): + return -Integer(-self.p // self.q) + + def __floor__(self): + return self.floor() + + def __ceil__(self): + return self.ceiling() + + def __eq__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if not isinstance(other, Number): + # S(0) == S.false is False + # S(0) == False is True + return False + if not self: + return not other + if other.is_NumberSymbol: + if other.is_irrational: + return False + return other.__eq__(self) + if other.is_Rational: + # a Rational is always in reduced form so will never be 2/4 + # so we can just check equivalence of args + return self.p == other.p and self.q == other.q + if other.is_Float: + # all Floats have a denominator that is a power of 2 + # so if self doesn't, it can't be equal to other + if self.q & (self.q - 1): + return False + s, m, t = other._mpf_[:3] + if s: + m = -m + if not t: + # other is an odd integer + if not self.is_Integer or self.is_even: + return False + return m == self.p + + from .power import integer_log + if t > 0: + # other is an even integer + if not self.is_Integer: + return False + # does m*2**t == self.p + return self.p and not self.p % m and \ + integer_log(self.p//m, 2) == (t, True) + # does non-integer s*m/2**-t = p/q? + if self.is_Integer: + return False + return m == self.p and integer_log(self.q, 2) == (-t, True) + return False + + def __ne__(self, other): + return not self == other + + def _Rrel(self, other, attr): + # if you want self < other, pass self, other, __gt__ + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Number: + op = None + s, o = self, other + if other.is_NumberSymbol: + op = getattr(o, attr) + elif other.is_Float: + op = getattr(o, attr) + elif other.is_Rational: + s, o = Integer(s.p*o.q), Integer(s.q*o.p) + op = getattr(o, attr) + if op: + return op(s) + if o.is_number and o.is_extended_real: + return Integer(s.p), s.q*o + + def __gt__(self, other): + rv = self._Rrel(other, '__lt__') + if rv is None: + rv = self, other + elif not isinstance(rv, tuple): + return rv + return Expr.__gt__(*rv) + + def __ge__(self, other): + rv = self._Rrel(other, '__le__') + if rv is None: + rv = self, other + elif not isinstance(rv, tuple): + return rv + return Expr.__ge__(*rv) + + def __lt__(self, other): + rv = self._Rrel(other, '__gt__') + if rv is None: + rv = self, other + elif not isinstance(rv, tuple): + return rv + return Expr.__lt__(*rv) + + def __le__(self, other): + rv = self._Rrel(other, '__ge__') + if rv is None: + rv = self, other + elif not isinstance(rv, tuple): + return rv + return Expr.__le__(*rv) + + def __hash__(self): + return super().__hash__() + + def factors(self, limit=None, use_trial=True, use_rho=False, + use_pm1=False, verbose=False, visual=False): + """A wrapper to factorint which return factors of self that are + smaller than limit (or cheap to compute). Special methods of + factoring are disabled by default so that only trial division is used. + """ + from sympy.ntheory.factor_ import factorrat + + return factorrat(self, limit=limit, use_trial=use_trial, + use_rho=use_rho, use_pm1=use_pm1, + verbose=verbose).copy() + + @property + def numerator(self): + return self.p + + @property + def denominator(self): + return self.q + + @_sympifyit('other', NotImplemented) + def gcd(self, other): + if isinstance(other, Rational): + if other == S.Zero: + return other + return Rational( + igcd(self.p, other.p), + ilcm(self.q, other.q)) + return Number.gcd(self, other) + + @_sympifyit('other', NotImplemented) + def lcm(self, other): + if isinstance(other, Rational): + return Rational( + self.p // igcd(self.p, other.p) * other.p, + igcd(self.q, other.q)) + return Number.lcm(self, other) + + def as_numer_denom(self): + return Integer(self.p), Integer(self.q) + + def as_content_primitive(self, radical=False, clear=True): + """Return the tuple (R, self/R) where R is the positive Rational + extracted from self. + + Examples + ======== + + >>> from sympy import S + >>> (S(-3)/2).as_content_primitive() + (3/2, -1) + + See docstring of Expr.as_content_primitive for more examples. + """ + + if self: + if self.is_positive: + return self, S.One + return -self, S.NegativeOne + return S.One, self + + def as_coeff_Mul(self, rational=False): + """Efficiently extract the coefficient of a product.""" + return self, S.One + + def as_coeff_Add(self, rational=False): + """Efficiently extract the coefficient of a summation.""" + return self, S.Zero + + +class Integer(Rational): + """Represents integer numbers of any size. + + Examples + ======== + + >>> from sympy import Integer + >>> Integer(3) + 3 + + If a float or a rational is passed to Integer, the fractional part + will be discarded; the effect is of rounding toward zero. + + >>> Integer(3.8) + 3 + >>> Integer(-3.8) + -3 + + A string is acceptable input if it can be parsed as an integer: + + >>> Integer("9" * 20) + 99999999999999999999 + + It is rarely needed to explicitly instantiate an Integer, because + Python integers are automatically converted to Integer when they + are used in SymPy expressions. + """ + q = 1 + is_integer = True + is_number = True + + is_Integer = True + + __slots__ = () + + def _as_mpf_val(self, prec): + return mlib.from_int(self.p, prec, rnd) + + def _mpmath_(self, prec, rnd): + return mpmath.make_mpf(self._as_mpf_val(prec)) + + @cacheit + def __new__(cls, i): + if isinstance(i, str): + i = i.replace(' ', '') + # whereas we cannot, in general, make a Rational from an + # arbitrary expression, we can make an Integer unambiguously + # (except when a non-integer expression happens to round to + # an integer). So we proceed by taking int() of the input and + # let the int routines determine whether the expression can + # be made into an int or whether an error should be raised. + try: + ival = int(i) + except TypeError: + raise TypeError( + "Argument of Integer should be of numeric type, got %s." % i) + # We only work with well-behaved integer types. This converts, for + # example, numpy.int32 instances. + if ival == 1: + return S.One + if ival == -1: + return S.NegativeOne + if ival == 0: + return S.Zero + obj = Expr.__new__(cls) + obj.p = ival + return obj + + def __getnewargs__(self): + return (self.p,) + + # Arithmetic operations are here for efficiency + def __int__(self): + return self.p + + def floor(self): + return Integer(self.p) + + def ceiling(self): + return Integer(self.p) + + def __floor__(self): + return self.floor() + + def __ceil__(self): + return self.ceiling() + + def __neg__(self): + return Integer(-self.p) + + def __abs__(self): + if self.p >= 0: + return self + else: + return Integer(-self.p) + + def __divmod__(self, other): + if isinstance(other, Integer) and global_parameters.evaluate: + return Tuple(*(divmod(self.p, other.p))) + else: + return Number.__divmod__(self, other) + + def __rdivmod__(self, other): + if isinstance(other, int) and global_parameters.evaluate: + return Tuple(*(divmod(other, self.p))) + else: + try: + other = Number(other) + except TypeError: + msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" + oname = type(other).__name__ + sname = type(self).__name__ + raise TypeError(msg % (oname, sname)) + return Number.__divmod__(other, self) + + # TODO make it decorator + bytecodehacks? + def __add__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(self.p + other) + elif isinstance(other, Integer): + return Integer(self.p + other.p) + elif isinstance(other, Rational): + return Rational(self.p*other.q + other.p, other.q, 1) + return Rational.__add__(self, other) + else: + return Add(self, other) + + def __radd__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(other + self.p) + elif isinstance(other, Rational): + return Rational(other.p + self.p*other.q, other.q, 1) + return Rational.__radd__(self, other) + return Rational.__radd__(self, other) + + def __sub__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(self.p - other) + elif isinstance(other, Integer): + return Integer(self.p - other.p) + elif isinstance(other, Rational): + return Rational(self.p*other.q - other.p, other.q, 1) + return Rational.__sub__(self, other) + return Rational.__sub__(self, other) + + def __rsub__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(other - self.p) + elif isinstance(other, Rational): + return Rational(other.p - self.p*other.q, other.q, 1) + return Rational.__rsub__(self, other) + return Rational.__rsub__(self, other) + + def __mul__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(self.p*other) + elif isinstance(other, Integer): + return Integer(self.p*other.p) + elif isinstance(other, Rational): + return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) + return Rational.__mul__(self, other) + return Rational.__mul__(self, other) + + def __rmul__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(other*self.p) + elif isinstance(other, Rational): + return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) + return Rational.__rmul__(self, other) + return Rational.__rmul__(self, other) + + def __mod__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(self.p % other) + elif isinstance(other, Integer): + return Integer(self.p % other.p) + return Rational.__mod__(self, other) + return Rational.__mod__(self, other) + + def __rmod__(self, other): + if global_parameters.evaluate: + if isinstance(other, int): + return Integer(other % self.p) + elif isinstance(other, Integer): + return Integer(other.p % self.p) + return Rational.__rmod__(self, other) + return Rational.__rmod__(self, other) + + def __eq__(self, other): + if isinstance(other, int): + return (self.p == other) + elif isinstance(other, Integer): + return (self.p == other.p) + return Rational.__eq__(self, other) + + def __ne__(self, other): + return not self == other + + def __gt__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Integer: + return _sympify(self.p > other.p) + return Rational.__gt__(self, other) + + def __lt__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Integer: + return _sympify(self.p < other.p) + return Rational.__lt__(self, other) + + def __ge__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Integer: + return _sympify(self.p >= other.p) + return Rational.__ge__(self, other) + + def __le__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if other.is_Integer: + return _sympify(self.p <= other.p) + return Rational.__le__(self, other) + + def __hash__(self): + return hash(self.p) + + def __index__(self): + return self.p + + ######################################## + + def _eval_is_odd(self): + return bool(self.p % 2) + + def _eval_power(self, expt): + """ + Tries to do some simplifications on self**expt + + Returns None if no further simplifications can be done. + + Explanation + =========== + + When exponent is a fraction (so we have for example a square root), + we try to find a simpler representation by factoring the argument + up to factors of 2**15, e.g. + + - sqrt(4) becomes 2 + - sqrt(-4) becomes 2*I + - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) + + Further simplification would require a special call to factorint on + the argument which is not done here for sake of speed. + + """ + from sympy.ntheory.factor_ import perfect_power + + if expt is S.Infinity: + if self.p > S.One: + return S.Infinity + # cases -1, 0, 1 are done in their respective classes + return S.Infinity + S.ImaginaryUnit*S.Infinity + if expt is S.NegativeInfinity: + return Rational(1, self, 1)**S.Infinity + if not isinstance(expt, Number): + # simplify when expt is even + # (-2)**k --> 2**k + if self.is_negative and expt.is_even: + return (-self)**expt + if isinstance(expt, Float): + # Rational knows how to exponentiate by a Float + return super()._eval_power(expt) + if not isinstance(expt, Rational): + return + if expt is S.Half and self.is_negative: + # we extract I for this special case since everyone is doing so + return S.ImaginaryUnit*Pow(-self, expt) + if expt.is_negative: + # invert base and change sign on exponent + ne = -expt + if self.is_negative: + return S.NegativeOne**expt*Rational(1, -self, 1)**ne + else: + return Rational(1, self.p, 1)**ne + # see if base is a perfect root, sqrt(4) --> 2 + x, xexact = integer_nthroot(abs(self.p), expt.q) + if xexact: + # if it's a perfect root we've finished + result = Integer(x**abs(expt.p)) + if self.is_negative: + result *= S.NegativeOne**expt + return result + + # The following is an algorithm where we collect perfect roots + # from the factors of base. + + # if it's not an nth root, it still might be a perfect power + b_pos = int(abs(self.p)) + p = perfect_power(b_pos) + if p is not False: + dict = {p[0]: p[1]} + else: + dict = Integer(b_pos).factors(limit=2**15) + + # now process the dict of factors + out_int = 1 # integer part + out_rad = 1 # extracted radicals + sqr_int = 1 + sqr_gcd = 0 + sqr_dict = {} + for prime, exponent in dict.items(): + exponent *= expt.p + # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) + div_e, div_m = divmod(exponent, expt.q) + if div_e > 0: + out_int *= prime**div_e + if div_m > 0: + # see if the reduced exponent shares a gcd with e.q + # (2**2)**(1/10) -> 2**(1/5) + g = igcd(div_m, expt.q) + if g != 1: + out_rad *= Pow(prime, Rational(div_m//g, expt.q//g, 1)) + else: + sqr_dict[prime] = div_m + # identify gcd of remaining powers + for p, ex in sqr_dict.items(): + if sqr_gcd == 0: + sqr_gcd = ex + else: + sqr_gcd = igcd(sqr_gcd, ex) + if sqr_gcd == 1: + break + for k, v in sqr_dict.items(): + sqr_int *= k**(v//sqr_gcd) + if sqr_int == b_pos and out_int == 1 and out_rad == 1: + result = None + else: + result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) + if self.is_negative: + result *= Pow(S.NegativeOne, expt) + return result + + def _eval_is_prime(self): + from sympy.ntheory.primetest import isprime + + return isprime(self) + + def _eval_is_composite(self): + if self > 1: + return fuzzy_not(self.is_prime) + else: + return False + + def as_numer_denom(self): + return self, S.One + + @_sympifyit('other', NotImplemented) + def __floordiv__(self, other): + if not isinstance(other, Expr): + return NotImplemented + if isinstance(other, Integer): + return Integer(self.p // other) + return divmod(self, other)[0] + + def __rfloordiv__(self, other): + return Integer(Integer(other).p // self.p) + + # These bitwise operations (__lshift__, __rlshift__, ..., __invert__) are defined + # for Integer only and not for general SymPy expressions. This is to achieve + # compatibility with the numbers.Integral ABC which only defines these operations + # among instances of numbers.Integral. Therefore, these methods check explicitly for + # integer types rather than using sympify because they should not accept arbitrary + # symbolic expressions and there is no symbolic analogue of numbers.Integral's + # bitwise operations. + def __lshift__(self, other): + if isinstance(other, (int, Integer, numbers.Integral)): + return Integer(self.p << int(other)) + else: + return NotImplemented + + def __rlshift__(self, other): + if isinstance(other, (int, numbers.Integral)): + return Integer(int(other) << self.p) + else: + return NotImplemented + + def __rshift__(self, other): + if isinstance(other, (int, Integer, numbers.Integral)): + return Integer(self.p >> int(other)) + else: + return NotImplemented + + def __rrshift__(self, other): + if isinstance(other, (int, numbers.Integral)): + return Integer(int(other) >> self.p) + else: + return NotImplemented + + def __and__(self, other): + if isinstance(other, (int, Integer, numbers.Integral)): + return Integer(self.p & int(other)) + else: + return NotImplemented + + def __rand__(self, other): + if isinstance(other, (int, numbers.Integral)): + return Integer(int(other) & self.p) + else: + return NotImplemented + + def __xor__(self, other): + if isinstance(other, (int, Integer, numbers.Integral)): + return Integer(self.p ^ int(other)) + else: + return NotImplemented + + def __rxor__(self, other): + if isinstance(other, (int, numbers.Integral)): + return Integer(int(other) ^ self.p) + else: + return NotImplemented + + def __or__(self, other): + if isinstance(other, (int, Integer, numbers.Integral)): + return Integer(self.p | int(other)) + else: + return NotImplemented + + def __ror__(self, other): + if isinstance(other, (int, numbers.Integral)): + return Integer(int(other) | self.p) + else: + return NotImplemented + + def __invert__(self): + return Integer(~self.p) + +# Add sympify converters +_sympy_converter[int] = Integer + + +class AlgebraicNumber(Expr): + r""" + Class for representing algebraic numbers in SymPy. + + Symbolically, an instance of this class represents an element + $\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$. That is, the + algebraic number $\alpha$ is represented as an element of a particular + number field $\mathbb{Q}(\theta)$, with a particular embedding of this + field into the complex numbers. + + Formally, the primitive element $\theta$ is given by two data points: (1) + its minimal polynomial (which defines $\mathbb{Q}(\theta)$), and (2) a + particular complex number that is a root of this polynomial (which defines + the embedding $\mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$). Finally, + the algebraic number $\alpha$ which we represent is then given by the + coefficients of a polynomial in $\theta$. + """ + + __slots__ = ('rep', 'root', 'alias', 'minpoly', '_own_minpoly') + + is_AlgebraicNumber = True + is_algebraic = True + is_number = True + + + kind = NumberKind + + # Optional alias symbol is not free. + # Actually, alias should be a Str, but some methods + # expect that it be an instance of Expr. + free_symbols: set[Basic] = set() + + def __new__(cls, expr, coeffs=None, alias=None, **args): + r""" + Construct a new algebraic number $\alpha$ belonging to a number field + $k = \mathbb{Q}(\theta)$. + + There are four instance attributes to be determined: + + =========== ============================================================================ + Attribute Type/Meaning + =========== ============================================================================ + ``root`` :py:class:`~.Expr` for $\theta$ as a complex number + ``minpoly`` :py:class:`~.Poly`, the minimal polynomial of $\theta$ + ``rep`` :py:class:`~sympy.polys.polyclasses.DMP` giving $\alpha$ as poly in $\theta$ + ``alias`` :py:class:`~.Symbol` for $\theta$, or ``None`` + =========== ============================================================================ + + See Parameters section for how they are determined. + + Parameters + ========== + + expr : :py:class:`~.Expr`, or pair $(m, r)$ + There are three distinct modes of construction, depending on what + is passed as *expr*. + + **(1)** *expr* is an :py:class:`~.AlgebraicNumber`: + In this case we begin by copying all four instance attributes from + *expr*. If *coeffs* were also given, we compose the two coeff + polynomials (see below). If an *alias* was given, it overrides. + + **(2)** *expr* is any other type of :py:class:`~.Expr`: + Then ``root`` will equal *expr*. Therefore it + must express an algebraic quantity, and we will compute its + ``minpoly``. + + **(3)** *expr* is an ordered pair $(m, r)$ giving the + ``minpoly`` $m$, and a ``root`` $r$ thereof, which together + define $\theta$. In this case $m$ may be either a univariate + :py:class:`~.Poly` or any :py:class:`~.Expr` which represents the + same, while $r$ must be some :py:class:`~.Expr` representing a + complex number that is a root of $m$, including both explicit + expressions in radicals, and instances of + :py:class:`~.ComplexRootOf` or :py:class:`~.AlgebraicNumber`. + + coeffs : list, :py:class:`~.ANP`, None, optional (default=None) + This defines ``rep``, giving the algebraic number $\alpha$ as a + polynomial in $\theta$. + + If a list, the elements should be integers or rational numbers. + If an :py:class:`~.ANP`, we take its coefficients (using its + :py:meth:`~.ANP.to_list()` method). If ``None``, then the list of + coefficients defaults to ``[1, 0]``, meaning that $\alpha = \theta$ + is the primitive element of the field. + + If *expr* was an :py:class:`~.AlgebraicNumber`, let $g(x)$ be its + ``rep`` polynomial, and let $f(x)$ be the polynomial defined by + *coeffs*. Then ``self.rep`` will represent the composition + $(f \circ g)(x)$. + + alias : str, :py:class:`~.Symbol`, None, optional (default=None) + This is a way to provide a name for the primitive element. We + described several ways in which the *expr* argument can define the + value of the primitive element, but none of these methods gave it + a name. Here, for example, *alias* could be set as + ``Symbol('theta')``, in order to make this symbol appear when + $\alpha$ is printed, or rendered as a polynomial, using the + :py:meth:`~.as_poly()` method. + + Examples + ======== + + Recall that we are constructing an algebraic number as a field element + $\alpha \in \mathbb{Q}(\theta)$. + + >>> from sympy import AlgebraicNumber, sqrt, CRootOf, S + >>> from sympy.abc import x + + Example (1): $\alpha = \theta = \sqrt{2}$ + + >>> a1 = AlgebraicNumber(sqrt(2)) + >>> a1.minpoly_of_element().as_expr(x) + x**2 - 2 + >>> a1.evalf(10) + 1.414213562 + + Example (2): $\alpha = 3 \sqrt{2} - 5$, $\theta = \sqrt{2}$. We can + either build on the last example: + + >>> a2 = AlgebraicNumber(a1, [3, -5]) + >>> a2.as_expr() + -5 + 3*sqrt(2) + + or start from scratch: + + >>> a2 = AlgebraicNumber(sqrt(2), [3, -5]) + >>> a2.as_expr() + -5 + 3*sqrt(2) + + Example (3): $\alpha = 6 \sqrt{2} - 11$, $\theta = \sqrt{2}$. Again we + can build on the previous example, and we see that the coeff polys are + composed: + + >>> a3 = AlgebraicNumber(a2, [2, -1]) + >>> a3.as_expr() + -11 + 6*sqrt(2) + + reflecting the fact that $(2x - 1) \circ (3x - 5) = 6x - 11$. + + Example (4): $\alpha = \sqrt{2}$, $\theta = \sqrt{2} + \sqrt{3}$. The + easiest way is to use the :py:func:`~.to_number_field()` function: + + >>> from sympy import to_number_field + >>> a4 = to_number_field(sqrt(2), sqrt(2) + sqrt(3)) + >>> a4.minpoly_of_element().as_expr(x) + x**2 - 2 + >>> a4.to_root() + sqrt(2) + >>> a4.primitive_element() + sqrt(2) + sqrt(3) + >>> a4.coeffs() + [1/2, 0, -9/2, 0] + + but if you already knew the right coefficients, you could construct it + directly: + + >>> a4 = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0]) + >>> a4.to_root() + sqrt(2) + >>> a4.primitive_element() + sqrt(2) + sqrt(3) + + Example (5): Construct the Golden Ratio as an element of the 5th + cyclotomic field, supposing we already know its coefficients. This time + we introduce the alias $\zeta$ for the primitive element of the field: + + >>> from sympy import cyclotomic_poly + >>> from sympy.abc import zeta + >>> a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), + ... [-1, -1, 0, 0], alias=zeta) + >>> a5.as_poly().as_expr() + -zeta**3 - zeta**2 + >>> a5.evalf() + 1.61803398874989 + + (The index ``-1`` to ``CRootOf`` selects the complex root with the + largest real and imaginary parts, which in this case is + $\mathrm{e}^{2i\pi/5}$. See :py:class:`~.ComplexRootOf`.) + + Example (6): Building on the last example, construct the number + $2 \phi \in \mathbb{Q}(\phi)$, where $\phi$ is the Golden Ratio: + + >>> from sympy.abc import phi + >>> a6 = AlgebraicNumber(a5.to_root(), coeffs=[2, 0], alias=phi) + >>> a6.as_poly().as_expr() + 2*phi + >>> a6.primitive_element().evalf() + 1.61803398874989 + + Note that we needed to use ``a5.to_root()``, since passing ``a5`` as + the first argument would have constructed the number $2 \phi$ as an + element of the field $\mathbb{Q}(\zeta)$: + + >>> a6_wrong = AlgebraicNumber(a5, coeffs=[2, 0]) + >>> a6_wrong.as_poly().as_expr() + -2*zeta**3 - 2*zeta**2 + >>> a6_wrong.primitive_element().evalf() + 0.309016994374947 + 0.951056516295154*I + + """ + from sympy.polys.polyclasses import ANP, DMP + from sympy.polys.numberfields import minimal_polynomial + + expr = sympify(expr) + rep0 = None + alias0 = None + + if isinstance(expr, (tuple, Tuple)): + minpoly, root = expr + + if not minpoly.is_Poly: + from sympy.polys.polytools import Poly + minpoly = Poly(minpoly) + elif expr.is_AlgebraicNumber: + minpoly, root, rep0, alias0 = (expr.minpoly, expr.root, + expr.rep, expr.alias) + else: + minpoly, root = minimal_polynomial( + expr, args.get('gen'), polys=True), expr + + dom = minpoly.get_domain() + + if coeffs is not None: + if not isinstance(coeffs, ANP): + rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) + scoeffs = Tuple(*coeffs) + else: + rep = DMP.from_list(coeffs.to_list(), 0, dom) + scoeffs = Tuple(*coeffs.to_list()) + + else: + rep = DMP.from_list([1, 0], 0, dom) + scoeffs = Tuple(1, 0) + + if rep0 is not None: + from sympy.polys.densetools import dup_compose + c = dup_compose(rep.rep, rep0.rep, dom) + rep = DMP.from_list(c, 0, dom) + scoeffs = Tuple(*c) + + if rep.degree() >= minpoly.degree(): + rep = rep.rem(minpoly.rep) + + sargs = (root, scoeffs) + + alias = alias or alias0 + if alias is not None: + from .symbol import Symbol + if not isinstance(alias, Symbol): + alias = Symbol(alias) + sargs = sargs + (alias,) + + obj = Expr.__new__(cls, *sargs) + + obj.rep = rep + obj.root = root + obj.alias = alias + obj.minpoly = minpoly + + obj._own_minpoly = None + + return obj + + def __hash__(self): + return super().__hash__() + + def _eval_evalf(self, prec): + return self.as_expr()._evalf(prec) + + @property + def is_aliased(self): + """Returns ``True`` if ``alias`` was set. """ + return self.alias is not None + + def as_poly(self, x=None): + """Create a Poly instance from ``self``. """ + from sympy.polys.polytools import Poly, PurePoly + if x is not None: + return Poly.new(self.rep, x) + else: + if self.alias is not None: + return Poly.new(self.rep, self.alias) + else: + from .symbol import Dummy + return PurePoly.new(self.rep, Dummy('x')) + + def as_expr(self, x=None): + """Create a Basic expression from ``self``. """ + return self.as_poly(x or self.root).as_expr().expand() + + def coeffs(self): + """Returns all SymPy coefficients of an algebraic number. """ + return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] + + def native_coeffs(self): + """Returns all native coefficients of an algebraic number. """ + return self.rep.all_coeffs() + + def to_algebraic_integer(self): + """Convert ``self`` to an algebraic integer. """ + from sympy.polys.polytools import Poly + + f = self.minpoly + + if f.LC() == 1: + return self + + coeff = f.LC()**(f.degree() - 1) + poly = f.compose(Poly(f.gen/f.LC())) + + minpoly = poly*coeff + root = f.LC()*self.root + + return AlgebraicNumber((minpoly, root), self.coeffs()) + + def _eval_simplify(self, **kwargs): + from sympy.polys.rootoftools import CRootOf + from sympy.polys import minpoly + measure, ratio = kwargs['measure'], kwargs['ratio'] + for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: + if minpoly(self.root - r).is_Symbol: + # use the matching root if it's simpler + if measure(r) < ratio*measure(self.root): + return AlgebraicNumber(r) + return self + + def field_element(self, coeffs): + r""" + Form another element of the same number field. + + Explanation + =========== + + If we represent $\alpha \in \mathbb{Q}(\theta)$, form another element + $\beta \in \mathbb{Q}(\theta)$ of the same number field. + + Parameters + ========== + + coeffs : list, :py:class:`~.ANP` + Like the *coeffs* arg to the class + :py:meth:`constructor<.AlgebraicNumber.__new__>`, defines the + new element as a polynomial in the primitive element. + + If a list, the elements should be integers or rational numbers. + If an :py:class:`~.ANP`, we take its coefficients (using its + :py:meth:`~.ANP.to_list()` method). + + Examples + ======== + + >>> from sympy import AlgebraicNumber, sqrt + >>> a = AlgebraicNumber(sqrt(5), [-1, 1]) + >>> b = a.field_element([3, 2]) + >>> print(a) + 1 - sqrt(5) + >>> print(b) + 2 + 3*sqrt(5) + >>> print(b.primitive_element() == a.primitive_element()) + True + + See Also + ======== + + AlgebraicNumber + """ + return AlgebraicNumber( + (self.minpoly, self.root), coeffs=coeffs, alias=self.alias) + + @property + def is_primitive_element(self): + r""" + Say whether this algebraic number $\alpha \in \mathbb{Q}(\theta)$ is + equal to the primitive element $\theta$ for its field. + """ + c = self.coeffs() + # Second case occurs if self.minpoly is linear: + return c == [1, 0] or c == [self.root] + + def primitive_element(self): + r""" + Get the primitive element $\theta$ for the number field + $\mathbb{Q}(\theta)$ to which this algebraic number $\alpha$ belongs. + + Returns + ======= + + AlgebraicNumber + + """ + if self.is_primitive_element: + return self + return self.field_element([1, 0]) + + def to_primitive_element(self, radicals=True): + r""" + Convert ``self`` to an :py:class:`~.AlgebraicNumber` instance that is + equal to its own primitive element. + + Explanation + =========== + + If we represent $\alpha \in \mathbb{Q}(\theta)$, $\alpha \neq \theta$, + construct a new :py:class:`~.AlgebraicNumber` that represents + $\alpha \in \mathbb{Q}(\alpha)$. + + Examples + ======== + + >>> from sympy import sqrt, to_number_field + >>> from sympy.abc import x + >>> a = to_number_field(sqrt(2), sqrt(2) + sqrt(3)) + + The :py:class:`~.AlgebraicNumber` ``a`` represents the number + $\sqrt{2}$ in the field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$. Rendering + ``a`` as a polynomial, + + >>> a.as_poly().as_expr(x) + x**3/2 - 9*x/2 + + reflects the fact that $\sqrt{2} = \theta^3/2 - 9 \theta/2$, where + $\theta = \sqrt{2} + \sqrt{3}$. + + ``a`` is not equal to its own primitive element. Its minpoly + + >>> a.minpoly.as_poly().as_expr(x) + x**4 - 10*x**2 + 1 + + is that of $\theta$. + + Converting to a primitive element, + + >>> a_prim = a.to_primitive_element() + >>> a_prim.minpoly.as_poly().as_expr(x) + x**2 - 2 + + we obtain an :py:class:`~.AlgebraicNumber` whose ``minpoly`` is that of + the number itself. + + Parameters + ========== + + radicals : boolean, optional (default=True) + If ``True``, then we will try to return an + :py:class:`~.AlgebraicNumber` whose ``root`` is an expression + in radicals. If that is not possible (or if *radicals* is + ``False``), ``root`` will be a :py:class:`~.ComplexRootOf`. + + Returns + ======= + + AlgebraicNumber + + See Also + ======== + + is_primitive_element + + """ + if self.is_primitive_element: + return self + m = self.minpoly_of_element() + r = self.to_root(radicals=radicals) + return AlgebraicNumber((m, r)) + + def minpoly_of_element(self): + r""" + Compute the minimal polynomial for this algebraic number. + + Explanation + =========== + + Recall that we represent an element $\alpha \in \mathbb{Q}(\theta)$. + Our instance attribute ``self.minpoly`` is the minimal polynomial for + our primitive element $\theta$. This method computes the minimal + polynomial for $\alpha$. + + """ + if self._own_minpoly is None: + if self.is_primitive_element: + self._own_minpoly = self.minpoly + else: + from sympy.polys.numberfields.minpoly import minpoly + theta = self.primitive_element() + self._own_minpoly = minpoly(self.as_expr(theta), polys=True) + return self._own_minpoly + + def to_root(self, radicals=True, minpoly=None): + """ + Convert to an :py:class:`~.Expr` that is not an + :py:class:`~.AlgebraicNumber`, specifically, either a + :py:class:`~.ComplexRootOf`, or, optionally and where possible, an + expression in radicals. + + Parameters + ========== + + radicals : boolean, optional (default=True) + If ``True``, then we will try to return the root as an expression + in radicals. If that is not possible, we will return a + :py:class:`~.ComplexRootOf`. + + minpoly : :py:class:`~.Poly` + If the minimal polynomial for `self` has been pre-computed, it can + be passed in order to save time. + + """ + if self.is_primitive_element and not isinstance(self.root, AlgebraicNumber): + return self.root + m = minpoly or self.minpoly_of_element() + roots = m.all_roots(radicals=radicals) + if len(roots) == 1: + return roots[0] + ex = self.as_expr() + for b in roots: + if m.same_root(b, ex): + return b + + +class RationalConstant(Rational): + """ + Abstract base class for rationals with specific behaviors + + Derived classes must define class attributes p and q and should probably all + be singletons. + """ + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + +class IntegerConstant(Integer): + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + +class Zero(IntegerConstant, metaclass=Singleton): + """The number zero. + + Zero is a singleton, and can be accessed by ``S.Zero`` + + Examples + ======== + + >>> from sympy import S, Integer + >>> Integer(0) is S.Zero + True + >>> 1/S.Zero + zoo + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Zero + """ + + p = 0 + q = 1 + is_positive = False + is_negative = False + is_zero = True + is_number = True + is_comparable = True + + __slots__ = () + + def __getnewargs__(self): + return () + + @staticmethod + def __abs__(): + return S.Zero + + @staticmethod + def __neg__(): + return S.Zero + + def _eval_power(self, expt): + if expt.is_extended_positive: + return self + if expt.is_extended_negative: + return S.ComplexInfinity + if expt.is_extended_real is False: + return S.NaN + if expt.is_zero: + return S.One + + # infinities are already handled with pos and neg + # tests above; now throw away leading numbers on Mul + # exponent since 0**-x = zoo**x even when x == 0 + coeff, terms = expt.as_coeff_Mul() + if coeff.is_negative: + return S.ComplexInfinity**terms + if coeff is not S.One: # there is a Number to discard + return self**terms + + def _eval_order(self, *symbols): + # Order(0,x) -> 0 + return self + + def __bool__(self): + return False + + +class One(IntegerConstant, metaclass=Singleton): + """The number one. + + One is a singleton, and can be accessed by ``S.One``. + + Examples + ======== + + >>> from sympy import S, Integer + >>> Integer(1) is S.One + True + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/1_%28number%29 + """ + is_number = True + is_positive = True + + p = 1 + q = 1 + + __slots__ = () + + def __getnewargs__(self): + return () + + @staticmethod + def __abs__(): + return S.One + + @staticmethod + def __neg__(): + return S.NegativeOne + + def _eval_power(self, expt): + return self + + def _eval_order(self, *symbols): + return + + @staticmethod + def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, + verbose=False, visual=False): + if visual: + return S.One + else: + return {} + + +class NegativeOne(IntegerConstant, metaclass=Singleton): + """The number negative one. + + NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. + + Examples + ======== + + >>> from sympy import S, Integer + >>> Integer(-1) is S.NegativeOne + True + + See Also + ======== + + One + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 + + """ + is_number = True + + p = -1 + q = 1 + + __slots__ = () + + def __getnewargs__(self): + return () + + @staticmethod + def __abs__(): + return S.One + + @staticmethod + def __neg__(): + return S.One + + def _eval_power(self, expt): + if expt.is_odd: + return S.NegativeOne + if expt.is_even: + return S.One + if isinstance(expt, Number): + if isinstance(expt, Float): + return Float(-1.0)**expt + if expt is S.NaN: + return S.NaN + if expt in (S.Infinity, S.NegativeInfinity): + return S.NaN + if expt is S.Half: + return S.ImaginaryUnit + if isinstance(expt, Rational): + if expt.q == 2: + return S.ImaginaryUnit**Integer(expt.p) + i, r = divmod(expt.p, expt.q) + if i: + return self**i*self**Rational(r, expt.q) + return + + +class Half(RationalConstant, metaclass=Singleton): + """The rational number 1/2. + + Half is a singleton, and can be accessed by ``S.Half``. + + Examples + ======== + + >>> from sympy import S, Rational + >>> Rational(1, 2) is S.Half + True + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/One_half + """ + is_number = True + + p = 1 + q = 2 + + __slots__ = () + + def __getnewargs__(self): + return () + + @staticmethod + def __abs__(): + return S.Half + + +class Infinity(Number, metaclass=Singleton): + r"""Positive infinite quantity. + + Explanation + =========== + + In real analysis the symbol `\infty` denotes an unbounded + limit: `x\to\infty` means that `x` grows without bound. + + Infinity is often used not only to define a limit but as a value + in the affinely extended real number system. Points labeled `+\infty` + and `-\infty` can be added to the topological space of the real numbers, + producing the two-point compactification of the real numbers. Adding + algebraic properties to this gives us the extended real numbers. + + Infinity is a singleton, and can be accessed by ``S.Infinity``, + or can be imported as ``oo``. + + Examples + ======== + + >>> from sympy import oo, exp, limit, Symbol + >>> 1 + oo + oo + >>> 42/oo + 0 + >>> x = Symbol('x') + >>> limit(exp(x), x, oo) + oo + + See Also + ======== + + NegativeInfinity, NaN + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Infinity + """ + + is_commutative = True + is_number = True + is_complex = False + is_extended_real = True + is_infinite = True + is_comparable = True + is_extended_positive = True + is_prime = False + + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + def _latex(self, printer): + return r"\infty" + + def _eval_subs(self, old, new): + if self == old: + return new + + def _eval_evalf(self, prec=None): + return Float('inf') + + def evalf(self, prec=None, **options): + return self._eval_evalf(prec) + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other in (S.NegativeInfinity, S.NaN): + return S.NaN + return self + return Number.__add__(self, other) + __radd__ = __add__ + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other in (S.Infinity, S.NaN): + return S.NaN + return self + return Number.__sub__(self, other) + + @_sympifyit('other', NotImplemented) + def __rsub__(self, other): + return (-self).__add__(other) + + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other.is_zero or other is S.NaN: + return S.NaN + if other.is_extended_positive: + return self + return S.NegativeInfinity + return Number.__mul__(self, other) + __rmul__ = __mul__ + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.Infinity or \ + other is S.NegativeInfinity or \ + other is S.NaN: + return S.NaN + if other.is_extended_nonnegative: + return self + return S.NegativeInfinity + return Number.__truediv__(self, other) + + def __abs__(self): + return S.Infinity + + def __neg__(self): + return S.NegativeInfinity + + def _eval_power(self, expt): + """ + ``expt`` is symbolic object but not equal to 0 or 1. + + ================ ======= ============================== + Expression Result Notes + ================ ======= ============================== + ``oo ** nan`` ``nan`` + ``oo ** -p`` ``0`` ``p`` is number, ``oo`` + ================ ======= ============================== + + See Also + ======== + Pow + NaN + NegativeInfinity + + """ + if expt.is_extended_positive: + return S.Infinity + if expt.is_extended_negative: + return S.Zero + if expt is S.NaN: + return S.NaN + if expt is S.ComplexInfinity: + return S.NaN + if expt.is_extended_real is False and expt.is_number: + from sympy.functions.elementary.complexes import re + expt_real = re(expt) + if expt_real.is_positive: + return S.ComplexInfinity + if expt_real.is_negative: + return S.Zero + if expt_real.is_zero: + return S.NaN + + return self**expt.evalf() + + def _as_mpf_val(self, prec): + return mlib.finf + + def __hash__(self): + return super().__hash__() + + def __eq__(self, other): + return other is S.Infinity or other == float('inf') + + def __ne__(self, other): + return other is not S.Infinity and other != float('inf') + + __gt__ = Expr.__gt__ + __ge__ = Expr.__ge__ + __lt__ = Expr.__lt__ + __le__ = Expr.__le__ + + @_sympifyit('other', NotImplemented) + def __mod__(self, other): + if not isinstance(other, Expr): + return NotImplemented + return S.NaN + + __rmod__ = __mod__ + + def floor(self): + return self + + def ceiling(self): + return self + +oo = S.Infinity + + +class NegativeInfinity(Number, metaclass=Singleton): + """Negative infinite quantity. + + NegativeInfinity is a singleton, and can be accessed + by ``S.NegativeInfinity``. + + See Also + ======== + + Infinity + """ + + is_extended_real = True + is_complex = False + is_commutative = True + is_infinite = True + is_comparable = True + is_extended_negative = True + is_number = True + is_prime = False + + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + def _latex(self, printer): + return r"-\infty" + + def _eval_subs(self, old, new): + if self == old: + return new + + def _eval_evalf(self, prec=None): + return Float('-inf') + + def evalf(self, prec=None, **options): + return self._eval_evalf(prec) + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other in (S.Infinity, S.NaN): + return S.NaN + return self + return Number.__add__(self, other) + __radd__ = __add__ + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other in (S.NegativeInfinity, S.NaN): + return S.NaN + return self + return Number.__sub__(self, other) + + @_sympifyit('other', NotImplemented) + def __rsub__(self, other): + return (-self).__add__(other) + + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other.is_zero or other is S.NaN: + return S.NaN + if other.is_extended_positive: + return self + return S.Infinity + return Number.__mul__(self, other) + __rmul__ = __mul__ + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + if isinstance(other, Number) and global_parameters.evaluate: + if other is S.Infinity or \ + other is S.NegativeInfinity or \ + other is S.NaN: + return S.NaN + if other.is_extended_nonnegative: + return self + return S.Infinity + return Number.__truediv__(self, other) + + def __abs__(self): + return S.Infinity + + def __neg__(self): + return S.Infinity + + def _eval_power(self, expt): + """ + ``expt`` is symbolic object but not equal to 0 or 1. + + ================ ======= ============================== + Expression Result Notes + ================ ======= ============================== + ``(-oo) ** nan`` ``nan`` + ``(-oo) ** oo`` ``nan`` + ``(-oo) ** -oo`` ``nan`` + ``(-oo) ** e`` ``oo`` ``e`` is positive even integer + ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer + ================ ======= ============================== + + See Also + ======== + + Infinity + Pow + NaN + + """ + if expt.is_number: + if expt is S.NaN or \ + expt is S.Infinity or \ + expt is S.NegativeInfinity: + return S.NaN + + if isinstance(expt, Integer) and expt.is_extended_positive: + if expt.is_odd: + return S.NegativeInfinity + else: + return S.Infinity + + inf_part = S.Infinity**expt + s_part = S.NegativeOne**expt + if inf_part == 0 and s_part.is_finite: + return inf_part + if (inf_part is S.ComplexInfinity and + s_part.is_finite and not s_part.is_zero): + return S.ComplexInfinity + return s_part*inf_part + + def _as_mpf_val(self, prec): + return mlib.fninf + + def __hash__(self): + return super().__hash__() + + def __eq__(self, other): + return other is S.NegativeInfinity or other == float('-inf') + + def __ne__(self, other): + return other is not S.NegativeInfinity and other != float('-inf') + + __gt__ = Expr.__gt__ + __ge__ = Expr.__ge__ + __lt__ = Expr.__lt__ + __le__ = Expr.__le__ + + @_sympifyit('other', NotImplemented) + def __mod__(self, other): + if not isinstance(other, Expr): + return NotImplemented + return S.NaN + + __rmod__ = __mod__ + + def floor(self): + return self + + def ceiling(self): + return self + + def as_powers_dict(self): + return {S.NegativeOne: 1, S.Infinity: 1} + + +class NaN(Number, metaclass=Singleton): + """ + Not a Number. + + Explanation + =========== + + This serves as a place holder for numeric values that are indeterminate. + Most operations on NaN, produce another NaN. Most indeterminate forms, + such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` + and ``oo**0``, which all produce ``1`` (this is consistent with Python's + float). + + NaN is loosely related to floating point nan, which is defined in the + IEEE 754 floating point standard, and corresponds to the Python + ``float('nan')``. Differences are noted below. + + NaN is mathematically not equal to anything else, even NaN itself. This + explains the initially counter-intuitive results with ``Eq`` and ``==`` in + the examples below. + + NaN is not comparable so inequalities raise a TypeError. This is in + contrast with floating point nan where all inequalities are false. + + NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported + as ``nan``. + + Examples + ======== + + >>> from sympy import nan, S, oo, Eq + >>> nan is S.NaN + True + >>> oo - oo + nan + >>> nan + 1 + nan + >>> Eq(nan, nan) # mathematical equality + False + >>> nan == nan # structural equality + True + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/NaN + + """ + is_commutative = True + is_extended_real = None + is_real = None + is_rational = None + is_algebraic = None + is_transcendental = None + is_integer = None + is_comparable = False + is_finite = None + is_zero = None + is_prime = None + is_positive = None + is_negative = None + is_number = True + + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + def _latex(self, printer): + return r"\text{NaN}" + + def __neg__(self): + return self + + @_sympifyit('other', NotImplemented) + def __add__(self, other): + return self + + @_sympifyit('other', NotImplemented) + def __sub__(self, other): + return self + + @_sympifyit('other', NotImplemented) + def __mul__(self, other): + return self + + @_sympifyit('other', NotImplemented) + def __truediv__(self, other): + return self + + def floor(self): + return self + + def ceiling(self): + return self + + def _as_mpf_val(self, prec): + return _mpf_nan + + def __hash__(self): + return super().__hash__() + + def __eq__(self, other): + # NaN is structurally equal to another NaN + return other is S.NaN + + def __ne__(self, other): + return other is not S.NaN + + # Expr will _sympify and raise TypeError + __gt__ = Expr.__gt__ + __ge__ = Expr.__ge__ + __lt__ = Expr.__lt__ + __le__ = Expr.__le__ + +nan = S.NaN + +@dispatch(NaN, Expr) # type:ignore +def _eval_is_eq(a, b): # noqa:F811 + return False + + +class ComplexInfinity(AtomicExpr, metaclass=Singleton): + r"""Complex infinity. + + Explanation + =========== + + In complex analysis the symbol `\tilde\infty`, called "complex + infinity", represents a quantity with infinite magnitude, but + undetermined complex phase. + + ComplexInfinity is a singleton, and can be accessed by + ``S.ComplexInfinity``, or can be imported as ``zoo``. + + Examples + ======== + + >>> from sympy import zoo + >>> zoo + 42 + zoo + >>> 42/zoo + 0 + >>> zoo + zoo + nan + >>> zoo*zoo + zoo + + See Also + ======== + + Infinity + """ + + is_commutative = True + is_infinite = True + is_number = True + is_prime = False + is_complex = False + is_extended_real = False + + kind = NumberKind + + __slots__ = () + + def __new__(cls): + return AtomicExpr.__new__(cls) + + def _latex(self, printer): + return r"\tilde{\infty}" + + @staticmethod + def __abs__(): + return S.Infinity + + def floor(self): + return self + + def ceiling(self): + return self + + @staticmethod + def __neg__(): + return S.ComplexInfinity + + def _eval_power(self, expt): + if expt is S.ComplexInfinity: + return S.NaN + + if isinstance(expt, Number): + if expt.is_zero: + return S.NaN + else: + if expt.is_positive: + return S.ComplexInfinity + else: + return S.Zero + + +zoo = S.ComplexInfinity + + +class NumberSymbol(AtomicExpr): + + is_commutative = True + is_finite = True + is_number = True + + __slots__ = () + + is_NumberSymbol = True + + kind = NumberKind + + def __new__(cls): + return AtomicExpr.__new__(cls) + + def approximation(self, number_cls): + """ Return an interval with number_cls endpoints + that contains the value of NumberSymbol. + If not implemented, then return None. + """ + + def _eval_evalf(self, prec): + return Float._new(self._as_mpf_val(prec), prec) + + def __eq__(self, other): + try: + other = _sympify(other) + except SympifyError: + return NotImplemented + if self is other: + return True + if other.is_Number and self.is_irrational: + return False + + return False # NumberSymbol != non-(Number|self) + + def __ne__(self, other): + return not self == other + + def __le__(self, other): + if self is other: + return S.true + return Expr.__le__(self, other) + + def __ge__(self, other): + if self is other: + return S.true + return Expr.__ge__(self, other) + + def __int__(self): + # subclass with appropriate return value + raise NotImplementedError + + def __hash__(self): + return super().__hash__() + + +class Exp1(NumberSymbol, metaclass=Singleton): + r"""The `e` constant. + + Explanation + =========== + + The transcendental number `e = 2.718281828\ldots` is the base of the + natural logarithm and of the exponential function, `e = \exp(1)`. + Sometimes called Euler's number or Napier's constant. + + Exp1 is a singleton, and can be accessed by ``S.Exp1``, + or can be imported as ``E``. + + Examples + ======== + + >>> from sympy import exp, log, E + >>> E is exp(1) + True + >>> log(E) + 1 + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 + """ + + is_real = True + is_positive = True + is_negative = False # XXX Forces is_negative/is_nonnegative + is_irrational = True + is_number = True + is_algebraic = False + is_transcendental = True + + __slots__ = () + + def _latex(self, printer): + return r"e" + + @staticmethod + def __abs__(): + return S.Exp1 + + def __int__(self): + return 2 + + def _as_mpf_val(self, prec): + return mpf_e(prec) + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (Integer(2), Integer(3)) + elif issubclass(number_cls, Rational): + pass + + def _eval_power(self, expt): + if global_parameters.exp_is_pow: + return self._eval_power_exp_is_pow(expt) + else: + from sympy.functions.elementary.exponential import exp + return exp(expt) + + def _eval_power_exp_is_pow(self, arg): + if arg.is_Number: + if arg is oo: + return oo + elif arg == -oo: + return S.Zero + from sympy.functions.elementary.exponential import log + if isinstance(arg, log): + return arg.args[0] + + # don't autoexpand Pow or Mul (see the issue 3351): + elif not arg.is_Add: + Ioo = I*oo + if arg in [Ioo, -Ioo]: + return nan + + coeff = arg.coeff(pi*I) + if coeff: + if (2*coeff).is_integer: + if coeff.is_even: + return S.One + elif coeff.is_odd: + return S.NegativeOne + elif (coeff + S.Half).is_even: + return -I + elif (coeff + S.Half).is_odd: + return I + elif coeff.is_Rational: + ncoeff = coeff % 2 # restrict to [0, 2pi) + if ncoeff > 1: # restrict to (-pi, pi] + ncoeff -= 2 + if ncoeff != coeff: + return S.Exp1**(ncoeff*S.Pi*S.ImaginaryUnit) + + # Warning: code in risch.py will be very sensitive to changes + # in this (see DifferentialExtension). + + # look for a single log factor + + coeff, terms = arg.as_coeff_Mul() + + # but it can't be multiplied by oo + if coeff in (oo, -oo): + return + + coeffs, log_term = [coeff], None + for term in Mul.make_args(terms): + if isinstance(term, log): + if log_term is None: + log_term = term.args[0] + else: + return + elif term.is_comparable: + coeffs.append(term) + else: + return + + return log_term**Mul(*coeffs) if log_term else None + elif arg.is_Add: + out = [] + add = [] + argchanged = False + for a in arg.args: + if a is S.One: + add.append(a) + continue + newa = self**a + if isinstance(newa, Pow) and newa.base is self: + if newa.exp != a: + add.append(newa.exp) + argchanged = True + else: + add.append(a) + else: + out.append(newa) + if out or argchanged: + return Mul(*out)*Pow(self, Add(*add), evaluate=False) + elif arg.is_Matrix: + return arg.exp() + + def _eval_rewrite_as_sin(self, **kwargs): + from sympy.functions.elementary.trigonometric import sin + return sin(I + S.Pi/2) - I*sin(I) + + def _eval_rewrite_as_cos(self, **kwargs): + from sympy.functions.elementary.trigonometric import cos + return cos(I) + I*cos(I + S.Pi/2) + +E = S.Exp1 + + +class Pi(NumberSymbol, metaclass=Singleton): + r"""The `\pi` constant. + + Explanation + =========== + + The transcendental number `\pi = 3.141592654\ldots` represents the ratio + of a circle's circumference to its diameter, the area of the unit circle, + the half-period of trigonometric functions, and many other things + in mathematics. + + Pi is a singleton, and can be accessed by ``S.Pi``, or can + be imported as ``pi``. + + Examples + ======== + + >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol + >>> S.Pi + pi + >>> pi > 3 + True + >>> pi.is_irrational + True + >>> x = Symbol('x') + >>> sin(x + 2*pi) + sin(x) + >>> integrate(exp(-x**2), (x, -oo, oo)) + sqrt(pi) + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Pi + """ + + is_real = True + is_positive = True + is_negative = False + is_irrational = True + is_number = True + is_algebraic = False + is_transcendental = True + + __slots__ = () + + def _latex(self, printer): + return r"\pi" + + @staticmethod + def __abs__(): + return S.Pi + + def __int__(self): + return 3 + + def _as_mpf_val(self, prec): + return mpf_pi(prec) + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (Integer(3), Integer(4)) + elif issubclass(number_cls, Rational): + return (Rational(223, 71, 1), Rational(22, 7, 1)) + +pi = S.Pi + + +class GoldenRatio(NumberSymbol, metaclass=Singleton): + r"""The golden ratio, `\phi`. + + Explanation + =========== + + `\phi = \frac{1 + \sqrt{5}}{2}` is an algebraic number. Two quantities + are in the golden ratio if their ratio is the same as the ratio of + their sum to the larger of the two quantities, i.e. their maximum. + + GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. + + Examples + ======== + + >>> from sympy import S + >>> S.GoldenRatio > 1 + True + >>> S.GoldenRatio.expand(func=True) + 1/2 + sqrt(5)/2 + >>> S.GoldenRatio.is_irrational + True + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Golden_ratio + """ + + is_real = True + is_positive = True + is_negative = False + is_irrational = True + is_number = True + is_algebraic = True + is_transcendental = False + + __slots__ = () + + def _latex(self, printer): + return r"\phi" + + def __int__(self): + return 1 + + def _as_mpf_val(self, prec): + # XXX track down why this has to be increased + rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) + return mpf_norm(rv, prec) + + def _eval_expand_func(self, **hints): + from sympy.functions.elementary.miscellaneous import sqrt + return S.Half + S.Half*sqrt(5) + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (S.One, Rational(2)) + elif issubclass(number_cls, Rational): + pass + + _eval_rewrite_as_sqrt = _eval_expand_func + + +class TribonacciConstant(NumberSymbol, metaclass=Singleton): + r"""The tribonacci constant. + + Explanation + =========== + + The tribonacci numbers are like the Fibonacci numbers, but instead + of starting with two predetermined terms, the sequence starts with + three predetermined terms and each term afterwards is the sum of the + preceding three terms. + + The tribonacci constant is the ratio toward which adjacent tribonacci + numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, + and also satisfies the equation `x + x^{-3} = 2`. + + TribonacciConstant is a singleton, and can be accessed + by ``S.TribonacciConstant``. + + Examples + ======== + + >>> from sympy import S + >>> S.TribonacciConstant > 1 + True + >>> S.TribonacciConstant.expand(func=True) + 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 + >>> S.TribonacciConstant.is_irrational + True + >>> S.TribonacciConstant.n(20) + 1.8392867552141611326 + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers + """ + + is_real = True + is_positive = True + is_negative = False + is_irrational = True + is_number = True + is_algebraic = True + is_transcendental = False + + __slots__ = () + + def _latex(self, printer): + return r"\text{TribonacciConstant}" + + def __int__(self): + return 1 + + def _eval_evalf(self, prec): + rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) + return Float(rv, precision=prec) + + def _eval_expand_func(self, **hints): + from sympy.functions.elementary.miscellaneous import cbrt, sqrt + return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (S.One, Rational(2)) + elif issubclass(number_cls, Rational): + pass + + _eval_rewrite_as_sqrt = _eval_expand_func + + +class EulerGamma(NumberSymbol, metaclass=Singleton): + r"""The Euler-Mascheroni constant. + + Explanation + =========== + + `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical + constant recurring in analysis and number theory. It is defined as the + limiting difference between the harmonic series and the + natural logarithm: + + .. math:: \gamma = \lim\limits_{n\to\infty} + \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) + + EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. + + Examples + ======== + + >>> from sympy import S + >>> S.EulerGamma.is_irrational + >>> S.EulerGamma > 0 + True + >>> S.EulerGamma > 1 + False + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant + """ + + is_real = True + is_positive = True + is_negative = False + is_irrational = None + is_number = True + + __slots__ = () + + def _latex(self, printer): + return r"\gamma" + + def __int__(self): + return 0 + + def _as_mpf_val(self, prec): + # XXX track down why this has to be increased + v = mlib.libhyper.euler_fixed(prec + 10) + rv = mlib.from_man_exp(v, -prec - 10) + return mpf_norm(rv, prec) + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (S.Zero, S.One) + elif issubclass(number_cls, Rational): + return (S.Half, Rational(3, 5, 1)) + + +class Catalan(NumberSymbol, metaclass=Singleton): + r"""Catalan's constant. + + Explanation + =========== + + $G = 0.91596559\ldots$ is given by the infinite series + + .. math:: G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} + + Catalan is a singleton, and can be accessed by ``S.Catalan``. + + Examples + ======== + + >>> from sympy import S + >>> S.Catalan.is_irrational + >>> S.Catalan > 0 + True + >>> S.Catalan > 1 + False + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant + """ + + is_real = True + is_positive = True + is_negative = False + is_irrational = None + is_number = True + + __slots__ = () + + def __int__(self): + return 0 + + def _as_mpf_val(self, prec): + # XXX track down why this has to be increased + v = mlib.catalan_fixed(prec + 10) + rv = mlib.from_man_exp(v, -prec - 10) + return mpf_norm(rv, prec) + + def approximation_interval(self, number_cls): + if issubclass(number_cls, Integer): + return (S.Zero, S.One) + elif issubclass(number_cls, Rational): + return (Rational(9, 10, 1), S.One) + + def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): + if (k_sym is not None) or (symbols is not None): + return self + from .symbol import Dummy + from sympy.concrete.summations import Sum + k = Dummy('k', integer=True, nonnegative=True) + return Sum(S.NegativeOne**k / (2*k+1)**2, (k, 0, S.Infinity)) + + def _latex(self, printer): + return "G" + + +class ImaginaryUnit(AtomicExpr, metaclass=Singleton): + r"""The imaginary unit, `i = \sqrt{-1}`. + + I is a singleton, and can be accessed by ``S.I``, or can be + imported as ``I``. + + Examples + ======== + + >>> from sympy import I, sqrt + >>> sqrt(-1) + I + >>> I*I + -1 + >>> 1/I + -I + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Imaginary_unit + """ + + is_commutative = True + is_imaginary = True + is_finite = True + is_number = True + is_algebraic = True + is_transcendental = False + + kind = NumberKind + + __slots__ = () + + def _latex(self, printer): + return printer._settings['imaginary_unit_latex'] + + @staticmethod + def __abs__(): + return S.One + + def _eval_evalf(self, prec): + return self + + def _eval_conjugate(self): + return -S.ImaginaryUnit + + def _eval_power(self, expt): + """ + b is I = sqrt(-1) + e is symbolic object but not equal to 0, 1 + + I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal + I**0 mod 4 -> 1 + I**1 mod 4 -> I + I**2 mod 4 -> -1 + I**3 mod 4 -> -I + """ + + if isinstance(expt, Integer): + expt = expt % 4 + if expt == 0: + return S.One + elif expt == 1: + return S.ImaginaryUnit + elif expt == 2: + return S.NegativeOne + elif expt == 3: + return -S.ImaginaryUnit + if isinstance(expt, Rational): + i, r = divmod(expt, 2) + rv = Pow(S.ImaginaryUnit, r, evaluate=False) + if i % 2: + return Mul(S.NegativeOne, rv, evaluate=False) + return rv + + def as_base_exp(self): + return S.NegativeOne, S.Half + + @property + def _mpc_(self): + return (Float(0)._mpf_, Float(1)._mpf_) + + +I = S.ImaginaryUnit + + +def equal_valued(x, y): + """Compare expressions treating plain floats as rationals. + + Examples + ======== + + >>> from sympy import S, symbols, Rational, Float + >>> from sympy.core.numbers import equal_valued + >>> equal_valued(1, 2) + False + >>> equal_valued(1, 1) + True + + In SymPy expressions with Floats compare unequal to corresponding + expressions with rationals: + + >>> x = symbols('x') + >>> x**2 == x**2.0 + False + + However an individual Float compares equal to a Rational: + + >>> Rational(1, 2) == Float(0.5) + True + + In a future version of SymPy this might change so that Rational and Float + compare unequal. This function provides the behavior currently expected of + ``==`` so that it could still be used if the behavior of ``==`` were to + change in future. + + >>> equal_valued(1, 1.0) # Float vs Rational + True + >>> equal_valued(S(1).n(3), S(1).n(5)) # Floats of different precision + True + + Explanation + =========== + + In future SymPy verions Float and Rational might compare unequal and floats + with different precisions might compare unequal. In that context a function + is needed that can check if a number is equal to 1 or 0 etc. The idea is + that instead of testing ``if x == 1:`` if we want to accept floats like + ``1.0`` as well then the test can be written as ``if equal_valued(x, 1):`` + or ``if equal_valued(x, 2):``. Since this function is intended to be used + in situations where one or both operands are expected to be concrete + numbers like 1 or 0 the function does not recurse through the args of any + compound expression to compare any nested floats. + + References + ========== + + .. [1] https://github.com/sympy/sympy/pull/20033 + """ + x = _sympify(x) + y = _sympify(y) + + # Handle everything except Float/Rational first + if not x.is_Float and not y.is_Float: + return x == y + elif x.is_Float and y.is_Float: + # Compare values without regard for precision + return x._mpf_ == y._mpf_ + elif x.is_Float: + x, y = y, x + if not x.is_Rational: + return False + + # Now y is Float and x is Rational. A simple approach at this point would + # just be x == Rational(y) but if y has a large exponent creating a + # Rational could be prohibitively expensive. + + sign, man, exp, _ = y._mpf_ + p, q = x.p, x.q + + if sign: + man = -man + + if exp == 0: + # y odd integer + return q == 1 and man == p + elif exp > 0: + # y even integer + if q != 1: + return False + if p.bit_length() != man.bit_length() + exp: + return False + return man << exp == p + else: + # y non-integer. Need p == man and q == 2**-exp + if p != man: + return False + neg_exp = -exp + if q.bit_length() - 1 != neg_exp: + return False + return (1 << neg_exp) == q + + +@dispatch(Tuple, Number) # type:ignore +def _eval_is_eq(self, other): # noqa: F811 + return False + +def sympify_fractions(f): + return Rational(f.numerator, f.denominator, 1) + +_sympy_converter[fractions.Fraction] = sympify_fractions + +if HAS_GMPY: + def sympify_mpz(x): + return Integer(int(x)) + + # XXX: The sympify_mpq function here was never used because it is + # overridden by the other sympify_mpq function below. Maybe it should just + # be removed or maybe it should be used for something... + def sympify_mpq(x): + return Rational(int(x.numerator), int(x.denominator)) + + _sympy_converter[type(gmpy.mpz(1))] = sympify_mpz + _sympy_converter[type(gmpy.mpq(1, 2))] = sympify_mpq + + +def sympify_mpmath_mpq(x): + p, q = x._mpq_ + return Rational(p, q, 1) + +_sympy_converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq + + +def sympify_mpmath(x): + return Expr._from_mpmath(x, x.context.prec) + +_sympy_converter[mpnumeric] = sympify_mpmath + + +def sympify_complex(a): + real, imag = list(map(sympify, (a.real, a.imag))) + return real + S.ImaginaryUnit*imag + +_sympy_converter[complex] = sympify_complex + +from .power import Pow, integer_nthroot +from .mul import Mul +Mul.identity = One() +from .add import Add +Add.identity = Zero() + +def _register_classes(): + numbers.Number.register(Number) + numbers.Real.register(Float) + numbers.Rational.register(Rational) + numbers.Integral.register(Integer) + +_register_classes() + +_illegal = (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity)