applied-ai-018 commited on
Commit
0cc6a28
·
verified ·
1 Parent(s): c08b9bf

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/__init__.cpython-310.pyc +0 -0
  2. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/flat_model_helpers.cpython-310.pyc +0 -0
  3. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_model_base.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_policy_base.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_transformer_base.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/layer_container_base.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/parameter_base.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/__init__.py +13 -0
  9. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/mlp_parameters.py +81 -0
  10. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/norm_parameters.py +22 -0
  11. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/qkv_parameters.py +115 -0
  12. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__init__.py +6 -0
  13. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/__init__.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/container.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/model.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/policy.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/container.py +129 -0
  18. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/model.py +213 -0
  19. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/__init__.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/model.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/policy.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__init__.py +6 -0
  23. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/__init__.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/container.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/model.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/policy.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/container.py +46 -0
  28. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/model.py +261 -0
  29. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/policy.py +31 -0
  30. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__init__.py +6 -0
  31. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/container.py +94 -0
  32. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/model.py +197 -0
  33. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/policy.py +30 -0
  34. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__init__.py +6 -0
  35. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/__init__.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/containers.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/model.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/policy.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/containers.py +91 -0
  40. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/model.py +199 -0
  41. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/policy.py +32 -0
  42. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__init__.py +6 -0
  43. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/__init__.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/container.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/model.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/policy.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/container.py +77 -0
  48. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/model.py +223 -0
  49. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/policy.py +30 -0
  50. venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen_v2/__init__.py +6 -0
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (638 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/flat_model_helpers.cpython-310.pyc ADDED
Binary file (8.46 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_model_base.cpython-310.pyc ADDED
Binary file (9.41 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_policy_base.cpython-310.pyc ADDED
Binary file (8.95 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/inference_transformer_base.cpython-310.pyc ADDED
Binary file (21.7 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/layer_container_base.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/__pycache__/parameter_base.cpython-310.pyc ADDED
Binary file (9.04 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .attn_output_parameters import *
7
+ from .embedding_parameters import *
8
+ from .mlp_parameters import *
9
+ from .moe_parameters import *
10
+ from .norm_parameters import *
11
+ from .qkv_parameters import *
12
+ from .unembed_parameters import *
13
+ from .invfreq_parameters import *
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/mlp_parameters.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ import torch
7
+
8
+ from ...model_implementations.parameter_base import ParameterBase
9
+ """
10
+ MLP Parameter Containers
11
+ """
12
+
13
+
14
+ class MLP1Parameter(ParameterBase):
15
+ """
16
+ First MLP projection weight container. This performs a straight pass-through to the
17
+ model implementation for transformation.
18
+ """
19
+ params: torch.Tensor
20
+
21
+ def finalize(self) -> torch.Tensor:
22
+ # NOTE(cmikeh2): If we are gated but not in the format specified below, we should trigger a permutation here.
23
+ # I am not currently aware of any models that use this format (or how we should even detect it; probably should
24
+ # just be a different param entirely, but until then we'll just assume the format is correct).
25
+ return self.inference_model.transform_mlp_1_param(self.params)
26
+
27
+
28
+ class GatedMLPParameter(ParameterBase):
29
+ """
30
+ Gated MLP projection container.
31
+ """
32
+
33
+ gate_params: torch.Tensor
34
+ """
35
+ Weight parameter for the gating matrix.
36
+ """
37
+
38
+ up_params: torch.Tensor
39
+ """
40
+ For lack of a better name, the non-gating weight parameters.
41
+ """
42
+
43
+ def finalize(self) -> torch.Tensor:
44
+ """
45
+ Our gated format (this is different from InferenceV1!) is to have the gate and activated neurons
46
+ interleaved. So if we have 4 output neurons (two effective neurons) with 4 input neurons, the finalized
47
+ parameter will look like:
48
+ [g0_0, g0_1, g0_2, g0_3]
49
+ [a0_0, a0_1, a0_2, a0_3]
50
+ [g1_0, g1_1, g1_2, g1_3]
51
+ [a1_0, a1_1, a1_2, a1_3]
52
+
53
+ As a reference, in inference v1, the format is:
54
+ [g0_0, g0_1, g0_2, g0_3]
55
+ [g1_0, g1_1, g1_2, g1_3]
56
+ [a0_0, a0_1, a0_2, a0_3]
57
+ [a1_0, a1_1, a1_2, a1_3]
58
+ """
59
+ assert self.gate_params.shape[0] == self.up_params.shape[
60
+ 0], "Gated MLP parameters must have the same number of neurons."
61
+ total_neurons = self.gate_params.shape[0] + self.up_params.shape[0]
62
+
63
+ # flip the order if even with the correct tokenizer we get wrong output
64
+ #fused_param = torch.cat([self.up_params, self.gate_params], dim=-1).reshape(total_neurons, -1)
65
+ fused_param = torch.cat([self.gate_params, self.up_params], dim=-1).reshape(total_neurons, -1)
66
+ return self.inference_model.transform_mlp_1_param(fused_param)
67
+
68
+
69
+ class MLP2Parameter(ParameterBase):
70
+ """
71
+ Second MLP projection weight container. This performs a straight pass-through to the
72
+ model implementation for transformation.
73
+ """
74
+
75
+ params: torch.Tensor
76
+ """
77
+ Full weight parameter.
78
+ """
79
+
80
+ def finalize(self) -> torch.Tensor:
81
+ return self.inference_model.transform_mlp_2_param(self.params)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/norm_parameters.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ import torch
7
+
8
+ from ...model_implementations.parameter_base import ParameterBase
9
+ """
10
+ Common Attention Output Parameter Patterns
11
+ """
12
+
13
+
14
+ class NormParameter(ParameterBase):
15
+ """
16
+ Simple normalization container.
17
+ """
18
+
19
+ params: torch.Tensor
20
+
21
+ def finalize(self) -> torch.Tensor:
22
+ return self.inference_model.transform_norm_param(self.params)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/common_parameters/qkv_parameters.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ import torch
7
+
8
+ from ...model_implementations.parameter_base import ParameterBase
9
+ """
10
+ Common QKV Parameter Patterns
11
+ """
12
+
13
+
14
+ class FusedQKVParameter(ParameterBase):
15
+ """
16
+ Traditional fused QKV parameters for QKV projection. This is functionally
17
+ a direct copy.
18
+
19
+ src_qkv_w shape: [3 * out_features, in_features]
20
+ qkv_w shape: [3 * out_features, in_features]
21
+ """
22
+
23
+ params: torch.Tensor
24
+
25
+ def finalize(self) -> torch.Tensor:
26
+ return self.inference_model.transform_qkv_param(self.params)
27
+
28
+
29
+ class UnfusedQKVParameter(ParameterBase):
30
+ """
31
+ QKV parameter container for unfused QKV projection.
32
+
33
+ src_param shapes: 3 x [out_features, in_features]
34
+ dst_param shape: [3 x out_features, in_features]
35
+ """
36
+
37
+ q_params: torch.Tensor
38
+
39
+ k_params: torch.Tensor
40
+
41
+ v_params: torch.Tensor
42
+
43
+ def finalize(self):
44
+ fused_param = torch.cat([self.q_params, self.k_params, self.v_params], dim=0)
45
+ return self.inference_model.transform_qkv_param(fused_param)
46
+
47
+
48
+ def megatron_qkv_reshape(param: torch.Tensor, head_size: int, n_heads: int) -> torch.Tensor:
49
+ assert param.shape[0] == 3 * n_heads * head_size
50
+
51
+ all_heads = torch.chunk(param, chunks=3 * n_heads, dim=0)
52
+ q_heads = all_heads[::3]
53
+ k_heads = all_heads[1::3]
54
+ v_heads = all_heads[2::3]
55
+ return torch.cat([q_heads, k_heads, v_heads], dim=0)
56
+
57
+
58
+ class MegatronQKVParameter(ParameterBase):
59
+ """
60
+ QKV parameter container for Megatron-style QKV projection. Megatron stores the parameter
61
+ as [n_heads, 3, head_size, in_features] whereas our inference system is built around
62
+ [3, n_heads, head_size, in_features]. This container handles the conversion.
63
+
64
+ Note: this container expects the model implementation to implement properties for
65
+ `head_size` and `n_heads`.
66
+
67
+ src_qkv_w shape: [3 * out_features, in_features]
68
+ qkv_w shape: [3 * out_features, in_features]
69
+ """
70
+
71
+ params: torch.Tensor
72
+
73
+ def finalize(self) -> torch.Tensor:
74
+ head_size = self.inference_model.head_size
75
+ n_heads = self.inference_model.n_heads
76
+
77
+ transposed_param = megatron_qkv_reshape(self.params, head_size, n_heads)
78
+ return self.inference_model.transform_qkv_param(transposed_param)
79
+
80
+
81
+ def transform_gqa_megatron(src_param: torch.Tensor, head_size: int, n_q_heads: int, n_kv_heads: int) -> torch.Tensor:
82
+ assert src_param.shape[0] == (2 * n_kv_heads + n_q_heads) * head_size
83
+
84
+ head_ratio = n_q_heads // n_kv_heads
85
+
86
+ # Reshape to get the groups as the leading dimension
87
+ groups_leading_view = src_param.reshape(n_kv_heads, 2 + head_ratio, head_size, -1)
88
+ q_heads = groups_leading_view[:, :head_ratio, :, :].reshape(-1, groups_leading_view.shape[-1])
89
+ k_heads = groups_leading_view[:, head_ratio, :, :].reshape(-1, groups_leading_view.shape[-1])
90
+ v_heads = groups_leading_view[:, head_ratio + 1, :, :].reshape(-1, groups_leading_view.shape[-1])
91
+ # Squeeze will remove extra dimension for bias
92
+ return torch.cat([q_heads, k_heads, v_heads], dim=0).squeeze()
93
+
94
+
95
+ class GQAMegatronQKVParameter(ParameterBase):
96
+ """
97
+ QKV parameter for Megatron-style QKV projection with GQA-style QKV projection. In this
98
+ storage format each of the groups is stored consecutively, so there will be multiple q_heads,
99
+ then one k head, and one v head.
100
+
101
+ Note: this container expects the model implementation to implement properties for
102
+ `head_size`, `n_q_heads`, and `n_kv_heads`.
103
+
104
+ src_qkv_w shape: [(2 * n_kv_heads + n_q_heads) * head_size, in_features]
105
+ qkv_w shape: [(2 * n_kv_heads + n_q_heads) * head_size, in_features]
106
+ """
107
+
108
+ params: torch.Tensor
109
+
110
+ def finalize(self) -> torch.Tensor:
111
+ head_size = self.inference_model.head_size
112
+ n_q_heads = self.inference_model.n_heads_q
113
+ n_kv_heads = self.inference_model.n_heads_kv
114
+ transposed_param = transform_gqa_megatron(self.params, head_size, n_q_heads, n_kv_heads)
115
+ return self.inference_model.transform_qkv_param(transposed_param)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import FalconPolicy
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (262 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/container.cpython-310.pyc ADDED
Binary file (2.3 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/model.cpython-310.pyc ADDED
Binary file (7.02 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/__pycache__/policy.cpython-310.pyc ADDED
Binary file (1.86 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/container.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+
8
+ from ..common_parameters import *
9
+ from ..layer_container_base import LayerContainer
10
+ '''
11
+ # HF Falcon 7b model looks like this:
12
+
13
+ FalconForCausalLM(
14
+ (transformer): FalconModel(
15
+ (word_embeddings): Embedding(65024, 4544)
16
+ (h): ModuleList(
17
+ (0-31): 32 x FalconDecoderLayer(
18
+ (self_attention): FalconAttention(
19
+ (maybe_rotary): FalconRotaryEmbedding()
20
+ (query_key_value): FalconLinear(in_features=4544, out_features=4672, bias=False)
21
+ (dense): FalconLinear(in_features=4544, out_features=4544, bias=False)
22
+ (attention_dropout): Dropout(p=0.0, inplace=False)
23
+ )
24
+ (mlp): FalconMLP(
25
+ (dense_h_to_4h): FalconLinear(in_features=4544, out_features=18176, bias=False)
26
+ (act): GELU(approximate='none')
27
+ (dense_4h_to_h): FalconLinear(in_features=18176, out_features=4544, bias=False)
28
+ )
29
+ (input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
30
+ )
31
+ )
32
+ (ln_f): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
33
+ )
34
+ (lm_head): Linear(in_features=4544, out_features=65024, bias=False)
35
+ )
36
+ '''
37
+
38
+
39
+ class FalconTransformerContainer(LayerContainer):
40
+ """
41
+ Transformer layer container for the Falcon model.
42
+ """
43
+ qkv_w: FusedQKVParameter
44
+ attn_out_w: AttentionOutputParameter
45
+ mlp_1_w: MLP1Parameter
46
+ mlp_2_w: MLP2Parameter
47
+ ln_attn_gamma: NormParameter
48
+ ln_attn_beta: NormParameter
49
+
50
+ PARAM_MAPPING = {
51
+ "self_attention.query_key_value.weight": "qkv_w.params",
52
+ "self_attention.dense.weight": "attn_out_w.params",
53
+ "mlp.dense_h_to_4h.weight": "mlp_1_w.params",
54
+ "mlp.dense_4h_to_h.weight": "mlp_2_w.params",
55
+ "input_layernorm.weight": "ln_attn_gamma.params",
56
+ "input_layernorm.bias": "ln_attn_beta.params",
57
+ }
58
+
59
+
60
+ class FalconNonTransformerContainer(LayerContainer):
61
+ """
62
+ Non-Transformer layer container for the Falcon model.
63
+ """
64
+ word_emb: EmbeddingParameter
65
+ word_unembed: UnembedParameter
66
+ final_norm_gamma: NormParameter
67
+ final_norm_beta: NormParameter
68
+
69
+ PARAM_MAPPING = {
70
+ "transformer.word_embeddings.weight": "word_emb.params",
71
+ "transformer.ln_f.weight": "final_norm_gamma.params",
72
+ "transformer.ln_f.bias": "final_norm_beta.params",
73
+ "lm_head.weight": "word_unembed.params",
74
+ }
75
+
76
+
77
+ '''
78
+ # HF Falcon 40b model looks like this:
79
+
80
+ FalconForCausalLM(
81
+ (transformer): FalconModel(
82
+ (word_embeddings): Embedding(65024, 8192)
83
+ (h): ModuleList(
84
+ (0-59): 60 x FalconDecoderLayer(
85
+ (self_attention): FalconAttention(
86
+ (maybe_rotary): FalconRotaryEmbedding()
87
+ (query_key_value): FalconLinear(in_features=8192, out_features=9216, bias=False)
88
+ (dense): FalconLinear(in_features=8192, out_features=8192, bias=False)
89
+ (attention_dropout): Dropout(p=0.0, inplace=False)
90
+ )
91
+ (mlp): FalconMLP(
92
+ (dense_h_to_4h): FalconLinear(in_features=8192, out_features=32768, bias=False)
93
+ (act): GELU(approximate='none')
94
+ (dense_4h_to_h): FalconLinear(in_features=32768, out_features=8192, bias=False)
95
+ )
96
+ (ln_attn): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
97
+ (ln_mlp): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
98
+ )
99
+ )
100
+ (ln_f): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
101
+ )
102
+ (lm_head): Linear(in_features=8192, out_features=65024, bias=False)
103
+ )
104
+ '''
105
+
106
+
107
+ class FalconNewArchTransformerContainer(LayerContainer):
108
+ """
109
+ Transformer layer container for the Falcon model.
110
+ """
111
+ qkv_w: GQAMegatronQKVParameter
112
+ attn_out_w: AttentionOutputParameter
113
+ mlp_1_w: MLP1Parameter
114
+ mlp_2_w: MLP2Parameter
115
+ ln_attn_gamma: NormParameter
116
+ ln_attn_beta: NormParameter
117
+ ln_mlp_gamma: NormParameter
118
+ ln_mlp_beta: NormParameter
119
+
120
+ PARAM_MAPPING = {
121
+ "self_attention.query_key_value.weight": "qkv_w.params",
122
+ "self_attention.dense.weight": "attn_out_w.params",
123
+ "mlp.dense_h_to_4h.weight": "mlp_1_w.params",
124
+ "mlp.dense_4h_to_h.weight": "mlp_2_w.params",
125
+ "ln_attn.weight": "ln_attn_gamma.params",
126
+ "ln_attn.bias": "ln_attn_beta.params",
127
+ "ln_mlp.weight": "ln_mlp_gamma.params",
128
+ "ln_mlp.bias": "ln_mlp_beta.params",
129
+ }
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/falcon/model.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Iterable, Optional, Tuple
7
+
8
+ import torch
9
+
10
+ import deepspeed.comm as dist
11
+
12
+ from ...allocator import empty_from
13
+ from ...inference_utils import ActivationType, DtypeEnum
14
+ from .. import *
15
+ from ...modules.configs import *
16
+ from ...modules.interfaces import *
17
+ from ...ragged import RaggedBatchWrapper
18
+
19
+ from .container import FalconNonTransformerContainer, FalconTransformerContainer
20
+
21
+
22
+ class FalconInferenceModel(DSTransformerModelBase):
23
+ """
24
+ Inference model implementation for ragged batching for Llama-2 models.
25
+ """
26
+
27
+ _non_transformer: Optional[FalconNonTransformerContainer]
28
+ """
29
+ Embed + unembed container. Specializing the type annotation.
30
+ """
31
+
32
+ _transformer: Optional[Iterable[FalconTransformerContainer]]
33
+ """
34
+ Per-layer transformer container. Specializing the type annotation.
35
+ """
36
+ """
37
+ Properties inherited from `DSInferenceModelBase`
38
+ """
39
+
40
+ @property
41
+ def max_sequence_length(self) -> int:
42
+ return self._config.max_seq_length
43
+
44
+ """
45
+ Properties inherited from `DSTransformerModelBase`
46
+ """
47
+
48
+ @property
49
+ def num_layers(self) -> int:
50
+ return self._config.num_hidden_layers
51
+
52
+ @property
53
+ def model_dim(self) -> int:
54
+ return self._config.hidden_size
55
+
56
+ @property
57
+ def vocab_size(self) -> int:
58
+ return self._config.vocab_size
59
+
60
+ @property
61
+ def head_size(self) -> int:
62
+ return self.model_dim // self.n_heads
63
+
64
+ @property
65
+ def n_heads(self) -> int:
66
+ return self._config.num_attention_heads
67
+
68
+ @property
69
+ def intermediate_dim(self) -> int:
70
+ return 4 * self._config.hidden_size
71
+
72
+ @property
73
+ def n_heads_kv(self) -> int:
74
+ return self._config.num_kv_heads if (self._config.new_decoder_architecture
75
+ or not self._config.multi_query) else 1
76
+
77
+ @property
78
+ def activation_dtype(self) -> DtypeEnum:
79
+ if self._config.torch_dtype == torch.float16:
80
+ return DtypeEnum.fp16
81
+ elif self._config.torch_dtype == torch.bfloat16:
82
+ return DtypeEnum.bf16
83
+ else:
84
+ raise NotImplementedError("Only fp16 and bf16 are supported")
85
+
86
+ @property
87
+ def mlp_activation_fn(self) -> ActivationType:
88
+ return ActivationType.GELU
89
+
90
+ @property
91
+ def norm_type(self) -> NormTypeEnum:
92
+ return NormTypeEnum.LayerNorm
93
+
94
+ @property
95
+ def positional_embedding_type(self) -> PositionalEmbeddingType:
96
+ return PositionalEmbeddingType.rotate_half
97
+
98
+ @property
99
+ def positional_embedding_config(self) -> RotateHalfConfig:
100
+ """
101
+ The positional embedding configuration for the model.
102
+ """
103
+ return RotateHalfConfig()
104
+
105
+ """
106
+ Forward implementations
107
+ """
108
+
109
+ def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
110
+ """
111
+ Performs the embedding lookup prior to running the transformer of the model.
112
+
113
+ Arguments:
114
+ ragged_batch (RaggedBatchWrapper): The batch to embed.
115
+
116
+ Returns:
117
+ torch.Tensor: The embedded batch.
118
+ """
119
+ embed = self.embed(ragged_batch, self._non_transformer.word_emb)
120
+
121
+ if embed.shape[-1] != self.model_dim:
122
+ raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
123
+
124
+ return embed
125
+
126
+ def _forward_transformer_layer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
127
+ ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
128
+ """
129
+ Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
130
+ optimization to fuse the layer norm of the next layer into the current layer.
131
+
132
+ Arguments:
133
+ layer_idx (int): The index of the layer to execute.
134
+ residual (torch.Tensor): The residual tensor from the previous layer.
135
+ hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
136
+ hidden states after pre normalization.
137
+ ragged_batch_info (RaggedBatchWrapper): The batch metadata.
138
+ """
139
+ assert self.config.parallel_attn, "Only parallel attention implementation is supported"
140
+
141
+ cur_params = self._transformer[layer_idx]
142
+ kv_cache = self.state_manager.get_cache(layer_idx)
143
+
144
+ attn_ln_out = hidden_states
145
+ attn_hidden_state = self.qkv(attn_ln_out, cur_params.qkv_w, b=None)
146
+ attn_hidden_state = self.attn(attn_hidden_state, kv_cache, ragged_batch_info)
147
+ attention_output = self.attn_out(attn_hidden_state, cur_params.attn_out_w, b=None)
148
+
149
+ if self.config.new_decoder_architecture:
150
+ residual, mlp_ln_out = self.norm(residual,
151
+ None,
152
+ gamma=cur_params.ln_mlp_gamma,
153
+ beta=cur_params.ln_mlp_beta)
154
+ else:
155
+ mlp_ln_out = hidden_states
156
+
157
+ mlp_hidden_state = self.mlp_1(mlp_ln_out, cur_params.mlp_1_w, b=None)
158
+ mlp_output = self.mlp_2(mlp_hidden_state, cur_params.mlp_2_w, b=None)
159
+
160
+ mlp_output.add_(attention_output)
161
+
162
+ if self.tp_size > 1:
163
+ dist.all_reduce(mlp_output, group=self._base_mp_group)
164
+
165
+ if layer_idx != self.num_layers - 1:
166
+ next_params = self._transformer[layer_idx + 1]
167
+ residual, mlp_output = self.norm(residual,
168
+ mlp_output,
169
+ next_params.ln_attn_gamma,
170
+ beta=next_params.ln_attn_beta)
171
+ else:
172
+ # On last layer, we just need to perform the residual add. Adding into the residual
173
+ # here is safe.
174
+ residual.add_(mlp_output)
175
+
176
+ return residual, mlp_output
177
+
178
+ def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
179
+ """
180
+ Performs unembedding of the hidden states to logits. This will only sample the final
181
+ token of each sequence.
182
+ """
183
+ logits = self.unembed(hidden_states,
184
+ self._non_transformer.word_unembed,
185
+ ragged_batch_info,
186
+ gamma=self._non_transformer.final_norm_gamma,
187
+ beta=self._non_transformer.final_norm_beta)
188
+
189
+ if self.tp_size > 1:
190
+ comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
191
+ full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
192
+
193
+ dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
194
+
195
+ full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
196
+
197
+ return full_logits
198
+ else:
199
+ return logits
200
+
201
+ def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
202
+ residual = self._forward_embed(wrapped_batch)
203
+
204
+ residual, hidden_states = self.norm(residual,
205
+ None,
206
+ gamma=self._transformer[0].ln_attn_gamma,
207
+ beta=self._transformer[0].ln_attn_beta)
208
+
209
+ for layer_idx in range(self.num_layers):
210
+ residual, hidden_states = self._forward_transformer_layer(layer_idx, residual, hidden_states,
211
+ wrapped_batch)
212
+
213
+ return self._forward_unembed(residual, wrapped_batch)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (264 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/model.cpython-310.pyc ADDED
Binary file (6.84 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/llama_v2/__pycache__/policy.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import MixtralPolicy
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (264 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/container.cpython-310.pyc ADDED
Binary file (1.88 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/model.cpython-310.pyc ADDED
Binary file (8.84 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/__pycache__/policy.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/container.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+
8
+ from deepspeed.inference.v2.model_implementations.common_parameters import *
9
+ from deepspeed.inference.v2.model_implementations.layer_container_base import LayerContainer
10
+
11
+
12
+ class MixtralTransformerContainer(LayerContainer):
13
+
14
+ qkv_w: UnfusedQKVParameter
15
+ attn_out_w: AttentionOutputParameter
16
+ moe_gate: MoEGatingWeightParameter
17
+ moe_mlp_1: UnfusedMoEGatedMLPParameter
18
+ moe_mlp_2: UnfusedMoEMLP2Parameter
19
+ attn_norm_gamma: NormParameter
20
+ mlp_norm_gamma: NormParameter
21
+
22
+ PARAM_MAPPING = {
23
+ "input_layernorm.weight": "attn_norm_gamma.params",
24
+ "post_attention_layernorm.weight": "mlp_norm_gamma.params",
25
+ "self_attn.q_proj.weight": "qkv_w.q_params",
26
+ "self_attn.k_proj.weight": "qkv_w.k_params",
27
+ "self_attn.v_proj.weight": "qkv_w.v_params",
28
+ "self_attn.o_proj.weight": "attn_out_w.params",
29
+ "block_sparse_moe.gate.weight": "moe_gate.params",
30
+ "block_sparse_moe.experts.*.w1.weight": "moe_mlp_1.gating_experts",
31
+ "block_sparse_moe.experts.*.w3.weight": "moe_mlp_1.up_experts",
32
+ "block_sparse_moe.experts.*.w2.weight": "moe_mlp_2.experts",
33
+ }
34
+
35
+
36
+ class MixtralNonTransformerContainer(LayerContainer):
37
+
38
+ word_emb: EmbeddingParameter
39
+ word_unembed: UnembedParameter
40
+ final_norm: NormParameter
41
+
42
+ PARAM_MAPPING = {
43
+ "model.embed_tokens.weight": "word_emb.params",
44
+ "lm_head.weight": "word_unembed.params",
45
+ "model.norm.weight": "final_norm.params",
46
+ }
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/model.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Iterable, Optional, Tuple
7
+
8
+ import torch
9
+
10
+ import deepspeed.comm as dist
11
+
12
+ from ...allocator import empty_from
13
+ from ...config_v2 import RaggedInferenceEngineConfig
14
+ from ...inference_utils import ActivationType, DtypeEnum
15
+ from ...model_implementations import *
16
+ from ...modules.configs import *
17
+ from ...modules.interfaces import *
18
+ from ...ragged import RaggedBatchWrapper
19
+ from ..inference_model_base import (
20
+ DSModelImplementationConfig,
21
+ MPType,
22
+ )
23
+
24
+ from .container import MixtralNonTransformerContainer, MixtralTransformerContainer
25
+
26
+
27
+ class MixtralInferenceModel(DSMoETransformerModelBase):
28
+ """
29
+ Inference model implementation for Mixtral models.
30
+ """
31
+
32
+ _non_transformer: Optional[MixtralNonTransformerContainer]
33
+ """
34
+ Embed + unembed container. Specializing the type annotation.
35
+ """
36
+
37
+ _transformer: Optional[Iterable[MixtralTransformerContainer]]
38
+ """
39
+ Per-layer transformer container. Specializing the type annotation.
40
+ """
41
+ """
42
+ Properties ineherited from `DSInferenceModelBase`
43
+ """
44
+
45
+ @property
46
+ def max_sequence_length(self) -> int:
47
+ return self._config.max_position_embeddings
48
+
49
+ """
50
+ Properties ineherited from `DSTransformerModelBase`
51
+ """
52
+
53
+ @property
54
+ def num_layers(self) -> int:
55
+ return self._config.num_hidden_layers
56
+
57
+ @property
58
+ def model_dim(self) -> int:
59
+ return self._config.hidden_size
60
+
61
+ @property
62
+ def vocab_size(self) -> int:
63
+ return self._config.vocab_size
64
+
65
+ @property
66
+ def head_size(self) -> int:
67
+ return self.model_dim // self.n_heads
68
+
69
+ @property
70
+ def n_heads(self) -> int:
71
+ return self._config.num_attention_heads
72
+
73
+ @property
74
+ def intermediate_dim(self) -> int:
75
+ return self._config.intermediate_size
76
+
77
+ @property
78
+ def n_heads_kv(self) -> int:
79
+ return self._config.num_key_value_heads
80
+
81
+ @property
82
+ def activation_dtype(self) -> DtypeEnum:
83
+ if self._config.torch_dtype == torch.float16:
84
+ return DtypeEnum.fp16
85
+ elif self._config.torch_dtype == torch.bfloat16:
86
+ return DtypeEnum.bf16
87
+ else:
88
+ raise NotImplementedError("Only fp16 and bf16 are supported")
89
+
90
+ @property
91
+ def mlp_activation_fn(self) -> ActivationType:
92
+ activation = self._config.hidden_act.lower()
93
+ if activation == "gelu":
94
+ return ActivationType.GEGLU
95
+ elif activation == "relu":
96
+ return ActivationType.ReGLU
97
+ elif activation == "gegelu":
98
+ return ActivationType.GEGLU
99
+ elif activation == "silu":
100
+ return ActivationType.SiGLU
101
+ else:
102
+ raise NotImplementedError(f"Activation {activation} not supported")
103
+
104
+ @property
105
+ def norm_type(self) -> NormTypeEnum:
106
+ return NormTypeEnum.RMSNorm
107
+
108
+ @property
109
+ def positional_embedding_type(self) -> PositionalEmbeddingType:
110
+ return PositionalEmbeddingType.rotate_half
111
+
112
+ @property
113
+ def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
114
+ """
115
+ The positional embedding configuration for the model.
116
+ """
117
+ return RotateHalfConfig(theta_base=self._config.rope_theta)
118
+
119
+ """
120
+ Inherited from `DSMoETransformerModelBase`
121
+ """
122
+
123
+ @property
124
+ def n_experts(self) -> int:
125
+ return self._config.num_local_experts
126
+
127
+ @property
128
+ def n_top_k(self) -> int:
129
+ return self._config.num_experts_per_tok
130
+
131
+ @property
132
+ def normalize_expert_scores(self) -> bool:
133
+ return True
134
+
135
+ """
136
+ Model implementation
137
+ """
138
+
139
+ def __init__(self, config: DSModelImplementationConfig, engine_config: RaggedInferenceEngineConfig,
140
+ base_mp_group: MPType) -> None:
141
+ """
142
+ Base implementation for initialization. By default, this will initialize
143
+ the traditional components of a transformer model:
144
+ - Embedding
145
+ - QKV projection
146
+ - Self attention
147
+ - Attention output projection
148
+ - Feed forward network
149
+ - Normalization
150
+ - Unembedding
151
+
152
+ Arguments:
153
+ config (DSModelImplementationConfig): Model-specific configuration. No assumptions
154
+ should be made about this config that are not closely tied to the specific
155
+ model implementation.
156
+ engine_config (RaggedInferenceEngineConfig): Engine configuration.
157
+ base_mp_group (MPType): Base communication group for Tensor-parallel inference.
158
+ """
159
+ super().__init__(config, engine_config, base_mp_group)
160
+
161
+ self.make_norm_layer()
162
+ self.make_qkv_layer()
163
+ self.make_attn_layer()
164
+ self.make_attn_out_layer()
165
+ self.make_moe_layer()
166
+ self.make_embedding_layer()
167
+ self.make_unembedding_layer()
168
+ self._kv_cache_config = None
169
+
170
+ def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
171
+ """
172
+ Performs the embedding lookup prior to running the transformer of the model.
173
+
174
+ Arguments:
175
+ ragged_batch (RaggedBatchWrapper): The batch to embed.
176
+
177
+ Returns:
178
+ torch.Tensor: The embedded batch.
179
+ """
180
+ embed = self.embed(ragged_batch, self._non_transformer.word_emb)
181
+
182
+ if embed.shape[-1] != self.model_dim:
183
+ raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
184
+
185
+ return embed
186
+
187
+ def _forward_transformer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
188
+ ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
189
+ """
190
+ Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
191
+ optimization to fuse the layer norm of the next layer into the current layer.
192
+
193
+ Arguments:
194
+ layer_idx (int): The index of the layer to execute.
195
+ residual (torch.Tensor): The residual tensor from the previous layer.
196
+ hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
197
+ hidden states after pre normalization.
198
+ ragged_batch_info (RaggedBatchWrapper): The batch metadata.
199
+ """
200
+ # TODO(cmikeh2): Distribute ragged_batch_info to all modules
201
+
202
+ cur_params = self._transformer[layer_idx]
203
+ kv_cache = self.state_manager.get_cache(layer_idx)
204
+
205
+ hidden_states = self.qkv(hidden_states, cur_params.qkv_w)
206
+ hidden_states = self.attn(hidden_states, kv_cache, ragged_batch_info)
207
+ hidden_states = self.attn_out(hidden_states, cur_params.attn_out_w)
208
+
209
+ if self.tp_size > 1:
210
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
211
+
212
+ residual, hidden_states = self.norm(residual, hidden_states, cur_params.mlp_norm_gamma)
213
+
214
+ hidden_states = self.moe(hidden_states, ragged_batch_info, cur_params.moe_gate, cur_params.moe_mlp_1,
215
+ cur_params.moe_mlp_2)
216
+
217
+ if self.tp_size > 1:
218
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
219
+
220
+ if layer_idx != self.num_layers - 1:
221
+ next_params = self._transformer[layer_idx + 1]
222
+ residual, hidden_states = self.norm(residual, hidden_states, next_params.attn_norm_gamma)
223
+ else:
224
+ # On last layer, we just need to perform the residual add. Adding into the residual
225
+ # here is safe.
226
+ residual.add_(hidden_states)
227
+
228
+ return residual, hidden_states
229
+
230
+ def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
231
+ """
232
+ Performs unembedding of the hidden states to logits. This will only sample the final
233
+ token of each sequence.
234
+ """
235
+ logits = self.unembed(hidden_states,
236
+ self._non_transformer.word_unembed,
237
+ ragged_batch_info,
238
+ gamma=self._non_transformer.final_norm)
239
+
240
+ if self.tp_size > 1:
241
+ comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
242
+ full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
243
+
244
+ dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
245
+
246
+ full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
247
+
248
+ return full_logits
249
+ else:
250
+ return logits
251
+
252
+ def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
253
+
254
+ residual = self._forward_embed(wrapped_batch)
255
+
256
+ residual, hidden_states = self.norm(residual, None, self._transformer[0].attn_norm_gamma, beta=None)
257
+
258
+ for layer_idx in range(self.num_layers):
259
+ residual, hidden_states = self._forward_transformer(layer_idx, residual, hidden_states, wrapped_batch)
260
+
261
+ return self._forward_unembed(residual, wrapped_batch)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/mixtral/policy.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Any
7
+
8
+ from ...config_v2 import RaggedInferenceEngineConfig
9
+ from ..inference_policy_base import ContainerMap, InferenceV2Policy
10
+ from .container import MixtralTransformerContainer, MixtralNonTransformerContainer
11
+ from .model import MixtralInferenceModel
12
+
13
+
14
+ class MixtralPolicy(InferenceV2Policy):
15
+
16
+ def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> MixtralInferenceModel:
17
+ return MixtralInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
18
+
19
+ def build_container_map(self) -> ContainerMap:
20
+
21
+ map = ContainerMap()
22
+
23
+ transformer_containers = [MixtralTransformerContainer(self.model) for _ in range(self.model.num_layers)]
24
+
25
+ map.set_transformer_params(['model.layers'], transformer_containers)
26
+
27
+ map.set_non_transformer_params(MixtralNonTransformerContainer(self.model))
28
+
29
+ map.set_unmapped_params([])
30
+
31
+ return map
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import OPTPolicy
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/container.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+
8
+ from ..common_parameters import *
9
+ from ..layer_container_base import LayerContainer
10
+ '''
11
+ # HF OPT model looks like this:
12
+
13
+ OPTForCausalLM(
14
+ (model): OPTModel(
15
+ (decoder): OPTDecoder(
16
+ (embed_tokens): Embedding(50272, 768, padding_idx=1)
17
+ (embed_positions): OPTLearnedPositionalEmbedding(2050, 768)
18
+ (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
19
+ (layers): ModuleList(
20
+ (0-11): 12 x OPTDecoderLayer(
21
+ (self_attn): OPTAttention(
22
+ (k_proj): Linear(in_features=768, out_features=768, bias=True)
23
+ (v_proj): Linear(in_features=768, out_features=768, bias=True)
24
+ (q_proj): Linear(in_features=768, out_features=768, bias=True)
25
+ (out_proj): Linear(in_features=768, out_features=768, bias=True)
26
+ )
27
+ (activation_fn): ReLU()
28
+ (self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
29
+ (fc1): Linear(in_features=768, out_features=3072, bias=True)
30
+ (fc2): Linear(in_features=3072, out_features=768, bias=True)
31
+ (final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
32
+ )
33
+ )
34
+ )
35
+ )
36
+ (lm_head): Linear(in_features=768, out_features=50272, bias=False)
37
+ )
38
+
39
+ '''
40
+
41
+
42
+ class OPTTransformerContainer(LayerContainer):
43
+ """
44
+ Transformer layer container for the OPT model.
45
+ """
46
+ qkv_w: UnfusedQKVParameter
47
+ qkv_b: UnfusedQKVParameter
48
+ attn_out_w: AttentionOutputParameter
49
+ attn_out_b: AttentionOutputParameter
50
+ mlp_1_w: MLP1Parameter
51
+ mlp_1_b: MLP1Parameter
52
+ mlp_2_w: MLP2Parameter
53
+ mlp_2_b: MLP2Parameter
54
+ attn_norm_beta: NormParameter
55
+ attn_norm_gamma: NormParameter
56
+ mlp_norm_beta: NormParameter
57
+ mlp_norm_gamma: NormParameter
58
+
59
+ PARAM_MAPPING = {
60
+ "self_attn.q_proj.weight": "qkv_w.q_params",
61
+ "self_attn.q_proj.bias": "qkv_b.q_params",
62
+ "self_attn.k_proj.weight": "qkv_w.k_params",
63
+ "self_attn.k_proj.bias": "qkv_b.k_params",
64
+ "self_attn.v_proj.weight": "qkv_w.v_params",
65
+ "self_attn.v_proj.bias": "qkv_b.v_params",
66
+ "self_attn.out_proj.weight": "attn_out_w.params",
67
+ "self_attn.out_proj.bias": "attn_out_b.params",
68
+ "fc1.weight": "mlp_1_w.params",
69
+ "fc1.bias": "mlp_1_b.params",
70
+ "fc2.weight": "mlp_2_w.params",
71
+ "fc2.bias": "mlp_2_b.params",
72
+ "self_attn_layer_norm.weight": "attn_norm_gamma.params",
73
+ "self_attn_layer_norm.bias": "attn_norm_beta.params",
74
+ "final_layer_norm.weight": "mlp_norm_gamma.params",
75
+ "final_layer_norm.bias": "mlp_norm_beta.params",
76
+ }
77
+
78
+
79
+ class OPTNonTransformerContainer(LayerContainer):
80
+ """
81
+ Non-Transformer layer container for the OPT model.
82
+ """
83
+ word_emb: EmbeddingParameter
84
+ word_emb_pos: EmbeddingParameter
85
+ word_unembed: UnembedParameter
86
+ final_norm_w: NormParameter
87
+ final_norm_b: NormParameter
88
+
89
+ PARAM_MAPPING = {
90
+ "*decoder.embed_tokens.weight": ["word_emb.params", "word_unembed.params"],
91
+ "*decoder.embed_positions.weight": "word_emb_pos.params",
92
+ "*decoder.final_layer_norm.weight": "final_norm_w.params",
93
+ "*decoder.final_layer_norm.bias": "final_norm_b.params",
94
+ }
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/model.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Iterable, Optional, Tuple
7
+
8
+ import torch
9
+
10
+ import deepspeed.comm as dist
11
+
12
+ from ...allocator import empty_from
13
+ from ...inference_utils import ActivationType, DtypeEnum
14
+ from ...model_implementations import *
15
+ from ...modules.configs import *
16
+ from ...ragged import RaggedBatchWrapper
17
+ from .container import OPTNonTransformerContainer, OPTTransformerContainer
18
+
19
+ from ...modules.heuristics import instantiate_embed
20
+
21
+
22
+ class OPTInferenceModel(DSTransformerModelBase):
23
+ """
24
+ Inference model implementation for ragged batching for OPT models.
25
+ """
26
+
27
+ _non_transformer: Optional[OPTNonTransformerContainer]
28
+ """
29
+ Embed + unembed container. Specializing the type annotation.
30
+ """
31
+
32
+ _transformer: Optional[Iterable[OPTTransformerContainer]]
33
+ """
34
+ Per-layer transformer container. Specializing the type annotation.
35
+ """
36
+ """
37
+ Properties ineherited from `DSInferenceModelBase`
38
+ """
39
+
40
+ @property
41
+ def max_sequence_length(self) -> int:
42
+ return self._config.max_seq_length
43
+
44
+ """
45
+ Properties ineherited from `DSTransformerModelBase`
46
+ """
47
+
48
+ @property
49
+ def num_layers(self) -> int:
50
+ return self._config.num_hidden_layers
51
+
52
+ @property
53
+ def model_dim(self) -> int:
54
+ return self._config.hidden_size
55
+
56
+ @property
57
+ def vocab_size(self) -> int:
58
+ return self._config.vocab_size
59
+
60
+ @property
61
+ def head_size(self) -> int:
62
+ return self.model_dim // self.n_heads
63
+
64
+ @property
65
+ def n_heads(self) -> int:
66
+ return self._config.num_attention_heads
67
+
68
+ @property
69
+ def intermediate_dim(self) -> int:
70
+ return self._config.ffn_dim
71
+
72
+ @property
73
+ def activation_dtype(self) -> DtypeEnum:
74
+ if self._config.torch_dtype == torch.float16:
75
+ return DtypeEnum.fp16
76
+ elif self._config.torch_dtype == torch.bfloat16:
77
+ return DtypeEnum.bf16
78
+ else:
79
+ raise NotImplementedError("Only fp16 and bf16 are supported")
80
+
81
+ @property
82
+ def mlp_activation_fn(self) -> ActivationType:
83
+ return ActivationType.RELU
84
+
85
+ @property
86
+ def norm_type(self) -> NormTypeEnum:
87
+ return NormTypeEnum.LayerNorm
88
+
89
+ @property
90
+ def positional_embedding_type(self) -> PositionalEmbeddingType:
91
+ return PositionalEmbeddingType.none
92
+
93
+ @property
94
+ def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
95
+ return None
96
+
97
+ """
98
+ Overrides of ``DSTransformerModelBase`` methods
99
+ """
100
+
101
+ def make_embedding_layer(self) -> None:
102
+ """
103
+ Performs setup and creates embedding DSModule. Since OPT includes trained
104
+ positional embeddings, we will override the base model implementation.
105
+ """
106
+
107
+ embed_config = DSEmbeddingsConfig(max_tokens=self._engine_config.state_manager.max_ragged_batch_size,
108
+ residual_dtype=self.activation_dtype,
109
+ embedding_dim=self.model_dim,
110
+ positional_embedding=True,
111
+ positional_offset=2)
112
+
113
+ self.embed = instantiate_embed(embed_config, self._engine_config)
114
+
115
+ """
116
+ Forward implementations
117
+ """
118
+
119
+ def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
120
+ embed = self.embed(ragged_batch, self._non_transformer.word_emb, self._non_transformer.word_emb_pos)
121
+ if embed.shape[-1] != self.model_dim:
122
+ raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
123
+
124
+ return embed
125
+
126
+ def _forward_transformer_layer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
127
+ ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
128
+ # TODO(cmikeh2): Distribute ragged_batch_info to all modules
129
+
130
+ cur_params = self._transformer[layer_idx]
131
+ kv_cache = self.state_manager.get_cache(layer_idx)
132
+
133
+ hidden_states = self.qkv(hidden_states, cur_params.qkv_w, b=cur_params.qkv_b)
134
+ hidden_states = self.attn(hidden_states, kv_cache, ragged_batch_info)
135
+ hidden_states = self.attn_out(hidden_states, cur_params.attn_out_w, b=cur_params.attn_out_b)
136
+
137
+ if self.tp_size > 1:
138
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
139
+
140
+ residual, hidden_states = self.norm(residual,
141
+ hidden_states,
142
+ cur_params.mlp_norm_gamma,
143
+ beta=cur_params.mlp_norm_beta)
144
+
145
+ # Should be configurable in the future
146
+ hidden_states = self.mlp_1(hidden_states, cur_params.mlp_1_w, b=cur_params.mlp_1_b)
147
+ hidden_states = self.mlp_2(hidden_states, cur_params.mlp_2_w, b=cur_params.mlp_2_b)
148
+
149
+ if self.tp_size > 1:
150
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
151
+
152
+ if layer_idx != self.num_layers - 1:
153
+ next_params = self._transformer[layer_idx + 1]
154
+ residual, hidden_states = self.norm(residual,
155
+ hidden_states,
156
+ next_params.attn_norm_gamma,
157
+ beta=next_params.attn_norm_beta)
158
+ else:
159
+ # On last layer, we just need to perform the residual add. Adding into the residual
160
+ # here is safe.
161
+ residual.add_(hidden_states)
162
+
163
+ return residual, hidden_states
164
+
165
+ def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
166
+ logits = self.unembed(hidden_states,
167
+ self._non_transformer.word_unembed,
168
+ ragged_batch_info,
169
+ gamma=self._non_transformer.final_norm_w,
170
+ beta=self._non_transformer.final_norm_b)
171
+
172
+ if self.tp_size > 1:
173
+ comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
174
+ full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
175
+
176
+ dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
177
+
178
+ full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
179
+
180
+ return full_logits
181
+ else:
182
+ return logits
183
+
184
+ def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
185
+
186
+ residual = self._forward_embed(wrapped_batch)
187
+
188
+ residual, hidden_states = self.norm(residual,
189
+ None,
190
+ self._transformer[0].attn_norm_gamma,
191
+ beta=self._transformer[0].attn_norm_beta)
192
+
193
+ for layer_idx in range(self.num_layers):
194
+ residual, hidden_states = self._forward_transformer_layer(layer_idx, residual, hidden_states,
195
+ wrapped_batch)
196
+
197
+ return self._forward_unembed(residual, wrapped_batch)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/opt/policy.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Any
7
+
8
+ from ...config_v2 import RaggedInferenceEngineConfig
9
+ from ..inference_policy_base import ContainerMap, InferenceV2Policy
10
+ from .container import OPTNonTransformerContainer, OPTTransformerContainer
11
+ from .model import OPTInferenceModel
12
+
13
+
14
+ class OPTPolicy(InferenceV2Policy):
15
+
16
+ def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> OPTInferenceModel:
17
+ return OPTInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
18
+
19
+ def build_container_map(self) -> ContainerMap:
20
+ map = ContainerMap()
21
+
22
+ transformer_containers = [OPTTransformerContainer(self.model) for _ in range(self.model.num_layers)]
23
+
24
+ map.set_transformer_params(['model.decoder.layers', 'decoder.layers'], transformer_containers)
25
+
26
+ map.set_non_transformer_params(OPTNonTransformerContainer(self.model))
27
+
28
+ map.set_unmapped_params(['lm_head.weight'])
29
+
30
+ return map
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import PhiPolicy
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (256 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/containers.cpython-310.pyc ADDED
Binary file (2.15 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/model.cpython-310.pyc ADDED
Binary file (6.83 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/__pycache__/policy.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/containers.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+
8
+ from ..common_parameters import *
9
+ from ..layer_container_base import LayerContainer
10
+ '''
11
+ # HF Phi-2 model looks like this:
12
+
13
+ PhiForCausalLM(
14
+ (model): PhiModel(
15
+ (embed_tokens): Embedding(51200, 2560)
16
+ (embed_dropout): Dropout(p=0.0, inplace=False)
17
+ (layers): ModuleList(
18
+ (0-31): 32 x PhiDecoderLayer(
19
+ (self_attn): PhiAttention(
20
+ (q_proj): Linear(in_features=2560, out_features=2560, bias=True)
21
+ (k_proj): Linear(in_features=2560, out_features=2560, bias=True)
22
+ (v_proj): Linear(in_features=2560, out_features=2560, bias=True)
23
+ (dense): Linear(in_features=2560, out_features=2560, bias=True)
24
+ (rotary_emb): PhiRotaryEmbedding()
25
+ )
26
+ (mlp): PhiMLP(
27
+ (activation_fn): NewGELUActivation()
28
+ (fc1): Linear(in_features=2560, out_features=10240, bias=True)
29
+ (fc2): Linear(in_features=10240, out_features=2560, bias=True)
30
+ )
31
+ (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
32
+ (resid_dropout): Dropout(p=0.1, inplace=False)
33
+ )
34
+ )
35
+ (final_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
36
+ )
37
+ (lm_head): Linear(in_features=2560, out_features=51200, bias=True)
38
+ )
39
+ '''
40
+
41
+
42
+ class PhiTransformerContainer(LayerContainer):
43
+ """
44
+ Transformer layer container for the Phi model.
45
+ """
46
+ qkv_w: UnfusedQKVParameter
47
+ qkv_b: UnfusedQKVParameter
48
+ attn_out_w: AttentionOutputParameter
49
+ attn_out_b: AttentionOutputParameter
50
+ mlp_1_w: MLP1Parameter
51
+ mlp_1_b: MLP1Parameter
52
+ mlp_2_w: MLP2Parameter
53
+ mlp_2_b: MLP2Parameter
54
+ ln_gamma: NormParameter
55
+ ln_beta: NormParameter
56
+
57
+ PARAM_MAPPING = {
58
+ "self_attn.q_proj.weight": "qkv_w.q_params",
59
+ "self_attn.k_proj.weight": "qkv_w.k_params",
60
+ "self_attn.v_proj.weight": "qkv_w.v_params",
61
+ "self_attn.q_proj.bias": "qkv_b.q_params",
62
+ "self_attn.k_proj.bias": "qkv_b.k_params",
63
+ "self_attn.v_proj.bias": "qkv_b.v_params",
64
+ "self_attn.dense.weight": "attn_out_w.params",
65
+ "self_attn.dense.bias": "attn_out_b.params",
66
+ "mlp.fc1.weight": "mlp_1_w.params",
67
+ "mlp.fc1.bias": "mlp_1_b.params",
68
+ "mlp.fc2.weight": "mlp_2_w.params",
69
+ "mlp.fc2.bias": "mlp_2_b.params",
70
+ "input_layernorm.weight": "ln_gamma.params",
71
+ "input_layernorm.bias": "ln_beta.params",
72
+ }
73
+
74
+
75
+ class PhiNonTransformerContainer(LayerContainer):
76
+ """
77
+ Non-Transformer layer container for the Phi model.
78
+ """
79
+ word_emb: EmbeddingParameter
80
+ word_unembed_w: UnembedParameter
81
+ word_unembed_b: UnembedParameter
82
+ final_norm_gamma: NormParameter
83
+ final_norm_beta: NormParameter
84
+
85
+ PARAM_MAPPING = {
86
+ "model.embed_tokens.weight": "word_emb.params",
87
+ "model.final_layernorm.weight": "final_norm_gamma.params",
88
+ "model.final_layernorm.bias": "final_norm_beta.params",
89
+ "lm_head.weight": "word_unembed_w.params",
90
+ "lm_head.bias": "word_unembed_b.params",
91
+ }
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/model.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Iterable, Optional, Tuple
7
+
8
+ import torch
9
+
10
+ import deepspeed.comm as dist
11
+
12
+ from ...allocator import empty_from
13
+ from ...inference_utils import ActivationType, DtypeEnum
14
+ from .. import *
15
+ from ...modules.configs import *
16
+ from ...modules.interfaces import *
17
+ from ...ragged import RaggedBatchWrapper
18
+
19
+ from .containers import PhiNonTransformerContainer, PhiTransformerContainer
20
+
21
+
22
+ class PhiInferenceModel(DSTransformerModelBase):
23
+ """
24
+ Inference model implementation for ragged batching for Llama-2 models.
25
+ """
26
+
27
+ _non_transformer: Optional[PhiNonTransformerContainer]
28
+ """
29
+ Embed + unembed container. Specializing the type annotation.
30
+ """
31
+
32
+ _transformer: Optional[Iterable[PhiTransformerContainer]]
33
+ """
34
+ Per-layer transformer container. Specializing the type annotation.
35
+ """
36
+ """
37
+ Properties inherited from `DSInferenceModelBase`
38
+ """
39
+
40
+ @property
41
+ def max_sequence_length(self) -> int:
42
+ return self._config.max_seq_length
43
+
44
+ """
45
+ Properties inherited from `DSTransformerModelBase`
46
+ """
47
+
48
+ @property
49
+ def num_layers(self) -> int:
50
+ return self._config.num_hidden_layers
51
+
52
+ @property
53
+ def model_dim(self) -> int:
54
+ return self._config.hidden_size
55
+
56
+ @property
57
+ def vocab_size(self) -> int:
58
+ return self._config.vocab_size
59
+
60
+ @property
61
+ def head_size(self) -> int:
62
+ return self.model_dim // self.n_heads
63
+
64
+ @property
65
+ def n_heads(self) -> int:
66
+ return self._config.num_attention_heads
67
+
68
+ @property
69
+ def intermediate_dim(self) -> int:
70
+ return self._config.intermediate_size
71
+
72
+ @property
73
+ def n_heads_kv(self) -> int:
74
+ return self._config.num_key_value_heads
75
+
76
+ @property
77
+ def activation_dtype(self) -> DtypeEnum:
78
+ if self._config.torch_dtype == torch.float16:
79
+ return DtypeEnum.fp16
80
+ elif self._config.torch_dtype == torch.bfloat16:
81
+ return DtypeEnum.bf16
82
+ else:
83
+ raise NotImplementedError("Only fp16 and bf16 are supported")
84
+
85
+ @property
86
+ def mlp_activation_fn(self) -> ActivationType:
87
+ return ActivationType.GELU
88
+
89
+ @property
90
+ def norm_type(self) -> NormTypeEnum:
91
+ return NormTypeEnum.LayerNorm
92
+
93
+ @property
94
+ def positional_embedding_type(self) -> PositionalEmbeddingType:
95
+ return PositionalEmbeddingType.rotate_half
96
+
97
+ @property
98
+ def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
99
+ rotary_dim = int(self._config.partial_rotary_factor * self.head_size)
100
+ return RotateHalfConfig(rotate_dim=rotary_dim, theta_base=self._config.rope_theta)
101
+
102
+ """
103
+ Forward implementations
104
+ """
105
+
106
+ def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
107
+ """
108
+ Performs the embedding lookup prior to running the transformer of the model.
109
+
110
+ Arguments:
111
+ ragged_batch (RaggedBatchWrapper): The batch to embed.
112
+
113
+ Returns:
114
+ torch.Tensor: The embedded batch.
115
+ """
116
+ embed = self.embed(ragged_batch, self._non_transformer.word_emb)
117
+
118
+ if embed.shape[-1] != self.model_dim:
119
+ raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
120
+
121
+ return embed
122
+
123
+ def _forward_transformer_layer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
124
+ ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
125
+ """
126
+ Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
127
+ optimization to fuse the layer norm of the next layer into the current layer.
128
+
129
+ Arguments:
130
+ layer_idx (int): The index of the layer to execute.
131
+ residual (torch.Tensor): The residual tensor from the previous layer.
132
+ hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
133
+ hidden states after pre normalization.
134
+ ragged_batch_info (RaggedBatchWrapper): The batch metadata.
135
+ """
136
+ cur_params = self._transformer[layer_idx]
137
+ kv_cache = self.state_manager.get_cache(layer_idx)
138
+
139
+ attn_ln_out = hidden_states
140
+ attn_hidden_state = self.qkv(attn_ln_out, cur_params.qkv_w, b=cur_params.qkv_b)
141
+ attn_hidden_state = self.attn(attn_hidden_state, kv_cache, ragged_batch_info)
142
+ attention_output = self.attn_out(attn_hidden_state, cur_params.attn_out_w, b=cur_params.attn_out_b)
143
+
144
+ mlp_ln_out = hidden_states
145
+ mlp_hidden_state = self.mlp_1(mlp_ln_out, cur_params.mlp_1_w, b=cur_params.mlp_1_b)
146
+ mlp_output = self.mlp_2(mlp_hidden_state, cur_params.mlp_2_w, b=cur_params.mlp_2_b)
147
+
148
+ mlp_output.add_(attention_output)
149
+
150
+ if self.tp_size > 1:
151
+ dist.all_reduce(mlp_output, group=self._base_mp_group)
152
+
153
+ if layer_idx != self.num_layers - 1:
154
+ next_params = self._transformer[layer_idx + 1]
155
+ residual, mlp_output = self.norm(residual, mlp_output, next_params.ln_gamma, beta=next_params.ln_beta)
156
+ else:
157
+ # On last layer, we just need to perform the residual add. Adding into the residual
158
+ # here is safe.
159
+ residual.add_(mlp_output)
160
+
161
+ return residual, mlp_output
162
+
163
+ def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
164
+ """
165
+ Performs unembedding of the hidden states to logits. This will only sample the final
166
+ token of each sequence.
167
+ """
168
+ logits = self.unembed(hidden_states,
169
+ self._non_transformer.word_unembed_w,
170
+ ragged_batch_info,
171
+ bias=self._non_transformer.word_unembed_b,
172
+ gamma=self._non_transformer.final_norm_gamma,
173
+ beta=self._non_transformer.final_norm_beta)
174
+
175
+ if self.tp_size > 1:
176
+ comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
177
+ full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
178
+
179
+ dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
180
+
181
+ full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
182
+
183
+ return full_logits
184
+ else:
185
+ return logits
186
+
187
+ def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
188
+ residual = self._forward_embed(wrapped_batch)
189
+
190
+ residual, hidden_states = self.norm(residual,
191
+ None,
192
+ gamma=self._transformer[0].ln_gamma,
193
+ beta=self._transformer[0].ln_beta)
194
+
195
+ for layer_idx in range(self.num_layers):
196
+ residual, hidden_states = self._forward_transformer_layer(layer_idx, residual, hidden_states,
197
+ wrapped_batch)
198
+
199
+ return self._forward_unembed(residual, wrapped_batch)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/phi/policy.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Any
7
+
8
+ from ...config_v2 import RaggedInferenceEngineConfig
9
+ from ..inference_policy_base import ContainerMap, InferenceV2Policy
10
+ from .containers import PhiNonTransformerContainer, PhiTransformerContainer
11
+ from .model import PhiInferenceModel
12
+
13
+
14
+ class PhiPolicy(InferenceV2Policy):
15
+
16
+ def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> PhiInferenceModel:
17
+ return PhiInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
18
+
19
+ def build_container_map(self) -> ContainerMap:
20
+ map = ContainerMap()
21
+
22
+ trans_container_cls = PhiTransformerContainer
23
+ transformer_containers = [trans_container_cls(self.model) for _ in range(self.model.num_layers)]
24
+
25
+ map.set_transformer_params(['model.layers'], transformer_containers)
26
+
27
+ map.set_non_transformer_params(PhiNonTransformerContainer(self.model))
28
+
29
+ map.set_unmapped_params(
30
+ [f'model.layers.{i}.self_attn.rotary_emb.inv_freq' for i in range(self.model.num_layers)])
31
+
32
+ return map
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import QwenPolicy
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (258 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/container.cpython-310.pyc ADDED
Binary file (1.66 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/model.cpython-310.pyc ADDED
Binary file (7.4 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/__pycache__/policy.cpython-310.pyc ADDED
Binary file (1.57 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/container.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+
8
+ from ..common_parameters import *
9
+ from ..layer_container_base import LayerContainer
10
+ '''
11
+ # HF Qwen model looks like this:
12
+
13
+ QWenLMHeadModel(
14
+ (transformer): QWenModel(
15
+ (wte): Embedding(151936, 4096)
16
+ (drop): Dropout(p=0.0, inplace=False)
17
+ (rotary_emb): RotaryEmbedding()
18
+ (h): ModuleList(
19
+ (0-31): 32 x QWenBlock(
20
+ (ln_1): RMSNorm()
21
+ (attn): QWenAttention(
22
+ (c_attn): Linear(in_features=4096, out_features=12288, bias=True)
23
+ (c_proj): Linear(in_features=4096, out_features=4096, bias=False)
24
+ (attn_dropout): Dropout(p=0.0, inplace=False)
25
+ )
26
+ (ln_2): RMSNorm()
27
+ (mlp): QWenMLP(
28
+ (w1): Linear(in_features=4096, out_features=11008, bias=False)
29
+ (w2): Linear(in_features=4096, out_features=11008, bias=False)
30
+ (c_proj): Linear(in_features=11008, out_features=4096, bias=False)
31
+ )
32
+ )
33
+ )
34
+ (ln_f): RMSNorm()
35
+ )
36
+ (lm_head): Linear(in_features=4096, out_features=151936, bias=False)
37
+ )
38
+ '''
39
+
40
+
41
+ class QwenTransformerContainer(LayerContainer):
42
+ """
43
+ Transformer layer container for the Qwen model.
44
+ """
45
+ qkv_w: FusedQKVParameter
46
+ qkv_b: FusedQKVParameter
47
+ attn_out_w: AttentionOutputParameter
48
+ mlp_1_w: GatedMLPParameter
49
+ mlp_2_w: MLP2Parameter
50
+ attn_norm_gamma: NormParameter
51
+ mlp_norm_gamma: NormParameter
52
+
53
+ PARAM_MAPPING = {
54
+ "attn.c_attn.weight": "qkv_w.params",
55
+ "attn.c_attn.bias": "qkv_b.params",
56
+ "attn.c_proj.weight": "attn_out_w.params",
57
+ "mlp.w1.weight": "mlp_1_w.up_params",
58
+ "mlp.w2.weight": "mlp_1_w.gate_params",
59
+ "mlp.c_proj.weight": "mlp_2_w.params",
60
+ "ln_1.weight": "attn_norm_gamma.params",
61
+ "ln_2.weight": "mlp_norm_gamma.params",
62
+ }
63
+
64
+
65
+ class QwenNonTransformerContainer(LayerContainer):
66
+ """
67
+ Non-Transformer layer container for the Qwen model.
68
+ """
69
+ word_emb: EmbeddingParameter
70
+ word_unembed: UnembedParameter
71
+ final_norm: NormParameter
72
+
73
+ PARAM_MAPPING = {
74
+ "transformer.wte.weight": "word_emb.params",
75
+ "transformer.ln_f.weight": "final_norm.params",
76
+ "lm_head.weight": "word_unembed.params",
77
+ }
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/model.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Iterable, Optional, Tuple
7
+
8
+ import torch
9
+
10
+ import deepspeed.comm as dist
11
+
12
+ from ...allocator import empty_from
13
+ from ...inference_utils import ActivationType, DtypeEnum
14
+ from .. import *
15
+ from ...modules.configs import *
16
+ from ...modules.interfaces import *
17
+ from ...modules import heuristics
18
+ from ...ragged import RaggedBatchWrapper
19
+
20
+ from .container import QwenNonTransformerContainer, QwenTransformerContainer
21
+
22
+
23
+ class QwenInferenceModel(DSTransformerModelBase):
24
+ """
25
+ Inference model implementation for ragged batching for Llama-2 models.
26
+ """
27
+
28
+ _non_transformer: Optional[QwenNonTransformerContainer]
29
+ """
30
+ Embed + unembed container. Specializing the type annotation.
31
+ """
32
+
33
+ _transformer: Optional[Iterable[QwenTransformerContainer]]
34
+ """
35
+ Per-layer transformer container. Specializing the type annotation.
36
+ """
37
+ """
38
+ Properties ineherited from `DSInferenceModelBase`
39
+ """
40
+
41
+ @property
42
+ def max_sequence_length(self) -> int:
43
+ return self._config.max_seq_length
44
+
45
+ """
46
+ Properties ineherited from `DSTransformerModelBase`
47
+ """
48
+
49
+ @property
50
+ def num_layers(self) -> int:
51
+ return self._config.num_hidden_layers
52
+
53
+ @property
54
+ def model_dim(self) -> int:
55
+ return self._config.hidden_size
56
+
57
+ @property
58
+ def vocab_size(self) -> int:
59
+ return self._config.vocab_size
60
+
61
+ @property
62
+ def head_size(self) -> int:
63
+ return self.model_dim // self.n_heads
64
+
65
+ @property
66
+ def n_heads(self) -> int:
67
+ return self._config.num_attention_heads
68
+
69
+ @property
70
+ def intermediate_dim(self) -> int:
71
+ return self._config.intermediate_size // 2
72
+
73
+ @property
74
+ def n_heads_kv(self) -> int:
75
+ return self._config.hidden_size // self._config.kv_channels
76
+
77
+ @property
78
+ def activation_dtype(self) -> DtypeEnum:
79
+ autoset_precision = self._config.bf16 + self._config.fp16 == 0
80
+ if autoset_precision:
81
+ return DtypeEnum.fp16
82
+ if self._config.fp16:
83
+ return DtypeEnum.fp16
84
+ elif self._config.bf16:
85
+ # TODO(ZonePG): bf16 inference results may be different from huggingface bf16,
86
+ # because in rms_norm, Qwen still use float() instead of bf16
87
+ return DtypeEnum.bf16
88
+ else:
89
+ raise NotImplementedError("Only fp16 and bf16 are supported")
90
+
91
+ @property
92
+ def mlp_activation_fn(self) -> ActivationType:
93
+ return ActivationType.SiGLU
94
+
95
+ @property
96
+ def norm_type(self) -> NormTypeEnum:
97
+ return NormTypeEnum.RMSNorm
98
+
99
+ @property
100
+ def positional_embedding_type(self) -> PositionalEmbeddingType:
101
+ return PositionalEmbeddingType.rotate_half
102
+
103
+ @property
104
+ def positional_embedding_config(self) -> Optional[RotateHalfConfig]:
105
+ return RotateHalfConfig(theta_base=self._config.rotary_emb_base)
106
+
107
+ def make_norm_layer(self) -> None:
108
+ """
109
+ Instantiates the normalization layer for the model. This sets the `self.norm` attribute.
110
+
111
+ TODO(cmikeh2): In the future we'll distinguish between the different norm objects,
112
+ but for now we'll just use the same one for all of them.
113
+ """
114
+ norm_config = DSNormConfig(
115
+ max_tokens=self._engine_config.state_manager.max_ragged_batch_size,
116
+ type=self.norm_type,
117
+ channels=self.model_dim,
118
+ residual_dtype=self.activation_dtype,
119
+ input_dtype=self.activation_dtype,
120
+ output_dtype=self.activation_dtype,
121
+ eps=self._config.layer_norm_epsilon,
122
+ )
123
+
124
+ self.norm = heuristics.instantiate_pre_norm(norm_config, self._engine_config)
125
+
126
+ """
127
+ Forward implementations
128
+ """
129
+
130
+ def _forward_embed(self, ragged_batch: RaggedBatchWrapper) -> torch.Tensor:
131
+ """
132
+ Performs the embedding lookup prior to running the transformer of the model.
133
+
134
+ Arguments:
135
+ ragged_batch (RaggedBatchWrapper): The batch to embed.
136
+
137
+ Returns:
138
+ torch.Tensor: The embedded batch.
139
+ """
140
+ embed = self.embed(ragged_batch, self._non_transformer.word_emb)
141
+
142
+ if embed.shape[-1] != self.model_dim:
143
+ raise ValueError(f"Embedding output shape {embed.shape} does not match model_dim {self.model_dim}")
144
+
145
+ return embed
146
+
147
+ def _forward_transformer_layer(self, layer_idx: int, residual: torch.Tensor, hidden_states: torch.Tensor,
148
+ ragged_batch_info: RaggedBatchWrapper) -> Tuple[torch.Tensor, torch.Tensor]:
149
+ """
150
+ Executes one (slightly offset) layer of the transformer. This implementation does a peak-ahead
151
+ optimization to fuse the layer norm of the next layer into the current layer.
152
+
153
+ Arguments:
154
+ layer_idx (int): The index of the layer to execute.
155
+ residual (torch.Tensor): The residual tensor from the previous layer.
156
+ hidden_states (torch.Tensor): The hidden states from the previous layer. This is the
157
+ hidden states after pre normalization.
158
+ ragged_batch_info (RaggedBatchWrapper): The batch metadata.
159
+ """
160
+ # TODO(cmikeh2): Distribute ragged_batch_info to all modules
161
+
162
+ cur_params = self._transformer[layer_idx]
163
+ kv_cache = self.state_manager.get_cache(layer_idx)
164
+
165
+ hidden_states = self.qkv(hidden_states, cur_params.qkv_w, b=cur_params.qkv_b)
166
+ hidden_states = self.attn(hidden_states, kv_cache, ragged_batch_info)
167
+ hidden_states = self.attn_out(hidden_states, cur_params.attn_out_w, b=None)
168
+
169
+ if self.tp_size > 1:
170
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
171
+
172
+ residual, hidden_states = self.norm(residual, hidden_states, cur_params.mlp_norm_gamma, beta=None)
173
+
174
+ # Should be configurable in the future
175
+ hidden_states = self.mlp_1(hidden_states, cur_params.mlp_1_w, b=None)
176
+ hidden_states = self.mlp_2(hidden_states, cur_params.mlp_2_w, b=None)
177
+
178
+ if self.tp_size > 1:
179
+ dist.all_reduce(hidden_states, group=self._base_mp_group)
180
+
181
+ if layer_idx != self.num_layers - 1:
182
+ next_params = self._transformer[layer_idx + 1]
183
+ residual, hidden_states = self.norm(residual, hidden_states, next_params.attn_norm_gamma, beta=None)
184
+ else:
185
+ # On last layer, we just need to perform the residual add. Adding into the residual
186
+ # here is safe.
187
+ residual.add_(hidden_states)
188
+
189
+ return residual, hidden_states
190
+
191
+ def _forward_unembed(self, hidden_states: torch.Tensor, ragged_batch_info: RaggedBatchWrapper) -> torch.Tensor:
192
+ """
193
+ Performs unembedding of the hidden states to logits. This will only sample the final
194
+ token of each sequence.
195
+ """
196
+ logits = self.unembed(hidden_states,
197
+ self._non_transformer.word_unembed,
198
+ ragged_batch_info,
199
+ gamma=self._non_transformer.final_norm)
200
+
201
+ if self.tp_size > 1:
202
+ comm_buffer = empty_from(self._comm_logits, (self.tp_size, logits.shape[0], logits.shape[1]))
203
+ full_logits = empty_from(self._return_logits, (logits.shape[0], self.vocab_size))
204
+
205
+ dist.all_gather_into_tensor(comm_buffer, logits, group=self._base_mp_group)
206
+
207
+ full_logits.copy_(comm_buffer.permute(1, 0, 2).reshape(logits.shape[0], self.vocab_size))
208
+
209
+ return full_logits
210
+ else:
211
+ return logits
212
+
213
+ def forward(self, wrapped_batch: RaggedBatchWrapper) -> torch.Tensor:
214
+
215
+ residual = self._forward_embed(wrapped_batch)
216
+
217
+ residual, hidden_states = self.norm(residual, None, self._transformer[0].attn_norm_gamma, beta=None)
218
+
219
+ for layer_idx in range(self.num_layers):
220
+ residual, hidden_states = self._forward_transformer_layer(layer_idx, residual, hidden_states,
221
+ wrapped_batch)
222
+
223
+ return self._forward_unembed(residual, wrapped_batch)
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen/policy.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from typing import Any
7
+
8
+ from ...config_v2 import RaggedInferenceEngineConfig
9
+ from ..inference_policy_base import ContainerMap, InferenceV2Policy
10
+ from .container import QwenNonTransformerContainer, QwenTransformerContainer
11
+ from .model import QwenInferenceModel
12
+
13
+
14
+ class QwenPolicy(InferenceV2Policy):
15
+
16
+ def instantiate_model(self, engine_config: RaggedInferenceEngineConfig, mp_group: Any) -> QwenInferenceModel:
17
+ return QwenInferenceModel(config=self._model_config, engine_config=engine_config, base_mp_group=mp_group)
18
+
19
+ def build_container_map(self) -> ContainerMap:
20
+ map = ContainerMap()
21
+
22
+ transformer_containers = [QwenTransformerContainer(self.model) for _ in range(self.model.num_layers)]
23
+
24
+ map.set_transformer_params(['transformer.h'], transformer_containers)
25
+
26
+ map.set_non_transformer_params(QwenNonTransformerContainer(self.model))
27
+
28
+ map.set_unmapped_params(['transformer.rotary_emb.inv_freq'])
29
+
30
+ return map
venv/lib/python3.10/site-packages/deepspeed/inference/v2/model_implementations/qwen_v2/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .policy import Qwen2Policy