Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/9.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/transformers/data/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/__pycache__/data_collator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/glue.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/language_modeling.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/datasets/glue.py +161 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__init__.py +18 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/glue.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/squad.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/xnli.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/glue.py +643 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/squad.py +845 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/utils.py +349 -0
- venv/lib/python3.10/site-packages/transformers/data/processors/xnli.py +97 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__init__.py +49 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__main__.py +242 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/__main__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/convert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/features.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/onnx/config.py +741 -0
- venv/lib/python3.10/site-packages/transformers/onnx/convert.py +460 -0
- venv/lib/python3.10/site-packages/transformers/onnx/features.py +749 -0
- venv/lib/python3.10/site-packages/transformers/onnx/utils.py +109 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__init__.py +15 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/auto.py +161 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/base.py +213 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py +98 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_awq.py +124 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_4bit.py +317 -0
- venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_8bit.py +285 -0
ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b5aaa4a9b2d2e1b5ceeb53749e127800f86c8aa5e016482a9534a82ca859ff3
|
3 |
+
size 50332828
|
ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6e8bafe566227b5eaee5a5cd13fa86d2ece4511bd3aa07e9a9f8ff19634301a
|
3 |
+
size 50332843
|
ckpts/universal/global_step40/zero/14.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a375f12df0268d460178f978a3df67864885bc7826e1e3cd7efc12c82f39fe3b
|
3 |
+
size 50332749
|
ckpts/universal/global_step40/zero/9.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56892653a52e4bcdb41de2d759d8c75f2b8408862fd6b787eeccb121b2dbffa5
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/transformers/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/__pycache__/data_collator.cpython-310.pyc
ADDED
Binary file (46.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (555 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/glue.cpython-310.pyc
ADDED
Binary file (4.87 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/language_modeling.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/datasets/__pycache__/squad.cpython-310.pyc
ADDED
Binary file (6.36 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/datasets/glue.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import time
|
17 |
+
import warnings
|
18 |
+
from dataclasses import dataclass, field
|
19 |
+
from enum import Enum
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from filelock import FileLock
|
24 |
+
from torch.utils.data import Dataset
|
25 |
+
|
26 |
+
from ...tokenization_utils_base import PreTrainedTokenizerBase
|
27 |
+
from ...utils import logging
|
28 |
+
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
|
29 |
+
from ..processors.utils import InputFeatures
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class GlueDataTrainingArguments:
|
37 |
+
"""
|
38 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
39 |
+
|
40 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
|
41 |
+
line.
|
42 |
+
"""
|
43 |
+
|
44 |
+
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())})
|
45 |
+
data_dir: str = field(
|
46 |
+
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
|
47 |
+
)
|
48 |
+
max_seq_length: int = field(
|
49 |
+
default=128,
|
50 |
+
metadata={
|
51 |
+
"help": (
|
52 |
+
"The maximum total input sequence length after tokenization. Sequences longer "
|
53 |
+
"than this will be truncated, sequences shorter will be padded."
|
54 |
+
)
|
55 |
+
},
|
56 |
+
)
|
57 |
+
overwrite_cache: bool = field(
|
58 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
59 |
+
)
|
60 |
+
|
61 |
+
def __post_init__(self):
|
62 |
+
self.task_name = self.task_name.lower()
|
63 |
+
|
64 |
+
|
65 |
+
class Split(Enum):
|
66 |
+
train = "train"
|
67 |
+
dev = "dev"
|
68 |
+
test = "test"
|
69 |
+
|
70 |
+
|
71 |
+
class GlueDataset(Dataset):
|
72 |
+
"""
|
73 |
+
This will be superseded by a framework-agnostic approach soon.
|
74 |
+
"""
|
75 |
+
|
76 |
+
args: GlueDataTrainingArguments
|
77 |
+
output_mode: str
|
78 |
+
features: List[InputFeatures]
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
args: GlueDataTrainingArguments,
|
83 |
+
tokenizer: PreTrainedTokenizerBase,
|
84 |
+
limit_length: Optional[int] = None,
|
85 |
+
mode: Union[str, Split] = Split.train,
|
86 |
+
cache_dir: Optional[str] = None,
|
87 |
+
):
|
88 |
+
warnings.warn(
|
89 |
+
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
90 |
+
"library. You can have a look at this example script for pointers: "
|
91 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py",
|
92 |
+
FutureWarning,
|
93 |
+
)
|
94 |
+
self.args = args
|
95 |
+
self.processor = glue_processors[args.task_name]()
|
96 |
+
self.output_mode = glue_output_modes[args.task_name]
|
97 |
+
if isinstance(mode, str):
|
98 |
+
try:
|
99 |
+
mode = Split[mode]
|
100 |
+
except KeyError:
|
101 |
+
raise KeyError("mode is not a valid split name")
|
102 |
+
# Load data features from cache or dataset file
|
103 |
+
cached_features_file = os.path.join(
|
104 |
+
cache_dir if cache_dir is not None else args.data_dir,
|
105 |
+
f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}",
|
106 |
+
)
|
107 |
+
label_list = self.processor.get_labels()
|
108 |
+
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
|
109 |
+
"RobertaTokenizer",
|
110 |
+
"RobertaTokenizerFast",
|
111 |
+
"XLMRobertaTokenizer",
|
112 |
+
"BartTokenizer",
|
113 |
+
"BartTokenizerFast",
|
114 |
+
):
|
115 |
+
# HACK(label indices are swapped in RoBERTa pretrained model)
|
116 |
+
label_list[1], label_list[2] = label_list[2], label_list[1]
|
117 |
+
self.label_list = label_list
|
118 |
+
|
119 |
+
# Make sure only the first process in distributed training processes the dataset,
|
120 |
+
# and the others will use the cache.
|
121 |
+
lock_path = cached_features_file + ".lock"
|
122 |
+
with FileLock(lock_path):
|
123 |
+
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
124 |
+
start = time.time()
|
125 |
+
self.features = torch.load(cached_features_file)
|
126 |
+
logger.info(
|
127 |
+
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
logger.info(f"Creating features from dataset file at {args.data_dir}")
|
131 |
+
|
132 |
+
if mode == Split.dev:
|
133 |
+
examples = self.processor.get_dev_examples(args.data_dir)
|
134 |
+
elif mode == Split.test:
|
135 |
+
examples = self.processor.get_test_examples(args.data_dir)
|
136 |
+
else:
|
137 |
+
examples = self.processor.get_train_examples(args.data_dir)
|
138 |
+
if limit_length is not None:
|
139 |
+
examples = examples[:limit_length]
|
140 |
+
self.features = glue_convert_examples_to_features(
|
141 |
+
examples,
|
142 |
+
tokenizer,
|
143 |
+
max_length=args.max_seq_length,
|
144 |
+
label_list=label_list,
|
145 |
+
output_mode=self.output_mode,
|
146 |
+
)
|
147 |
+
start = time.time()
|
148 |
+
torch.save(self.features, cached_features_file)
|
149 |
+
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
|
150 |
+
logger.info(
|
151 |
+
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
152 |
+
)
|
153 |
+
|
154 |
+
def __len__(self):
|
155 |
+
return len(self.features)
|
156 |
+
|
157 |
+
def __getitem__(self, i) -> InputFeatures:
|
158 |
+
return self.features[i]
|
159 |
+
|
160 |
+
def get_labels(self):
|
161 |
+
return self.label_list
|
venv/lib/python3.10/site-packages/transformers/data/processors/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
|
16 |
+
from .squad import SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
|
17 |
+
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
|
18 |
+
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
|
venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (751 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/glue.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/squad.cpython-310.pyc
ADDED
Binary file (20 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/processors/__pycache__/xnli.cpython-310.pyc
ADDED
Binary file (2.53 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/data/processors/glue.py
ADDED
@@ -0,0 +1,643 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" GLUE processors and helpers"""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from dataclasses import asdict
|
21 |
+
from enum import Enum
|
22 |
+
from typing import List, Optional, Union
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...utils import is_tf_available, logging
|
26 |
+
from .utils import DataProcessor, InputExample, InputFeatures
|
27 |
+
|
28 |
+
|
29 |
+
if is_tf_available():
|
30 |
+
import tensorflow as tf
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
DEPRECATION_WARNING = (
|
35 |
+
"This {0} will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
36 |
+
"library. You can have a look at this example script for pointers: "
|
37 |
+
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def glue_convert_examples_to_features(
|
42 |
+
examples: Union[List[InputExample], "tf.data.Dataset"],
|
43 |
+
tokenizer: PreTrainedTokenizer,
|
44 |
+
max_length: Optional[int] = None,
|
45 |
+
task=None,
|
46 |
+
label_list=None,
|
47 |
+
output_mode=None,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Loads a data file into a list of `InputFeatures`
|
51 |
+
|
52 |
+
Args:
|
53 |
+
examples: List of `InputExamples` or `tf.data.Dataset` containing the examples.
|
54 |
+
tokenizer: Instance of a tokenizer that will tokenize the examples
|
55 |
+
max_length: Maximum example length. Defaults to the tokenizer's max_len
|
56 |
+
task: GLUE task
|
57 |
+
label_list: List of labels. Can be obtained from the processor using the `processor.get_labels()` method
|
58 |
+
output_mode: String indicating the output mode. Either `regression` or `classification`
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific
|
62 |
+
features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which
|
63 |
+
can be fed to the model.
|
64 |
+
|
65 |
+
"""
|
66 |
+
warnings.warn(DEPRECATION_WARNING.format("function"), FutureWarning)
|
67 |
+
if is_tf_available() and isinstance(examples, tf.data.Dataset):
|
68 |
+
if task is None:
|
69 |
+
raise ValueError("When calling glue_convert_examples_to_features from TF, the task parameter is required.")
|
70 |
+
return _tf_glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
|
71 |
+
return _glue_convert_examples_to_features(
|
72 |
+
examples, tokenizer, max_length=max_length, task=task, label_list=label_list, output_mode=output_mode
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
if is_tf_available():
|
77 |
+
|
78 |
+
def _tf_glue_convert_examples_to_features(
|
79 |
+
examples: tf.data.Dataset,
|
80 |
+
tokenizer: PreTrainedTokenizer,
|
81 |
+
task=str,
|
82 |
+
max_length: Optional[int] = None,
|
83 |
+
) -> tf.data.Dataset:
|
84 |
+
"""
|
85 |
+
Returns:
|
86 |
+
A `tf.data.Dataset` containing the task-specific features.
|
87 |
+
|
88 |
+
"""
|
89 |
+
processor = glue_processors[task]()
|
90 |
+
examples = [processor.tfds_map(processor.get_example_from_tensor_dict(example)) for example in examples]
|
91 |
+
features = glue_convert_examples_to_features(examples, tokenizer, max_length=max_length, task=task)
|
92 |
+
label_type = tf.float32 if task == "sts-b" else tf.int64
|
93 |
+
|
94 |
+
def gen():
|
95 |
+
for ex in features:
|
96 |
+
d = {k: v for k, v in asdict(ex).items() if v is not None}
|
97 |
+
label = d.pop("label")
|
98 |
+
yield (d, label)
|
99 |
+
|
100 |
+
input_names = tokenizer.model_input_names
|
101 |
+
|
102 |
+
return tf.data.Dataset.from_generator(
|
103 |
+
gen,
|
104 |
+
({k: tf.int32 for k in input_names}, label_type),
|
105 |
+
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def _glue_convert_examples_to_features(
|
110 |
+
examples: List[InputExample],
|
111 |
+
tokenizer: PreTrainedTokenizer,
|
112 |
+
max_length: Optional[int] = None,
|
113 |
+
task=None,
|
114 |
+
label_list=None,
|
115 |
+
output_mode=None,
|
116 |
+
):
|
117 |
+
if max_length is None:
|
118 |
+
max_length = tokenizer.model_max_length
|
119 |
+
|
120 |
+
if task is not None:
|
121 |
+
processor = glue_processors[task]()
|
122 |
+
if label_list is None:
|
123 |
+
label_list = processor.get_labels()
|
124 |
+
logger.info(f"Using label list {label_list} for task {task}")
|
125 |
+
if output_mode is None:
|
126 |
+
output_mode = glue_output_modes[task]
|
127 |
+
logger.info(f"Using output mode {output_mode} for task {task}")
|
128 |
+
|
129 |
+
label_map = {label: i for i, label in enumerate(label_list)}
|
130 |
+
|
131 |
+
def label_from_example(example: InputExample) -> Union[int, float, None]:
|
132 |
+
if example.label is None:
|
133 |
+
return None
|
134 |
+
if output_mode == "classification":
|
135 |
+
return label_map[example.label]
|
136 |
+
elif output_mode == "regression":
|
137 |
+
return float(example.label)
|
138 |
+
raise KeyError(output_mode)
|
139 |
+
|
140 |
+
labels = [label_from_example(example) for example in examples]
|
141 |
+
|
142 |
+
batch_encoding = tokenizer(
|
143 |
+
[(example.text_a, example.text_b) for example in examples],
|
144 |
+
max_length=max_length,
|
145 |
+
padding="max_length",
|
146 |
+
truncation=True,
|
147 |
+
)
|
148 |
+
|
149 |
+
features = []
|
150 |
+
for i in range(len(examples)):
|
151 |
+
inputs = {k: batch_encoding[k][i] for k in batch_encoding}
|
152 |
+
|
153 |
+
feature = InputFeatures(**inputs, label=labels[i])
|
154 |
+
features.append(feature)
|
155 |
+
|
156 |
+
for i, example in enumerate(examples[:5]):
|
157 |
+
logger.info("*** Example ***")
|
158 |
+
logger.info(f"guid: {example.guid}")
|
159 |
+
logger.info(f"features: {features[i]}")
|
160 |
+
|
161 |
+
return features
|
162 |
+
|
163 |
+
|
164 |
+
class OutputMode(Enum):
|
165 |
+
classification = "classification"
|
166 |
+
regression = "regression"
|
167 |
+
|
168 |
+
|
169 |
+
class MrpcProcessor(DataProcessor):
|
170 |
+
"""Processor for the MRPC data set (GLUE version)."""
|
171 |
+
|
172 |
+
def __init__(self, *args, **kwargs):
|
173 |
+
super().__init__(*args, **kwargs)
|
174 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
175 |
+
|
176 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
177 |
+
"""See base class."""
|
178 |
+
return InputExample(
|
179 |
+
tensor_dict["idx"].numpy(),
|
180 |
+
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
181 |
+
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
182 |
+
str(tensor_dict["label"].numpy()),
|
183 |
+
)
|
184 |
+
|
185 |
+
def get_train_examples(self, data_dir):
|
186 |
+
"""See base class."""
|
187 |
+
logger.info(f"LOOKING AT {os.path.join(data_dir, 'train.tsv')}")
|
188 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
189 |
+
|
190 |
+
def get_dev_examples(self, data_dir):
|
191 |
+
"""See base class."""
|
192 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
193 |
+
|
194 |
+
def get_test_examples(self, data_dir):
|
195 |
+
"""See base class."""
|
196 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
197 |
+
|
198 |
+
def get_labels(self):
|
199 |
+
"""See base class."""
|
200 |
+
return ["0", "1"]
|
201 |
+
|
202 |
+
def _create_examples(self, lines, set_type):
|
203 |
+
"""Creates examples for the training, dev and test sets."""
|
204 |
+
examples = []
|
205 |
+
for i, line in enumerate(lines):
|
206 |
+
if i == 0:
|
207 |
+
continue
|
208 |
+
guid = f"{set_type}-{i}"
|
209 |
+
text_a = line[3]
|
210 |
+
text_b = line[4]
|
211 |
+
label = None if set_type == "test" else line[0]
|
212 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
213 |
+
return examples
|
214 |
+
|
215 |
+
|
216 |
+
class MnliProcessor(DataProcessor):
|
217 |
+
"""Processor for the MultiNLI data set (GLUE version)."""
|
218 |
+
|
219 |
+
def __init__(self, *args, **kwargs):
|
220 |
+
super().__init__(*args, **kwargs)
|
221 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
222 |
+
|
223 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
224 |
+
"""See base class."""
|
225 |
+
return InputExample(
|
226 |
+
tensor_dict["idx"].numpy(),
|
227 |
+
tensor_dict["premise"].numpy().decode("utf-8"),
|
228 |
+
tensor_dict["hypothesis"].numpy().decode("utf-8"),
|
229 |
+
str(tensor_dict["label"].numpy()),
|
230 |
+
)
|
231 |
+
|
232 |
+
def get_train_examples(self, data_dir):
|
233 |
+
"""See base class."""
|
234 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
235 |
+
|
236 |
+
def get_dev_examples(self, data_dir):
|
237 |
+
"""See base class."""
|
238 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
|
239 |
+
|
240 |
+
def get_test_examples(self, data_dir):
|
241 |
+
"""See base class."""
|
242 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched")
|
243 |
+
|
244 |
+
def get_labels(self):
|
245 |
+
"""See base class."""
|
246 |
+
return ["contradiction", "entailment", "neutral"]
|
247 |
+
|
248 |
+
def _create_examples(self, lines, set_type):
|
249 |
+
"""Creates examples for the training, dev and test sets."""
|
250 |
+
examples = []
|
251 |
+
for i, line in enumerate(lines):
|
252 |
+
if i == 0:
|
253 |
+
continue
|
254 |
+
guid = f"{set_type}-{line[0]}"
|
255 |
+
text_a = line[8]
|
256 |
+
text_b = line[9]
|
257 |
+
label = None if set_type.startswith("test") else line[-1]
|
258 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
259 |
+
return examples
|
260 |
+
|
261 |
+
|
262 |
+
class MnliMismatchedProcessor(MnliProcessor):
|
263 |
+
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
|
264 |
+
|
265 |
+
def __init__(self, *args, **kwargs):
|
266 |
+
super().__init__(*args, **kwargs)
|
267 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
268 |
+
|
269 |
+
def get_dev_examples(self, data_dir):
|
270 |
+
"""See base class."""
|
271 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched")
|
272 |
+
|
273 |
+
def get_test_examples(self, data_dir):
|
274 |
+
"""See base class."""
|
275 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched")
|
276 |
+
|
277 |
+
|
278 |
+
class ColaProcessor(DataProcessor):
|
279 |
+
"""Processor for the CoLA data set (GLUE version)."""
|
280 |
+
|
281 |
+
def __init__(self, *args, **kwargs):
|
282 |
+
super().__init__(*args, **kwargs)
|
283 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
284 |
+
|
285 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
286 |
+
"""See base class."""
|
287 |
+
return InputExample(
|
288 |
+
tensor_dict["idx"].numpy(),
|
289 |
+
tensor_dict["sentence"].numpy().decode("utf-8"),
|
290 |
+
None,
|
291 |
+
str(tensor_dict["label"].numpy()),
|
292 |
+
)
|
293 |
+
|
294 |
+
def get_train_examples(self, data_dir):
|
295 |
+
"""See base class."""
|
296 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
297 |
+
|
298 |
+
def get_dev_examples(self, data_dir):
|
299 |
+
"""See base class."""
|
300 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
301 |
+
|
302 |
+
def get_test_examples(self, data_dir):
|
303 |
+
"""See base class."""
|
304 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
305 |
+
|
306 |
+
def get_labels(self):
|
307 |
+
"""See base class."""
|
308 |
+
return ["0", "1"]
|
309 |
+
|
310 |
+
def _create_examples(self, lines, set_type):
|
311 |
+
"""Creates examples for the training, dev and test sets."""
|
312 |
+
test_mode = set_type == "test"
|
313 |
+
if test_mode:
|
314 |
+
lines = lines[1:]
|
315 |
+
text_index = 1 if test_mode else 3
|
316 |
+
examples = []
|
317 |
+
for i, line in enumerate(lines):
|
318 |
+
guid = f"{set_type}-{i}"
|
319 |
+
text_a = line[text_index]
|
320 |
+
label = None if test_mode else line[1]
|
321 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
322 |
+
return examples
|
323 |
+
|
324 |
+
|
325 |
+
class Sst2Processor(DataProcessor):
|
326 |
+
"""Processor for the SST-2 data set (GLUE version)."""
|
327 |
+
|
328 |
+
def __init__(self, *args, **kwargs):
|
329 |
+
super().__init__(*args, **kwargs)
|
330 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
331 |
+
|
332 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
333 |
+
"""See base class."""
|
334 |
+
return InputExample(
|
335 |
+
tensor_dict["idx"].numpy(),
|
336 |
+
tensor_dict["sentence"].numpy().decode("utf-8"),
|
337 |
+
None,
|
338 |
+
str(tensor_dict["label"].numpy()),
|
339 |
+
)
|
340 |
+
|
341 |
+
def get_train_examples(self, data_dir):
|
342 |
+
"""See base class."""
|
343 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
344 |
+
|
345 |
+
def get_dev_examples(self, data_dir):
|
346 |
+
"""See base class."""
|
347 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
348 |
+
|
349 |
+
def get_test_examples(self, data_dir):
|
350 |
+
"""See base class."""
|
351 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
352 |
+
|
353 |
+
def get_labels(self):
|
354 |
+
"""See base class."""
|
355 |
+
return ["0", "1"]
|
356 |
+
|
357 |
+
def _create_examples(self, lines, set_type):
|
358 |
+
"""Creates examples for the training, dev and test sets."""
|
359 |
+
examples = []
|
360 |
+
text_index = 1 if set_type == "test" else 0
|
361 |
+
for i, line in enumerate(lines):
|
362 |
+
if i == 0:
|
363 |
+
continue
|
364 |
+
guid = f"{set_type}-{i}"
|
365 |
+
text_a = line[text_index]
|
366 |
+
label = None if set_type == "test" else line[1]
|
367 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
368 |
+
return examples
|
369 |
+
|
370 |
+
|
371 |
+
class StsbProcessor(DataProcessor):
|
372 |
+
"""Processor for the STS-B data set (GLUE version)."""
|
373 |
+
|
374 |
+
def __init__(self, *args, **kwargs):
|
375 |
+
super().__init__(*args, **kwargs)
|
376 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
377 |
+
|
378 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
379 |
+
"""See base class."""
|
380 |
+
return InputExample(
|
381 |
+
tensor_dict["idx"].numpy(),
|
382 |
+
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
383 |
+
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
384 |
+
str(tensor_dict["label"].numpy()),
|
385 |
+
)
|
386 |
+
|
387 |
+
def get_train_examples(self, data_dir):
|
388 |
+
"""See base class."""
|
389 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
390 |
+
|
391 |
+
def get_dev_examples(self, data_dir):
|
392 |
+
"""See base class."""
|
393 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
394 |
+
|
395 |
+
def get_test_examples(self, data_dir):
|
396 |
+
"""See base class."""
|
397 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
398 |
+
|
399 |
+
def get_labels(self):
|
400 |
+
"""See base class."""
|
401 |
+
return [None]
|
402 |
+
|
403 |
+
def _create_examples(self, lines, set_type):
|
404 |
+
"""Creates examples for the training, dev and test sets."""
|
405 |
+
examples = []
|
406 |
+
for i, line in enumerate(lines):
|
407 |
+
if i == 0:
|
408 |
+
continue
|
409 |
+
guid = f"{set_type}-{line[0]}"
|
410 |
+
text_a = line[7]
|
411 |
+
text_b = line[8]
|
412 |
+
label = None if set_type == "test" else line[-1]
|
413 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
414 |
+
return examples
|
415 |
+
|
416 |
+
|
417 |
+
class QqpProcessor(DataProcessor):
|
418 |
+
"""Processor for the QQP data set (GLUE version)."""
|
419 |
+
|
420 |
+
def __init__(self, *args, **kwargs):
|
421 |
+
super().__init__(*args, **kwargs)
|
422 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
423 |
+
|
424 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
425 |
+
"""See base class."""
|
426 |
+
return InputExample(
|
427 |
+
tensor_dict["idx"].numpy(),
|
428 |
+
tensor_dict["question1"].numpy().decode("utf-8"),
|
429 |
+
tensor_dict["question2"].numpy().decode("utf-8"),
|
430 |
+
str(tensor_dict["label"].numpy()),
|
431 |
+
)
|
432 |
+
|
433 |
+
def get_train_examples(self, data_dir):
|
434 |
+
"""See base class."""
|
435 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
436 |
+
|
437 |
+
def get_dev_examples(self, data_dir):
|
438 |
+
"""See base class."""
|
439 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
440 |
+
|
441 |
+
def get_test_examples(self, data_dir):
|
442 |
+
"""See base class."""
|
443 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
444 |
+
|
445 |
+
def get_labels(self):
|
446 |
+
"""See base class."""
|
447 |
+
return ["0", "1"]
|
448 |
+
|
449 |
+
def _create_examples(self, lines, set_type):
|
450 |
+
"""Creates examples for the training, dev and test sets."""
|
451 |
+
test_mode = set_type == "test"
|
452 |
+
q1_index = 1 if test_mode else 3
|
453 |
+
q2_index = 2 if test_mode else 4
|
454 |
+
examples = []
|
455 |
+
for i, line in enumerate(lines):
|
456 |
+
if i == 0:
|
457 |
+
continue
|
458 |
+
guid = f"{set_type}-{line[0]}"
|
459 |
+
try:
|
460 |
+
text_a = line[q1_index]
|
461 |
+
text_b = line[q2_index]
|
462 |
+
label = None if test_mode else line[5]
|
463 |
+
except IndexError:
|
464 |
+
continue
|
465 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
466 |
+
return examples
|
467 |
+
|
468 |
+
|
469 |
+
class QnliProcessor(DataProcessor):
|
470 |
+
"""Processor for the QNLI data set (GLUE version)."""
|
471 |
+
|
472 |
+
def __init__(self, *args, **kwargs):
|
473 |
+
super().__init__(*args, **kwargs)
|
474 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
475 |
+
|
476 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
477 |
+
"""See base class."""
|
478 |
+
return InputExample(
|
479 |
+
tensor_dict["idx"].numpy(),
|
480 |
+
tensor_dict["question"].numpy().decode("utf-8"),
|
481 |
+
tensor_dict["sentence"].numpy().decode("utf-8"),
|
482 |
+
str(tensor_dict["label"].numpy()),
|
483 |
+
)
|
484 |
+
|
485 |
+
def get_train_examples(self, data_dir):
|
486 |
+
"""See base class."""
|
487 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
488 |
+
|
489 |
+
def get_dev_examples(self, data_dir):
|
490 |
+
"""See base class."""
|
491 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
492 |
+
|
493 |
+
def get_test_examples(self, data_dir):
|
494 |
+
"""See base class."""
|
495 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
496 |
+
|
497 |
+
def get_labels(self):
|
498 |
+
"""See base class."""
|
499 |
+
return ["entailment", "not_entailment"]
|
500 |
+
|
501 |
+
def _create_examples(self, lines, set_type):
|
502 |
+
"""Creates examples for the training, dev and test sets."""
|
503 |
+
examples = []
|
504 |
+
for i, line in enumerate(lines):
|
505 |
+
if i == 0:
|
506 |
+
continue
|
507 |
+
guid = f"{set_type}-{line[0]}"
|
508 |
+
text_a = line[1]
|
509 |
+
text_b = line[2]
|
510 |
+
label = None if set_type == "test" else line[-1]
|
511 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
512 |
+
return examples
|
513 |
+
|
514 |
+
|
515 |
+
class RteProcessor(DataProcessor):
|
516 |
+
"""Processor for the RTE data set (GLUE version)."""
|
517 |
+
|
518 |
+
def __init__(self, *args, **kwargs):
|
519 |
+
super().__init__(*args, **kwargs)
|
520 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
521 |
+
|
522 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
523 |
+
"""See base class."""
|
524 |
+
return InputExample(
|
525 |
+
tensor_dict["idx"].numpy(),
|
526 |
+
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
527 |
+
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
528 |
+
str(tensor_dict["label"].numpy()),
|
529 |
+
)
|
530 |
+
|
531 |
+
def get_train_examples(self, data_dir):
|
532 |
+
"""See base class."""
|
533 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
534 |
+
|
535 |
+
def get_dev_examples(self, data_dir):
|
536 |
+
"""See base class."""
|
537 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
538 |
+
|
539 |
+
def get_test_examples(self, data_dir):
|
540 |
+
"""See base class."""
|
541 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
542 |
+
|
543 |
+
def get_labels(self):
|
544 |
+
"""See base class."""
|
545 |
+
return ["entailment", "not_entailment"]
|
546 |
+
|
547 |
+
def _create_examples(self, lines, set_type):
|
548 |
+
"""Creates examples for the training, dev and test sets."""
|
549 |
+
examples = []
|
550 |
+
for i, line in enumerate(lines):
|
551 |
+
if i == 0:
|
552 |
+
continue
|
553 |
+
guid = f"{set_type}-{line[0]}"
|
554 |
+
text_a = line[1]
|
555 |
+
text_b = line[2]
|
556 |
+
label = None if set_type == "test" else line[-1]
|
557 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
558 |
+
return examples
|
559 |
+
|
560 |
+
|
561 |
+
class WnliProcessor(DataProcessor):
|
562 |
+
"""Processor for the WNLI data set (GLUE version)."""
|
563 |
+
|
564 |
+
def __init__(self, *args, **kwargs):
|
565 |
+
super().__init__(*args, **kwargs)
|
566 |
+
warnings.warn(DEPRECATION_WARNING.format("processor"), FutureWarning)
|
567 |
+
|
568 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
569 |
+
"""See base class."""
|
570 |
+
return InputExample(
|
571 |
+
tensor_dict["idx"].numpy(),
|
572 |
+
tensor_dict["sentence1"].numpy().decode("utf-8"),
|
573 |
+
tensor_dict["sentence2"].numpy().decode("utf-8"),
|
574 |
+
str(tensor_dict["label"].numpy()),
|
575 |
+
)
|
576 |
+
|
577 |
+
def get_train_examples(self, data_dir):
|
578 |
+
"""See base class."""
|
579 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
580 |
+
|
581 |
+
def get_dev_examples(self, data_dir):
|
582 |
+
"""See base class."""
|
583 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
584 |
+
|
585 |
+
def get_test_examples(self, data_dir):
|
586 |
+
"""See base class."""
|
587 |
+
return self._create_examples(self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
|
588 |
+
|
589 |
+
def get_labels(self):
|
590 |
+
"""See base class."""
|
591 |
+
return ["0", "1"]
|
592 |
+
|
593 |
+
def _create_examples(self, lines, set_type):
|
594 |
+
"""Creates examples for the training, dev and test sets."""
|
595 |
+
examples = []
|
596 |
+
for i, line in enumerate(lines):
|
597 |
+
if i == 0:
|
598 |
+
continue
|
599 |
+
guid = f"{set_type}-{line[0]}"
|
600 |
+
text_a = line[1]
|
601 |
+
text_b = line[2]
|
602 |
+
label = None if set_type == "test" else line[-1]
|
603 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
604 |
+
return examples
|
605 |
+
|
606 |
+
|
607 |
+
glue_tasks_num_labels = {
|
608 |
+
"cola": 2,
|
609 |
+
"mnli": 3,
|
610 |
+
"mrpc": 2,
|
611 |
+
"sst-2": 2,
|
612 |
+
"sts-b": 1,
|
613 |
+
"qqp": 2,
|
614 |
+
"qnli": 2,
|
615 |
+
"rte": 2,
|
616 |
+
"wnli": 2,
|
617 |
+
}
|
618 |
+
|
619 |
+
glue_processors = {
|
620 |
+
"cola": ColaProcessor,
|
621 |
+
"mnli": MnliProcessor,
|
622 |
+
"mnli-mm": MnliMismatchedProcessor,
|
623 |
+
"mrpc": MrpcProcessor,
|
624 |
+
"sst-2": Sst2Processor,
|
625 |
+
"sts-b": StsbProcessor,
|
626 |
+
"qqp": QqpProcessor,
|
627 |
+
"qnli": QnliProcessor,
|
628 |
+
"rte": RteProcessor,
|
629 |
+
"wnli": WnliProcessor,
|
630 |
+
}
|
631 |
+
|
632 |
+
glue_output_modes = {
|
633 |
+
"cola": "classification",
|
634 |
+
"mnli": "classification",
|
635 |
+
"mnli-mm": "classification",
|
636 |
+
"mrpc": "classification",
|
637 |
+
"sst-2": "classification",
|
638 |
+
"sts-b": "regression",
|
639 |
+
"qqp": "classification",
|
640 |
+
"qnli": "classification",
|
641 |
+
"rte": "classification",
|
642 |
+
"wnli": "classification",
|
643 |
+
}
|
venv/lib/python3.10/site-packages/transformers/data/processors/squad.py
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
from functools import partial
|
18 |
+
from multiprocessing import Pool, cpu_count
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
from ...models.bert.tokenization_bert import whitespace_tokenize
|
24 |
+
from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy
|
25 |
+
from ...utils import is_tf_available, is_torch_available, logging
|
26 |
+
from .utils import DataProcessor
|
27 |
+
|
28 |
+
|
29 |
+
# Store the tokenizers which insert 2 separators tokens
|
30 |
+
MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"}
|
31 |
+
|
32 |
+
|
33 |
+
if is_torch_available():
|
34 |
+
import torch
|
35 |
+
from torch.utils.data import TensorDataset
|
36 |
+
|
37 |
+
if is_tf_available():
|
38 |
+
import tensorflow as tf
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
|
44 |
+
"""Returns tokenized answer spans that better match the annotated answer."""
|
45 |
+
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
|
46 |
+
|
47 |
+
for new_start in range(input_start, input_end + 1):
|
48 |
+
for new_end in range(input_end, new_start - 1, -1):
|
49 |
+
text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
|
50 |
+
if text_span == tok_answer_text:
|
51 |
+
return (new_start, new_end)
|
52 |
+
|
53 |
+
return (input_start, input_end)
|
54 |
+
|
55 |
+
|
56 |
+
def _check_is_max_context(doc_spans, cur_span_index, position):
|
57 |
+
"""Check if this is the 'max context' doc span for the token."""
|
58 |
+
best_score = None
|
59 |
+
best_span_index = None
|
60 |
+
for span_index, doc_span in enumerate(doc_spans):
|
61 |
+
end = doc_span.start + doc_span.length - 1
|
62 |
+
if position < doc_span.start:
|
63 |
+
continue
|
64 |
+
if position > end:
|
65 |
+
continue
|
66 |
+
num_left_context = position - doc_span.start
|
67 |
+
num_right_context = end - position
|
68 |
+
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
|
69 |
+
if best_score is None or score > best_score:
|
70 |
+
best_score = score
|
71 |
+
best_span_index = span_index
|
72 |
+
|
73 |
+
return cur_span_index == best_span_index
|
74 |
+
|
75 |
+
|
76 |
+
def _new_check_is_max_context(doc_spans, cur_span_index, position):
|
77 |
+
"""Check if this is the 'max context' doc span for the token."""
|
78 |
+
# if len(doc_spans) == 1:
|
79 |
+
# return True
|
80 |
+
best_score = None
|
81 |
+
best_span_index = None
|
82 |
+
for span_index, doc_span in enumerate(doc_spans):
|
83 |
+
end = doc_span["start"] + doc_span["length"] - 1
|
84 |
+
if position < doc_span["start"]:
|
85 |
+
continue
|
86 |
+
if position > end:
|
87 |
+
continue
|
88 |
+
num_left_context = position - doc_span["start"]
|
89 |
+
num_right_context = end - position
|
90 |
+
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
|
91 |
+
if best_score is None or score > best_score:
|
92 |
+
best_score = score
|
93 |
+
best_span_index = span_index
|
94 |
+
|
95 |
+
return cur_span_index == best_span_index
|
96 |
+
|
97 |
+
|
98 |
+
def _is_whitespace(c):
|
99 |
+
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
|
100 |
+
return True
|
101 |
+
return False
|
102 |
+
|
103 |
+
|
104 |
+
def squad_convert_example_to_features(
|
105 |
+
example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training
|
106 |
+
):
|
107 |
+
features = []
|
108 |
+
if is_training and not example.is_impossible:
|
109 |
+
# Get start and end position
|
110 |
+
start_position = example.start_position
|
111 |
+
end_position = example.end_position
|
112 |
+
|
113 |
+
# If the answer cannot be found in the text, then skip this example.
|
114 |
+
actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)])
|
115 |
+
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
|
116 |
+
if actual_text.find(cleaned_answer_text) == -1:
|
117 |
+
logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'")
|
118 |
+
return []
|
119 |
+
|
120 |
+
tok_to_orig_index = []
|
121 |
+
orig_to_tok_index = []
|
122 |
+
all_doc_tokens = []
|
123 |
+
for i, token in enumerate(example.doc_tokens):
|
124 |
+
orig_to_tok_index.append(len(all_doc_tokens))
|
125 |
+
if tokenizer.__class__.__name__ in [
|
126 |
+
"RobertaTokenizer",
|
127 |
+
"LongformerTokenizer",
|
128 |
+
"BartTokenizer",
|
129 |
+
"RobertaTokenizerFast",
|
130 |
+
"LongformerTokenizerFast",
|
131 |
+
"BartTokenizerFast",
|
132 |
+
]:
|
133 |
+
sub_tokens = tokenizer.tokenize(token, add_prefix_space=True)
|
134 |
+
else:
|
135 |
+
sub_tokens = tokenizer.tokenize(token)
|
136 |
+
for sub_token in sub_tokens:
|
137 |
+
tok_to_orig_index.append(i)
|
138 |
+
all_doc_tokens.append(sub_token)
|
139 |
+
|
140 |
+
if is_training and not example.is_impossible:
|
141 |
+
tok_start_position = orig_to_tok_index[example.start_position]
|
142 |
+
if example.end_position < len(example.doc_tokens) - 1:
|
143 |
+
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
|
144 |
+
else:
|
145 |
+
tok_end_position = len(all_doc_tokens) - 1
|
146 |
+
|
147 |
+
(tok_start_position, tok_end_position) = _improve_answer_span(
|
148 |
+
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
|
149 |
+
)
|
150 |
+
|
151 |
+
spans = []
|
152 |
+
|
153 |
+
truncated_query = tokenizer.encode(
|
154 |
+
example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length
|
155 |
+
)
|
156 |
+
|
157 |
+
# Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling
|
158 |
+
# in the way they compute mask of added tokens.
|
159 |
+
tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower()
|
160 |
+
sequence_added_tokens = (
|
161 |
+
tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1
|
162 |
+
if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET
|
163 |
+
else tokenizer.model_max_length - tokenizer.max_len_single_sentence
|
164 |
+
)
|
165 |
+
sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair
|
166 |
+
|
167 |
+
span_doc_tokens = all_doc_tokens
|
168 |
+
while len(spans) * doc_stride < len(all_doc_tokens):
|
169 |
+
# Define the side we want to truncate / pad and the text/pair sorting
|
170 |
+
if tokenizer.padding_side == "right":
|
171 |
+
texts = truncated_query
|
172 |
+
pairs = span_doc_tokens
|
173 |
+
truncation = TruncationStrategy.ONLY_SECOND.value
|
174 |
+
else:
|
175 |
+
texts = span_doc_tokens
|
176 |
+
pairs = truncated_query
|
177 |
+
truncation = TruncationStrategy.ONLY_FIRST.value
|
178 |
+
|
179 |
+
encoded_dict = tokenizer.encode_plus( # TODO(thom) update this logic
|
180 |
+
texts,
|
181 |
+
pairs,
|
182 |
+
truncation=truncation,
|
183 |
+
padding=padding_strategy,
|
184 |
+
max_length=max_seq_length,
|
185 |
+
return_overflowing_tokens=True,
|
186 |
+
stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
|
187 |
+
return_token_type_ids=True,
|
188 |
+
)
|
189 |
+
|
190 |
+
paragraph_len = min(
|
191 |
+
len(all_doc_tokens) - len(spans) * doc_stride,
|
192 |
+
max_seq_length - len(truncated_query) - sequence_pair_added_tokens,
|
193 |
+
)
|
194 |
+
|
195 |
+
if tokenizer.pad_token_id in encoded_dict["input_ids"]:
|
196 |
+
if tokenizer.padding_side == "right":
|
197 |
+
non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)]
|
198 |
+
else:
|
199 |
+
last_padding_id_position = (
|
200 |
+
len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id)
|
201 |
+
)
|
202 |
+
non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :]
|
203 |
+
|
204 |
+
else:
|
205 |
+
non_padded_ids = encoded_dict["input_ids"]
|
206 |
+
|
207 |
+
tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)
|
208 |
+
|
209 |
+
token_to_orig_map = {}
|
210 |
+
for i in range(paragraph_len):
|
211 |
+
index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i
|
212 |
+
token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]
|
213 |
+
|
214 |
+
encoded_dict["paragraph_len"] = paragraph_len
|
215 |
+
encoded_dict["tokens"] = tokens
|
216 |
+
encoded_dict["token_to_orig_map"] = token_to_orig_map
|
217 |
+
encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
|
218 |
+
encoded_dict["token_is_max_context"] = {}
|
219 |
+
encoded_dict["start"] = len(spans) * doc_stride
|
220 |
+
encoded_dict["length"] = paragraph_len
|
221 |
+
|
222 |
+
spans.append(encoded_dict)
|
223 |
+
|
224 |
+
if "overflowing_tokens" not in encoded_dict or (
|
225 |
+
"overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0
|
226 |
+
):
|
227 |
+
break
|
228 |
+
span_doc_tokens = encoded_dict["overflowing_tokens"]
|
229 |
+
|
230 |
+
for doc_span_index in range(len(spans)):
|
231 |
+
for j in range(spans[doc_span_index]["paragraph_len"]):
|
232 |
+
is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
|
233 |
+
index = (
|
234 |
+
j
|
235 |
+
if tokenizer.padding_side == "left"
|
236 |
+
else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
|
237 |
+
)
|
238 |
+
spans[doc_span_index]["token_is_max_context"][index] = is_max_context
|
239 |
+
|
240 |
+
for span in spans:
|
241 |
+
# Identify the position of the CLS token
|
242 |
+
cls_index = span["input_ids"].index(tokenizer.cls_token_id)
|
243 |
+
|
244 |
+
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
|
245 |
+
# Original TF implementation also keep the classification token (set to 0)
|
246 |
+
p_mask = np.ones_like(span["token_type_ids"])
|
247 |
+
if tokenizer.padding_side == "right":
|
248 |
+
p_mask[len(truncated_query) + sequence_added_tokens :] = 0
|
249 |
+
else:
|
250 |
+
p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0
|
251 |
+
|
252 |
+
pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id)
|
253 |
+
special_token_indices = np.asarray(
|
254 |
+
tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True)
|
255 |
+
).nonzero()
|
256 |
+
|
257 |
+
p_mask[pad_token_indices] = 1
|
258 |
+
p_mask[special_token_indices] = 1
|
259 |
+
|
260 |
+
# Set the cls index to 0: the CLS index can be used for impossible answers
|
261 |
+
p_mask[cls_index] = 0
|
262 |
+
|
263 |
+
span_is_impossible = example.is_impossible
|
264 |
+
start_position = 0
|
265 |
+
end_position = 0
|
266 |
+
if is_training and not span_is_impossible:
|
267 |
+
# For training, if our document chunk does not contain an annotation
|
268 |
+
# we throw it out, since there is nothing to predict.
|
269 |
+
doc_start = span["start"]
|
270 |
+
doc_end = span["start"] + span["length"] - 1
|
271 |
+
out_of_span = False
|
272 |
+
|
273 |
+
if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
|
274 |
+
out_of_span = True
|
275 |
+
|
276 |
+
if out_of_span:
|
277 |
+
start_position = cls_index
|
278 |
+
end_position = cls_index
|
279 |
+
span_is_impossible = True
|
280 |
+
else:
|
281 |
+
if tokenizer.padding_side == "left":
|
282 |
+
doc_offset = 0
|
283 |
+
else:
|
284 |
+
doc_offset = len(truncated_query) + sequence_added_tokens
|
285 |
+
|
286 |
+
start_position = tok_start_position - doc_start + doc_offset
|
287 |
+
end_position = tok_end_position - doc_start + doc_offset
|
288 |
+
|
289 |
+
features.append(
|
290 |
+
SquadFeatures(
|
291 |
+
span["input_ids"],
|
292 |
+
span["attention_mask"],
|
293 |
+
span["token_type_ids"],
|
294 |
+
cls_index,
|
295 |
+
p_mask.tolist(),
|
296 |
+
example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing.
|
297 |
+
unique_id=0,
|
298 |
+
paragraph_len=span["paragraph_len"],
|
299 |
+
token_is_max_context=span["token_is_max_context"],
|
300 |
+
tokens=span["tokens"],
|
301 |
+
token_to_orig_map=span["token_to_orig_map"],
|
302 |
+
start_position=start_position,
|
303 |
+
end_position=end_position,
|
304 |
+
is_impossible=span_is_impossible,
|
305 |
+
qas_id=example.qas_id,
|
306 |
+
)
|
307 |
+
)
|
308 |
+
return features
|
309 |
+
|
310 |
+
|
311 |
+
def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase):
|
312 |
+
global tokenizer
|
313 |
+
tokenizer = tokenizer_for_convert
|
314 |
+
|
315 |
+
|
316 |
+
def squad_convert_examples_to_features(
|
317 |
+
examples,
|
318 |
+
tokenizer,
|
319 |
+
max_seq_length,
|
320 |
+
doc_stride,
|
321 |
+
max_query_length,
|
322 |
+
is_training,
|
323 |
+
padding_strategy="max_length",
|
324 |
+
return_dataset=False,
|
325 |
+
threads=1,
|
326 |
+
tqdm_enabled=True,
|
327 |
+
):
|
328 |
+
"""
|
329 |
+
Converts a list of examples into a list of features that can be directly given as input to a model. It is
|
330 |
+
model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.
|
331 |
+
|
332 |
+
Args:
|
333 |
+
examples: list of [`~data.processors.squad.SquadExample`]
|
334 |
+
tokenizer: an instance of a child of [`PreTrainedTokenizer`]
|
335 |
+
max_seq_length: The maximum sequence length of the inputs.
|
336 |
+
doc_stride: The stride used when the context is too large and is split across several features.
|
337 |
+
max_query_length: The maximum length of the query.
|
338 |
+
is_training: whether to create features for model evaluation or model training.
|
339 |
+
padding_strategy: Default to "max_length". Which padding strategy to use
|
340 |
+
return_dataset: Default False. Either 'pt' or 'tf'.
|
341 |
+
if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset
|
342 |
+
threads: multiple processing threads.
|
343 |
+
|
344 |
+
|
345 |
+
Returns:
|
346 |
+
list of [`~data.processors.squad.SquadFeatures`]
|
347 |
+
|
348 |
+
Example:
|
349 |
+
|
350 |
+
```python
|
351 |
+
processor = SquadV2Processor()
|
352 |
+
examples = processor.get_dev_examples(data_dir)
|
353 |
+
|
354 |
+
features = squad_convert_examples_to_features(
|
355 |
+
examples=examples,
|
356 |
+
tokenizer=tokenizer,
|
357 |
+
max_seq_length=args.max_seq_length,
|
358 |
+
doc_stride=args.doc_stride,
|
359 |
+
max_query_length=args.max_query_length,
|
360 |
+
is_training=not evaluate,
|
361 |
+
)
|
362 |
+
```"""
|
363 |
+
# Defining helper methods
|
364 |
+
features = []
|
365 |
+
|
366 |
+
threads = min(threads, cpu_count())
|
367 |
+
with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
|
368 |
+
annotate_ = partial(
|
369 |
+
squad_convert_example_to_features,
|
370 |
+
max_seq_length=max_seq_length,
|
371 |
+
doc_stride=doc_stride,
|
372 |
+
max_query_length=max_query_length,
|
373 |
+
padding_strategy=padding_strategy,
|
374 |
+
is_training=is_training,
|
375 |
+
)
|
376 |
+
features = list(
|
377 |
+
tqdm(
|
378 |
+
p.imap(annotate_, examples, chunksize=32),
|
379 |
+
total=len(examples),
|
380 |
+
desc="convert squad examples to features",
|
381 |
+
disable=not tqdm_enabled,
|
382 |
+
)
|
383 |
+
)
|
384 |
+
|
385 |
+
new_features = []
|
386 |
+
unique_id = 1000000000
|
387 |
+
example_index = 0
|
388 |
+
for example_features in tqdm(
|
389 |
+
features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled
|
390 |
+
):
|
391 |
+
if not example_features:
|
392 |
+
continue
|
393 |
+
for example_feature in example_features:
|
394 |
+
example_feature.example_index = example_index
|
395 |
+
example_feature.unique_id = unique_id
|
396 |
+
new_features.append(example_feature)
|
397 |
+
unique_id += 1
|
398 |
+
example_index += 1
|
399 |
+
features = new_features
|
400 |
+
del new_features
|
401 |
+
if return_dataset == "pt":
|
402 |
+
if not is_torch_available():
|
403 |
+
raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.")
|
404 |
+
|
405 |
+
# Convert to Tensors and build dataset
|
406 |
+
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
407 |
+
all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
|
408 |
+
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
|
409 |
+
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
|
410 |
+
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
|
411 |
+
all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float)
|
412 |
+
|
413 |
+
if not is_training:
|
414 |
+
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
415 |
+
dataset = TensorDataset(
|
416 |
+
all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask
|
417 |
+
)
|
418 |
+
else:
|
419 |
+
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
|
420 |
+
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
|
421 |
+
dataset = TensorDataset(
|
422 |
+
all_input_ids,
|
423 |
+
all_attention_masks,
|
424 |
+
all_token_type_ids,
|
425 |
+
all_start_positions,
|
426 |
+
all_end_positions,
|
427 |
+
all_cls_index,
|
428 |
+
all_p_mask,
|
429 |
+
all_is_impossible,
|
430 |
+
)
|
431 |
+
|
432 |
+
return features, dataset
|
433 |
+
elif return_dataset == "tf":
|
434 |
+
if not is_tf_available():
|
435 |
+
raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.")
|
436 |
+
|
437 |
+
def gen():
|
438 |
+
for i, ex in enumerate(features):
|
439 |
+
if ex.token_type_ids is None:
|
440 |
+
yield (
|
441 |
+
{
|
442 |
+
"input_ids": ex.input_ids,
|
443 |
+
"attention_mask": ex.attention_mask,
|
444 |
+
"feature_index": i,
|
445 |
+
"qas_id": ex.qas_id,
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"start_positions": ex.start_position,
|
449 |
+
"end_positions": ex.end_position,
|
450 |
+
"cls_index": ex.cls_index,
|
451 |
+
"p_mask": ex.p_mask,
|
452 |
+
"is_impossible": ex.is_impossible,
|
453 |
+
},
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
yield (
|
457 |
+
{
|
458 |
+
"input_ids": ex.input_ids,
|
459 |
+
"attention_mask": ex.attention_mask,
|
460 |
+
"token_type_ids": ex.token_type_ids,
|
461 |
+
"feature_index": i,
|
462 |
+
"qas_id": ex.qas_id,
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"start_positions": ex.start_position,
|
466 |
+
"end_positions": ex.end_position,
|
467 |
+
"cls_index": ex.cls_index,
|
468 |
+
"p_mask": ex.p_mask,
|
469 |
+
"is_impossible": ex.is_impossible,
|
470 |
+
},
|
471 |
+
)
|
472 |
+
|
473 |
+
# Why have we split the batch into a tuple? PyTorch just has a list of tensors.
|
474 |
+
if "token_type_ids" in tokenizer.model_input_names:
|
475 |
+
train_types = (
|
476 |
+
{
|
477 |
+
"input_ids": tf.int32,
|
478 |
+
"attention_mask": tf.int32,
|
479 |
+
"token_type_ids": tf.int32,
|
480 |
+
"feature_index": tf.int64,
|
481 |
+
"qas_id": tf.string,
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"start_positions": tf.int64,
|
485 |
+
"end_positions": tf.int64,
|
486 |
+
"cls_index": tf.int64,
|
487 |
+
"p_mask": tf.int32,
|
488 |
+
"is_impossible": tf.int32,
|
489 |
+
},
|
490 |
+
)
|
491 |
+
|
492 |
+
train_shapes = (
|
493 |
+
{
|
494 |
+
"input_ids": tf.TensorShape([None]),
|
495 |
+
"attention_mask": tf.TensorShape([None]),
|
496 |
+
"token_type_ids": tf.TensorShape([None]),
|
497 |
+
"feature_index": tf.TensorShape([]),
|
498 |
+
"qas_id": tf.TensorShape([]),
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"start_positions": tf.TensorShape([]),
|
502 |
+
"end_positions": tf.TensorShape([]),
|
503 |
+
"cls_index": tf.TensorShape([]),
|
504 |
+
"p_mask": tf.TensorShape([None]),
|
505 |
+
"is_impossible": tf.TensorShape([]),
|
506 |
+
},
|
507 |
+
)
|
508 |
+
else:
|
509 |
+
train_types = (
|
510 |
+
{"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string},
|
511 |
+
{
|
512 |
+
"start_positions": tf.int64,
|
513 |
+
"end_positions": tf.int64,
|
514 |
+
"cls_index": tf.int64,
|
515 |
+
"p_mask": tf.int32,
|
516 |
+
"is_impossible": tf.int32,
|
517 |
+
},
|
518 |
+
)
|
519 |
+
|
520 |
+
train_shapes = (
|
521 |
+
{
|
522 |
+
"input_ids": tf.TensorShape([None]),
|
523 |
+
"attention_mask": tf.TensorShape([None]),
|
524 |
+
"feature_index": tf.TensorShape([]),
|
525 |
+
"qas_id": tf.TensorShape([]),
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"start_positions": tf.TensorShape([]),
|
529 |
+
"end_positions": tf.TensorShape([]),
|
530 |
+
"cls_index": tf.TensorShape([]),
|
531 |
+
"p_mask": tf.TensorShape([None]),
|
532 |
+
"is_impossible": tf.TensorShape([]),
|
533 |
+
},
|
534 |
+
)
|
535 |
+
|
536 |
+
return tf.data.Dataset.from_generator(gen, train_types, train_shapes)
|
537 |
+
else:
|
538 |
+
return features
|
539 |
+
|
540 |
+
|
541 |
+
class SquadProcessor(DataProcessor):
|
542 |
+
"""
|
543 |
+
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
|
544 |
+
version 2.0 of SQuAD, respectively.
|
545 |
+
"""
|
546 |
+
|
547 |
+
train_file = None
|
548 |
+
dev_file = None
|
549 |
+
|
550 |
+
def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
|
551 |
+
if not evaluate:
|
552 |
+
answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
|
553 |
+
answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
|
554 |
+
answers = []
|
555 |
+
else:
|
556 |
+
answers = [
|
557 |
+
{"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
|
558 |
+
for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
|
559 |
+
]
|
560 |
+
|
561 |
+
answer = None
|
562 |
+
answer_start = None
|
563 |
+
|
564 |
+
return SquadExample(
|
565 |
+
qas_id=tensor_dict["id"].numpy().decode("utf-8"),
|
566 |
+
question_text=tensor_dict["question"].numpy().decode("utf-8"),
|
567 |
+
context_text=tensor_dict["context"].numpy().decode("utf-8"),
|
568 |
+
answer_text=answer,
|
569 |
+
start_position_character=answer_start,
|
570 |
+
title=tensor_dict["title"].numpy().decode("utf-8"),
|
571 |
+
answers=answers,
|
572 |
+
)
|
573 |
+
|
574 |
+
def get_examples_from_dataset(self, dataset, evaluate=False):
|
575 |
+
"""
|
576 |
+
Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset.
|
577 |
+
|
578 |
+
Args:
|
579 |
+
dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")*
|
580 |
+
evaluate: Boolean specifying if in evaluation mode or in training mode
|
581 |
+
|
582 |
+
Returns:
|
583 |
+
List of SquadExample
|
584 |
+
|
585 |
+
Examples:
|
586 |
+
|
587 |
+
```python
|
588 |
+
>>> import tensorflow_datasets as tfds
|
589 |
+
|
590 |
+
>>> dataset = tfds.load("squad")
|
591 |
+
|
592 |
+
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
|
593 |
+
>>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
|
594 |
+
```"""
|
595 |
+
|
596 |
+
if evaluate:
|
597 |
+
dataset = dataset["validation"]
|
598 |
+
else:
|
599 |
+
dataset = dataset["train"]
|
600 |
+
|
601 |
+
examples = []
|
602 |
+
for tensor_dict in tqdm(dataset):
|
603 |
+
examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
|
604 |
+
|
605 |
+
return examples
|
606 |
+
|
607 |
+
def get_train_examples(self, data_dir, filename=None):
|
608 |
+
"""
|
609 |
+
Returns the training examples from the data directory.
|
610 |
+
|
611 |
+
Args:
|
612 |
+
data_dir: Directory containing the data files used for training and evaluating.
|
613 |
+
filename: None by default, specify this if the training file has a different name than the original one
|
614 |
+
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
|
615 |
+
|
616 |
+
"""
|
617 |
+
if data_dir is None:
|
618 |
+
data_dir = ""
|
619 |
+
|
620 |
+
if self.train_file is None:
|
621 |
+
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
|
622 |
+
|
623 |
+
with open(
|
624 |
+
os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
|
625 |
+
) as reader:
|
626 |
+
input_data = json.load(reader)["data"]
|
627 |
+
return self._create_examples(input_data, "train")
|
628 |
+
|
629 |
+
def get_dev_examples(self, data_dir, filename=None):
|
630 |
+
"""
|
631 |
+
Returns the evaluation example from the data directory.
|
632 |
+
|
633 |
+
Args:
|
634 |
+
data_dir: Directory containing the data files used for training and evaluating.
|
635 |
+
filename: None by default, specify this if the evaluation file has a different name than the original one
|
636 |
+
which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
|
637 |
+
"""
|
638 |
+
if data_dir is None:
|
639 |
+
data_dir = ""
|
640 |
+
|
641 |
+
if self.dev_file is None:
|
642 |
+
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
|
643 |
+
|
644 |
+
with open(
|
645 |
+
os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
|
646 |
+
) as reader:
|
647 |
+
input_data = json.load(reader)["data"]
|
648 |
+
return self._create_examples(input_data, "dev")
|
649 |
+
|
650 |
+
def _create_examples(self, input_data, set_type):
|
651 |
+
is_training = set_type == "train"
|
652 |
+
examples = []
|
653 |
+
for entry in tqdm(input_data):
|
654 |
+
title = entry["title"]
|
655 |
+
for paragraph in entry["paragraphs"]:
|
656 |
+
context_text = paragraph["context"]
|
657 |
+
for qa in paragraph["qas"]:
|
658 |
+
qas_id = qa["id"]
|
659 |
+
question_text = qa["question"]
|
660 |
+
start_position_character = None
|
661 |
+
answer_text = None
|
662 |
+
answers = []
|
663 |
+
|
664 |
+
is_impossible = qa.get("is_impossible", False)
|
665 |
+
if not is_impossible:
|
666 |
+
if is_training:
|
667 |
+
answer = qa["answers"][0]
|
668 |
+
answer_text = answer["text"]
|
669 |
+
start_position_character = answer["answer_start"]
|
670 |
+
else:
|
671 |
+
answers = qa["answers"]
|
672 |
+
|
673 |
+
example = SquadExample(
|
674 |
+
qas_id=qas_id,
|
675 |
+
question_text=question_text,
|
676 |
+
context_text=context_text,
|
677 |
+
answer_text=answer_text,
|
678 |
+
start_position_character=start_position_character,
|
679 |
+
title=title,
|
680 |
+
is_impossible=is_impossible,
|
681 |
+
answers=answers,
|
682 |
+
)
|
683 |
+
examples.append(example)
|
684 |
+
return examples
|
685 |
+
|
686 |
+
|
687 |
+
class SquadV1Processor(SquadProcessor):
|
688 |
+
train_file = "train-v1.1.json"
|
689 |
+
dev_file = "dev-v1.1.json"
|
690 |
+
|
691 |
+
|
692 |
+
class SquadV2Processor(SquadProcessor):
|
693 |
+
train_file = "train-v2.0.json"
|
694 |
+
dev_file = "dev-v2.0.json"
|
695 |
+
|
696 |
+
|
697 |
+
class SquadExample:
|
698 |
+
"""
|
699 |
+
A single training/test example for the Squad dataset, as loaded from disk.
|
700 |
+
|
701 |
+
Args:
|
702 |
+
qas_id: The example's unique identifier
|
703 |
+
question_text: The question string
|
704 |
+
context_text: The context string
|
705 |
+
answer_text: The answer string
|
706 |
+
start_position_character: The character position of the start of the answer
|
707 |
+
title: The title of the example
|
708 |
+
answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
|
709 |
+
is_impossible: False by default, set to True if the example has no possible answer.
|
710 |
+
"""
|
711 |
+
|
712 |
+
def __init__(
|
713 |
+
self,
|
714 |
+
qas_id,
|
715 |
+
question_text,
|
716 |
+
context_text,
|
717 |
+
answer_text,
|
718 |
+
start_position_character,
|
719 |
+
title,
|
720 |
+
answers=[],
|
721 |
+
is_impossible=False,
|
722 |
+
):
|
723 |
+
self.qas_id = qas_id
|
724 |
+
self.question_text = question_text
|
725 |
+
self.context_text = context_text
|
726 |
+
self.answer_text = answer_text
|
727 |
+
self.title = title
|
728 |
+
self.is_impossible = is_impossible
|
729 |
+
self.answers = answers
|
730 |
+
|
731 |
+
self.start_position, self.end_position = 0, 0
|
732 |
+
|
733 |
+
doc_tokens = []
|
734 |
+
char_to_word_offset = []
|
735 |
+
prev_is_whitespace = True
|
736 |
+
|
737 |
+
# Split on whitespace so that different tokens may be attributed to their original position.
|
738 |
+
for c in self.context_text:
|
739 |
+
if _is_whitespace(c):
|
740 |
+
prev_is_whitespace = True
|
741 |
+
else:
|
742 |
+
if prev_is_whitespace:
|
743 |
+
doc_tokens.append(c)
|
744 |
+
else:
|
745 |
+
doc_tokens[-1] += c
|
746 |
+
prev_is_whitespace = False
|
747 |
+
char_to_word_offset.append(len(doc_tokens) - 1)
|
748 |
+
|
749 |
+
self.doc_tokens = doc_tokens
|
750 |
+
self.char_to_word_offset = char_to_word_offset
|
751 |
+
|
752 |
+
# Start and end positions only has a value during evaluation.
|
753 |
+
if start_position_character is not None and not is_impossible:
|
754 |
+
self.start_position = char_to_word_offset[start_position_character]
|
755 |
+
self.end_position = char_to_word_offset[
|
756 |
+
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
|
757 |
+
]
|
758 |
+
|
759 |
+
|
760 |
+
class SquadFeatures:
|
761 |
+
"""
|
762 |
+
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
|
763 |
+
[`~data.processors.squad.SquadExample`] using the
|
764 |
+
:method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method.
|
765 |
+
|
766 |
+
Args:
|
767 |
+
input_ids: Indices of input sequence tokens in the vocabulary.
|
768 |
+
attention_mask: Mask to avoid performing attention on padding token indices.
|
769 |
+
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
770 |
+
cls_index: the index of the CLS token.
|
771 |
+
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
|
772 |
+
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
|
773 |
+
example_index: the index of the example
|
774 |
+
unique_id: The unique Feature identifier
|
775 |
+
paragraph_len: The length of the context
|
776 |
+
token_is_max_context:
|
777 |
+
List of booleans identifying which tokens have their maximum context in this feature object. If a token
|
778 |
+
does not have their maximum context in this feature object, it means that another feature object has more
|
779 |
+
information related to that token and should be prioritized over this feature for that token.
|
780 |
+
tokens: list of tokens corresponding to the input ids
|
781 |
+
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
|
782 |
+
start_position: start of the answer token index
|
783 |
+
end_position: end of the answer token index
|
784 |
+
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
|
785 |
+
"""
|
786 |
+
|
787 |
+
def __init__(
|
788 |
+
self,
|
789 |
+
input_ids,
|
790 |
+
attention_mask,
|
791 |
+
token_type_ids,
|
792 |
+
cls_index,
|
793 |
+
p_mask,
|
794 |
+
example_index,
|
795 |
+
unique_id,
|
796 |
+
paragraph_len,
|
797 |
+
token_is_max_context,
|
798 |
+
tokens,
|
799 |
+
token_to_orig_map,
|
800 |
+
start_position,
|
801 |
+
end_position,
|
802 |
+
is_impossible,
|
803 |
+
qas_id: str = None,
|
804 |
+
encoding: BatchEncoding = None,
|
805 |
+
):
|
806 |
+
self.input_ids = input_ids
|
807 |
+
self.attention_mask = attention_mask
|
808 |
+
self.token_type_ids = token_type_ids
|
809 |
+
self.cls_index = cls_index
|
810 |
+
self.p_mask = p_mask
|
811 |
+
|
812 |
+
self.example_index = example_index
|
813 |
+
self.unique_id = unique_id
|
814 |
+
self.paragraph_len = paragraph_len
|
815 |
+
self.token_is_max_context = token_is_max_context
|
816 |
+
self.tokens = tokens
|
817 |
+
self.token_to_orig_map = token_to_orig_map
|
818 |
+
|
819 |
+
self.start_position = start_position
|
820 |
+
self.end_position = end_position
|
821 |
+
self.is_impossible = is_impossible
|
822 |
+
self.qas_id = qas_id
|
823 |
+
|
824 |
+
self.encoding = encoding
|
825 |
+
|
826 |
+
|
827 |
+
class SquadResult:
|
828 |
+
"""
|
829 |
+
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
|
830 |
+
|
831 |
+
Args:
|
832 |
+
unique_id: The unique identifier corresponding to that example.
|
833 |
+
start_logits: The logits corresponding to the start of the answer
|
834 |
+
end_logits: The logits corresponding to the end of the answer
|
835 |
+
"""
|
836 |
+
|
837 |
+
def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
|
838 |
+
self.start_logits = start_logits
|
839 |
+
self.end_logits = end_logits
|
840 |
+
self.unique_id = unique_id
|
841 |
+
|
842 |
+
if start_top_index:
|
843 |
+
self.start_top_index = start_top_index
|
844 |
+
self.end_top_index = end_top_index
|
845 |
+
self.cls_logits = cls_logits
|
venv/lib/python3.10/site-packages/transformers/data/processors/utils.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import dataclasses
|
19 |
+
import json
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
|
23 |
+
from ...utils import is_tf_available, is_torch_available, logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class InputExample:
|
31 |
+
"""
|
32 |
+
A single training/test example for simple sequence classification.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
guid: Unique id for the example.
|
36 |
+
text_a: string. The untokenized text of the first sequence. For single
|
37 |
+
sequence tasks, only this sequence must be specified.
|
38 |
+
text_b: (Optional) string. The untokenized text of the second sequence.
|
39 |
+
Only must be specified for sequence pair tasks.
|
40 |
+
label: (Optional) string. The label of the example. This should be
|
41 |
+
specified for train and dev examples, but not for test examples.
|
42 |
+
"""
|
43 |
+
|
44 |
+
guid: str
|
45 |
+
text_a: str
|
46 |
+
text_b: Optional[str] = None
|
47 |
+
label: Optional[str] = None
|
48 |
+
|
49 |
+
def to_json_string(self):
|
50 |
+
"""Serializes this instance to a JSON string."""
|
51 |
+
return json.dumps(dataclasses.asdict(self), indent=2) + "\n"
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass(frozen=True)
|
55 |
+
class InputFeatures:
|
56 |
+
"""
|
57 |
+
A single set of features of data. Property names are the same names as the corresponding inputs to a model.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
input_ids: Indices of input sequence tokens in the vocabulary.
|
61 |
+
attention_mask: Mask to avoid performing attention on padding token indices.
|
62 |
+
Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded)
|
63 |
+
tokens.
|
64 |
+
token_type_ids: (Optional) Segment token indices to indicate first and second
|
65 |
+
portions of the inputs. Only some models use them.
|
66 |
+
label: (Optional) Label corresponding to the input. Int for classification problems,
|
67 |
+
float for regression problems.
|
68 |
+
"""
|
69 |
+
|
70 |
+
input_ids: List[int]
|
71 |
+
attention_mask: Optional[List[int]] = None
|
72 |
+
token_type_ids: Optional[List[int]] = None
|
73 |
+
label: Optional[Union[int, float]] = None
|
74 |
+
|
75 |
+
def to_json_string(self):
|
76 |
+
"""Serializes this instance to a JSON string."""
|
77 |
+
return json.dumps(dataclasses.asdict(self)) + "\n"
|
78 |
+
|
79 |
+
|
80 |
+
class DataProcessor:
|
81 |
+
"""Base class for data converters for sequence classification data sets."""
|
82 |
+
|
83 |
+
def get_example_from_tensor_dict(self, tensor_dict):
|
84 |
+
"""
|
85 |
+
Gets an example from a dict with tensorflow tensors.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
tensor_dict: Keys and values should match the corresponding Glue
|
89 |
+
tensorflow_dataset examples.
|
90 |
+
"""
|
91 |
+
raise NotImplementedError()
|
92 |
+
|
93 |
+
def get_train_examples(self, data_dir):
|
94 |
+
"""Gets a collection of [`InputExample`] for the train set."""
|
95 |
+
raise NotImplementedError()
|
96 |
+
|
97 |
+
def get_dev_examples(self, data_dir):
|
98 |
+
"""Gets a collection of [`InputExample`] for the dev set."""
|
99 |
+
raise NotImplementedError()
|
100 |
+
|
101 |
+
def get_test_examples(self, data_dir):
|
102 |
+
"""Gets a collection of [`InputExample`] for the test set."""
|
103 |
+
raise NotImplementedError()
|
104 |
+
|
105 |
+
def get_labels(self):
|
106 |
+
"""Gets the list of labels for this data set."""
|
107 |
+
raise NotImplementedError()
|
108 |
+
|
109 |
+
def tfds_map(self, example):
|
110 |
+
"""
|
111 |
+
Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts
|
112 |
+
examples to the correct format.
|
113 |
+
"""
|
114 |
+
if len(self.get_labels()) > 1:
|
115 |
+
example.label = self.get_labels()[int(example.label)]
|
116 |
+
return example
|
117 |
+
|
118 |
+
@classmethod
|
119 |
+
def _read_tsv(cls, input_file, quotechar=None):
|
120 |
+
"""Reads a tab separated value file."""
|
121 |
+
with open(input_file, "r", encoding="utf-8-sig") as f:
|
122 |
+
return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
|
123 |
+
|
124 |
+
|
125 |
+
class SingleSentenceClassificationProcessor(DataProcessor):
|
126 |
+
"""Generic processor for a single sentence classification data set."""
|
127 |
+
|
128 |
+
def __init__(self, labels=None, examples=None, mode="classification", verbose=False):
|
129 |
+
self.labels = [] if labels is None else labels
|
130 |
+
self.examples = [] if examples is None else examples
|
131 |
+
self.mode = mode
|
132 |
+
self.verbose = verbose
|
133 |
+
|
134 |
+
def __len__(self):
|
135 |
+
return len(self.examples)
|
136 |
+
|
137 |
+
def __getitem__(self, idx):
|
138 |
+
if isinstance(idx, slice):
|
139 |
+
return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx])
|
140 |
+
return self.examples[idx]
|
141 |
+
|
142 |
+
@classmethod
|
143 |
+
def create_from_csv(
|
144 |
+
cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs
|
145 |
+
):
|
146 |
+
processor = cls(**kwargs)
|
147 |
+
processor.add_examples_from_csv(
|
148 |
+
file_name,
|
149 |
+
split_name=split_name,
|
150 |
+
column_label=column_label,
|
151 |
+
column_text=column_text,
|
152 |
+
column_id=column_id,
|
153 |
+
skip_first_row=skip_first_row,
|
154 |
+
overwrite_labels=True,
|
155 |
+
overwrite_examples=True,
|
156 |
+
)
|
157 |
+
return processor
|
158 |
+
|
159 |
+
@classmethod
|
160 |
+
def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs):
|
161 |
+
processor = cls(**kwargs)
|
162 |
+
processor.add_examples(texts_or_text_and_labels, labels=labels)
|
163 |
+
return processor
|
164 |
+
|
165 |
+
def add_examples_from_csv(
|
166 |
+
self,
|
167 |
+
file_name,
|
168 |
+
split_name="",
|
169 |
+
column_label=0,
|
170 |
+
column_text=1,
|
171 |
+
column_id=None,
|
172 |
+
skip_first_row=False,
|
173 |
+
overwrite_labels=False,
|
174 |
+
overwrite_examples=False,
|
175 |
+
):
|
176 |
+
lines = self._read_tsv(file_name)
|
177 |
+
if skip_first_row:
|
178 |
+
lines = lines[1:]
|
179 |
+
texts = []
|
180 |
+
labels = []
|
181 |
+
ids = []
|
182 |
+
for i, line in enumerate(lines):
|
183 |
+
texts.append(line[column_text])
|
184 |
+
labels.append(line[column_label])
|
185 |
+
if column_id is not None:
|
186 |
+
ids.append(line[column_id])
|
187 |
+
else:
|
188 |
+
guid = f"{split_name}-{i}" if split_name else str(i)
|
189 |
+
ids.append(guid)
|
190 |
+
|
191 |
+
return self.add_examples(
|
192 |
+
texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples
|
193 |
+
)
|
194 |
+
|
195 |
+
def add_examples(
|
196 |
+
self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False
|
197 |
+
):
|
198 |
+
if labels is not None and len(texts_or_text_and_labels) != len(labels):
|
199 |
+
raise ValueError(
|
200 |
+
f"Text and labels have mismatched lengths {len(texts_or_text_and_labels)} and {len(labels)}"
|
201 |
+
)
|
202 |
+
if ids is not None and len(texts_or_text_and_labels) != len(ids):
|
203 |
+
raise ValueError(f"Text and ids have mismatched lengths {len(texts_or_text_and_labels)} and {len(ids)}")
|
204 |
+
if ids is None:
|
205 |
+
ids = [None] * len(texts_or_text_and_labels)
|
206 |
+
if labels is None:
|
207 |
+
labels = [None] * len(texts_or_text_and_labels)
|
208 |
+
examples = []
|
209 |
+
added_labels = set()
|
210 |
+
for text_or_text_and_label, label, guid in zip(texts_or_text_and_labels, labels, ids):
|
211 |
+
if isinstance(text_or_text_and_label, (tuple, list)) and label is None:
|
212 |
+
text, label = text_or_text_and_label
|
213 |
+
else:
|
214 |
+
text = text_or_text_and_label
|
215 |
+
added_labels.add(label)
|
216 |
+
examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label))
|
217 |
+
|
218 |
+
# Update examples
|
219 |
+
if overwrite_examples:
|
220 |
+
self.examples = examples
|
221 |
+
else:
|
222 |
+
self.examples.extend(examples)
|
223 |
+
|
224 |
+
# Update labels
|
225 |
+
if overwrite_labels:
|
226 |
+
self.labels = list(added_labels)
|
227 |
+
else:
|
228 |
+
self.labels = list(set(self.labels).union(added_labels))
|
229 |
+
|
230 |
+
return self.examples
|
231 |
+
|
232 |
+
def get_features(
|
233 |
+
self,
|
234 |
+
tokenizer,
|
235 |
+
max_length=None,
|
236 |
+
pad_on_left=False,
|
237 |
+
pad_token=0,
|
238 |
+
mask_padding_with_zero=True,
|
239 |
+
return_tensors=None,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
Convert examples in a list of `InputFeatures`
|
243 |
+
|
244 |
+
Args:
|
245 |
+
tokenizer: Instance of a tokenizer that will tokenize the examples
|
246 |
+
max_length: Maximum example length
|
247 |
+
pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default)
|
248 |
+
pad_token: Padding token
|
249 |
+
mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values
|
250 |
+
and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual
|
251 |
+
values)
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the
|
255 |
+
task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific
|
256 |
+
`InputFeatures` which can be fed to the model.
|
257 |
+
|
258 |
+
"""
|
259 |
+
if max_length is None:
|
260 |
+
max_length = tokenizer.max_len
|
261 |
+
|
262 |
+
label_map = {label: i for i, label in enumerate(self.labels)}
|
263 |
+
|
264 |
+
all_input_ids = []
|
265 |
+
for ex_index, example in enumerate(self.examples):
|
266 |
+
if ex_index % 10000 == 0:
|
267 |
+
logger.info(f"Tokenizing example {ex_index}")
|
268 |
+
|
269 |
+
input_ids = tokenizer.encode(
|
270 |
+
example.text_a,
|
271 |
+
add_special_tokens=True,
|
272 |
+
max_length=min(max_length, tokenizer.max_len),
|
273 |
+
)
|
274 |
+
all_input_ids.append(input_ids)
|
275 |
+
|
276 |
+
batch_length = max(len(input_ids) for input_ids in all_input_ids)
|
277 |
+
|
278 |
+
features = []
|
279 |
+
for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)):
|
280 |
+
if ex_index % 10000 == 0:
|
281 |
+
logger.info(f"Writing example {ex_index}/{len(self.examples)}")
|
282 |
+
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
283 |
+
# tokens are attended to.
|
284 |
+
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
|
285 |
+
|
286 |
+
# Zero-pad up to the sequence length.
|
287 |
+
padding_length = batch_length - len(input_ids)
|
288 |
+
if pad_on_left:
|
289 |
+
input_ids = ([pad_token] * padding_length) + input_ids
|
290 |
+
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
|
291 |
+
else:
|
292 |
+
input_ids = input_ids + ([pad_token] * padding_length)
|
293 |
+
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
|
294 |
+
|
295 |
+
if len(input_ids) != batch_length:
|
296 |
+
raise ValueError(f"Error with input length {len(input_ids)} vs {batch_length}")
|
297 |
+
if len(attention_mask) != batch_length:
|
298 |
+
raise ValueError(f"Error with input length {len(attention_mask)} vs {batch_length}")
|
299 |
+
|
300 |
+
if self.mode == "classification":
|
301 |
+
label = label_map[example.label]
|
302 |
+
elif self.mode == "regression":
|
303 |
+
label = float(example.label)
|
304 |
+
else:
|
305 |
+
raise ValueError(self.mode)
|
306 |
+
|
307 |
+
if ex_index < 5 and self.verbose:
|
308 |
+
logger.info("*** Example ***")
|
309 |
+
logger.info(f"guid: {example.guid}")
|
310 |
+
logger.info(f"input_ids: {' '.join([str(x) for x in input_ids])}")
|
311 |
+
logger.info(f"attention_mask: {' '.join([str(x) for x in attention_mask])}")
|
312 |
+
logger.info(f"label: {example.label} (id = {label})")
|
313 |
+
|
314 |
+
features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label))
|
315 |
+
|
316 |
+
if return_tensors is None:
|
317 |
+
return features
|
318 |
+
elif return_tensors == "tf":
|
319 |
+
if not is_tf_available():
|
320 |
+
raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported")
|
321 |
+
import tensorflow as tf
|
322 |
+
|
323 |
+
def gen():
|
324 |
+
for ex in features:
|
325 |
+
yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label)
|
326 |
+
|
327 |
+
dataset = tf.data.Dataset.from_generator(
|
328 |
+
gen,
|
329 |
+
({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
|
330 |
+
({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])),
|
331 |
+
)
|
332 |
+
return dataset
|
333 |
+
elif return_tensors == "pt":
|
334 |
+
if not is_torch_available():
|
335 |
+
raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported")
|
336 |
+
import torch
|
337 |
+
from torch.utils.data import TensorDataset
|
338 |
+
|
339 |
+
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
340 |
+
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
|
341 |
+
if self.mode == "classification":
|
342 |
+
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
|
343 |
+
elif self.mode == "regression":
|
344 |
+
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
|
345 |
+
|
346 |
+
dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels)
|
347 |
+
return dataset
|
348 |
+
else:
|
349 |
+
raise ValueError("return_tensors should be one of 'tf' or 'pt'")
|
venv/lib/python3.10/site-packages/transformers/data/processors/xnli.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" XNLI utils (dataset loading and evaluation)"""
|
17 |
+
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
from ...utils import logging
|
22 |
+
from .utils import DataProcessor, InputExample
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class XnliProcessor(DataProcessor):
|
29 |
+
"""
|
30 |
+
Processor for the XNLI dataset. Adapted from
|
31 |
+
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, language, train_language=None):
|
35 |
+
self.language = language
|
36 |
+
self.train_language = train_language
|
37 |
+
|
38 |
+
def get_train_examples(self, data_dir):
|
39 |
+
"""See base class."""
|
40 |
+
lg = self.language if self.train_language is None else self.train_language
|
41 |
+
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
|
42 |
+
examples = []
|
43 |
+
for i, line in enumerate(lines):
|
44 |
+
if i == 0:
|
45 |
+
continue
|
46 |
+
guid = f"train-{i}"
|
47 |
+
text_a = line[0]
|
48 |
+
text_b = line[1]
|
49 |
+
label = "contradiction" if line[2] == "contradictory" else line[2]
|
50 |
+
if not isinstance(text_a, str):
|
51 |
+
raise ValueError(f"Training input {text_a} is not a string")
|
52 |
+
if not isinstance(text_b, str):
|
53 |
+
raise ValueError(f"Training input {text_b} is not a string")
|
54 |
+
if not isinstance(label, str):
|
55 |
+
raise ValueError(f"Training label {label} is not a string")
|
56 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
57 |
+
return examples
|
58 |
+
|
59 |
+
def get_test_examples(self, data_dir):
|
60 |
+
"""See base class."""
|
61 |
+
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
|
62 |
+
examples = []
|
63 |
+
for i, line in enumerate(lines):
|
64 |
+
if i == 0:
|
65 |
+
continue
|
66 |
+
language = line[0]
|
67 |
+
if language != self.language:
|
68 |
+
continue
|
69 |
+
guid = f"test-{i}"
|
70 |
+
text_a = line[6]
|
71 |
+
text_b = line[7]
|
72 |
+
label = line[1]
|
73 |
+
if not isinstance(text_a, str):
|
74 |
+
raise ValueError(f"Training input {text_a} is not a string")
|
75 |
+
if not isinstance(text_b, str):
|
76 |
+
raise ValueError(f"Training input {text_b} is not a string")
|
77 |
+
if not isinstance(label, str):
|
78 |
+
raise ValueError(f"Training label {label} is not a string")
|
79 |
+
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
80 |
+
return examples
|
81 |
+
|
82 |
+
def get_labels(self):
|
83 |
+
"""See base class."""
|
84 |
+
return ["contradiction", "entailment", "neutral"]
|
85 |
+
|
86 |
+
|
87 |
+
xnli_processors = {
|
88 |
+
"xnli": XnliProcessor,
|
89 |
+
}
|
90 |
+
|
91 |
+
xnli_output_modes = {
|
92 |
+
"xnli": "classification",
|
93 |
+
}
|
94 |
+
|
95 |
+
xnli_tasks_num_labels = {
|
96 |
+
"xnli": 3,
|
97 |
+
}
|
venv/lib/python3.10/site-packages/transformers/onnx/__init__.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ..utils import _LazyModule
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"config": [
|
22 |
+
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
|
23 |
+
"OnnxConfig",
|
24 |
+
"OnnxConfigWithPast",
|
25 |
+
"OnnxSeq2SeqConfigWithPast",
|
26 |
+
"PatchingSpec",
|
27 |
+
],
|
28 |
+
"convert": ["export", "validate_model_outputs"],
|
29 |
+
"features": ["FeaturesManager"],
|
30 |
+
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
if TYPE_CHECKING:
|
35 |
+
from .config import (
|
36 |
+
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
|
37 |
+
OnnxConfig,
|
38 |
+
OnnxConfigWithPast,
|
39 |
+
OnnxSeq2SeqConfigWithPast,
|
40 |
+
PatchingSpec,
|
41 |
+
)
|
42 |
+
from .convert import export, validate_model_outputs
|
43 |
+
from .features import FeaturesManager
|
44 |
+
from .utils import ParameterFormat, compute_serialized_parameters_size
|
45 |
+
|
46 |
+
else:
|
47 |
+
import sys
|
48 |
+
|
49 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/onnx/__main__.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import subprocess
|
15 |
+
import sys
|
16 |
+
import warnings
|
17 |
+
from argparse import ArgumentParser
|
18 |
+
from pathlib import Path
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from .. import AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer
|
23 |
+
from ..utils import logging
|
24 |
+
from ..utils.import_utils import is_optimum_available
|
25 |
+
from .convert import export, validate_model_outputs
|
26 |
+
from .features import FeaturesManager
|
27 |
+
from .utils import get_preprocessor
|
28 |
+
|
29 |
+
|
30 |
+
MIN_OPTIMUM_VERSION = "1.5.0"
|
31 |
+
|
32 |
+
ENCODER_DECODER_MODELS = ["vision-encoder-decoder"]
|
33 |
+
|
34 |
+
|
35 |
+
def export_with_optimum(args):
|
36 |
+
if is_optimum_available():
|
37 |
+
from optimum.version import __version__ as optimum_version
|
38 |
+
|
39 |
+
parsed_optimum_version = version.parse(optimum_version)
|
40 |
+
if parsed_optimum_version < version.parse(MIN_OPTIMUM_VERSION):
|
41 |
+
raise RuntimeError(
|
42 |
+
f"transformers.onnx requires optimum >= {MIN_OPTIMUM_VERSION} but {optimum_version} is installed. You "
|
43 |
+
"can upgrade optimum by running: pip install -U optimum[exporters]"
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
raise RuntimeError(
|
47 |
+
"transformers.onnx requires optimum to run, you can install the library by running: pip install "
|
48 |
+
"optimum[exporters]"
|
49 |
+
)
|
50 |
+
cmd_line = [
|
51 |
+
sys.executable,
|
52 |
+
"-m",
|
53 |
+
"optimum.exporters.onnx",
|
54 |
+
f"--model {args.model}",
|
55 |
+
f"--task {args.feature}",
|
56 |
+
f"--framework {args.framework}" if args.framework is not None else "",
|
57 |
+
f"{args.output}",
|
58 |
+
]
|
59 |
+
proc = subprocess.Popen(cmd_line, stdout=subprocess.PIPE)
|
60 |
+
proc.wait()
|
61 |
+
|
62 |
+
logger.info(
|
63 |
+
"The export was done by optimum.exporters.onnx. We recommend using to use this package directly in future, as "
|
64 |
+
"transformers.onnx is deprecated, and will be removed in v5. You can find more information here: "
|
65 |
+
"https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model."
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
def export_with_transformers(args):
|
70 |
+
args.output = args.output if args.output.is_file() else args.output.joinpath("model.onnx")
|
71 |
+
if not args.output.parent.exists():
|
72 |
+
args.output.parent.mkdir(parents=True)
|
73 |
+
|
74 |
+
# Allocate the model
|
75 |
+
model = FeaturesManager.get_model_from_feature(
|
76 |
+
args.feature, args.model, framework=args.framework, cache_dir=args.cache_dir
|
77 |
+
)
|
78 |
+
|
79 |
+
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(model, feature=args.feature)
|
80 |
+
onnx_config = model_onnx_config(model.config)
|
81 |
+
|
82 |
+
if model_kind in ENCODER_DECODER_MODELS:
|
83 |
+
encoder_model = model.get_encoder()
|
84 |
+
decoder_model = model.get_decoder()
|
85 |
+
|
86 |
+
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
|
87 |
+
decoder_onnx_config = onnx_config.get_decoder_config(
|
88 |
+
encoder_model.config, decoder_model.config, feature=args.feature
|
89 |
+
)
|
90 |
+
|
91 |
+
if args.opset is None:
|
92 |
+
args.opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
|
93 |
+
|
94 |
+
if args.opset < min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset):
|
95 |
+
raise ValueError(
|
96 |
+
f"Opset {args.opset} is not sufficient to export {model_kind}. At least "
|
97 |
+
f" {min(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)} is required."
|
98 |
+
)
|
99 |
+
|
100 |
+
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
|
101 |
+
|
102 |
+
onnx_inputs, onnx_outputs = export(
|
103 |
+
preprocessor,
|
104 |
+
encoder_model,
|
105 |
+
encoder_onnx_config,
|
106 |
+
args.opset,
|
107 |
+
args.output.parent.joinpath("encoder_model.onnx"),
|
108 |
+
)
|
109 |
+
|
110 |
+
validate_model_outputs(
|
111 |
+
encoder_onnx_config,
|
112 |
+
preprocessor,
|
113 |
+
encoder_model,
|
114 |
+
args.output.parent.joinpath("encoder_model.onnx"),
|
115 |
+
onnx_outputs,
|
116 |
+
args.atol if args.atol else encoder_onnx_config.atol_for_validation,
|
117 |
+
)
|
118 |
+
|
119 |
+
preprocessor = AutoTokenizer.from_pretrained(args.model)
|
120 |
+
|
121 |
+
onnx_inputs, onnx_outputs = export(
|
122 |
+
preprocessor,
|
123 |
+
decoder_model,
|
124 |
+
decoder_onnx_config,
|
125 |
+
args.opset,
|
126 |
+
args.output.parent.joinpath("decoder_model.onnx"),
|
127 |
+
)
|
128 |
+
|
129 |
+
validate_model_outputs(
|
130 |
+
decoder_onnx_config,
|
131 |
+
preprocessor,
|
132 |
+
decoder_model,
|
133 |
+
args.output.parent.joinpath("decoder_model.onnx"),
|
134 |
+
onnx_outputs,
|
135 |
+
args.atol if args.atol else decoder_onnx_config.atol_for_validation,
|
136 |
+
)
|
137 |
+
logger.info(
|
138 |
+
f"All good, model saved at: {args.output.parent.joinpath('encoder_model.onnx').as_posix()},"
|
139 |
+
f" {args.output.parent.joinpath('decoder_model.onnx').as_posix()}"
|
140 |
+
)
|
141 |
+
|
142 |
+
else:
|
143 |
+
# Instantiate the appropriate preprocessor
|
144 |
+
if args.preprocessor == "auto":
|
145 |
+
preprocessor = get_preprocessor(args.model)
|
146 |
+
elif args.preprocessor == "tokenizer":
|
147 |
+
preprocessor = AutoTokenizer.from_pretrained(args.model)
|
148 |
+
elif args.preprocessor == "image_processor":
|
149 |
+
preprocessor = AutoImageProcessor.from_pretrained(args.model)
|
150 |
+
elif args.preprocessor == "feature_extractor":
|
151 |
+
preprocessor = AutoFeatureExtractor.from_pretrained(args.model)
|
152 |
+
elif args.preprocessor == "processor":
|
153 |
+
preprocessor = AutoProcessor.from_pretrained(args.model)
|
154 |
+
else:
|
155 |
+
raise ValueError(f"Unknown preprocessor type '{args.preprocessor}'")
|
156 |
+
|
157 |
+
# Ensure the requested opset is sufficient
|
158 |
+
if args.opset is None:
|
159 |
+
args.opset = onnx_config.default_onnx_opset
|
160 |
+
|
161 |
+
if args.opset < onnx_config.default_onnx_opset:
|
162 |
+
raise ValueError(
|
163 |
+
f"Opset {args.opset} is not sufficient to export {model_kind}. "
|
164 |
+
f"At least {onnx_config.default_onnx_opset} is required."
|
165 |
+
)
|
166 |
+
|
167 |
+
onnx_inputs, onnx_outputs = export(
|
168 |
+
preprocessor,
|
169 |
+
model,
|
170 |
+
onnx_config,
|
171 |
+
args.opset,
|
172 |
+
args.output,
|
173 |
+
)
|
174 |
+
|
175 |
+
if args.atol is None:
|
176 |
+
args.atol = onnx_config.atol_for_validation
|
177 |
+
|
178 |
+
validate_model_outputs(onnx_config, preprocessor, model, args.output, onnx_outputs, args.atol)
|
179 |
+
logger.info(f"All good, model saved at: {args.output.as_posix()}")
|
180 |
+
warnings.warn(
|
181 |
+
"The export was done by transformers.onnx which is deprecated and will be removed in v5. We recommend"
|
182 |
+
" using optimum.exporters.onnx in future. You can find more information here:"
|
183 |
+
" https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model.",
|
184 |
+
FutureWarning,
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def main():
|
189 |
+
parser = ArgumentParser("Hugging Face Transformers ONNX exporter")
|
190 |
+
parser.add_argument(
|
191 |
+
"-m", "--model", type=str, required=True, help="Model ID on huggingface.co or path on disk to load model from."
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--feature",
|
195 |
+
default="default",
|
196 |
+
help="The type of features to export the model with.",
|
197 |
+
)
|
198 |
+
parser.add_argument("--opset", type=int, default=None, help="ONNX opset version to export the model with.")
|
199 |
+
parser.add_argument(
|
200 |
+
"--atol", type=float, default=None, help="Absolute difference tolerance when validating the model."
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--framework",
|
204 |
+
type=str,
|
205 |
+
choices=["pt", "tf"],
|
206 |
+
default=None,
|
207 |
+
help=(
|
208 |
+
"The framework to use for the ONNX export."
|
209 |
+
" If not provided, will attempt to use the local checkpoint's original framework"
|
210 |
+
" or what is available in the environment."
|
211 |
+
),
|
212 |
+
)
|
213 |
+
parser.add_argument("output", type=Path, help="Path indicating where to store generated ONNX model.")
|
214 |
+
parser.add_argument("--cache_dir", type=str, default=None, help="Path indicating where to store cache.")
|
215 |
+
parser.add_argument(
|
216 |
+
"--preprocessor",
|
217 |
+
type=str,
|
218 |
+
choices=["auto", "tokenizer", "feature_extractor", "image_processor", "processor"],
|
219 |
+
default="auto",
|
220 |
+
help="Which type of preprocessor to use. 'auto' tries to automatically detect it.",
|
221 |
+
)
|
222 |
+
parser.add_argument(
|
223 |
+
"--export_with_transformers",
|
224 |
+
action="store_true",
|
225 |
+
help=(
|
226 |
+
"Whether to use transformers.onnx instead of optimum.exporters.onnx to perform the ONNX export. It can be "
|
227 |
+
"useful when exporting a model supported in transformers but not in optimum, otherwise it is not "
|
228 |
+
"recommended."
|
229 |
+
),
|
230 |
+
)
|
231 |
+
|
232 |
+
args = parser.parse_args()
|
233 |
+
if args.export_with_transformers or not is_optimum_available():
|
234 |
+
export_with_transformers(args)
|
235 |
+
else:
|
236 |
+
export_with_optimum(args)
|
237 |
+
|
238 |
+
|
239 |
+
if __name__ == "__main__":
|
240 |
+
logger = logging.get_logger("transformers.onnx") # pylint: disable=invalid-name
|
241 |
+
logger.setLevel(logging.INFO)
|
242 |
+
main()
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (875 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/__main__.cpython-310.pyc
ADDED
Binary file (5.88 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/config.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/convert.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/features.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.98 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/onnx/config.py
ADDED
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import copy
|
15 |
+
import dataclasses
|
16 |
+
import warnings
|
17 |
+
from abc import ABC, abstractmethod
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
from packaging import version
|
23 |
+
|
24 |
+
from ..utils import TensorType, is_torch_available, is_vision_available, logging
|
25 |
+
from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size
|
26 |
+
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
from ..configuration_utils import PretrainedConfig
|
30 |
+
from ..feature_extraction_utils import FeatureExtractionMixin
|
31 |
+
from ..image_processing_utils import ImageProcessingMixin
|
32 |
+
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
33 |
+
|
34 |
+
|
35 |
+
if is_vision_available():
|
36 |
+
from PIL import Image
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
DEFAULT_ONNX_OPSET = 11
|
42 |
+
|
43 |
+
# 2 Gb
|
44 |
+
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024
|
45 |
+
|
46 |
+
|
47 |
+
@dataclasses.dataclass
|
48 |
+
class PatchingSpec:
|
49 |
+
"""
|
50 |
+
Data class that holds patching specifications.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
o: Module / object where the op to patch is located
|
54 |
+
name: Name of the op to monkey patch
|
55 |
+
custom_op: Custom op that patches the original op
|
56 |
+
orig_op: Original op that is being patched
|
57 |
+
op_wrapper: Wrapper (optional) that wraps both the original and custom ops.
|
58 |
+
It is useful for ops that are class or static methods for instance.
|
59 |
+
"""
|
60 |
+
|
61 |
+
o: Any
|
62 |
+
name: str
|
63 |
+
custom_op: Callable
|
64 |
+
orig_op: Optional[Callable] = None
|
65 |
+
op_wrapper: Optional[Callable] = None
|
66 |
+
|
67 |
+
|
68 |
+
class OnnxConfig(ABC):
|
69 |
+
"""
|
70 |
+
Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
|
71 |
+
"""
|
72 |
+
|
73 |
+
default_fixed_batch = 2
|
74 |
+
default_fixed_sequence = 8
|
75 |
+
default_fixed_num_choices = 4
|
76 |
+
torch_onnx_minimum_version = version.parse("1.8")
|
77 |
+
_tasks_to_common_outputs = {
|
78 |
+
"causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
79 |
+
"default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}),
|
80 |
+
"image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
81 |
+
"image-segmentation": OrderedDict(
|
82 |
+
{
|
83 |
+
"logits": {0: "batch", 1: "sequence"},
|
84 |
+
"pred_boxes": {0: "batch", 1: "sequence"},
|
85 |
+
"pred_masks": {0: "batch", 1: "sequence"},
|
86 |
+
}
|
87 |
+
),
|
88 |
+
"masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
89 |
+
"masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
90 |
+
"multiple-choice": OrderedDict({"logits": {0: "batch"}}),
|
91 |
+
"object-detection": OrderedDict(
|
92 |
+
{
|
93 |
+
"logits": {0: "batch", 1: "sequence"},
|
94 |
+
"pred_boxes": {0: "batch", 1: "sequence"},
|
95 |
+
}
|
96 |
+
),
|
97 |
+
"question-answering": OrderedDict(
|
98 |
+
{
|
99 |
+
"start_logits": {0: "batch", 1: "sequence"},
|
100 |
+
"end_logits": {0: "batch", 1: "sequence"},
|
101 |
+
}
|
102 |
+
),
|
103 |
+
"semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}),
|
104 |
+
"seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}),
|
105 |
+
"sequence-classification": OrderedDict({"logits": {0: "batch"}}),
|
106 |
+
"token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
107 |
+
"vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
108 |
+
"speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}),
|
109 |
+
}
|
110 |
+
|
111 |
+
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None):
|
112 |
+
self._config = config
|
113 |
+
|
114 |
+
if task not in self._tasks_to_common_outputs:
|
115 |
+
raise ValueError(
|
116 |
+
f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}"
|
117 |
+
)
|
118 |
+
self.task = task
|
119 |
+
|
120 |
+
self._patching_specs = []
|
121 |
+
for spec in patching_specs if patching_specs is not None else []:
|
122 |
+
final_spec = spec
|
123 |
+
if spec.orig_op is None:
|
124 |
+
final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name))
|
125 |
+
self._patching_specs.append(final_spec)
|
126 |
+
|
127 |
+
@classmethod
|
128 |
+
def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig":
|
129 |
+
"""
|
130 |
+
Instantiate a OnnxConfig for a specific model
|
131 |
+
|
132 |
+
Args:
|
133 |
+
config: The model's configuration to use when exporting to ONNX
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
OnnxConfig for this model
|
137 |
+
"""
|
138 |
+
return cls(config, task=task)
|
139 |
+
|
140 |
+
@property
|
141 |
+
@abstractmethod
|
142 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
143 |
+
"""
|
144 |
+
Mapping containing the axis definition of the input tensors to provide to the model
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
For each input: its name associated to the axes symbolic name and the axis position within the tensor
|
148 |
+
"""
|
149 |
+
raise NotImplementedError()
|
150 |
+
|
151 |
+
@property
|
152 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
153 |
+
"""
|
154 |
+
Mapping containing the axis definition of the output tensors to provide to the model
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
For each output: its name associated to the axes symbolic name and the axis position within the tensor
|
158 |
+
"""
|
159 |
+
common_outputs = self._tasks_to_common_outputs[self.task]
|
160 |
+
return copy.deepcopy(common_outputs)
|
161 |
+
|
162 |
+
@property
|
163 |
+
def values_override(self) -> Optional[Mapping[str, Any]]:
|
164 |
+
"""
|
165 |
+
Dictionary of keys to override in the model's config before exporting
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Dictionary with the keys (and their corresponding values) to override
|
169 |
+
"""
|
170 |
+
if hasattr(self._config, "use_cache"):
|
171 |
+
return {"use_cache": False}
|
172 |
+
|
173 |
+
return None
|
174 |
+
|
175 |
+
@property
|
176 |
+
def default_batch_size(self) -> int:
|
177 |
+
"""
|
178 |
+
The default batch size to use if no other indication
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
Integer > 0
|
182 |
+
"""
|
183 |
+
# Using 2 avoid ONNX making assumption about single sample batch
|
184 |
+
return OnnxConfig.default_fixed_batch
|
185 |
+
|
186 |
+
@property
|
187 |
+
def default_sequence_length(self) -> int:
|
188 |
+
"""
|
189 |
+
The default sequence length to use if no other indication
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
Integer > 0
|
193 |
+
"""
|
194 |
+
return OnnxConfig.default_fixed_sequence
|
195 |
+
|
196 |
+
@property
|
197 |
+
def default_num_choices(self) -> int:
|
198 |
+
"""
|
199 |
+
The default number of choices to use if no other indication
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
Integer > 0
|
203 |
+
"""
|
204 |
+
return OnnxConfig.default_fixed_num_choices
|
205 |
+
|
206 |
+
@property
|
207 |
+
def default_onnx_opset(self) -> int:
|
208 |
+
"""
|
209 |
+
Which onnx opset to use when exporting the model
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
Integer ONNX Opset version
|
213 |
+
"""
|
214 |
+
return DEFAULT_ONNX_OPSET
|
215 |
+
|
216 |
+
@property
|
217 |
+
def atol_for_validation(self) -> float:
|
218 |
+
"""
|
219 |
+
What absolute tolerance value to use during model conversion validation.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
Float absolute tolerance value.
|
223 |
+
"""
|
224 |
+
return 1e-5
|
225 |
+
|
226 |
+
@property
|
227 |
+
def is_torch_support_available(self) -> bool:
|
228 |
+
"""
|
229 |
+
The minimum PyTorch version required to export the model.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
`bool`: Whether the installed version of PyTorch is compatible with the model.
|
233 |
+
"""
|
234 |
+
if is_torch_available():
|
235 |
+
from transformers.utils import get_torch_version
|
236 |
+
|
237 |
+
return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version
|
238 |
+
else:
|
239 |
+
return False
|
240 |
+
|
241 |
+
@staticmethod
|
242 |
+
def use_external_data_format(num_parameters: int) -> bool:
|
243 |
+
"""
|
244 |
+
Flag indicating if the model requires using external data format
|
245 |
+
|
246 |
+
Args:
|
247 |
+
num_parameters: Number of parameter on the model
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
|
251 |
+
"""
|
252 |
+
|
253 |
+
return (
|
254 |
+
compute_serialized_parameters_size(num_parameters, ParameterFormat.Float)
|
255 |
+
>= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
|
256 |
+
)
|
257 |
+
|
258 |
+
def _generate_dummy_images(
|
259 |
+
self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40
|
260 |
+
):
|
261 |
+
images = []
|
262 |
+
for _ in range(batch_size):
|
263 |
+
data = np.random.rand(image_height, image_width, num_channels) * 255
|
264 |
+
images.append(Image.fromarray(data.astype("uint8")).convert("RGB"))
|
265 |
+
return images
|
266 |
+
|
267 |
+
def _generate_dummy_audio(
|
268 |
+
self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220
|
269 |
+
):
|
270 |
+
audio_data = []
|
271 |
+
for _ in range(batch_size):
|
272 |
+
# time variable
|
273 |
+
t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False)
|
274 |
+
|
275 |
+
# generate pure sine wave at `frequency` Hz
|
276 |
+
audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t))
|
277 |
+
|
278 |
+
return audio_data
|
279 |
+
|
280 |
+
def generate_dummy_inputs(
|
281 |
+
self,
|
282 |
+
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"],
|
283 |
+
batch_size: int = -1,
|
284 |
+
seq_length: int = -1,
|
285 |
+
num_choices: int = -1,
|
286 |
+
is_pair: bool = False,
|
287 |
+
framework: Optional[TensorType] = None,
|
288 |
+
num_channels: int = 3,
|
289 |
+
image_width: int = 40,
|
290 |
+
image_height: int = 40,
|
291 |
+
sampling_rate: int = 22050,
|
292 |
+
time_duration: float = 5.0,
|
293 |
+
frequency: int = 220,
|
294 |
+
tokenizer: "PreTrainedTokenizerBase" = None,
|
295 |
+
) -> Mapping[str, Any]:
|
296 |
+
"""
|
297 |
+
Generate inputs to provide to the ONNX exporter for the specific framework
|
298 |
+
|
299 |
+
Args:
|
300 |
+
preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]):
|
301 |
+
The preprocessor associated with this model configuration.
|
302 |
+
batch_size (`int`, *optional*, defaults to -1):
|
303 |
+
The batch size to export the model for (-1 means dynamic axis).
|
304 |
+
num_choices (`int`, *optional*, defaults to -1):
|
305 |
+
The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
|
306 |
+
seq_length (`int`, *optional*, defaults to -1):
|
307 |
+
The sequence length to export the model for (-1 means dynamic axis).
|
308 |
+
is_pair (`bool`, *optional*, defaults to `False`):
|
309 |
+
Indicate if the input is a pair (sentence 1, sentence 2)
|
310 |
+
framework (`TensorType`, *optional*, defaults to `None`):
|
311 |
+
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
|
312 |
+
num_channels (`int`, *optional*, defaults to 3):
|
313 |
+
The number of channels of the generated images.
|
314 |
+
image_width (`int`, *optional*, defaults to 40):
|
315 |
+
The width of the generated images.
|
316 |
+
image_height (`int`, *optional*, defaults to 40):
|
317 |
+
The height of the generated images.
|
318 |
+
sampling_rate (`int`, *optional* defaults to 22050)
|
319 |
+
The sampling rate for audio data generation.
|
320 |
+
time_duration (`float`, *optional* defaults to 5.0)
|
321 |
+
Total seconds of sampling for audio data generation.
|
322 |
+
frequency (`int`, *optional* defaults to 220)
|
323 |
+
The desired natural frequency of generated audio.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
|
327 |
+
"""
|
328 |
+
from ..feature_extraction_utils import FeatureExtractionMixin
|
329 |
+
from ..image_processing_utils import ImageProcessingMixin
|
330 |
+
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
331 |
+
|
332 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
333 |
+
raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.")
|
334 |
+
if tokenizer is not None:
|
335 |
+
warnings.warn(
|
336 |
+
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
337 |
+
" `preprocessor` instead.",
|
338 |
+
FutureWarning,
|
339 |
+
)
|
340 |
+
logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
341 |
+
preprocessor = tokenizer
|
342 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase):
|
343 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
344 |
+
batch_size = compute_effective_axis_dimension(
|
345 |
+
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
346 |
+
)
|
347 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
348 |
+
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
|
349 |
+
seq_length = compute_effective_axis_dimension(
|
350 |
+
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
351 |
+
)
|
352 |
+
# Generate dummy inputs according to compute batch and sequence
|
353 |
+
input_token = (
|
354 |
+
preprocessor.unk_token
|
355 |
+
if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0)
|
356 |
+
else "0"
|
357 |
+
)
|
358 |
+
dummy_input = [" ".join([input_token]) * seq_length] * batch_size
|
359 |
+
if self.task == "multiple-choice":
|
360 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations
|
361 |
+
# made by ONNX
|
362 |
+
num_choices = compute_effective_axis_dimension(
|
363 |
+
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0
|
364 |
+
)
|
365 |
+
dummy_input = dummy_input * num_choices
|
366 |
+
# The shape of the tokenized inputs values is [batch_size * num_choices, seq_length]
|
367 |
+
tokenized_input = preprocessor(dummy_input, text_pair=dummy_input)
|
368 |
+
# Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length]
|
369 |
+
for k, v in tokenized_input.items():
|
370 |
+
tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)]
|
371 |
+
return dict(tokenized_input.convert_to_tensors(tensor_type=framework))
|
372 |
+
return dict(preprocessor(dummy_input, return_tensors=framework))
|
373 |
+
elif isinstance(preprocessor, ImageProcessingMixin):
|
374 |
+
if preprocessor.model_input_names[0] != "pixel_values":
|
375 |
+
raise ValueError(
|
376 |
+
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects"
|
377 |
+
f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}'
|
378 |
+
)
|
379 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
380 |
+
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
381 |
+
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
382 |
+
return dict(preprocessor(images=dummy_input, return_tensors=framework))
|
383 |
+
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
|
384 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
385 |
+
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
386 |
+
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
387 |
+
return dict(preprocessor(images=dummy_input, return_tensors=framework))
|
388 |
+
elif (
|
389 |
+
isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features"
|
390 |
+
):
|
391 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
392 |
+
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
393 |
+
dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency)
|
394 |
+
return dict(preprocessor(dummy_input, return_tensors=framework))
|
395 |
+
else:
|
396 |
+
raise ValueError(
|
397 |
+
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
|
398 |
+
)
|
399 |
+
|
400 |
+
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]:
|
401 |
+
"""
|
402 |
+
Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq
|
403 |
+
models which have the encoder and decoder exported as separate ONNX files.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
reference_model_inputs ([`Mapping[str, Tensor]`):
|
407 |
+
Reference inputs for the model.
|
408 |
+
|
409 |
+
Returns:
|
410 |
+
`Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function
|
411 |
+
"""
|
412 |
+
return reference_model_inputs
|
413 |
+
|
414 |
+
def patch_ops(self):
|
415 |
+
for spec in self._patching_specs:
|
416 |
+
custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op)
|
417 |
+
setattr(spec.o, spec.name, custom_op)
|
418 |
+
|
419 |
+
def restore_ops(self):
|
420 |
+
for spec in self._patching_specs:
|
421 |
+
orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op)
|
422 |
+
setattr(spec.o, spec.name, orig_op)
|
423 |
+
|
424 |
+
@classmethod
|
425 |
+
def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]:
|
426 |
+
"""
|
427 |
+
Flatten any potential nested structure expanding the name of the field with the index of the element within the
|
428 |
+
structure.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
name: The name of the nested structure
|
432 |
+
field: The structure to, potentially, be flattened
|
433 |
+
|
434 |
+
Returns:
|
435 |
+
(Dict[str, Any]): Outputs with flattened structure and key mapping this new structure.
|
436 |
+
|
437 |
+
"""
|
438 |
+
from itertools import chain
|
439 |
+
|
440 |
+
return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))}
|
441 |
+
|
442 |
+
|
443 |
+
class OnnxConfigWithPast(OnnxConfig, ABC):
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
config: "PretrainedConfig",
|
447 |
+
task: str = "default",
|
448 |
+
patching_specs: List[PatchingSpec] = None,
|
449 |
+
use_past: bool = False,
|
450 |
+
):
|
451 |
+
super().__init__(config, task=task, patching_specs=patching_specs)
|
452 |
+
self.use_past = use_past
|
453 |
+
|
454 |
+
@classmethod
|
455 |
+
def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast":
|
456 |
+
"""
|
457 |
+
Instantiate a OnnxConfig with `use_past` attribute set to True
|
458 |
+
|
459 |
+
Args:
|
460 |
+
config: The underlying model's config to use when exporting to ONNX
|
461 |
+
|
462 |
+
Returns:
|
463 |
+
OnnxConfig with `.use_past = True`
|
464 |
+
"""
|
465 |
+
return cls(config, task=task, use_past=True)
|
466 |
+
|
467 |
+
@property
|
468 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
469 |
+
common_outputs = super().outputs
|
470 |
+
if self.use_past:
|
471 |
+
self.fill_with_past_key_values_(common_outputs, direction="outputs")
|
472 |
+
|
473 |
+
return common_outputs
|
474 |
+
|
475 |
+
@property
|
476 |
+
def values_override(self) -> Optional[Mapping[str, Any]]:
|
477 |
+
if hasattr(self._config, "use_cache"):
|
478 |
+
return {"use_cache": self.use_past}
|
479 |
+
|
480 |
+
return None
|
481 |
+
|
482 |
+
@property
|
483 |
+
def num_layers(self) -> int:
|
484 |
+
"""
|
485 |
+
The number of layers attribute retrieved from the model config. Override this for model configs where the
|
486 |
+
number of layers attribute is not called `num_layers`.
|
487 |
+
"""
|
488 |
+
if not hasattr(self._config, "num_layers"):
|
489 |
+
raise AttributeError(
|
490 |
+
"could not find the number of layers attribute in the model configuration, override the num_layers"
|
491 |
+
" property of the model OnnxConfig to solve this"
|
492 |
+
)
|
493 |
+
return self._config.num_layers
|
494 |
+
|
495 |
+
@property
|
496 |
+
def num_attention_heads(self) -> int:
|
497 |
+
"""
|
498 |
+
The number of attention heads attribute retrieved from the model config. Override this for model configs where
|
499 |
+
the number of attention heads attribute is not called `num_attention_heads`.
|
500 |
+
"""
|
501 |
+
if not hasattr(self._config, "num_attention_heads"):
|
502 |
+
raise AttributeError(
|
503 |
+
"could not find the number of attention heads attribute in the model configuration, override the"
|
504 |
+
" num_attention_heads property of the model OnnxConfig to solve this"
|
505 |
+
)
|
506 |
+
return self._config.num_attention_heads
|
507 |
+
|
508 |
+
def generate_dummy_inputs(
|
509 |
+
self,
|
510 |
+
tokenizer: "PreTrainedTokenizerBase",
|
511 |
+
batch_size: int = -1,
|
512 |
+
seq_length: int = -1,
|
513 |
+
is_pair: bool = False,
|
514 |
+
framework: Optional[TensorType] = None,
|
515 |
+
) -> Mapping[str, Any]:
|
516 |
+
# TODO: should we set seq_length = 1 when self.use_past = True?
|
517 |
+
common_inputs = super().generate_dummy_inputs(
|
518 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
519 |
+
)
|
520 |
+
|
521 |
+
if self.use_past:
|
522 |
+
if not is_torch_available():
|
523 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
524 |
+
else:
|
525 |
+
import torch
|
526 |
+
|
527 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
528 |
+
# Not using the same length for past_key_values
|
529 |
+
past_key_values_length = seqlen + 2
|
530 |
+
shape = (
|
531 |
+
batch,
|
532 |
+
self.num_attention_heads,
|
533 |
+
past_key_values_length,
|
534 |
+
self._config.hidden_size // self.num_attention_heads,
|
535 |
+
)
|
536 |
+
|
537 |
+
if "attention_mask" in common_inputs:
|
538 |
+
mask_dtype = common_inputs["attention_mask"].dtype
|
539 |
+
common_inputs["attention_mask"] = torch.cat(
|
540 |
+
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)],
|
541 |
+
dim=1,
|
542 |
+
)
|
543 |
+
|
544 |
+
common_inputs["past_key_values"] = []
|
545 |
+
for _ in range(self.num_layers):
|
546 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
547 |
+
|
548 |
+
return common_inputs
|
549 |
+
|
550 |
+
def fill_with_past_key_values_(
|
551 |
+
self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False
|
552 |
+
):
|
553 |
+
"""
|
554 |
+
Fill the input_or_outputs mapping with past_key_values dynamic axes considering.
|
555 |
+
|
556 |
+
Args:
|
557 |
+
inputs_or_outputs: The mapping to fill.
|
558 |
+
direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the
|
559 |
+
output mapping, this is important for axes naming.
|
560 |
+
inverted_values_shape:
|
561 |
+
If `True`, store values on dynamic axis 1, else on axis 2.
|
562 |
+
|
563 |
+
"""
|
564 |
+
if direction not in ["inputs", "outputs"]:
|
565 |
+
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
|
566 |
+
|
567 |
+
name = "past_key_values" if direction == "inputs" else "present"
|
568 |
+
for i in range(self.num_layers):
|
569 |
+
inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
|
570 |
+
if inverted_values_shape:
|
571 |
+
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"}
|
572 |
+
else:
|
573 |
+
inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
|
574 |
+
|
575 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
576 |
+
flattened_output[f"{name}.{idx}.key"] = t[0]
|
577 |
+
flattened_output[f"{name}.{idx}.value"] = t[1]
|
578 |
+
|
579 |
+
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]:
|
580 |
+
flattened_output = {}
|
581 |
+
if name in ["present", "past_key_values"]:
|
582 |
+
for idx, t in enumerate(field):
|
583 |
+
self._flatten_past_key_values_(flattened_output, name, idx, t)
|
584 |
+
else:
|
585 |
+
flattened_output = super().flatten_output_collection_property(name, field)
|
586 |
+
|
587 |
+
return flattened_output
|
588 |
+
|
589 |
+
|
590 |
+
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast):
|
591 |
+
@property
|
592 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
593 |
+
common_outputs = super(OnnxConfigWithPast, self).outputs
|
594 |
+
# Renaming the outputs axes properly.
|
595 |
+
for name, axes_names in common_outputs.items():
|
596 |
+
sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence"
|
597 |
+
for axis_idx, name in axes_names.items():
|
598 |
+
if "sequence" in name:
|
599 |
+
axes_names[axis_idx] = sequence_name
|
600 |
+
# We reset the value as the order in common_outputs (OrderedDict) is lost otherwise
|
601 |
+
else:
|
602 |
+
axes_names[axis_idx] = name
|
603 |
+
if self.use_past:
|
604 |
+
self.fill_with_past_key_values_(common_outputs, direction="outputs")
|
605 |
+
|
606 |
+
return common_outputs
|
607 |
+
|
608 |
+
@property
|
609 |
+
def num_layers(self) -> Tuple[int]:
|
610 |
+
try:
|
611 |
+
num_layers = super().num_layers
|
612 |
+
num_layers = (num_layers, num_layers)
|
613 |
+
except AttributeError:
|
614 |
+
if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"):
|
615 |
+
num_layers = (self._config.encoder_layers, self._config.decoder_layers)
|
616 |
+
else:
|
617 |
+
raise AttributeError(
|
618 |
+
"could not find the number of encoder and decoder layers attributes in the model configuration,"
|
619 |
+
" override the num_layers property of the model OnnxConfig to solve this"
|
620 |
+
)
|
621 |
+
|
622 |
+
return num_layers
|
623 |
+
|
624 |
+
@property
|
625 |
+
def num_attention_heads(self) -> Tuple[int]:
|
626 |
+
try:
|
627 |
+
num_attention_heads = super().num_attention_heads
|
628 |
+
num_attention_heads = (num_attention_heads, num_attention_heads)
|
629 |
+
except AttributeError:
|
630 |
+
if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"):
|
631 |
+
num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads)
|
632 |
+
else:
|
633 |
+
raise AttributeError(
|
634 |
+
"could not find the number of attention heads for the encoder and the decoder attributes in the"
|
635 |
+
" model configuration, override the num_attention_heads property of the model OnnxConfig to solve"
|
636 |
+
" this"
|
637 |
+
)
|
638 |
+
return num_attention_heads
|
639 |
+
|
640 |
+
def generate_dummy_inputs(
|
641 |
+
self,
|
642 |
+
tokenizer: "PreTrainedTokenizerBase",
|
643 |
+
batch_size: int = -1,
|
644 |
+
seq_length: int = -1,
|
645 |
+
is_pair: bool = False,
|
646 |
+
framework: Optional[TensorType] = None,
|
647 |
+
) -> Mapping[str, Any]:
|
648 |
+
encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
649 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
650 |
+
)
|
651 |
+
|
652 |
+
# Generate decoder inputs
|
653 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
654 |
+
decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
655 |
+
tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework
|
656 |
+
)
|
657 |
+
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
|
658 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
659 |
+
|
660 |
+
if self.use_past:
|
661 |
+
if not is_torch_available():
|
662 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
663 |
+
else:
|
664 |
+
import torch
|
665 |
+
batch = common_inputs["input_ids"].shape[0]
|
666 |
+
encoder_seq_length = common_inputs["input_ids"].shape[1]
|
667 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
668 |
+
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
|
669 |
+
encoder_shape = (
|
670 |
+
batch,
|
671 |
+
num_encoder_attention_heads,
|
672 |
+
encoder_seq_length,
|
673 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
674 |
+
)
|
675 |
+
decoder_shape = (
|
676 |
+
batch,
|
677 |
+
num_decoder_attention_heads,
|
678 |
+
# Not using the same length for past_key_values
|
679 |
+
decoder_seq_length + 3,
|
680 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
681 |
+
)
|
682 |
+
|
683 |
+
common_inputs["past_key_values"] = []
|
684 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
685 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
686 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
687 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
688 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
689 |
+
|
690 |
+
for _ in range(min_num_layers):
|
691 |
+
# For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the
|
692 |
+
# decoder layers, hence a tuple of 4 tensors instead of 2
|
693 |
+
common_inputs["past_key_values"].append(
|
694 |
+
(
|
695 |
+
torch.zeros(decoder_shape),
|
696 |
+
torch.zeros(decoder_shape),
|
697 |
+
torch.zeros(encoder_shape),
|
698 |
+
torch.zeros(encoder_shape),
|
699 |
+
)
|
700 |
+
)
|
701 |
+
|
702 |
+
# TODO: test this.
|
703 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
704 |
+
for _ in range(min_num_layers, max_num_layers):
|
705 |
+
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
|
706 |
+
|
707 |
+
return common_inputs
|
708 |
+
|
709 |
+
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
|
710 |
+
if direction not in ["inputs", "outputs"]:
|
711 |
+
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
|
712 |
+
|
713 |
+
name = "past_key_values" if direction == "inputs" else "present"
|
714 |
+
|
715 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
716 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
717 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
718 |
+
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
719 |
+
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
720 |
+
|
721 |
+
encoder_sequence = "past_encoder_sequence"
|
722 |
+
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
|
723 |
+
|
724 |
+
for i in range(min_num_layers):
|
725 |
+
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
|
726 |
+
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
|
727 |
+
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
|
728 |
+
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
|
729 |
+
|
730 |
+
for i in range(min_num_layers, max_num_layers):
|
731 |
+
if remaining_side_name == "encoder":
|
732 |
+
axes_info = {0: "batch", 2: encoder_sequence}
|
733 |
+
else:
|
734 |
+
axes_info = {0: "batch", 2: decoder_sequence}
|
735 |
+
inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info
|
736 |
+
|
737 |
+
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
|
738 |
+
flattened_output[f"{name}.{idx}.decoder.key"] = t[0]
|
739 |
+
flattened_output[f"{name}.{idx}.decoder.value"] = t[1]
|
740 |
+
flattened_output[f"{name}.{idx}.encoder.key"] = t[2]
|
741 |
+
flattened_output[f"{name}.{idx}.encoder.value"] = t[3]
|
venv/lib/python3.10/site-packages/transformers/onnx/convert.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
from inspect import signature
|
17 |
+
from itertools import chain
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import TYPE_CHECKING, Iterable, List, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
from packaging.version import Version, parse
|
23 |
+
|
24 |
+
from ..tokenization_utils_base import PreTrainedTokenizerBase
|
25 |
+
from ..utils import (
|
26 |
+
TensorType,
|
27 |
+
is_tf_available,
|
28 |
+
is_torch_available,
|
29 |
+
logging,
|
30 |
+
)
|
31 |
+
from .config import OnnxConfig
|
32 |
+
|
33 |
+
|
34 |
+
if is_torch_available():
|
35 |
+
from ..modeling_utils import PreTrainedModel
|
36 |
+
|
37 |
+
if is_tf_available():
|
38 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from ..feature_extraction_utils import FeatureExtractionMixin
|
42 |
+
from ..processing_utils import ProcessorMixin
|
43 |
+
from ..tokenization_utils import PreTrainedTokenizer
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
# This is the minimal required version to support some ONNX Runtime features
|
50 |
+
ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0")
|
51 |
+
|
52 |
+
|
53 |
+
def check_onnxruntime_requirements(minimum_version: Version):
|
54 |
+
"""
|
55 |
+
Check onnxruntime is installed and if the installed version match is recent enough
|
56 |
+
|
57 |
+
Raises:
|
58 |
+
ImportError: If onnxruntime is not installed or too old version is found
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
import onnxruntime
|
62 |
+
|
63 |
+
# Parse the version of the installed onnxruntime
|
64 |
+
ort_version = parse(onnxruntime.__version__)
|
65 |
+
|
66 |
+
# We require 1.4.0 minimum
|
67 |
+
if ort_version < ORT_QUANTIZE_MINIMUM_VERSION:
|
68 |
+
raise ImportError(
|
69 |
+
f"We found an older version of onnxruntime ({onnxruntime.__version__}) "
|
70 |
+
f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n"
|
71 |
+
"Please update onnxruntime by running `pip install --upgrade onnxruntime`"
|
72 |
+
)
|
73 |
+
|
74 |
+
except ImportError:
|
75 |
+
raise ImportError(
|
76 |
+
"onnxruntime doesn't seem to be currently installed. "
|
77 |
+
"Please install the onnxruntime by running `pip install onnxruntime`"
|
78 |
+
" and relaunch the conversion."
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def export_pytorch(
|
83 |
+
preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
|
84 |
+
model: "PreTrainedModel",
|
85 |
+
config: OnnxConfig,
|
86 |
+
opset: int,
|
87 |
+
output: Path,
|
88 |
+
tokenizer: "PreTrainedTokenizer" = None,
|
89 |
+
device: str = "cpu",
|
90 |
+
) -> Tuple[List[str], List[str]]:
|
91 |
+
"""
|
92 |
+
Export a PyTorch model to an ONNX Intermediate Representation (IR)
|
93 |
+
|
94 |
+
Args:
|
95 |
+
preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]):
|
96 |
+
The preprocessor used for encoding the data.
|
97 |
+
model ([`PreTrainedModel`]):
|
98 |
+
The model to export.
|
99 |
+
config ([`~onnx.config.OnnxConfig`]):
|
100 |
+
The ONNX configuration associated with the exported model.
|
101 |
+
opset (`int`):
|
102 |
+
The version of the ONNX operator set to use.
|
103 |
+
output (`Path`):
|
104 |
+
Directory to store the exported ONNX model.
|
105 |
+
device (`str`, *optional*, defaults to `cpu`):
|
106 |
+
The device on which the ONNX model will be exported. Either `cpu` or `cuda`.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
|
110 |
+
the ONNX configuration.
|
111 |
+
"""
|
112 |
+
|
113 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
114 |
+
raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.")
|
115 |
+
if tokenizer is not None:
|
116 |
+
warnings.warn(
|
117 |
+
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
118 |
+
" `preprocessor` instead.",
|
119 |
+
FutureWarning,
|
120 |
+
)
|
121 |
+
logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
122 |
+
preprocessor = tokenizer
|
123 |
+
|
124 |
+
if issubclass(type(model), PreTrainedModel):
|
125 |
+
import torch
|
126 |
+
from torch.onnx import export as onnx_export
|
127 |
+
|
128 |
+
logger.info(f"Using framework PyTorch: {torch.__version__}")
|
129 |
+
with torch.no_grad():
|
130 |
+
model.config.return_dict = True
|
131 |
+
model.eval()
|
132 |
+
|
133 |
+
# Check if we need to override certain configuration item
|
134 |
+
if config.values_override is not None:
|
135 |
+
logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
|
136 |
+
for override_config_key, override_config_value in config.values_override.items():
|
137 |
+
logger.info(f"\t- {override_config_key} -> {override_config_value}")
|
138 |
+
setattr(model.config, override_config_key, override_config_value)
|
139 |
+
|
140 |
+
# Ensure inputs match
|
141 |
+
# TODO: Check when exporting QA we provide "is_pair=True"
|
142 |
+
model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH)
|
143 |
+
device = torch.device(device)
|
144 |
+
if device.type == "cuda" and torch.cuda.is_available():
|
145 |
+
model.to(device)
|
146 |
+
model_inputs_device = {}
|
147 |
+
for k, v in model_inputs.items():
|
148 |
+
if isinstance(v, Tuple):
|
149 |
+
model_inputs_device[k] = tuple(
|
150 |
+
x.to(device) if isinstance(x, torch.Tensor) else None for x in v
|
151 |
+
)
|
152 |
+
elif isinstance(v, List):
|
153 |
+
model_inputs_device[k] = [
|
154 |
+
tuple(x.to(device) if isinstance(x, torch.Tensor) else None for x in t) for t in v
|
155 |
+
]
|
156 |
+
else:
|
157 |
+
model_inputs_device[k] = v.to(device)
|
158 |
+
|
159 |
+
model_inputs = model_inputs_device
|
160 |
+
|
161 |
+
inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
|
162 |
+
onnx_outputs = list(config.outputs.keys())
|
163 |
+
|
164 |
+
if not inputs_match:
|
165 |
+
raise ValueError("Model and config inputs doesn't match")
|
166 |
+
|
167 |
+
config.patch_ops()
|
168 |
+
|
169 |
+
onnx_export(
|
170 |
+
model,
|
171 |
+
(model_inputs,),
|
172 |
+
f=output.as_posix(),
|
173 |
+
input_names=list(config.inputs.keys()),
|
174 |
+
output_names=onnx_outputs,
|
175 |
+
dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())),
|
176 |
+
do_constant_folding=True,
|
177 |
+
opset_version=opset,
|
178 |
+
)
|
179 |
+
|
180 |
+
config.restore_ops()
|
181 |
+
|
182 |
+
return matched_inputs, onnx_outputs
|
183 |
+
|
184 |
+
|
185 |
+
def export_tensorflow(
|
186 |
+
preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"],
|
187 |
+
model: "TFPreTrainedModel",
|
188 |
+
config: OnnxConfig,
|
189 |
+
opset: int,
|
190 |
+
output: Path,
|
191 |
+
tokenizer: "PreTrainedTokenizer" = None,
|
192 |
+
) -> Tuple[List[str], List[str]]:
|
193 |
+
"""
|
194 |
+
Export a TensorFlow model to an ONNX Intermediate Representation (IR)
|
195 |
+
|
196 |
+
Args:
|
197 |
+
preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]):
|
198 |
+
The preprocessor used for encoding the data.
|
199 |
+
model ([`TFPreTrainedModel`]):
|
200 |
+
The model to export.
|
201 |
+
config ([`~onnx.config.OnnxConfig`]):
|
202 |
+
The ONNX configuration associated with the exported model.
|
203 |
+
opset (`int`):
|
204 |
+
The version of the ONNX operator set to use.
|
205 |
+
output (`Path`):
|
206 |
+
Directory to store the exported ONNX model.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
`Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
|
210 |
+
the ONNX configuration.
|
211 |
+
"""
|
212 |
+
import onnx
|
213 |
+
import tensorflow as tf
|
214 |
+
import tf2onnx
|
215 |
+
|
216 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
217 |
+
raise ValueError("You cannot provide both a tokenizer and preprocessor to export the model.")
|
218 |
+
if tokenizer is not None:
|
219 |
+
warnings.warn(
|
220 |
+
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
221 |
+
" `preprocessor` instead.",
|
222 |
+
FutureWarning,
|
223 |
+
)
|
224 |
+
logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
225 |
+
preprocessor = tokenizer
|
226 |
+
|
227 |
+
model.config.return_dict = True
|
228 |
+
|
229 |
+
# Check if we need to override certain configuration item
|
230 |
+
if config.values_override is not None:
|
231 |
+
logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
|
232 |
+
for override_config_key, override_config_value in config.values_override.items():
|
233 |
+
logger.info(f"\t- {override_config_key} -> {override_config_value}")
|
234 |
+
setattr(model.config, override_config_key, override_config_value)
|
235 |
+
|
236 |
+
# Ensure inputs match
|
237 |
+
model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.TENSORFLOW)
|
238 |
+
inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
|
239 |
+
onnx_outputs = list(config.outputs.keys())
|
240 |
+
|
241 |
+
input_signature = [
|
242 |
+
tf.TensorSpec([None] * tensor.ndim, dtype=tensor.dtype, name=key) for key, tensor in model_inputs.items()
|
243 |
+
]
|
244 |
+
onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature, opset=opset)
|
245 |
+
onnx.save(onnx_model, output.as_posix())
|
246 |
+
config.restore_ops()
|
247 |
+
|
248 |
+
return matched_inputs, onnx_outputs
|
249 |
+
|
250 |
+
|
251 |
+
def export(
|
252 |
+
preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
|
253 |
+
model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
254 |
+
config: OnnxConfig,
|
255 |
+
opset: int,
|
256 |
+
output: Path,
|
257 |
+
tokenizer: "PreTrainedTokenizer" = None,
|
258 |
+
device: str = "cpu",
|
259 |
+
) -> Tuple[List[str], List[str]]:
|
260 |
+
"""
|
261 |
+
Export a Pytorch or TensorFlow model to an ONNX Intermediate Representation (IR)
|
262 |
+
|
263 |
+
Args:
|
264 |
+
preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]):
|
265 |
+
The preprocessor used for encoding the data.
|
266 |
+
model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
|
267 |
+
The model to export.
|
268 |
+
config ([`~onnx.config.OnnxConfig`]):
|
269 |
+
The ONNX configuration associated with the exported model.
|
270 |
+
opset (`int`):
|
271 |
+
The version of the ONNX operator set to use.
|
272 |
+
output (`Path`):
|
273 |
+
Directory to store the exported ONNX model.
|
274 |
+
device (`str`, *optional*, defaults to `cpu`):
|
275 |
+
The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Only PyTorch is supported for
|
276 |
+
export on CUDA devices.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
`Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
|
280 |
+
the ONNX configuration.
|
281 |
+
"""
|
282 |
+
if not (is_torch_available() or is_tf_available()):
|
283 |
+
raise ImportError(
|
284 |
+
"Cannot convert because neither PyTorch nor TensorFlow are not installed. "
|
285 |
+
"Please install torch or tensorflow first."
|
286 |
+
)
|
287 |
+
|
288 |
+
if is_tf_available() and isinstance(model, TFPreTrainedModel) and device == "cuda":
|
289 |
+
raise RuntimeError("`tf2onnx` does not support export on CUDA device.")
|
290 |
+
|
291 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
292 |
+
raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.")
|
293 |
+
if tokenizer is not None:
|
294 |
+
warnings.warn(
|
295 |
+
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
296 |
+
" `preprocessor` instead.",
|
297 |
+
FutureWarning,
|
298 |
+
)
|
299 |
+
logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
300 |
+
preprocessor = tokenizer
|
301 |
+
|
302 |
+
if is_torch_available():
|
303 |
+
from ..utils import get_torch_version
|
304 |
+
|
305 |
+
if not config.is_torch_support_available:
|
306 |
+
logger.warning(
|
307 |
+
f"Unsupported PyTorch version for this model. Minimum required is {config.torch_onnx_minimum_version},"
|
308 |
+
f" got: {get_torch_version()}"
|
309 |
+
)
|
310 |
+
|
311 |
+
if is_torch_available() and issubclass(type(model), PreTrainedModel):
|
312 |
+
return export_pytorch(preprocessor, model, config, opset, output, tokenizer=tokenizer, device=device)
|
313 |
+
elif is_tf_available() and issubclass(type(model), TFPreTrainedModel):
|
314 |
+
return export_tensorflow(preprocessor, model, config, opset, output, tokenizer=tokenizer)
|
315 |
+
|
316 |
+
|
317 |
+
def validate_model_outputs(
|
318 |
+
config: OnnxConfig,
|
319 |
+
preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
|
320 |
+
reference_model: Union["PreTrainedModel", "TFPreTrainedModel"],
|
321 |
+
onnx_model: Path,
|
322 |
+
onnx_named_outputs: List[str],
|
323 |
+
atol: float,
|
324 |
+
tokenizer: "PreTrainedTokenizer" = None,
|
325 |
+
):
|
326 |
+
from onnxruntime import InferenceSession, SessionOptions
|
327 |
+
|
328 |
+
logger.info("Validating ONNX model...")
|
329 |
+
|
330 |
+
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
|
331 |
+
raise ValueError("You cannot provide both a tokenizer and a preprocessor to validate the model outputs.")
|
332 |
+
if tokenizer is not None:
|
333 |
+
warnings.warn(
|
334 |
+
"The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
|
335 |
+
" `preprocessor` instead.",
|
336 |
+
FutureWarning,
|
337 |
+
)
|
338 |
+
logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
|
339 |
+
preprocessor = tokenizer
|
340 |
+
|
341 |
+
# generate inputs with a different batch_size and seq_len that was used for conversion to properly test
|
342 |
+
# dynamic input shapes.
|
343 |
+
if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
|
344 |
+
reference_model_inputs = config.generate_dummy_inputs(
|
345 |
+
preprocessor,
|
346 |
+
batch_size=config.default_fixed_batch + 1,
|
347 |
+
seq_length=config.default_fixed_sequence + 1,
|
348 |
+
framework=TensorType.PYTORCH,
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
reference_model_inputs = config.generate_dummy_inputs(
|
352 |
+
preprocessor,
|
353 |
+
batch_size=config.default_fixed_batch + 1,
|
354 |
+
seq_length=config.default_fixed_sequence + 1,
|
355 |
+
framework=TensorType.TENSORFLOW,
|
356 |
+
)
|
357 |
+
|
358 |
+
# Create ONNX Runtime session
|
359 |
+
options = SessionOptions()
|
360 |
+
session = InferenceSession(onnx_model.as_posix(), options, providers=["CPUExecutionProvider"])
|
361 |
+
|
362 |
+
# Compute outputs from the reference model
|
363 |
+
if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
|
364 |
+
reference_model.to("cpu")
|
365 |
+
ref_outputs = reference_model(**reference_model_inputs)
|
366 |
+
ref_outputs_dict = {}
|
367 |
+
|
368 |
+
# We flatten potential collection of outputs (i.e. past_keys) to a flat structure
|
369 |
+
for name, value in ref_outputs.items():
|
370 |
+
# Overwriting the output name as "present" since it is the name used for the ONNX outputs
|
371 |
+
# ("past_key_values" being taken for the ONNX inputs)
|
372 |
+
if name == "past_key_values":
|
373 |
+
name = "present"
|
374 |
+
if isinstance(value, (list, tuple)):
|
375 |
+
value = config.flatten_output_collection_property(name, value)
|
376 |
+
ref_outputs_dict.update(value)
|
377 |
+
else:
|
378 |
+
ref_outputs_dict[name] = value
|
379 |
+
|
380 |
+
# Create onnxruntime inputs from the reference model inputs
|
381 |
+
reference_model_inputs_onnxruntime = config.generate_dummy_inputs_onnxruntime(reference_model_inputs)
|
382 |
+
|
383 |
+
# We flatten potential collection of inputs (i.e. past_keys)
|
384 |
+
onnx_inputs = {}
|
385 |
+
for name, value in reference_model_inputs_onnxruntime.items():
|
386 |
+
if isinstance(value, (list, tuple)):
|
387 |
+
value = config.flatten_output_collection_property(name, value)
|
388 |
+
onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()})
|
389 |
+
else:
|
390 |
+
onnx_inputs[name] = value.numpy()
|
391 |
+
|
392 |
+
# Compute outputs from the ONNX model
|
393 |
+
onnx_outputs = session.run(onnx_named_outputs, onnx_inputs)
|
394 |
+
|
395 |
+
# Check we have a subset of the keys into onnx_outputs against ref_outputs
|
396 |
+
ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs)
|
397 |
+
if not onnx_outputs_set.issubset(ref_outputs_set):
|
398 |
+
logger.info(
|
399 |
+
f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}"
|
400 |
+
)
|
401 |
+
|
402 |
+
raise ValueError(
|
403 |
+
"Outputs doesn't match between reference model and ONNX exported model: "
|
404 |
+
f"{onnx_outputs_set.difference(ref_outputs_set)}"
|
405 |
+
)
|
406 |
+
else:
|
407 |
+
logger.info(f"\t-[✓] ONNX model output names match reference model ({onnx_outputs_set})")
|
408 |
+
|
409 |
+
# Check the shape and values match
|
410 |
+
for name, ort_value in zip(onnx_named_outputs, onnx_outputs):
|
411 |
+
if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
|
412 |
+
ref_value = ref_outputs_dict[name].detach().numpy()
|
413 |
+
else:
|
414 |
+
ref_value = ref_outputs_dict[name].numpy()
|
415 |
+
logger.info(f'\t- Validating ONNX Model output "{name}":')
|
416 |
+
|
417 |
+
# Shape
|
418 |
+
if not ort_value.shape == ref_value.shape:
|
419 |
+
logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}")
|
420 |
+
raise ValueError(
|
421 |
+
"Outputs shape doesn't match between reference model and ONNX exported model: "
|
422 |
+
f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)"
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
logger.info(f"\t\t-[✓] {ort_value.shape} matches {ref_value.shape}")
|
426 |
+
|
427 |
+
# Values
|
428 |
+
if not np.allclose(ref_value, ort_value, atol=atol):
|
429 |
+
bad_indices = np.logical_not(np.isclose(ref_value, ort_value, atol=atol))
|
430 |
+
logger.info(f"\t\t-[x] values not close enough (atol: {atol})")
|
431 |
+
raise ValueError(
|
432 |
+
"Outputs values doesn't match between reference model and ONNX exported model: "
|
433 |
+
f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))} for "
|
434 |
+
f"{ref_value[bad_indices]} vs {ort_value[bad_indices]}"
|
435 |
+
)
|
436 |
+
else:
|
437 |
+
logger.info(f"\t\t-[✓] all values close (atol: {atol})")
|
438 |
+
|
439 |
+
|
440 |
+
def ensure_model_and_config_inputs_match(
|
441 |
+
model: Union["PreTrainedModel", "TFPreTrainedModel"], model_inputs: Iterable[str]
|
442 |
+
) -> Tuple[bool, List[str]]:
|
443 |
+
"""
|
444 |
+
|
445 |
+
:param model_inputs: :param config_inputs: :return:
|
446 |
+
"""
|
447 |
+
if is_torch_available() and issubclass(type(model), PreTrainedModel):
|
448 |
+
forward_parameters = signature(model.forward).parameters
|
449 |
+
else:
|
450 |
+
forward_parameters = signature(model.call).parameters
|
451 |
+
model_inputs_set = set(model_inputs)
|
452 |
+
|
453 |
+
# We are fine if config_inputs has more keys than model_inputs
|
454 |
+
forward_inputs_set = set(forward_parameters.keys())
|
455 |
+
is_ok = model_inputs_set.issubset(forward_inputs_set)
|
456 |
+
|
457 |
+
# Make sure the input order match (VERY IMPORTANT !!!!)
|
458 |
+
matching_inputs = forward_inputs_set.intersection(model_inputs_set)
|
459 |
+
ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs]
|
460 |
+
return is_ok, ordered_inputs
|
venv/lib/python3.10/site-packages/transformers/onnx/features.py
ADDED
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial, reduce
|
3 |
+
from typing import TYPE_CHECKING, Callable, Dict, Optional, Tuple, Type, Union
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
from .. import PretrainedConfig, is_tf_available, is_torch_available
|
8 |
+
from ..utils import TF2_WEIGHTS_NAME, WEIGHTS_NAME, logging
|
9 |
+
from .config import OnnxConfig
|
10 |
+
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from transformers import PreTrainedModel, TFPreTrainedModel
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
17 |
+
|
18 |
+
if is_torch_available():
|
19 |
+
from transformers.models.auto import (
|
20 |
+
AutoModel,
|
21 |
+
AutoModelForCausalLM,
|
22 |
+
AutoModelForImageClassification,
|
23 |
+
AutoModelForImageSegmentation,
|
24 |
+
AutoModelForMaskedImageModeling,
|
25 |
+
AutoModelForMaskedLM,
|
26 |
+
AutoModelForMultipleChoice,
|
27 |
+
AutoModelForObjectDetection,
|
28 |
+
AutoModelForQuestionAnswering,
|
29 |
+
AutoModelForSemanticSegmentation,
|
30 |
+
AutoModelForSeq2SeqLM,
|
31 |
+
AutoModelForSequenceClassification,
|
32 |
+
AutoModelForSpeechSeq2Seq,
|
33 |
+
AutoModelForTokenClassification,
|
34 |
+
AutoModelForVision2Seq,
|
35 |
+
)
|
36 |
+
if is_tf_available():
|
37 |
+
from transformers.models.auto import (
|
38 |
+
TFAutoModel,
|
39 |
+
TFAutoModelForCausalLM,
|
40 |
+
TFAutoModelForMaskedLM,
|
41 |
+
TFAutoModelForMultipleChoice,
|
42 |
+
TFAutoModelForQuestionAnswering,
|
43 |
+
TFAutoModelForSemanticSegmentation,
|
44 |
+
TFAutoModelForSeq2SeqLM,
|
45 |
+
TFAutoModelForSequenceClassification,
|
46 |
+
TFAutoModelForTokenClassification,
|
47 |
+
)
|
48 |
+
if not is_torch_available() and not is_tf_available():
|
49 |
+
logger.warning(
|
50 |
+
"The ONNX export features are only supported for PyTorch or TensorFlow. You will not be able to export models"
|
51 |
+
" without one of these libraries installed."
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def supported_features_mapping(
|
56 |
+
*supported_features: str, onnx_config_cls: str = None
|
57 |
+
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
|
58 |
+
"""
|
59 |
+
Generate the mapping between supported the features and their corresponding OnnxConfig for a given model.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
*supported_features: The names of the supported features.
|
63 |
+
onnx_config_cls: The OnnxConfig full name corresponding to the model.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
The dictionary mapping a feature to an OnnxConfig constructor.
|
67 |
+
"""
|
68 |
+
if onnx_config_cls is None:
|
69 |
+
raise ValueError("A OnnxConfig class must be provided")
|
70 |
+
|
71 |
+
config_cls = transformers
|
72 |
+
for attr_name in onnx_config_cls.split("."):
|
73 |
+
config_cls = getattr(config_cls, attr_name)
|
74 |
+
mapping = {}
|
75 |
+
for feature in supported_features:
|
76 |
+
if "-with-past" in feature:
|
77 |
+
task = feature.replace("-with-past", "")
|
78 |
+
mapping[feature] = partial(config_cls.with_past, task=task)
|
79 |
+
else:
|
80 |
+
mapping[feature] = partial(config_cls.from_model_config, task=feature)
|
81 |
+
|
82 |
+
return mapping
|
83 |
+
|
84 |
+
|
85 |
+
class FeaturesManager:
|
86 |
+
_TASKS_TO_AUTOMODELS = {}
|
87 |
+
_TASKS_TO_TF_AUTOMODELS = {}
|
88 |
+
if is_torch_available():
|
89 |
+
_TASKS_TO_AUTOMODELS = {
|
90 |
+
"default": AutoModel,
|
91 |
+
"masked-lm": AutoModelForMaskedLM,
|
92 |
+
"causal-lm": AutoModelForCausalLM,
|
93 |
+
"seq2seq-lm": AutoModelForSeq2SeqLM,
|
94 |
+
"sequence-classification": AutoModelForSequenceClassification,
|
95 |
+
"token-classification": AutoModelForTokenClassification,
|
96 |
+
"multiple-choice": AutoModelForMultipleChoice,
|
97 |
+
"object-detection": AutoModelForObjectDetection,
|
98 |
+
"question-answering": AutoModelForQuestionAnswering,
|
99 |
+
"image-classification": AutoModelForImageClassification,
|
100 |
+
"image-segmentation": AutoModelForImageSegmentation,
|
101 |
+
"masked-im": AutoModelForMaskedImageModeling,
|
102 |
+
"semantic-segmentation": AutoModelForSemanticSegmentation,
|
103 |
+
"vision2seq-lm": AutoModelForVision2Seq,
|
104 |
+
"speech2seq-lm": AutoModelForSpeechSeq2Seq,
|
105 |
+
}
|
106 |
+
if is_tf_available():
|
107 |
+
_TASKS_TO_TF_AUTOMODELS = {
|
108 |
+
"default": TFAutoModel,
|
109 |
+
"masked-lm": TFAutoModelForMaskedLM,
|
110 |
+
"causal-lm": TFAutoModelForCausalLM,
|
111 |
+
"seq2seq-lm": TFAutoModelForSeq2SeqLM,
|
112 |
+
"sequence-classification": TFAutoModelForSequenceClassification,
|
113 |
+
"token-classification": TFAutoModelForTokenClassification,
|
114 |
+
"multiple-choice": TFAutoModelForMultipleChoice,
|
115 |
+
"question-answering": TFAutoModelForQuestionAnswering,
|
116 |
+
"semantic-segmentation": TFAutoModelForSemanticSegmentation,
|
117 |
+
}
|
118 |
+
|
119 |
+
# Set of model topologies we support associated to the features supported by each topology and the factory
|
120 |
+
_SUPPORTED_MODEL_TYPE = {
|
121 |
+
"albert": supported_features_mapping(
|
122 |
+
"default",
|
123 |
+
"masked-lm",
|
124 |
+
"sequence-classification",
|
125 |
+
"multiple-choice",
|
126 |
+
"token-classification",
|
127 |
+
"question-answering",
|
128 |
+
onnx_config_cls="models.albert.AlbertOnnxConfig",
|
129 |
+
),
|
130 |
+
"bart": supported_features_mapping(
|
131 |
+
"default",
|
132 |
+
"default-with-past",
|
133 |
+
"causal-lm",
|
134 |
+
"causal-lm-with-past",
|
135 |
+
"seq2seq-lm",
|
136 |
+
"seq2seq-lm-with-past",
|
137 |
+
"sequence-classification",
|
138 |
+
"question-answering",
|
139 |
+
onnx_config_cls="models.bart.BartOnnxConfig",
|
140 |
+
),
|
141 |
+
# BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here
|
142 |
+
"beit": supported_features_mapping(
|
143 |
+
"default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig"
|
144 |
+
),
|
145 |
+
"bert": supported_features_mapping(
|
146 |
+
"default",
|
147 |
+
"masked-lm",
|
148 |
+
"causal-lm",
|
149 |
+
"sequence-classification",
|
150 |
+
"multiple-choice",
|
151 |
+
"token-classification",
|
152 |
+
"question-answering",
|
153 |
+
onnx_config_cls="models.bert.BertOnnxConfig",
|
154 |
+
),
|
155 |
+
"big-bird": supported_features_mapping(
|
156 |
+
"default",
|
157 |
+
"masked-lm",
|
158 |
+
"causal-lm",
|
159 |
+
"sequence-classification",
|
160 |
+
"multiple-choice",
|
161 |
+
"token-classification",
|
162 |
+
"question-answering",
|
163 |
+
onnx_config_cls="models.big_bird.BigBirdOnnxConfig",
|
164 |
+
),
|
165 |
+
"bigbird-pegasus": supported_features_mapping(
|
166 |
+
"default",
|
167 |
+
"default-with-past",
|
168 |
+
"causal-lm",
|
169 |
+
"causal-lm-with-past",
|
170 |
+
"seq2seq-lm",
|
171 |
+
"seq2seq-lm-with-past",
|
172 |
+
"sequence-classification",
|
173 |
+
"question-answering",
|
174 |
+
onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig",
|
175 |
+
),
|
176 |
+
"blenderbot": supported_features_mapping(
|
177 |
+
"default",
|
178 |
+
"default-with-past",
|
179 |
+
"causal-lm",
|
180 |
+
"causal-lm-with-past",
|
181 |
+
"seq2seq-lm",
|
182 |
+
"seq2seq-lm-with-past",
|
183 |
+
onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig",
|
184 |
+
),
|
185 |
+
"blenderbot-small": supported_features_mapping(
|
186 |
+
"default",
|
187 |
+
"default-with-past",
|
188 |
+
"causal-lm",
|
189 |
+
"causal-lm-with-past",
|
190 |
+
"seq2seq-lm",
|
191 |
+
"seq2seq-lm-with-past",
|
192 |
+
onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig",
|
193 |
+
),
|
194 |
+
"bloom": supported_features_mapping(
|
195 |
+
"default",
|
196 |
+
"default-with-past",
|
197 |
+
"causal-lm",
|
198 |
+
"causal-lm-with-past",
|
199 |
+
"sequence-classification",
|
200 |
+
"token-classification",
|
201 |
+
onnx_config_cls="models.bloom.BloomOnnxConfig",
|
202 |
+
),
|
203 |
+
"camembert": supported_features_mapping(
|
204 |
+
"default",
|
205 |
+
"masked-lm",
|
206 |
+
"causal-lm",
|
207 |
+
"sequence-classification",
|
208 |
+
"multiple-choice",
|
209 |
+
"token-classification",
|
210 |
+
"question-answering",
|
211 |
+
onnx_config_cls="models.camembert.CamembertOnnxConfig",
|
212 |
+
),
|
213 |
+
"clip": supported_features_mapping(
|
214 |
+
"default",
|
215 |
+
onnx_config_cls="models.clip.CLIPOnnxConfig",
|
216 |
+
),
|
217 |
+
"codegen": supported_features_mapping(
|
218 |
+
"default",
|
219 |
+
"causal-lm",
|
220 |
+
onnx_config_cls="models.codegen.CodeGenOnnxConfig",
|
221 |
+
),
|
222 |
+
"convbert": supported_features_mapping(
|
223 |
+
"default",
|
224 |
+
"masked-lm",
|
225 |
+
"sequence-classification",
|
226 |
+
"multiple-choice",
|
227 |
+
"token-classification",
|
228 |
+
"question-answering",
|
229 |
+
onnx_config_cls="models.convbert.ConvBertOnnxConfig",
|
230 |
+
),
|
231 |
+
"convnext": supported_features_mapping(
|
232 |
+
"default",
|
233 |
+
"image-classification",
|
234 |
+
onnx_config_cls="models.convnext.ConvNextOnnxConfig",
|
235 |
+
),
|
236 |
+
"data2vec-text": supported_features_mapping(
|
237 |
+
"default",
|
238 |
+
"masked-lm",
|
239 |
+
"sequence-classification",
|
240 |
+
"multiple-choice",
|
241 |
+
"token-classification",
|
242 |
+
"question-answering",
|
243 |
+
onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig",
|
244 |
+
),
|
245 |
+
"data2vec-vision": supported_features_mapping(
|
246 |
+
"default",
|
247 |
+
"image-classification",
|
248 |
+
# ONNX doesn't support `adaptive_avg_pool2d` yet
|
249 |
+
# "semantic-segmentation",
|
250 |
+
onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig",
|
251 |
+
),
|
252 |
+
"deberta": supported_features_mapping(
|
253 |
+
"default",
|
254 |
+
"masked-lm",
|
255 |
+
"sequence-classification",
|
256 |
+
"token-classification",
|
257 |
+
"question-answering",
|
258 |
+
onnx_config_cls="models.deberta.DebertaOnnxConfig",
|
259 |
+
),
|
260 |
+
"deberta-v2": supported_features_mapping(
|
261 |
+
"default",
|
262 |
+
"masked-lm",
|
263 |
+
"sequence-classification",
|
264 |
+
"multiple-choice",
|
265 |
+
"token-classification",
|
266 |
+
"question-answering",
|
267 |
+
onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig",
|
268 |
+
),
|
269 |
+
"deit": supported_features_mapping(
|
270 |
+
"default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig"
|
271 |
+
),
|
272 |
+
"detr": supported_features_mapping(
|
273 |
+
"default",
|
274 |
+
"object-detection",
|
275 |
+
"image-segmentation",
|
276 |
+
onnx_config_cls="models.detr.DetrOnnxConfig",
|
277 |
+
),
|
278 |
+
"distilbert": supported_features_mapping(
|
279 |
+
"default",
|
280 |
+
"masked-lm",
|
281 |
+
"sequence-classification",
|
282 |
+
"multiple-choice",
|
283 |
+
"token-classification",
|
284 |
+
"question-answering",
|
285 |
+
onnx_config_cls="models.distilbert.DistilBertOnnxConfig",
|
286 |
+
),
|
287 |
+
"electra": supported_features_mapping(
|
288 |
+
"default",
|
289 |
+
"masked-lm",
|
290 |
+
"causal-lm",
|
291 |
+
"sequence-classification",
|
292 |
+
"multiple-choice",
|
293 |
+
"token-classification",
|
294 |
+
"question-answering",
|
295 |
+
onnx_config_cls="models.electra.ElectraOnnxConfig",
|
296 |
+
),
|
297 |
+
"flaubert": supported_features_mapping(
|
298 |
+
"default",
|
299 |
+
"masked-lm",
|
300 |
+
"causal-lm",
|
301 |
+
"sequence-classification",
|
302 |
+
"multiple-choice",
|
303 |
+
"token-classification",
|
304 |
+
"question-answering",
|
305 |
+
onnx_config_cls="models.flaubert.FlaubertOnnxConfig",
|
306 |
+
),
|
307 |
+
"gpt2": supported_features_mapping(
|
308 |
+
"default",
|
309 |
+
"default-with-past",
|
310 |
+
"causal-lm",
|
311 |
+
"causal-lm-with-past",
|
312 |
+
"sequence-classification",
|
313 |
+
"token-classification",
|
314 |
+
onnx_config_cls="models.gpt2.GPT2OnnxConfig",
|
315 |
+
),
|
316 |
+
"gptj": supported_features_mapping(
|
317 |
+
"default",
|
318 |
+
"default-with-past",
|
319 |
+
"causal-lm",
|
320 |
+
"causal-lm-with-past",
|
321 |
+
"question-answering",
|
322 |
+
"sequence-classification",
|
323 |
+
onnx_config_cls="models.gptj.GPTJOnnxConfig",
|
324 |
+
),
|
325 |
+
"gpt-neo": supported_features_mapping(
|
326 |
+
"default",
|
327 |
+
"default-with-past",
|
328 |
+
"causal-lm",
|
329 |
+
"causal-lm-with-past",
|
330 |
+
"sequence-classification",
|
331 |
+
onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig",
|
332 |
+
),
|
333 |
+
"groupvit": supported_features_mapping(
|
334 |
+
"default",
|
335 |
+
onnx_config_cls="models.groupvit.GroupViTOnnxConfig",
|
336 |
+
),
|
337 |
+
"ibert": supported_features_mapping(
|
338 |
+
"default",
|
339 |
+
"masked-lm",
|
340 |
+
"sequence-classification",
|
341 |
+
"multiple-choice",
|
342 |
+
"token-classification",
|
343 |
+
"question-answering",
|
344 |
+
onnx_config_cls="models.ibert.IBertOnnxConfig",
|
345 |
+
),
|
346 |
+
"imagegpt": supported_features_mapping(
|
347 |
+
"default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig"
|
348 |
+
),
|
349 |
+
"layoutlm": supported_features_mapping(
|
350 |
+
"default",
|
351 |
+
"masked-lm",
|
352 |
+
"sequence-classification",
|
353 |
+
"token-classification",
|
354 |
+
onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig",
|
355 |
+
),
|
356 |
+
"layoutlmv3": supported_features_mapping(
|
357 |
+
"default",
|
358 |
+
"question-answering",
|
359 |
+
"sequence-classification",
|
360 |
+
"token-classification",
|
361 |
+
onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig",
|
362 |
+
),
|
363 |
+
"levit": supported_features_mapping(
|
364 |
+
"default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig"
|
365 |
+
),
|
366 |
+
"longt5": supported_features_mapping(
|
367 |
+
"default",
|
368 |
+
"default-with-past",
|
369 |
+
"seq2seq-lm",
|
370 |
+
"seq2seq-lm-with-past",
|
371 |
+
onnx_config_cls="models.longt5.LongT5OnnxConfig",
|
372 |
+
),
|
373 |
+
"longformer": supported_features_mapping(
|
374 |
+
"default",
|
375 |
+
"masked-lm",
|
376 |
+
"multiple-choice",
|
377 |
+
"question-answering",
|
378 |
+
"sequence-classification",
|
379 |
+
"token-classification",
|
380 |
+
onnx_config_cls="models.longformer.LongformerOnnxConfig",
|
381 |
+
),
|
382 |
+
"marian": supported_features_mapping(
|
383 |
+
"default",
|
384 |
+
"default-with-past",
|
385 |
+
"seq2seq-lm",
|
386 |
+
"seq2seq-lm-with-past",
|
387 |
+
"causal-lm",
|
388 |
+
"causal-lm-with-past",
|
389 |
+
onnx_config_cls="models.marian.MarianOnnxConfig",
|
390 |
+
),
|
391 |
+
"mbart": supported_features_mapping(
|
392 |
+
"default",
|
393 |
+
"default-with-past",
|
394 |
+
"causal-lm",
|
395 |
+
"causal-lm-with-past",
|
396 |
+
"seq2seq-lm",
|
397 |
+
"seq2seq-lm-with-past",
|
398 |
+
"sequence-classification",
|
399 |
+
"question-answering",
|
400 |
+
onnx_config_cls="models.mbart.MBartOnnxConfig",
|
401 |
+
),
|
402 |
+
"mobilebert": supported_features_mapping(
|
403 |
+
"default",
|
404 |
+
"masked-lm",
|
405 |
+
"sequence-classification",
|
406 |
+
"multiple-choice",
|
407 |
+
"token-classification",
|
408 |
+
"question-answering",
|
409 |
+
onnx_config_cls="models.mobilebert.MobileBertOnnxConfig",
|
410 |
+
),
|
411 |
+
"mobilenet-v1": supported_features_mapping(
|
412 |
+
"default",
|
413 |
+
"image-classification",
|
414 |
+
onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig",
|
415 |
+
),
|
416 |
+
"mobilenet-v2": supported_features_mapping(
|
417 |
+
"default",
|
418 |
+
"image-classification",
|
419 |
+
onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig",
|
420 |
+
),
|
421 |
+
"mobilevit": supported_features_mapping(
|
422 |
+
"default",
|
423 |
+
"image-classification",
|
424 |
+
onnx_config_cls="models.mobilevit.MobileViTOnnxConfig",
|
425 |
+
),
|
426 |
+
"mt5": supported_features_mapping(
|
427 |
+
"default",
|
428 |
+
"default-with-past",
|
429 |
+
"seq2seq-lm",
|
430 |
+
"seq2seq-lm-with-past",
|
431 |
+
onnx_config_cls="models.mt5.MT5OnnxConfig",
|
432 |
+
),
|
433 |
+
"m2m-100": supported_features_mapping(
|
434 |
+
"default",
|
435 |
+
"default-with-past",
|
436 |
+
"seq2seq-lm",
|
437 |
+
"seq2seq-lm-with-past",
|
438 |
+
onnx_config_cls="models.m2m_100.M2M100OnnxConfig",
|
439 |
+
),
|
440 |
+
"owlvit": supported_features_mapping(
|
441 |
+
"default",
|
442 |
+
onnx_config_cls="models.owlvit.OwlViTOnnxConfig",
|
443 |
+
),
|
444 |
+
"perceiver": supported_features_mapping(
|
445 |
+
"image-classification",
|
446 |
+
"masked-lm",
|
447 |
+
"sequence-classification",
|
448 |
+
onnx_config_cls="models.perceiver.PerceiverOnnxConfig",
|
449 |
+
),
|
450 |
+
"poolformer": supported_features_mapping(
|
451 |
+
"default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig"
|
452 |
+
),
|
453 |
+
"rembert": supported_features_mapping(
|
454 |
+
"default",
|
455 |
+
"masked-lm",
|
456 |
+
"causal-lm",
|
457 |
+
"sequence-classification",
|
458 |
+
"multiple-choice",
|
459 |
+
"token-classification",
|
460 |
+
"question-answering",
|
461 |
+
onnx_config_cls="models.rembert.RemBertOnnxConfig",
|
462 |
+
),
|
463 |
+
"resnet": supported_features_mapping(
|
464 |
+
"default",
|
465 |
+
"image-classification",
|
466 |
+
onnx_config_cls="models.resnet.ResNetOnnxConfig",
|
467 |
+
),
|
468 |
+
"roberta": supported_features_mapping(
|
469 |
+
"default",
|
470 |
+
"masked-lm",
|
471 |
+
"causal-lm",
|
472 |
+
"sequence-classification",
|
473 |
+
"multiple-choice",
|
474 |
+
"token-classification",
|
475 |
+
"question-answering",
|
476 |
+
onnx_config_cls="models.roberta.RobertaOnnxConfig",
|
477 |
+
),
|
478 |
+
"roformer": supported_features_mapping(
|
479 |
+
"default",
|
480 |
+
"masked-lm",
|
481 |
+
"causal-lm",
|
482 |
+
"sequence-classification",
|
483 |
+
"token-classification",
|
484 |
+
"multiple-choice",
|
485 |
+
"question-answering",
|
486 |
+
"token-classification",
|
487 |
+
onnx_config_cls="models.roformer.RoFormerOnnxConfig",
|
488 |
+
),
|
489 |
+
"segformer": supported_features_mapping(
|
490 |
+
"default",
|
491 |
+
"image-classification",
|
492 |
+
"semantic-segmentation",
|
493 |
+
onnx_config_cls="models.segformer.SegformerOnnxConfig",
|
494 |
+
),
|
495 |
+
"squeezebert": supported_features_mapping(
|
496 |
+
"default",
|
497 |
+
"masked-lm",
|
498 |
+
"sequence-classification",
|
499 |
+
"multiple-choice",
|
500 |
+
"token-classification",
|
501 |
+
"question-answering",
|
502 |
+
onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig",
|
503 |
+
),
|
504 |
+
"swin": supported_features_mapping(
|
505 |
+
"default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig"
|
506 |
+
),
|
507 |
+
"t5": supported_features_mapping(
|
508 |
+
"default",
|
509 |
+
"default-with-past",
|
510 |
+
"seq2seq-lm",
|
511 |
+
"seq2seq-lm-with-past",
|
512 |
+
onnx_config_cls="models.t5.T5OnnxConfig",
|
513 |
+
),
|
514 |
+
"vision-encoder-decoder": supported_features_mapping(
|
515 |
+
"vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig"
|
516 |
+
),
|
517 |
+
"vit": supported_features_mapping(
|
518 |
+
"default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig"
|
519 |
+
),
|
520 |
+
"whisper": supported_features_mapping(
|
521 |
+
"default",
|
522 |
+
"default-with-past",
|
523 |
+
"speech2seq-lm",
|
524 |
+
"speech2seq-lm-with-past",
|
525 |
+
onnx_config_cls="models.whisper.WhisperOnnxConfig",
|
526 |
+
),
|
527 |
+
"xlm": supported_features_mapping(
|
528 |
+
"default",
|
529 |
+
"masked-lm",
|
530 |
+
"causal-lm",
|
531 |
+
"sequence-classification",
|
532 |
+
"multiple-choice",
|
533 |
+
"token-classification",
|
534 |
+
"question-answering",
|
535 |
+
onnx_config_cls="models.xlm.XLMOnnxConfig",
|
536 |
+
),
|
537 |
+
"xlm-roberta": supported_features_mapping(
|
538 |
+
"default",
|
539 |
+
"masked-lm",
|
540 |
+
"causal-lm",
|
541 |
+
"sequence-classification",
|
542 |
+
"multiple-choice",
|
543 |
+
"token-classification",
|
544 |
+
"question-answering",
|
545 |
+
onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig",
|
546 |
+
),
|
547 |
+
"yolos": supported_features_mapping(
|
548 |
+
"default",
|
549 |
+
"object-detection",
|
550 |
+
onnx_config_cls="models.yolos.YolosOnnxConfig",
|
551 |
+
),
|
552 |
+
}
|
553 |
+
|
554 |
+
AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values())))
|
555 |
+
|
556 |
+
@staticmethod
|
557 |
+
def get_supported_features_for_model_type(
|
558 |
+
model_type: str, model_name: Optional[str] = None
|
559 |
+
) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]:
|
560 |
+
"""
|
561 |
+
Tries to retrieve the feature -> OnnxConfig constructor map from the model type.
|
562 |
+
|
563 |
+
Args:
|
564 |
+
model_type (`str`):
|
565 |
+
The model type to retrieve the supported features for.
|
566 |
+
model_name (`str`, *optional*):
|
567 |
+
The name attribute of the model object, only used for the exception message.
|
568 |
+
|
569 |
+
Returns:
|
570 |
+
The dictionary mapping each feature to a corresponding OnnxConfig constructor.
|
571 |
+
"""
|
572 |
+
model_type = model_type.lower()
|
573 |
+
if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE:
|
574 |
+
model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type
|
575 |
+
raise KeyError(
|
576 |
+
f"{model_type_and_model_name} is not supported yet. "
|
577 |
+
f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. "
|
578 |
+
f"If you want to support {model_type} please propose a PR or open up an issue."
|
579 |
+
)
|
580 |
+
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type]
|
581 |
+
|
582 |
+
@staticmethod
|
583 |
+
def feature_to_task(feature: str) -> str:
|
584 |
+
return feature.replace("-with-past", "")
|
585 |
+
|
586 |
+
@staticmethod
|
587 |
+
def _validate_framework_choice(framework: str):
|
588 |
+
"""
|
589 |
+
Validates if the framework requested for the export is both correct and available, otherwise throws an
|
590 |
+
exception.
|
591 |
+
"""
|
592 |
+
if framework not in ["pt", "tf"]:
|
593 |
+
raise ValueError(
|
594 |
+
f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided."
|
595 |
+
)
|
596 |
+
elif framework == "pt" and not is_torch_available():
|
597 |
+
raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.")
|
598 |
+
elif framework == "tf" and not is_tf_available():
|
599 |
+
raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.")
|
600 |
+
|
601 |
+
@staticmethod
|
602 |
+
def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type:
|
603 |
+
"""
|
604 |
+
Attempts to retrieve an AutoModel class from a feature name.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
feature (`str`):
|
608 |
+
The feature required.
|
609 |
+
framework (`str`, *optional*, defaults to `"pt"`):
|
610 |
+
The framework to use for the export.
|
611 |
+
|
612 |
+
Returns:
|
613 |
+
The AutoModel class corresponding to the feature.
|
614 |
+
"""
|
615 |
+
task = FeaturesManager.feature_to_task(feature)
|
616 |
+
FeaturesManager._validate_framework_choice(framework)
|
617 |
+
if framework == "pt":
|
618 |
+
task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS
|
619 |
+
else:
|
620 |
+
task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS
|
621 |
+
if task not in task_to_automodel:
|
622 |
+
raise KeyError(
|
623 |
+
f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}"
|
624 |
+
)
|
625 |
+
|
626 |
+
return task_to_automodel[task]
|
627 |
+
|
628 |
+
@staticmethod
|
629 |
+
def determine_framework(model: str, framework: str = None) -> str:
|
630 |
+
"""
|
631 |
+
Determines the framework to use for the export.
|
632 |
+
|
633 |
+
The priority is in the following order:
|
634 |
+
1. User input via `framework`.
|
635 |
+
2. If local checkpoint is provided, use the same framework as the checkpoint.
|
636 |
+
3. Available framework in environment, with priority given to PyTorch
|
637 |
+
|
638 |
+
Args:
|
639 |
+
model (`str`):
|
640 |
+
The name of the model to export.
|
641 |
+
framework (`str`, *optional*, defaults to `None`):
|
642 |
+
The framework to use for the export. See above for priority if none provided.
|
643 |
+
|
644 |
+
Returns:
|
645 |
+
The framework to use for the export.
|
646 |
+
|
647 |
+
"""
|
648 |
+
if framework is not None:
|
649 |
+
return framework
|
650 |
+
|
651 |
+
framework_map = {"pt": "PyTorch", "tf": "TensorFlow"}
|
652 |
+
exporter_map = {"pt": "torch", "tf": "tf2onnx"}
|
653 |
+
|
654 |
+
if os.path.isdir(model):
|
655 |
+
if os.path.isfile(os.path.join(model, WEIGHTS_NAME)):
|
656 |
+
framework = "pt"
|
657 |
+
elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)):
|
658 |
+
framework = "tf"
|
659 |
+
else:
|
660 |
+
raise FileNotFoundError(
|
661 |
+
"Cannot determine framework from given checkpoint location."
|
662 |
+
f" There should be a {WEIGHTS_NAME} for PyTorch"
|
663 |
+
f" or {TF2_WEIGHTS_NAME} for TensorFlow."
|
664 |
+
)
|
665 |
+
logger.info(f"Local {framework_map[framework]} model found.")
|
666 |
+
else:
|
667 |
+
if is_torch_available():
|
668 |
+
framework = "pt"
|
669 |
+
elif is_tf_available():
|
670 |
+
framework = "tf"
|
671 |
+
else:
|
672 |
+
raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.")
|
673 |
+
|
674 |
+
logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.")
|
675 |
+
|
676 |
+
return framework
|
677 |
+
|
678 |
+
@staticmethod
|
679 |
+
def get_model_from_feature(
|
680 |
+
feature: str, model: str, framework: str = None, cache_dir: str = None
|
681 |
+
) -> Union["PreTrainedModel", "TFPreTrainedModel"]:
|
682 |
+
"""
|
683 |
+
Attempts to retrieve a model from a model's name and the feature to be enabled.
|
684 |
+
|
685 |
+
Args:
|
686 |
+
feature (`str`):
|
687 |
+
The feature required.
|
688 |
+
model (`str`):
|
689 |
+
The name of the model to export.
|
690 |
+
framework (`str`, *optional*, defaults to `None`):
|
691 |
+
The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should
|
692 |
+
none be provided.
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
The instance of the model.
|
696 |
+
|
697 |
+
"""
|
698 |
+
framework = FeaturesManager.determine_framework(model, framework)
|
699 |
+
model_class = FeaturesManager.get_model_class_for_feature(feature, framework)
|
700 |
+
try:
|
701 |
+
model = model_class.from_pretrained(model, cache_dir=cache_dir)
|
702 |
+
except OSError:
|
703 |
+
if framework == "pt":
|
704 |
+
logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.")
|
705 |
+
model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir)
|
706 |
+
else:
|
707 |
+
logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.")
|
708 |
+
model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir)
|
709 |
+
return model
|
710 |
+
|
711 |
+
@staticmethod
|
712 |
+
def check_supported_model_or_raise(
|
713 |
+
model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default"
|
714 |
+
) -> Tuple[str, Callable]:
|
715 |
+
"""
|
716 |
+
Check whether or not the model has the requested features.
|
717 |
+
|
718 |
+
Args:
|
719 |
+
model: The model to export.
|
720 |
+
feature: The name of the feature to check if it is available.
|
721 |
+
|
722 |
+
Returns:
|
723 |
+
(str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties.
|
724 |
+
|
725 |
+
"""
|
726 |
+
model_type = model.config.model_type.replace("_", "-")
|
727 |
+
model_name = getattr(model, "name", "")
|
728 |
+
model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name)
|
729 |
+
if feature not in model_features:
|
730 |
+
raise ValueError(
|
731 |
+
f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}"
|
732 |
+
)
|
733 |
+
|
734 |
+
return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
|
735 |
+
|
736 |
+
def get_config(model_type: str, feature: str) -> OnnxConfig:
|
737 |
+
"""
|
738 |
+
Gets the OnnxConfig for a model_type and feature combination.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
model_type (`str`):
|
742 |
+
The model type to retrieve the config for.
|
743 |
+
feature (`str`):
|
744 |
+
The feature to retrieve the config for.
|
745 |
+
|
746 |
+
Returns:
|
747 |
+
`OnnxConfig`: config for the combination
|
748 |
+
"""
|
749 |
+
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
|
venv/lib/python3.10/site-packages/transformers/onnx/utils.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from ctypes import c_float, sizeof
|
16 |
+
from enum import Enum
|
17 |
+
from typing import TYPE_CHECKING, Optional, Union
|
18 |
+
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from .. import AutoFeatureExtractor, AutoProcessor, AutoTokenizer # tests_ignore
|
22 |
+
|
23 |
+
|
24 |
+
class ParameterFormat(Enum):
|
25 |
+
Float = c_float
|
26 |
+
|
27 |
+
@property
|
28 |
+
def size(self) -> int:
|
29 |
+
"""
|
30 |
+
Number of byte required for this data type
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Integer > 0
|
34 |
+
"""
|
35 |
+
return sizeof(self.value)
|
36 |
+
|
37 |
+
|
38 |
+
def compute_effective_axis_dimension(dimension: int, fixed_dimension: int, num_token_to_add: int = 0) -> int:
|
39 |
+
"""
|
40 |
+
|
41 |
+
Args:
|
42 |
+
dimension:
|
43 |
+
fixed_dimension:
|
44 |
+
num_token_to_add:
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
|
48 |
+
"""
|
49 |
+
# < 0 is possible if using a dynamic axis
|
50 |
+
if dimension <= 0:
|
51 |
+
dimension = fixed_dimension
|
52 |
+
|
53 |
+
dimension -= num_token_to_add
|
54 |
+
return dimension
|
55 |
+
|
56 |
+
|
57 |
+
def compute_serialized_parameters_size(num_parameters: int, dtype: ParameterFormat) -> int:
|
58 |
+
"""
|
59 |
+
Compute the size taken by all the parameters in the given the storage format when serializing the model
|
60 |
+
|
61 |
+
Args:
|
62 |
+
num_parameters: Number of parameters to be saved
|
63 |
+
dtype: The data format each parameter will be saved
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Size (in byte) taken to save all the parameters
|
67 |
+
"""
|
68 |
+
return num_parameters * dtype.size
|
69 |
+
|
70 |
+
|
71 |
+
def get_preprocessor(model_name: str) -> Optional[Union["AutoTokenizer", "AutoFeatureExtractor", "AutoProcessor"]]:
|
72 |
+
"""
|
73 |
+
Gets a preprocessor (tokenizer, feature extractor or processor) that is available for `model_name`.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
model_name (`str`): Name of the model for which a preprocessor are loaded.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
`Optional[Union[AutoTokenizer, AutoFeatureExtractor, AutoProcessor]]`:
|
80 |
+
If a processor is found, it is returned. Otherwise, if a tokenizer or a feature extractor exists, it is
|
81 |
+
returned. If both a tokenizer and a feature extractor exist, an error is raised. The function returns
|
82 |
+
`None` if no preprocessor is found.
|
83 |
+
"""
|
84 |
+
# Avoid circular imports by only importing this here.
|
85 |
+
from .. import AutoFeatureExtractor, AutoProcessor, AutoTokenizer # tests_ignore
|
86 |
+
|
87 |
+
try:
|
88 |
+
return AutoProcessor.from_pretrained(model_name)
|
89 |
+
except (ValueError, OSError, KeyError):
|
90 |
+
tokenizer, feature_extractor = None, None
|
91 |
+
try:
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
except (OSError, KeyError):
|
94 |
+
pass
|
95 |
+
try:
|
96 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
97 |
+
except (OSError, KeyError):
|
98 |
+
pass
|
99 |
+
|
100 |
+
if tokenizer is not None and feature_extractor is not None:
|
101 |
+
raise ValueError(
|
102 |
+
f"Couldn't auto-detect preprocessor for {model_name}. Found both a tokenizer and a feature extractor."
|
103 |
+
)
|
104 |
+
elif tokenizer is None and feature_extractor is None:
|
105 |
+
return None
|
106 |
+
elif tokenizer is not None:
|
107 |
+
return tokenizer
|
108 |
+
else:
|
109 |
+
return feature_extractor
|
venv/lib/python3.10/site-packages/transformers/quantizers/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from .auto import AutoHfQuantizer, AutoQuantizationConfig
|
15 |
+
from .base import HfQuantizer
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (308 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/auto.cpython-310.pyc
ADDED
Binary file (4.58 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/base.cpython-310.pyc
ADDED
Binary file (9.79 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_aqlm.cpython-310.pyc
ADDED
Binary file (3.46 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_awq.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_4bit.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_bnb_8bit.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_gptq.cpython-310.pyc
ADDED
Binary file (3.67 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizer_quanto.cpython-310.pyc
ADDED
Binary file (6.96 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/__pycache__/quantizers_utils.cpython-310.pyc
ADDED
Binary file (602 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/quantizers/auto.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import warnings
|
15 |
+
from typing import Dict, Optional, Union
|
16 |
+
|
17 |
+
from ..models.auto.configuration_auto import AutoConfig
|
18 |
+
from ..utils.quantization_config import (
|
19 |
+
AqlmConfig,
|
20 |
+
AwqConfig,
|
21 |
+
BitsAndBytesConfig,
|
22 |
+
GPTQConfig,
|
23 |
+
QuantizationConfigMixin,
|
24 |
+
QuantizationMethod,
|
25 |
+
QuantoConfig,
|
26 |
+
)
|
27 |
+
from .quantizer_aqlm import AqlmHfQuantizer
|
28 |
+
from .quantizer_awq import AwqQuantizer
|
29 |
+
from .quantizer_bnb_4bit import Bnb4BitHfQuantizer
|
30 |
+
from .quantizer_bnb_8bit import Bnb8BitHfQuantizer
|
31 |
+
from .quantizer_gptq import GptqHfQuantizer
|
32 |
+
from .quantizer_quanto import QuantoHfQuantizer
|
33 |
+
|
34 |
+
|
35 |
+
AUTO_QUANTIZER_MAPPING = {
|
36 |
+
"awq": AwqQuantizer,
|
37 |
+
"bitsandbytes_4bit": Bnb4BitHfQuantizer,
|
38 |
+
"bitsandbytes_8bit": Bnb8BitHfQuantizer,
|
39 |
+
"gptq": GptqHfQuantizer,
|
40 |
+
"aqlm": AqlmHfQuantizer,
|
41 |
+
"quanto": QuantoHfQuantizer,
|
42 |
+
}
|
43 |
+
|
44 |
+
AUTO_QUANTIZATION_CONFIG_MAPPING = {
|
45 |
+
"awq": AwqConfig,
|
46 |
+
"bitsandbytes_4bit": BitsAndBytesConfig,
|
47 |
+
"bitsandbytes_8bit": BitsAndBytesConfig,
|
48 |
+
"gptq": GPTQConfig,
|
49 |
+
"aqlm": AqlmConfig,
|
50 |
+
"quanto": QuantoConfig,
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
class AutoQuantizationConfig:
|
55 |
+
"""
|
56 |
+
The Auto-HF quantization config class that takes care of automatically dispatching to the correct
|
57 |
+
quantization config given a quantization config stored in a dictionary.
|
58 |
+
"""
|
59 |
+
|
60 |
+
@classmethod
|
61 |
+
def from_dict(cls, quantization_config_dict: Dict):
|
62 |
+
quant_method = quantization_config_dict.get("quant_method", None)
|
63 |
+
# We need a special care for bnb models to make sure everything is BC ..
|
64 |
+
if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False):
|
65 |
+
suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit"
|
66 |
+
quant_method = QuantizationMethod.BITS_AND_BYTES + suffix
|
67 |
+
elif quant_method is None:
|
68 |
+
raise ValueError(
|
69 |
+
"The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized"
|
70 |
+
)
|
71 |
+
|
72 |
+
if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys():
|
73 |
+
raise ValueError(
|
74 |
+
f"Unknown quantization type, got {quant_method} - supported types are:"
|
75 |
+
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
|
76 |
+
)
|
77 |
+
|
78 |
+
target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method]
|
79 |
+
return target_cls.from_dict(quantization_config_dict)
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
83 |
+
model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
84 |
+
if getattr(model_config, "quantization_config", None) is None:
|
85 |
+
raise ValueError(
|
86 |
+
f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized."
|
87 |
+
)
|
88 |
+
quantization_config_dict = model_config.quantization_config
|
89 |
+
quantization_config = cls.from_dict(quantization_config_dict)
|
90 |
+
# Update with potential kwargs that are passed through from_pretrained.
|
91 |
+
quantization_config.update(kwargs)
|
92 |
+
return quantization_config
|
93 |
+
|
94 |
+
|
95 |
+
class AutoHfQuantizer:
|
96 |
+
"""
|
97 |
+
The Auto-HF quantizer class that takes care of automatically instantiating to the correct
|
98 |
+
`HfQuantizer` given the `QuantizationConfig`.
|
99 |
+
"""
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs):
|
103 |
+
# Convert it to a QuantizationConfig if the q_config is a dict
|
104 |
+
if isinstance(quantization_config, dict):
|
105 |
+
quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
|
106 |
+
|
107 |
+
quant_method = quantization_config.quant_method
|
108 |
+
|
109 |
+
# Again, we need a special care for bnb as we have a single quantization config
|
110 |
+
# class for both 4-bit and 8-bit quantization
|
111 |
+
if quant_method == QuantizationMethod.BITS_AND_BYTES:
|
112 |
+
if quantization_config.load_in_8bit:
|
113 |
+
quant_method += "_8bit"
|
114 |
+
else:
|
115 |
+
quant_method += "_4bit"
|
116 |
+
|
117 |
+
if quant_method not in AUTO_QUANTIZER_MAPPING.keys():
|
118 |
+
raise ValueError(
|
119 |
+
f"Unknown quantization type, got {quant_method} - supported types are:"
|
120 |
+
f" {list(AUTO_QUANTIZER_MAPPING.keys())}"
|
121 |
+
)
|
122 |
+
|
123 |
+
target_cls = AUTO_QUANTIZER_MAPPING[quant_method]
|
124 |
+
return target_cls(quantization_config, **kwargs)
|
125 |
+
|
126 |
+
@classmethod
|
127 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
128 |
+
quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
129 |
+
return cls.from_config(quantization_config)
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def merge_quantization_configs(
|
133 |
+
cls,
|
134 |
+
quantization_config: Union[dict, QuantizationConfigMixin],
|
135 |
+
quantization_config_from_args: Optional[QuantizationConfigMixin],
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
handles situations where both quantization_config from args and quantization_config from model config are present.
|
139 |
+
"""
|
140 |
+
if quantization_config_from_args is not None:
|
141 |
+
warning_msg = (
|
142 |
+
"You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading"
|
143 |
+
" already has a `quantization_config` attribute. The `quantization_config` from the model will be used."
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
warning_msg = ""
|
147 |
+
|
148 |
+
if isinstance(quantization_config, dict):
|
149 |
+
quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
|
150 |
+
|
151 |
+
if isinstance(quantization_config, (GPTQConfig, AwqConfig)) and quantization_config_from_args is not None:
|
152 |
+
# special case for GPTQ / AWQ config collision
|
153 |
+
loading_attr_dict = quantization_config_from_args.get_loading_attributes()
|
154 |
+
for attr, val in loading_attr_dict.items():
|
155 |
+
setattr(quantization_config, attr, val)
|
156 |
+
warning_msg += f"However, loading attributes (e.g. {list(loading_attr_dict.keys())}) will be overwritten with the one you passed to `from_pretrained`. The rest will be ignored."
|
157 |
+
|
158 |
+
if warning_msg != "":
|
159 |
+
warnings.warn(warning_msg)
|
160 |
+
|
161 |
+
return quantization_config
|
venv/lib/python3.10/site-packages/transformers/quantizers/base.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from abc import ABC, abstractmethod
|
15 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
16 |
+
|
17 |
+
from ..utils import is_torch_available
|
18 |
+
from ..utils.quantization_config import QuantizationConfigMixin
|
19 |
+
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from ..modeling_utils import PreTrainedModel
|
23 |
+
|
24 |
+
if is_torch_available():
|
25 |
+
import torch
|
26 |
+
|
27 |
+
|
28 |
+
class HfQuantizer(ABC):
|
29 |
+
"""
|
30 |
+
Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization.
|
31 |
+
This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method
|
32 |
+
yet.
|
33 |
+
|
34 |
+
Attributes
|
35 |
+
quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`):
|
36 |
+
The quantization config that defines the quantization parameters of your model that you want to quantize.
|
37 |
+
modules_to_not_convert (`List[str]`, *optional*):
|
38 |
+
The list of module names to not convert when quantizing the model.
|
39 |
+
required_packages (`List[str]`, *optional*):
|
40 |
+
The list of required pip packages to install prior to using the quantizer
|
41 |
+
requires_calibration (`bool`):
|
42 |
+
Whether the quantization method requires to calibrate the model before using it.
|
43 |
+
requires_parameters_quantization (`bool`):
|
44 |
+
Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is
|
45 |
+
required to create a new xxxParameter in order to properly quantize the model.
|
46 |
+
"""
|
47 |
+
|
48 |
+
requires_calibration = False
|
49 |
+
required_packages = None
|
50 |
+
requires_parameters_quantization = False
|
51 |
+
|
52 |
+
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
|
53 |
+
self.quantization_config = quantization_config
|
54 |
+
|
55 |
+
# -- Handle extra kwargs below --
|
56 |
+
self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", [])
|
57 |
+
self.pre_quantized = kwargs.pop("pre_quantized", True)
|
58 |
+
|
59 |
+
if not self.pre_quantized and self.requires_calibration:
|
60 |
+
raise ValueError(
|
61 |
+
f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized."
|
62 |
+
f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to "
|
63 |
+
f"pass `pre_quantized=True` while knowing what you are doing."
|
64 |
+
)
|
65 |
+
|
66 |
+
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
67 |
+
"""
|
68 |
+
Some quantization methods require to explicitly set the dtype of the model to a
|
69 |
+
target dtype. You need to override this method in case you want to make sure that behavior is
|
70 |
+
preserved
|
71 |
+
|
72 |
+
Args:
|
73 |
+
torch_dtype (`torch.dtype`):
|
74 |
+
The input dtype that is passed in `from_pretrained`
|
75 |
+
"""
|
76 |
+
return torch_dtype
|
77 |
+
|
78 |
+
def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
79 |
+
"""
|
80 |
+
Override this method if you want to pass a override the existing device map with a new
|
81 |
+
one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is
|
82 |
+
passed, the device_map is set to `"auto"``
|
83 |
+
|
84 |
+
Args:
|
85 |
+
device_map (`Union[dict, str]`, *optional*):
|
86 |
+
The device_map that is passed through the `from_pretrained` method.
|
87 |
+
"""
|
88 |
+
return device_map
|
89 |
+
|
90 |
+
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
91 |
+
"""
|
92 |
+
Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained`
|
93 |
+
to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype`
|
94 |
+
to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
torch_dtype (`torch.dtype`, *optional*):
|
98 |
+
The torch_dtype that is used to compute the device_map.
|
99 |
+
"""
|
100 |
+
return torch_dtype
|
101 |
+
|
102 |
+
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
|
103 |
+
"""
|
104 |
+
Override this method if you want to adjust the `missing_keys`.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
missing_keys (`List[str]`, *optional*):
|
108 |
+
The list of missing keys in the checkpoint compared to the state dict of the model
|
109 |
+
"""
|
110 |
+
return missing_keys
|
111 |
+
|
112 |
+
def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]:
|
113 |
+
"""
|
114 |
+
returns dtypes for modules that are not quantized - used for the computation of the device_map in case
|
115 |
+
one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified
|
116 |
+
in `_process_model_before_weight_loading`.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
model (`~transformers.PreTrainedModel`):
|
120 |
+
The model to quantize
|
121 |
+
torch_dtype (`torch.dtype`):
|
122 |
+
The dtype passed in `from_pretrained` method.
|
123 |
+
"""
|
124 |
+
|
125 |
+
return {
|
126 |
+
name: torch_dtype
|
127 |
+
for name, _ in model.named_parameters()
|
128 |
+
if any(m in name for m in self.modules_to_not_convert)
|
129 |
+
}
|
130 |
+
|
131 |
+
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
132 |
+
"""adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization"""
|
133 |
+
return max_memory
|
134 |
+
|
135 |
+
def check_quantized_param(
|
136 |
+
self,
|
137 |
+
model: "PreTrainedModel",
|
138 |
+
param_value: "torch.Tensor",
|
139 |
+
param_name: str,
|
140 |
+
state_dict: Dict[str, Any],
|
141 |
+
**kwargs,
|
142 |
+
) -> bool:
|
143 |
+
"""
|
144 |
+
checks if a loaded state_dict component is part of quantized param + some validation; only defined if
|
145 |
+
requires_parameters_quantization == True for quantization methods that require to create a new parameters
|
146 |
+
for quantization.
|
147 |
+
"""
|
148 |
+
return False
|
149 |
+
|
150 |
+
def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter":
|
151 |
+
"""
|
152 |
+
takes needed components from state_dict and creates quantized param; only applicable if
|
153 |
+
requires_parameters_quantization == True
|
154 |
+
"""
|
155 |
+
if not self.requires_parameters_quantization:
|
156 |
+
raise AttributeError(
|
157 |
+
f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}."
|
158 |
+
)
|
159 |
+
|
160 |
+
def validate_environment(self, *args, **kwargs):
|
161 |
+
"""
|
162 |
+
This method is used to potentially check for potential conflicts with arguments that are
|
163 |
+
passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers.
|
164 |
+
If no explicit check are needed, simply return nothing.
|
165 |
+
"""
|
166 |
+
return
|
167 |
+
|
168 |
+
def preprocess_model(self, model: "PreTrainedModel", **kwargs):
|
169 |
+
"""
|
170 |
+
Setting model attributes and/or converting model before weights loading. At this point
|
171 |
+
the model should be initialized on the meta device so you can freely manipulate the skeleton
|
172 |
+
of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
model (`~transformers.PreTrainedModel`):
|
176 |
+
The model to quantize
|
177 |
+
kwargs (`dict`, *optional*):
|
178 |
+
The keyword arguments that are passed along `_process_model_before_weight_loading`.
|
179 |
+
"""
|
180 |
+
model.is_quantized = True
|
181 |
+
model.quantization_method = self.quantization_config.quant_method
|
182 |
+
return self._process_model_before_weight_loading(model, **kwargs)
|
183 |
+
|
184 |
+
def postprocess_model(self, model: "PreTrainedModel", **kwargs):
|
185 |
+
"""
|
186 |
+
Post-process the model post weights loading.
|
187 |
+
Make sure to override the abstract method `_process_model_after_weight_loading`.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
model (`~transformers.PreTrainedModel`):
|
191 |
+
The model to quantize
|
192 |
+
kwargs (`dict`, *optional*):
|
193 |
+
The keyword arguments that are passed along `_process_model_after_weight_loading`.
|
194 |
+
"""
|
195 |
+
return self._process_model_after_weight_loading(model, **kwargs)
|
196 |
+
|
197 |
+
@abstractmethod
|
198 |
+
def _process_model_before_weight_loading(self, model, **kwargs):
|
199 |
+
...
|
200 |
+
|
201 |
+
@abstractmethod
|
202 |
+
def _process_model_after_weight_loading(self, model, **kwargs):
|
203 |
+
...
|
204 |
+
|
205 |
+
@property
|
206 |
+
@abstractmethod
|
207 |
+
def is_serializable(self):
|
208 |
+
...
|
209 |
+
|
210 |
+
@property
|
211 |
+
@abstractmethod
|
212 |
+
def is_trainable(self):
|
213 |
+
...
|
venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_aqlm.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib
|
15 |
+
from typing import TYPE_CHECKING, Optional
|
16 |
+
|
17 |
+
from packaging import version
|
18 |
+
|
19 |
+
from .base import HfQuantizer
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ..modeling_utils import PreTrainedModel
|
24 |
+
|
25 |
+
from ..integrations import replace_with_aqlm_linear
|
26 |
+
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging
|
27 |
+
from ..utils.quantization_config import QuantizationConfigMixin
|
28 |
+
|
29 |
+
|
30 |
+
if is_torch_available():
|
31 |
+
import torch
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class AqlmHfQuantizer(HfQuantizer):
|
37 |
+
"""
|
38 |
+
Quantizer of the AQLM method. Enables the loading of prequantized models.
|
39 |
+
"""
|
40 |
+
|
41 |
+
requires_calibration = True
|
42 |
+
required_packages = ["aqlm"]
|
43 |
+
optimum_quantizer = None
|
44 |
+
|
45 |
+
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
|
46 |
+
super().__init__(quantization_config, **kwargs)
|
47 |
+
self.quantization_config = quantization_config
|
48 |
+
|
49 |
+
def validate_environment(self, *args, **kwargs):
|
50 |
+
if not is_accelerate_available():
|
51 |
+
raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`")
|
52 |
+
|
53 |
+
if not is_aqlm_available():
|
54 |
+
raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
|
55 |
+
|
56 |
+
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
57 |
+
if torch_dtype is None:
|
58 |
+
if torch.cuda.is_available():
|
59 |
+
torch_dtype = torch.float16
|
60 |
+
logger.info(
|
61 |
+
"CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
torch_dtype = torch.float32
|
65 |
+
logger.info(
|
66 |
+
"CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually."
|
67 |
+
)
|
68 |
+
return torch_dtype
|
69 |
+
|
70 |
+
def _process_model_before_weight_loading(
|
71 |
+
self,
|
72 |
+
model: "PreTrainedModel",
|
73 |
+
**kwargs,
|
74 |
+
):
|
75 |
+
replace_with_aqlm_linear(
|
76 |
+
model,
|
77 |
+
quantization_config=self.quantization_config,
|
78 |
+
linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize,
|
79 |
+
)
|
80 |
+
model.config.quantization_config = self.quantization_config
|
81 |
+
|
82 |
+
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
83 |
+
return model
|
84 |
+
|
85 |
+
@property
|
86 |
+
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
|
87 |
+
aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
|
88 |
+
if aqlm_supports_training:
|
89 |
+
return True
|
90 |
+
else:
|
91 |
+
logger.warning(
|
92 |
+
f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
|
93 |
+
)
|
94 |
+
return False
|
95 |
+
|
96 |
+
@property
|
97 |
+
def is_serializable(self):
|
98 |
+
return True
|
venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_awq.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib.metadata
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from packaging import version
|
18 |
+
|
19 |
+
from .base import HfQuantizer
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ..modeling_utils import PreTrainedModel
|
24 |
+
|
25 |
+
from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging
|
26 |
+
from ..utils.quantization_config import AWQLinearVersion
|
27 |
+
|
28 |
+
|
29 |
+
if is_torch_available():
|
30 |
+
import torch
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class AwqQuantizer(HfQuantizer):
|
36 |
+
"""
|
37 |
+
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978)
|
38 |
+
"""
|
39 |
+
|
40 |
+
# AWQ requires data callibration - we support only inference
|
41 |
+
requires_calibration = True
|
42 |
+
|
43 |
+
required_packages = ["awq", "accelerate"]
|
44 |
+
|
45 |
+
def __init__(self, quantization_config, **kwargs):
|
46 |
+
super().__init__(quantization_config, **kwargs)
|
47 |
+
|
48 |
+
def validate_environment(self, device_map, **kwargs):
|
49 |
+
if not torch.cuda.is_available():
|
50 |
+
raise RuntimeError("GPU is required to run AWQ quantized model.")
|
51 |
+
|
52 |
+
if not is_auto_awq_available():
|
53 |
+
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")
|
54 |
+
|
55 |
+
if not is_accelerate_available():
|
56 |
+
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")
|
57 |
+
|
58 |
+
if device_map is None:
|
59 |
+
logger.warning_once(
|
60 |
+
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
|
61 |
+
"your model on a GPU device in order to run your model."
|
62 |
+
)
|
63 |
+
elif device_map is not None:
|
64 |
+
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
|
65 |
+
raise ValueError(
|
66 |
+
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
|
67 |
+
" This is not supported. Please remove the CPU or disk device from the device_map."
|
68 |
+
)
|
69 |
+
|
70 |
+
def update_torch_dtype(self, torch_dtype):
|
71 |
+
if torch_dtype is None:
|
72 |
+
torch_dtype = torch.float16
|
73 |
+
elif torch_dtype != torch.float16:
|
74 |
+
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")
|
75 |
+
return torch_dtype
|
76 |
+
|
77 |
+
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
78 |
+
from ..integrations import get_keys_to_not_convert, replace_with_awq_linear
|
79 |
+
|
80 |
+
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
81 |
+
|
82 |
+
if self.quantization_config.modules_to_not_convert is not None:
|
83 |
+
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
|
84 |
+
|
85 |
+
model, has_been_replaced = replace_with_awq_linear(
|
86 |
+
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert
|
87 |
+
)
|
88 |
+
|
89 |
+
if not has_been_replaced:
|
90 |
+
logger.warning(
|
91 |
+
"You are loading an AWQ model but no linear modules were found in your model."
|
92 |
+
" Please double check your model architecture, or submit an issue on github if you think this is a bug."
|
93 |
+
)
|
94 |
+
|
95 |
+
def _process_model_after_weight_loading(self, model):
|
96 |
+
if self.quantization_config.do_fuse:
|
97 |
+
from ..integrations import fuse_awq_modules
|
98 |
+
|
99 |
+
model = fuse_awq_modules(model, self.quantization_config)
|
100 |
+
model._awq_is_fused = True # TODO: consider storing this flag in model.config instead
|
101 |
+
|
102 |
+
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
|
103 |
+
from ..integrations import post_init_awq_exllama_modules
|
104 |
+
|
105 |
+
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config)
|
106 |
+
|
107 |
+
@property
|
108 |
+
def is_serializable(self):
|
109 |
+
# AWQ through auto-awq has been always serializable, except if the model is fused.
|
110 |
+
if self.quantization_config.do_fuse:
|
111 |
+
logger.warning("You cannot save an AWQ model that uses fused modules!")
|
112 |
+
return False
|
113 |
+
|
114 |
+
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
|
115 |
+
logger.warning("You cannot save an AWQ model that uses Exllama backend!")
|
116 |
+
return False
|
117 |
+
|
118 |
+
return True
|
119 |
+
|
120 |
+
@property
|
121 |
+
def is_trainable(self):
|
122 |
+
# AWQ supports PEFT fine-tuning from version 0.2.0
|
123 |
+
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0"
|
124 |
+
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT)
|
venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_4bit.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib
|
15 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
16 |
+
|
17 |
+
from packaging import version
|
18 |
+
|
19 |
+
from .base import HfQuantizer
|
20 |
+
from .quantizers_utils import get_module_from_name
|
21 |
+
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
from ..modeling_utils import PreTrainedModel
|
25 |
+
|
26 |
+
from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
|
27 |
+
|
28 |
+
|
29 |
+
if is_torch_available():
|
30 |
+
import torch
|
31 |
+
|
32 |
+
from ..pytorch_utils import Conv1D
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
class Bnb4BitHfQuantizer(HfQuantizer):
|
38 |
+
"""
|
39 |
+
4-bit quantization from bitsandbytes.py quantization method:
|
40 |
+
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
|
41 |
+
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call
|
42 |
+
saving:
|
43 |
+
from state dict, as usual; saves weights and `quant_state` components
|
44 |
+
loading:
|
45 |
+
need to locate `quant_state` components and pass to Param4bit constructor
|
46 |
+
"""
|
47 |
+
|
48 |
+
use_keep_in_fp32_modules = True
|
49 |
+
requires_parameters_quantization = True
|
50 |
+
requires_calibration = False
|
51 |
+
|
52 |
+
required_packages = ["bitsandbytes", "accelerate"]
|
53 |
+
|
54 |
+
def __init__(self, quantization_config, **kwargs):
|
55 |
+
super().__init__(quantization_config, **kwargs)
|
56 |
+
|
57 |
+
if self.quantization_config.llm_int8_skip_modules is not None:
|
58 |
+
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
59 |
+
|
60 |
+
def validate_environment(self, *args, **kwargs):
|
61 |
+
if not (is_accelerate_available() and is_bitsandbytes_available()):
|
62 |
+
raise ImportError(
|
63 |
+
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` "
|
64 |
+
"and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`"
|
65 |
+
)
|
66 |
+
|
67 |
+
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
|
68 |
+
raise ValueError(
|
69 |
+
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
|
70 |
+
" sure the weights are in PyTorch format."
|
71 |
+
)
|
72 |
+
|
73 |
+
if not torch.cuda.is_available():
|
74 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
75 |
+
|
76 |
+
device_map = kwargs.get("device_map", None)
|
77 |
+
if (
|
78 |
+
device_map is not None
|
79 |
+
and isinstance(device_map, dict)
|
80 |
+
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
81 |
+
):
|
82 |
+
device_map_without_lm_head = {
|
83 |
+
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
|
84 |
+
}
|
85 |
+
if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
|
86 |
+
raise ValueError(
|
87 |
+
"""
|
88 |
+
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the
|
89 |
+
quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules
|
90 |
+
in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to
|
91 |
+
`from_pretrained`. Check
|
92 |
+
https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
|
93 |
+
for more details.
|
94 |
+
"""
|
95 |
+
)
|
96 |
+
|
97 |
+
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"):
|
98 |
+
raise ValueError(
|
99 |
+
"You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
|
100 |
+
" make sure you have the latest version of `bitsandbytes` installed"
|
101 |
+
)
|
102 |
+
|
103 |
+
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
104 |
+
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
|
105 |
+
from accelerate.utils import CustomDtype
|
106 |
+
|
107 |
+
if target_dtype != torch.int8:
|
108 |
+
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
|
109 |
+
return CustomDtype.INT4
|
110 |
+
else:
|
111 |
+
raise ValueError(
|
112 |
+
"You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
|
113 |
+
" the appropriate device map, you should upgrade your `accelerate` library,"
|
114 |
+
"`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
|
115 |
+
"calculation. You may encounter unexpected behavior, or pass your own device map"
|
116 |
+
)
|
117 |
+
|
118 |
+
def check_quantized_param(
|
119 |
+
self,
|
120 |
+
model: "PreTrainedModel",
|
121 |
+
param_value: "torch.Tensor",
|
122 |
+
param_name: str,
|
123 |
+
state_dict: Dict[str, Any],
|
124 |
+
**kwargs,
|
125 |
+
) -> bool:
|
126 |
+
import bitsandbytes as bnb
|
127 |
+
|
128 |
+
module, tensor_name = get_module_from_name(model, param_name)
|
129 |
+
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
|
130 |
+
# Add here check for loaded components' dtypes once serialization is implemented
|
131 |
+
return True
|
132 |
+
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
|
133 |
+
# bias could be loaded by regular set_module_tensor_to_device() from accelerate,
|
134 |
+
# but it would wrongly use uninitialized weight there.
|
135 |
+
return True
|
136 |
+
else:
|
137 |
+
return False
|
138 |
+
|
139 |
+
def create_quantized_param(
|
140 |
+
self,
|
141 |
+
model: "PreTrainedModel",
|
142 |
+
param_value: "torch.Tensor",
|
143 |
+
param_name: str,
|
144 |
+
target_device: "torch.device",
|
145 |
+
state_dict: Dict[str, Any],
|
146 |
+
unexpected_keys: Optional[List[str]] = None,
|
147 |
+
):
|
148 |
+
"""
|
149 |
+
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
|
150 |
+
"""
|
151 |
+
import bitsandbytes as bnb
|
152 |
+
|
153 |
+
module, tensor_name = get_module_from_name(model, param_name)
|
154 |
+
|
155 |
+
if tensor_name not in module._parameters:
|
156 |
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
157 |
+
|
158 |
+
old_value = getattr(module, tensor_name)
|
159 |
+
|
160 |
+
if tensor_name == "bias":
|
161 |
+
if param_value is None:
|
162 |
+
new_value = old_value.to(target_device)
|
163 |
+
else:
|
164 |
+
new_value = param_value.to(target_device)
|
165 |
+
|
166 |
+
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
|
167 |
+
module._parameters[tensor_name] = new_value
|
168 |
+
return
|
169 |
+
|
170 |
+
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
|
171 |
+
raise ValueError("this function only loads `Linear4bit components`")
|
172 |
+
if (
|
173 |
+
old_value.device == torch.device("meta")
|
174 |
+
and target_device not in ["meta", torch.device("meta")]
|
175 |
+
and param_value is None
|
176 |
+
):
|
177 |
+
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
|
178 |
+
|
179 |
+
# construct `new_value` for the module._parameters[tensor_name]:
|
180 |
+
if self.pre_quantized:
|
181 |
+
# 4bit loading. Collecting components for restoring quantized weight
|
182 |
+
# This can be expanded to make a universal call for any quantized weight loading
|
183 |
+
|
184 |
+
if not self.is_serializable:
|
185 |
+
raise ValueError(
|
186 |
+
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
|
187 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
188 |
+
)
|
189 |
+
|
190 |
+
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
|
191 |
+
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
|
192 |
+
):
|
193 |
+
raise ValueError(
|
194 |
+
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
|
195 |
+
)
|
196 |
+
|
197 |
+
quantized_stats = {}
|
198 |
+
for k, v in state_dict.items():
|
199 |
+
if param_name + "." in k:
|
200 |
+
quantized_stats[k] = v
|
201 |
+
if unexpected_keys is not None and k in unexpected_keys:
|
202 |
+
unexpected_keys.remove(k)
|
203 |
+
|
204 |
+
new_value = bnb.nn.Params4bit.from_prequantized(
|
205 |
+
data=param_value,
|
206 |
+
quantized_stats=quantized_stats,
|
207 |
+
requires_grad=False,
|
208 |
+
device=target_device,
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
new_value = param_value.to("cpu")
|
212 |
+
|
213 |
+
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
|
214 |
+
# Since weights are saved in the correct "orientation", we skip transposing when loading.
|
215 |
+
if issubclass(module.source_cls, Conv1D):
|
216 |
+
new_value = new_value.T
|
217 |
+
|
218 |
+
kwargs = old_value.__dict__
|
219 |
+
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
|
220 |
+
|
221 |
+
module._parameters[tensor_name] = new_value
|
222 |
+
|
223 |
+
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory
|
224 |
+
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
225 |
+
# need more space for buffers that are created during quantization
|
226 |
+
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
227 |
+
return max_memory
|
228 |
+
|
229 |
+
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype
|
230 |
+
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
231 |
+
if torch_dtype is None:
|
232 |
+
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
|
233 |
+
logger.info(
|
234 |
+
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
|
235 |
+
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
|
236 |
+
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
|
237 |
+
" torch_dtype=torch.float16 to remove this warning.",
|
238 |
+
torch_dtype,
|
239 |
+
)
|
240 |
+
torch_dtype = torch.float16
|
241 |
+
return torch_dtype
|
242 |
+
|
243 |
+
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_device_map
|
244 |
+
def update_device_map(self, device_map):
|
245 |
+
if device_map is None:
|
246 |
+
device_map = {"": torch.cuda.current_device()}
|
247 |
+
logger.info(
|
248 |
+
"The device_map was not initialized. "
|
249 |
+
"Setting device_map to {'':torch.cuda.current_device()}. "
|
250 |
+
"If you want to use the model for inference, please set device_map ='auto' "
|
251 |
+
)
|
252 |
+
return device_map
|
253 |
+
|
254 |
+
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading
|
255 |
+
def _process_model_before_weight_loading(
|
256 |
+
self,
|
257 |
+
model: "PreTrainedModel",
|
258 |
+
device_map,
|
259 |
+
keep_in_fp32_modules: List[str] = [],
|
260 |
+
**kwargs,
|
261 |
+
):
|
262 |
+
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
|
263 |
+
|
264 |
+
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
265 |
+
|
266 |
+
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
267 |
+
if self.quantization_config.llm_int8_skip_modules is None:
|
268 |
+
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
269 |
+
else:
|
270 |
+
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
271 |
+
|
272 |
+
if not isinstance(self.modules_to_not_convert, list):
|
273 |
+
self.modules_to_not_convert = [self.modules_to_not_convert]
|
274 |
+
|
275 |
+
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
276 |
+
|
277 |
+
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
|
278 |
+
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
279 |
+
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
280 |
+
|
281 |
+
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
|
282 |
+
raise ValueError(
|
283 |
+
"If you want to offload some keys to `cpu` or `disk`, you need to set "
|
284 |
+
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
|
285 |
+
" converted to 8-bit but kept in 32-bit."
|
286 |
+
)
|
287 |
+
self.modules_to_not_convert.extend(keys_on_cpu)
|
288 |
+
|
289 |
+
model = replace_with_bnb_linear(
|
290 |
+
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
|
291 |
+
)
|
292 |
+
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
|
293 |
+
|
294 |
+
model.config.quantization_config = self.quantization_config
|
295 |
+
|
296 |
+
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit
|
297 |
+
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
298 |
+
model.is_loaded_in_4bit = True
|
299 |
+
model.is_4bit_serializable = self.is_serializable
|
300 |
+
return model
|
301 |
+
|
302 |
+
@property
|
303 |
+
def is_serializable(self):
|
304 |
+
_is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
|
305 |
+
|
306 |
+
if not _is_4bit_serializable:
|
307 |
+
logger.warning(
|
308 |
+
"You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
|
309 |
+
"If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
|
310 |
+
)
|
311 |
+
return False
|
312 |
+
|
313 |
+
return True
|
314 |
+
|
315 |
+
@property
|
316 |
+
def is_trainable(self) -> bool:
|
317 |
+
return True
|
venv/lib/python3.10/site-packages/transformers/quantizers/quantizer_bnb_8bit.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib
|
15 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
16 |
+
|
17 |
+
from packaging import version
|
18 |
+
|
19 |
+
from .base import HfQuantizer
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ..modeling_utils import PreTrainedModel
|
24 |
+
|
25 |
+
from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
|
26 |
+
from .quantizers_utils import get_module_from_name
|
27 |
+
|
28 |
+
|
29 |
+
if is_torch_available():
|
30 |
+
import torch
|
31 |
+
|
32 |
+
from ..pytorch_utils import Conv1D
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
class Bnb8BitHfQuantizer(HfQuantizer):
|
38 |
+
"""
|
39 |
+
8-bit quantization from bitsandbytes quantization method:
|
40 |
+
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
|
41 |
+
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
|
42 |
+
saving:
|
43 |
+
from state dict, as usual; saves weights and 'SCB' component
|
44 |
+
loading:
|
45 |
+
need to locate SCB component and pass to the Linear8bitLt object
|
46 |
+
"""
|
47 |
+
|
48 |
+
use_keep_in_fp32_modules = True
|
49 |
+
requires_parameters_quantization = True
|
50 |
+
requires_calibration = False
|
51 |
+
|
52 |
+
required_packages = ["bitsandbytes", "accelerate"]
|
53 |
+
|
54 |
+
def __init__(self, quantization_config, **kwargs):
|
55 |
+
super().__init__(quantization_config, **kwargs)
|
56 |
+
|
57 |
+
if self.quantization_config.llm_int8_skip_modules is not None:
|
58 |
+
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
59 |
+
|
60 |
+
def validate_environment(self, *args, **kwargs):
|
61 |
+
if not (is_accelerate_available() and is_bitsandbytes_available()):
|
62 |
+
raise ImportError(
|
63 |
+
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` "
|
64 |
+
"and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`"
|
65 |
+
)
|
66 |
+
|
67 |
+
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
|
68 |
+
raise ValueError(
|
69 |
+
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
|
70 |
+
" sure the weights are in PyTorch format."
|
71 |
+
)
|
72 |
+
|
73 |
+
if not torch.cuda.is_available():
|
74 |
+
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
75 |
+
|
76 |
+
device_map = kwargs.get("device_map", None)
|
77 |
+
if (
|
78 |
+
device_map is not None
|
79 |
+
and isinstance(device_map, dict)
|
80 |
+
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
81 |
+
):
|
82 |
+
device_map_without_lm_head = {
|
83 |
+
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
|
84 |
+
}
|
85 |
+
if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
|
86 |
+
raise ValueError(
|
87 |
+
"""
|
88 |
+
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the
|
89 |
+
quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules
|
90 |
+
in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to
|
91 |
+
`from_pretrained`. Check
|
92 |
+
https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
|
93 |
+
for more details.
|
94 |
+
"""
|
95 |
+
)
|
96 |
+
|
97 |
+
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"):
|
98 |
+
raise ValueError(
|
99 |
+
"You have a version of `bitsandbytes` that is not compatible with 8bit inference and training"
|
100 |
+
" make sure you have the latest version of `bitsandbytes` installed"
|
101 |
+
)
|
102 |
+
|
103 |
+
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
104 |
+
# need more space for buffers that are created during quantization
|
105 |
+
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
106 |
+
return max_memory
|
107 |
+
|
108 |
+
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
109 |
+
if torch_dtype is None:
|
110 |
+
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
|
111 |
+
logger.info(
|
112 |
+
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
|
113 |
+
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
|
114 |
+
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
|
115 |
+
" torch_dtype=torch.float16 to remove this warning.",
|
116 |
+
torch_dtype,
|
117 |
+
)
|
118 |
+
torch_dtype = torch.float16
|
119 |
+
return torch_dtype
|
120 |
+
|
121 |
+
def update_device_map(self, device_map):
|
122 |
+
if device_map is None:
|
123 |
+
device_map = {"": torch.cuda.current_device()}
|
124 |
+
logger.info(
|
125 |
+
"The device_map was not initialized. "
|
126 |
+
"Setting device_map to {'':torch.cuda.current_device()}. "
|
127 |
+
"If you want to use the model for inference, please set device_map ='auto' "
|
128 |
+
)
|
129 |
+
return device_map
|
130 |
+
|
131 |
+
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
132 |
+
if target_dtype != torch.int8:
|
133 |
+
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
|
134 |
+
return torch.int8
|
135 |
+
|
136 |
+
def check_quantized_param(
|
137 |
+
self,
|
138 |
+
model: "PreTrainedModel",
|
139 |
+
param_value: "torch.Tensor",
|
140 |
+
param_name: str,
|
141 |
+
state_dict: Dict[str, Any],
|
142 |
+
**kwargs,
|
143 |
+
):
|
144 |
+
import bitsandbytes as bnb
|
145 |
+
|
146 |
+
module, tensor_name = get_module_from_name(model, param_name)
|
147 |
+
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params):
|
148 |
+
if self.pre_quantized:
|
149 |
+
if param_name.replace("weight", "SCB") not in state_dict.keys():
|
150 |
+
raise ValueError("Missing quantization component `SCB`")
|
151 |
+
if param_value.dtype != torch.int8:
|
152 |
+
raise ValueError(
|
153 |
+
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
|
154 |
+
)
|
155 |
+
return True
|
156 |
+
return False
|
157 |
+
|
158 |
+
def create_quantized_param(
|
159 |
+
self,
|
160 |
+
model: "PreTrainedModel",
|
161 |
+
param_value: "torch.Tensor",
|
162 |
+
param_name: str,
|
163 |
+
target_device: "torch.device",
|
164 |
+
state_dict: Dict[str, Any],
|
165 |
+
unexpected_keys: Optional[List[str]] = None,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
|
169 |
+
needs aux items from state dicts, if found - removes them from unexpected_keys
|
170 |
+
"""
|
171 |
+
import bitsandbytes as bnb
|
172 |
+
|
173 |
+
fp16_statistics_key = param_name.replace("weight", "SCB")
|
174 |
+
fp16_weights_format_key = param_name.replace("weight", "weight_format")
|
175 |
+
|
176 |
+
fp16_statistics = state_dict.get(fp16_statistics_key, None)
|
177 |
+
fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
|
178 |
+
|
179 |
+
module, tensor_name = get_module_from_name(model, param_name)
|
180 |
+
if tensor_name not in module._parameters:
|
181 |
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
182 |
+
|
183 |
+
old_value = getattr(module, tensor_name)
|
184 |
+
|
185 |
+
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
|
186 |
+
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
|
187 |
+
if (
|
188 |
+
old_value.device == torch.device("meta")
|
189 |
+
and target_device not in ["meta", torch.device("meta")]
|
190 |
+
and param_value is None
|
191 |
+
):
|
192 |
+
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
|
193 |
+
|
194 |
+
new_value = param_value.to("cpu")
|
195 |
+
if self.pre_quantized and not self.is_serializable:
|
196 |
+
raise ValueError(
|
197 |
+
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
|
198 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
199 |
+
)
|
200 |
+
|
201 |
+
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
|
202 |
+
# Since weights are saved in the correct "orientation", we skip transposing when loading.
|
203 |
+
if issubclass(module.source_cls, Conv1D):
|
204 |
+
if fp16_statistics is None:
|
205 |
+
new_value = new_value.T
|
206 |
+
|
207 |
+
kwargs = old_value.__dict__
|
208 |
+
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
|
209 |
+
|
210 |
+
module._parameters[tensor_name] = new_value
|
211 |
+
if fp16_statistics is not None:
|
212 |
+
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
|
213 |
+
if unexpected_keys is not None:
|
214 |
+
unexpected_keys.remove(fp16_statistics_key)
|
215 |
+
|
216 |
+
# We just need to pop the `weight_format` keys from the state dict to remove unneeded
|
217 |
+
# messages. The correct format is correctly retrieved during the first forward pass.
|
218 |
+
if fp16_weights_format is not None and unexpected_keys is not None:
|
219 |
+
unexpected_keys.remove(fp16_weights_format_key)
|
220 |
+
|
221 |
+
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
222 |
+
model.is_loaded_in_8bit = True
|
223 |
+
model.is_8bit_serializable = self.is_serializable
|
224 |
+
return model
|
225 |
+
|
226 |
+
def _process_model_before_weight_loading(
|
227 |
+
self,
|
228 |
+
model: "PreTrainedModel",
|
229 |
+
device_map,
|
230 |
+
keep_in_fp32_modules: List[str] = [],
|
231 |
+
**kwargs,
|
232 |
+
):
|
233 |
+
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
|
234 |
+
|
235 |
+
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
236 |
+
|
237 |
+
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
238 |
+
if self.quantization_config.llm_int8_skip_modules is None:
|
239 |
+
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
240 |
+
else:
|
241 |
+
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
242 |
+
|
243 |
+
if not isinstance(self.modules_to_not_convert, list):
|
244 |
+
self.modules_to_not_convert = [self.modules_to_not_convert]
|
245 |
+
|
246 |
+
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
247 |
+
|
248 |
+
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
|
249 |
+
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
250 |
+
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
251 |
+
|
252 |
+
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
|
253 |
+
raise ValueError(
|
254 |
+
"If you want to offload some keys to `cpu` or `disk`, you need to set "
|
255 |
+
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
|
256 |
+
" converted to 8-bit but kept in 32-bit."
|
257 |
+
)
|
258 |
+
self.modules_to_not_convert.extend(keys_on_cpu)
|
259 |
+
|
260 |
+
model = replace_with_bnb_linear(
|
261 |
+
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
|
262 |
+
)
|
263 |
+
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
|
264 |
+
|
265 |
+
model.config.quantization_config = self.quantization_config
|
266 |
+
|
267 |
+
@property
|
268 |
+
def is_serializable(self):
|
269 |
+
_bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
|
270 |
+
"0.37.2"
|
271 |
+
)
|
272 |
+
|
273 |
+
if not _bnb_supports_8bit_serialization:
|
274 |
+
logger.warning(
|
275 |
+
"You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
|
276 |
+
"If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or"
|
277 |
+
" unexpected behaviours."
|
278 |
+
)
|
279 |
+
return False
|
280 |
+
|
281 |
+
return True
|
282 |
+
|
283 |
+
@property
|
284 |
+
def is_trainable(self) -> bool:
|
285 |
+
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0")
|