applied-ai-018 commited on
Commit
10452d3
·
verified ·
1 Parent(s): baa5d99

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/7.attention.query_key_value.weight/exp_avg.pt +3 -0
  2. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc +0 -0
  3. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/autotune_process.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/bounds.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/codecache.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/comms.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/compile_fx.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/config.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/cudagraph_trees.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/exc.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/graph.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/hooks.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/index_propagation.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/inductor_prims.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/lowering.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/wrapper_benchmark.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/distributions/beta.py +107 -0
  20. venv/lib/python3.10/site-packages/torch/distributions/categorical.py +155 -0
  21. venv/lib/python3.10/site-packages/torch/distributions/cauchy.py +90 -0
  22. venv/lib/python3.10/site-packages/torch/distributions/chi2.py +33 -0
  23. venv/lib/python3.10/site-packages/torch/distributions/independent.py +125 -0
  24. venv/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py +142 -0
  25. venv/lib/python3.10/site-packages/torch/distributions/log_normal.py +62 -0
  26. venv/lib/python3.10/site-packages/torch/distributions/multinomial.py +135 -0
  27. venv/lib/python3.10/site-packages/torch/distributions/pareto.py +60 -0
  28. venv/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py +149 -0
  29. venv/lib/python3.10/site-packages/torch/distributions/transforms.py +1245 -0
  30. venv/lib/python3.10/site-packages/torch/distributions/uniform.py +99 -0
  31. venv/lib/python3.10/site-packages/torch/distributions/utils.py +177 -0
  32. venv/lib/python3.10/site-packages/torch/distributions/von_mises.py +209 -0
  33. venv/lib/python3.10/site-packages/torch/distributions/weibull.py +83 -0
  34. venv/lib/python3.10/site-packages/torch/mps/__init__.py +130 -0
  35. venv/lib/python3.10/site-packages/torch/mps/__pycache__/__init__.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/torch/mps/__pycache__/event.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/torch/mps/__pycache__/profiler.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/torch/mps/event.py +45 -0
  39. venv/lib/python3.10/site-packages/torch/mps/profiler.py +59 -0
  40. venv/lib/python3.10/site-packages/torch/package/__init__.py +12 -0
  41. venv/lib/python3.10/site-packages/torch/package/__pycache__/__init__.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/package/__pycache__/_digraph.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/package/__pycache__/_directory_reader.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/package/__pycache__/_importlib.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/package/__pycache__/_mangling.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/package/__pycache__/_mock.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/torch/package/__pycache__/_package_pickler.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/torch/package/__pycache__/_package_unpickler.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/torch/package/__pycache__/_stdlib.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/torch/package/__pycache__/file_structure_representation.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/7.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14abea4c43e48d1f4affe5a9d8d7b0feee8ca83a5ed9f53867d7ae700ebd5487
3
+ size 50332828
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.75 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/autotune_process.cpython-310.pyc ADDED
Binary file (18 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/bounds.cpython-310.pyc ADDED
Binary file (4.56 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/codecache.cpython-310.pyc ADDED
Binary file (76.9 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/comms.cpython-310.pyc ADDED
Binary file (9.99 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/compile_fx.cpython-310.pyc ADDED
Binary file (34.4 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/config.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/cudagraph_trees.cpython-310.pyc ADDED
Binary file (60.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/exc.cpython-310.pyc ADDED
Binary file (4.31 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc ADDED
Binary file (7.11 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/graph.cpython-310.pyc ADDED
Binary file (34.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/hooks.cpython-310.pyc ADDED
Binary file (792 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/index_propagation.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/inductor_prims.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/lowering.cpython-310.pyc ADDED
Binary file (145 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
venv/lib/python3.10/site-packages/torch/_inductor/__pycache__/wrapper_benchmark.cpython-310.pyc ADDED
Binary file (8.91 kB). View file
 
venv/lib/python3.10/site-packages/torch/distributions/beta.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numbers import Number, Real
2
+
3
+ import torch
4
+ from torch.distributions import constraints
5
+ from torch.distributions.dirichlet import Dirichlet
6
+ from torch.distributions.exp_family import ExponentialFamily
7
+ from torch.distributions.utils import broadcast_all
8
+
9
+ __all__ = ["Beta"]
10
+
11
+
12
+ class Beta(ExponentialFamily):
13
+ r"""
14
+ Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`.
15
+
16
+ Example::
17
+
18
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
19
+ >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5]))
20
+ >>> m.sample() # Beta distributed with concentration concentration1 and concentration0
21
+ tensor([ 0.1046])
22
+
23
+ Args:
24
+ concentration1 (float or Tensor): 1st concentration parameter of the distribution
25
+ (often referred to as alpha)
26
+ concentration0 (float or Tensor): 2nd concentration parameter of the distribution
27
+ (often referred to as beta)
28
+ """
29
+ arg_constraints = {
30
+ "concentration1": constraints.positive,
31
+ "concentration0": constraints.positive,
32
+ }
33
+ support = constraints.unit_interval
34
+ has_rsample = True
35
+
36
+ def __init__(self, concentration1, concentration0, validate_args=None):
37
+ if isinstance(concentration1, Real) and isinstance(concentration0, Real):
38
+ concentration1_concentration0 = torch.tensor(
39
+ [float(concentration1), float(concentration0)]
40
+ )
41
+ else:
42
+ concentration1, concentration0 = broadcast_all(
43
+ concentration1, concentration0
44
+ )
45
+ concentration1_concentration0 = torch.stack(
46
+ [concentration1, concentration0], -1
47
+ )
48
+ self._dirichlet = Dirichlet(
49
+ concentration1_concentration0, validate_args=validate_args
50
+ )
51
+ super().__init__(self._dirichlet._batch_shape, validate_args=validate_args)
52
+
53
+ def expand(self, batch_shape, _instance=None):
54
+ new = self._get_checked_instance(Beta, _instance)
55
+ batch_shape = torch.Size(batch_shape)
56
+ new._dirichlet = self._dirichlet.expand(batch_shape)
57
+ super(Beta, new).__init__(batch_shape, validate_args=False)
58
+ new._validate_args = self._validate_args
59
+ return new
60
+
61
+ @property
62
+ def mean(self):
63
+ return self.concentration1 / (self.concentration1 + self.concentration0)
64
+
65
+ @property
66
+ def mode(self):
67
+ return self._dirichlet.mode[..., 0]
68
+
69
+ @property
70
+ def variance(self):
71
+ total = self.concentration1 + self.concentration0
72
+ return self.concentration1 * self.concentration0 / (total.pow(2) * (total + 1))
73
+
74
+ def rsample(self, sample_shape=()):
75
+ return self._dirichlet.rsample(sample_shape).select(-1, 0)
76
+
77
+ def log_prob(self, value):
78
+ if self._validate_args:
79
+ self._validate_sample(value)
80
+ heads_tails = torch.stack([value, 1.0 - value], -1)
81
+ return self._dirichlet.log_prob(heads_tails)
82
+
83
+ def entropy(self):
84
+ return self._dirichlet.entropy()
85
+
86
+ @property
87
+ def concentration1(self):
88
+ result = self._dirichlet.concentration[..., 0]
89
+ if isinstance(result, Number):
90
+ return torch.tensor([result])
91
+ else:
92
+ return result
93
+
94
+ @property
95
+ def concentration0(self):
96
+ result = self._dirichlet.concentration[..., 1]
97
+ if isinstance(result, Number):
98
+ return torch.tensor([result])
99
+ else:
100
+ return result
101
+
102
+ @property
103
+ def _natural_params(self):
104
+ return (self.concentration1, self.concentration0)
105
+
106
+ def _log_normalizer(self, x, y):
107
+ return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)
venv/lib/python3.10/site-packages/torch/distributions/categorical.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nan
3
+ from torch.distributions import constraints
4
+ from torch.distributions.distribution import Distribution
5
+ from torch.distributions.utils import lazy_property, logits_to_probs, probs_to_logits
6
+
7
+ __all__ = ["Categorical"]
8
+
9
+
10
+ class Categorical(Distribution):
11
+ r"""
12
+ Creates a categorical distribution parameterized by either :attr:`probs` or
13
+ :attr:`logits` (but not both).
14
+
15
+ .. note::
16
+ It is equivalent to the distribution that :func:`torch.multinomial`
17
+ samples from.
18
+
19
+ Samples are integers from :math:`\{0, \ldots, K-1\}` where `K` is ``probs.size(-1)``.
20
+
21
+ If `probs` is 1-dimensional with length-`K`, each element is the relative probability
22
+ of sampling the class at that index.
23
+
24
+ If `probs` is N-dimensional, the first N-1 dimensions are treated as a batch of
25
+ relative probability vectors.
26
+
27
+ .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
28
+ and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
29
+ will return this normalized value.
30
+ The `logits` argument will be interpreted as unnormalized log probabilities
31
+ and can therefore be any real number. It will likewise be normalized so that
32
+ the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
33
+ will return this normalized value.
34
+
35
+ See also: :func:`torch.multinomial`
36
+
37
+ Example::
38
+
39
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
40
+ >>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
41
+ >>> m.sample() # equal probability of 0, 1, 2, 3
42
+ tensor(3)
43
+
44
+ Args:
45
+ probs (Tensor): event probabilities
46
+ logits (Tensor): event log probabilities (unnormalized)
47
+ """
48
+ arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
49
+ has_enumerate_support = True
50
+
51
+ def __init__(self, probs=None, logits=None, validate_args=None):
52
+ if (probs is None) == (logits is None):
53
+ raise ValueError(
54
+ "Either `probs` or `logits` must be specified, but not both."
55
+ )
56
+ if probs is not None:
57
+ if probs.dim() < 1:
58
+ raise ValueError("`probs` parameter must be at least one-dimensional.")
59
+ self.probs = probs / probs.sum(-1, keepdim=True)
60
+ else:
61
+ if logits.dim() < 1:
62
+ raise ValueError("`logits` parameter must be at least one-dimensional.")
63
+ # Normalize
64
+ self.logits = logits - logits.logsumexp(dim=-1, keepdim=True)
65
+ self._param = self.probs if probs is not None else self.logits
66
+ self._num_events = self._param.size()[-1]
67
+ batch_shape = (
68
+ self._param.size()[:-1] if self._param.ndimension() > 1 else torch.Size()
69
+ )
70
+ super().__init__(batch_shape, validate_args=validate_args)
71
+
72
+ def expand(self, batch_shape, _instance=None):
73
+ new = self._get_checked_instance(Categorical, _instance)
74
+ batch_shape = torch.Size(batch_shape)
75
+ param_shape = batch_shape + torch.Size((self._num_events,))
76
+ if "probs" in self.__dict__:
77
+ new.probs = self.probs.expand(param_shape)
78
+ new._param = new.probs
79
+ if "logits" in self.__dict__:
80
+ new.logits = self.logits.expand(param_shape)
81
+ new._param = new.logits
82
+ new._num_events = self._num_events
83
+ super(Categorical, new).__init__(batch_shape, validate_args=False)
84
+ new._validate_args = self._validate_args
85
+ return new
86
+
87
+ def _new(self, *args, **kwargs):
88
+ return self._param.new(*args, **kwargs)
89
+
90
+ @constraints.dependent_property(is_discrete=True, event_dim=0)
91
+ def support(self):
92
+ return constraints.integer_interval(0, self._num_events - 1)
93
+
94
+ @lazy_property
95
+ def logits(self):
96
+ return probs_to_logits(self.probs)
97
+
98
+ @lazy_property
99
+ def probs(self):
100
+ return logits_to_probs(self.logits)
101
+
102
+ @property
103
+ def param_shape(self):
104
+ return self._param.size()
105
+
106
+ @property
107
+ def mean(self):
108
+ return torch.full(
109
+ self._extended_shape(),
110
+ nan,
111
+ dtype=self.probs.dtype,
112
+ device=self.probs.device,
113
+ )
114
+
115
+ @property
116
+ def mode(self):
117
+ return self.probs.argmax(axis=-1)
118
+
119
+ @property
120
+ def variance(self):
121
+ return torch.full(
122
+ self._extended_shape(),
123
+ nan,
124
+ dtype=self.probs.dtype,
125
+ device=self.probs.device,
126
+ )
127
+
128
+ def sample(self, sample_shape=torch.Size()):
129
+ if not isinstance(sample_shape, torch.Size):
130
+ sample_shape = torch.Size(sample_shape)
131
+ probs_2d = self.probs.reshape(-1, self._num_events)
132
+ samples_2d = torch.multinomial(probs_2d, sample_shape.numel(), True).T
133
+ return samples_2d.reshape(self._extended_shape(sample_shape))
134
+
135
+ def log_prob(self, value):
136
+ if self._validate_args:
137
+ self._validate_sample(value)
138
+ value = value.long().unsqueeze(-1)
139
+ value, log_pmf = torch.broadcast_tensors(value, self.logits)
140
+ value = value[..., :1]
141
+ return log_pmf.gather(-1, value).squeeze(-1)
142
+
143
+ def entropy(self):
144
+ min_real = torch.finfo(self.logits.dtype).min
145
+ logits = torch.clamp(self.logits, min=min_real)
146
+ p_log_p = logits * self.probs
147
+ return -p_log_p.sum(-1)
148
+
149
+ def enumerate_support(self, expand=True):
150
+ num_events = self._num_events
151
+ values = torch.arange(num_events, dtype=torch.long, device=self._param.device)
152
+ values = values.view((-1,) + (1,) * len(self._batch_shape))
153
+ if expand:
154
+ values = values.expand((-1,) + self._batch_shape)
155
+ return values
venv/lib/python3.10/site-packages/torch/distributions/cauchy.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from numbers import Number
3
+
4
+ import torch
5
+ from torch import inf, nan
6
+ from torch.distributions import constraints
7
+ from torch.distributions.distribution import Distribution
8
+ from torch.distributions.utils import broadcast_all
9
+
10
+ __all__ = ["Cauchy"]
11
+
12
+
13
+ class Cauchy(Distribution):
14
+ r"""
15
+ Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
16
+ independent normally distributed random variables with means `0` follows a
17
+ Cauchy distribution.
18
+
19
+ Example::
20
+
21
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
22
+ >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0]))
23
+ >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
24
+ tensor([ 2.3214])
25
+
26
+ Args:
27
+ loc (float or Tensor): mode or median of the distribution.
28
+ scale (float or Tensor): half width at half maximum.
29
+ """
30
+ arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
31
+ support = constraints.real
32
+ has_rsample = True
33
+
34
+ def __init__(self, loc, scale, validate_args=None):
35
+ self.loc, self.scale = broadcast_all(loc, scale)
36
+ if isinstance(loc, Number) and isinstance(scale, Number):
37
+ batch_shape = torch.Size()
38
+ else:
39
+ batch_shape = self.loc.size()
40
+ super().__init__(batch_shape, validate_args=validate_args)
41
+
42
+ def expand(self, batch_shape, _instance=None):
43
+ new = self._get_checked_instance(Cauchy, _instance)
44
+ batch_shape = torch.Size(batch_shape)
45
+ new.loc = self.loc.expand(batch_shape)
46
+ new.scale = self.scale.expand(batch_shape)
47
+ super(Cauchy, new).__init__(batch_shape, validate_args=False)
48
+ new._validate_args = self._validate_args
49
+ return new
50
+
51
+ @property
52
+ def mean(self):
53
+ return torch.full(
54
+ self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device
55
+ )
56
+
57
+ @property
58
+ def mode(self):
59
+ return self.loc
60
+
61
+ @property
62
+ def variance(self):
63
+ return torch.full(
64
+ self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device
65
+ )
66
+
67
+ def rsample(self, sample_shape=torch.Size()):
68
+ shape = self._extended_shape(sample_shape)
69
+ eps = self.loc.new(shape).cauchy_()
70
+ return self.loc + eps * self.scale
71
+
72
+ def log_prob(self, value):
73
+ if self._validate_args:
74
+ self._validate_sample(value)
75
+ return (
76
+ -math.log(math.pi)
77
+ - self.scale.log()
78
+ - (((value - self.loc) / self.scale) ** 2).log1p()
79
+ )
80
+
81
+ def cdf(self, value):
82
+ if self._validate_args:
83
+ self._validate_sample(value)
84
+ return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5
85
+
86
+ def icdf(self, value):
87
+ return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc
88
+
89
+ def entropy(self):
90
+ return math.log(4 * math.pi) + self.scale.log()
venv/lib/python3.10/site-packages/torch/distributions/chi2.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.distributions import constraints
2
+ from torch.distributions.gamma import Gamma
3
+
4
+ __all__ = ["Chi2"]
5
+
6
+
7
+ class Chi2(Gamma):
8
+ r"""
9
+ Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`.
10
+ This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)``
11
+
12
+ Example::
13
+
14
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
15
+ >>> m = Chi2(torch.tensor([1.0]))
16
+ >>> m.sample() # Chi2 distributed with shape df=1
17
+ tensor([ 0.1046])
18
+
19
+ Args:
20
+ df (float or Tensor): shape parameter of the distribution
21
+ """
22
+ arg_constraints = {"df": constraints.positive}
23
+
24
+ def __init__(self, df, validate_args=None):
25
+ super().__init__(0.5 * df, 0.5, validate_args=validate_args)
26
+
27
+ def expand(self, batch_shape, _instance=None):
28
+ new = self._get_checked_instance(Chi2, _instance)
29
+ return super().expand(batch_shape, new)
30
+
31
+ @property
32
+ def df(self):
33
+ return self.concentration * 2
venv/lib/python3.10/site-packages/torch/distributions/independent.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ import torch
4
+ from torch.distributions import constraints
5
+ from torch.distributions.distribution import Distribution
6
+ from torch.distributions.utils import _sum_rightmost
7
+
8
+ __all__ = ["Independent"]
9
+
10
+
11
+ class Independent(Distribution):
12
+ r"""
13
+ Reinterprets some of the batch dims of a distribution as event dims.
14
+
15
+ This is mainly useful for changing the shape of the result of
16
+ :meth:`log_prob`. For example to create a diagonal Normal distribution with
17
+ the same shape as a Multivariate Normal distribution (so they are
18
+ interchangeable), you can::
19
+
20
+ >>> from torch.distributions.multivariate_normal import MultivariateNormal
21
+ >>> from torch.distributions.normal import Normal
22
+ >>> loc = torch.zeros(3)
23
+ >>> scale = torch.ones(3)
24
+ >>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale))
25
+ >>> [mvn.batch_shape, mvn.event_shape]
26
+ [torch.Size([]), torch.Size([3])]
27
+ >>> normal = Normal(loc, scale)
28
+ >>> [normal.batch_shape, normal.event_shape]
29
+ [torch.Size([3]), torch.Size([])]
30
+ >>> diagn = Independent(normal, 1)
31
+ >>> [diagn.batch_shape, diagn.event_shape]
32
+ [torch.Size([]), torch.Size([3])]
33
+
34
+ Args:
35
+ base_distribution (torch.distributions.distribution.Distribution): a
36
+ base distribution
37
+ reinterpreted_batch_ndims (int): the number of batch dims to
38
+ reinterpret as event dims
39
+ """
40
+ arg_constraints: Dict[str, constraints.Constraint] = {}
41
+
42
+ def __init__(
43
+ self, base_distribution, reinterpreted_batch_ndims, validate_args=None
44
+ ):
45
+ if reinterpreted_batch_ndims > len(base_distribution.batch_shape):
46
+ raise ValueError(
47
+ "Expected reinterpreted_batch_ndims <= len(base_distribution.batch_shape), "
48
+ f"actual {reinterpreted_batch_ndims} vs {len(base_distribution.batch_shape)}"
49
+ )
50
+ shape = base_distribution.batch_shape + base_distribution.event_shape
51
+ event_dim = reinterpreted_batch_ndims + len(base_distribution.event_shape)
52
+ batch_shape = shape[: len(shape) - event_dim]
53
+ event_shape = shape[len(shape) - event_dim :]
54
+ self.base_dist = base_distribution
55
+ self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
56
+ super().__init__(batch_shape, event_shape, validate_args=validate_args)
57
+
58
+ def expand(self, batch_shape, _instance=None):
59
+ new = self._get_checked_instance(Independent, _instance)
60
+ batch_shape = torch.Size(batch_shape)
61
+ new.base_dist = self.base_dist.expand(
62
+ batch_shape + self.event_shape[: self.reinterpreted_batch_ndims]
63
+ )
64
+ new.reinterpreted_batch_ndims = self.reinterpreted_batch_ndims
65
+ super(Independent, new).__init__(
66
+ batch_shape, self.event_shape, validate_args=False
67
+ )
68
+ new._validate_args = self._validate_args
69
+ return new
70
+
71
+ @property
72
+ def has_rsample(self):
73
+ return self.base_dist.has_rsample
74
+
75
+ @property
76
+ def has_enumerate_support(self):
77
+ if self.reinterpreted_batch_ndims > 0:
78
+ return False
79
+ return self.base_dist.has_enumerate_support
80
+
81
+ @constraints.dependent_property
82
+ def support(self):
83
+ result = self.base_dist.support
84
+ if self.reinterpreted_batch_ndims:
85
+ result = constraints.independent(result, self.reinterpreted_batch_ndims)
86
+ return result
87
+
88
+ @property
89
+ def mean(self):
90
+ return self.base_dist.mean
91
+
92
+ @property
93
+ def mode(self):
94
+ return self.base_dist.mode
95
+
96
+ @property
97
+ def variance(self):
98
+ return self.base_dist.variance
99
+
100
+ def sample(self, sample_shape=torch.Size()):
101
+ return self.base_dist.sample(sample_shape)
102
+
103
+ def rsample(self, sample_shape=torch.Size()):
104
+ return self.base_dist.rsample(sample_shape)
105
+
106
+ def log_prob(self, value):
107
+ log_prob = self.base_dist.log_prob(value)
108
+ return _sum_rightmost(log_prob, self.reinterpreted_batch_ndims)
109
+
110
+ def entropy(self):
111
+ entropy = self.base_dist.entropy()
112
+ return _sum_rightmost(entropy, self.reinterpreted_batch_ndims)
113
+
114
+ def enumerate_support(self, expand=True):
115
+ if self.reinterpreted_batch_ndims > 0:
116
+ raise NotImplementedError(
117
+ "Enumeration over cartesian product is not implemented"
118
+ )
119
+ return self.base_dist.enumerate_support(expand=expand)
120
+
121
+ def __repr__(self):
122
+ return (
123
+ self.__class__.__name__
124
+ + f"({self.base_dist}, {self.reinterpreted_batch_ndims})"
125
+ )
venv/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This closely follows the implementation in NumPyro (https://github.com/pyro-ppl/numpyro).
3
+
4
+ Original copyright notice:
5
+
6
+ # Copyright: Contributors to the Pyro project.
7
+ # SPDX-License-Identifier: Apache-2.0
8
+ """
9
+
10
+ import math
11
+
12
+ import torch
13
+ from torch.distributions import Beta, constraints
14
+ from torch.distributions.distribution import Distribution
15
+ from torch.distributions.utils import broadcast_all
16
+
17
+ __all__ = ["LKJCholesky"]
18
+
19
+
20
+ class LKJCholesky(Distribution):
21
+ r"""
22
+ LKJ distribution for lower Cholesky factor of correlation matrices.
23
+ The distribution is controlled by ``concentration`` parameter :math:`\eta`
24
+ to make the probability of the correlation matrix :math:`M` generated from
25
+ a Cholesky factor proportional to :math:`\det(M)^{\eta - 1}`. Because of that,
26
+ when ``concentration == 1``, we have a uniform distribution over Cholesky
27
+ factors of correlation matrices::
28
+
29
+ L ~ LKJCholesky(dim, concentration)
30
+ X = L @ L' ~ LKJCorr(dim, concentration)
31
+
32
+ Note that this distribution samples the
33
+ Cholesky factor of correlation matrices and not the correlation matrices
34
+ themselves and thereby differs slightly from the derivations in [1] for
35
+ the `LKJCorr` distribution. For sampling, this uses the Onion method from
36
+ [1] Section 3.
37
+
38
+ Example::
39
+
40
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
41
+ >>> l = LKJCholesky(3, 0.5)
42
+ >>> l.sample() # l @ l.T is a sample of a correlation 3x3 matrix
43
+ tensor([[ 1.0000, 0.0000, 0.0000],
44
+ [ 0.3516, 0.9361, 0.0000],
45
+ [-0.1899, 0.4748, 0.8593]])
46
+
47
+ Args:
48
+ dimension (dim): dimension of the matrices
49
+ concentration (float or Tensor): concentration/shape parameter of the
50
+ distribution (often referred to as eta)
51
+
52
+ **References**
53
+
54
+ [1] `Generating random correlation matrices based on vines and extended onion method` (2009),
55
+ Daniel Lewandowski, Dorota Kurowicka, Harry Joe.
56
+ Journal of Multivariate Analysis. 100. 10.1016/j.jmva.2009.04.008
57
+ """
58
+ arg_constraints = {"concentration": constraints.positive}
59
+ support = constraints.corr_cholesky
60
+
61
+ def __init__(self, dim, concentration=1.0, validate_args=None):
62
+ if dim < 2:
63
+ raise ValueError(
64
+ f"Expected dim to be an integer greater than or equal to 2. Found dim={dim}."
65
+ )
66
+ self.dim = dim
67
+ (self.concentration,) = broadcast_all(concentration)
68
+ batch_shape = self.concentration.size()
69
+ event_shape = torch.Size((dim, dim))
70
+ # This is used to draw vectorized samples from the beta distribution in Sec. 3.2 of [1].
71
+ marginal_conc = self.concentration + 0.5 * (self.dim - 2)
72
+ offset = torch.arange(
73
+ self.dim - 1,
74
+ dtype=self.concentration.dtype,
75
+ device=self.concentration.device,
76
+ )
77
+ offset = torch.cat([offset.new_zeros((1,)), offset])
78
+ beta_conc1 = offset + 0.5
79
+ beta_conc0 = marginal_conc.unsqueeze(-1) - 0.5 * offset
80
+ self._beta = Beta(beta_conc1, beta_conc0)
81
+ super().__init__(batch_shape, event_shape, validate_args)
82
+
83
+ def expand(self, batch_shape, _instance=None):
84
+ new = self._get_checked_instance(LKJCholesky, _instance)
85
+ batch_shape = torch.Size(batch_shape)
86
+ new.dim = self.dim
87
+ new.concentration = self.concentration.expand(batch_shape)
88
+ new._beta = self._beta.expand(batch_shape + (self.dim,))
89
+ super(LKJCholesky, new).__init__(
90
+ batch_shape, self.event_shape, validate_args=False
91
+ )
92
+ new._validate_args = self._validate_args
93
+ return new
94
+
95
+ def sample(self, sample_shape=torch.Size()):
96
+ # This uses the Onion method, but there are a few differences from [1] Sec. 3.2:
97
+ # - This vectorizes the for loop and also works for heterogeneous eta.
98
+ # - Same algorithm generalizes to n=1.
99
+ # - The procedure is simplified since we are sampling the cholesky factor of
100
+ # the correlation matrix instead of the correlation matrix itself. As such,
101
+ # we only need to generate `w`.
102
+ y = self._beta.sample(sample_shape).unsqueeze(-1)
103
+ u_normal = torch.randn(
104
+ self._extended_shape(sample_shape), dtype=y.dtype, device=y.device
105
+ ).tril(-1)
106
+ u_hypersphere = u_normal / u_normal.norm(dim=-1, keepdim=True)
107
+ # Replace NaNs in first row
108
+ u_hypersphere[..., 0, :].fill_(0.0)
109
+ w = torch.sqrt(y) * u_hypersphere
110
+ # Fill diagonal elements; clamp for numerical stability
111
+ eps = torch.finfo(w.dtype).tiny
112
+ diag_elems = torch.clamp(1 - torch.sum(w**2, dim=-1), min=eps).sqrt()
113
+ w += torch.diag_embed(diag_elems)
114
+ return w
115
+
116
+ def log_prob(self, value):
117
+ # See: https://mc-stan.org/docs/2_25/functions-reference/cholesky-lkj-correlation-distribution.html
118
+ # The probability of a correlation matrix is proportional to
119
+ # determinant ** (concentration - 1) = prod(L_ii ^ 2(concentration - 1))
120
+ # Additionally, the Jacobian of the transformation from Cholesky factor to
121
+ # correlation matrix is:
122
+ # prod(L_ii ^ (D - i))
123
+ # So the probability of a Cholesky factor is propotional to
124
+ # prod(L_ii ^ (2 * concentration - 2 + D - i)) = prod(L_ii ^ order_i)
125
+ # with order_i = 2 * concentration - 2 + D - i
126
+ if self._validate_args:
127
+ self._validate_sample(value)
128
+ diag_elems = value.diagonal(dim1=-1, dim2=-2)[..., 1:]
129
+ order = torch.arange(2, self.dim + 1, device=self.concentration.device)
130
+ order = 2 * (self.concentration - 1).unsqueeze(-1) + self.dim - order
131
+ unnormalized_log_pdf = torch.sum(order * diag_elems.log(), dim=-1)
132
+ # Compute normalization constant (page 1999 of [1])
133
+ dm1 = self.dim - 1
134
+ alpha = self.concentration + 0.5 * dm1
135
+ denominator = torch.lgamma(alpha) * dm1
136
+ numerator = torch.mvlgamma(alpha - 0.5, dm1)
137
+ # pi_constant in [1] is D * (D - 1) / 4 * log(pi)
138
+ # pi_constant in multigammaln is (D - 1) * (D - 2) / 4 * log(pi)
139
+ # hence, we need to add a pi_constant = (D - 1) * log(pi) / 2
140
+ pi_constant = 0.5 * dm1 * math.log(math.pi)
141
+ normalize_term = pi_constant + numerator - denominator
142
+ return unnormalized_log_pdf - normalize_term
venv/lib/python3.10/site-packages/torch/distributions/log_normal.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.distributions import constraints
2
+ from torch.distributions.normal import Normal
3
+ from torch.distributions.transformed_distribution import TransformedDistribution
4
+ from torch.distributions.transforms import ExpTransform
5
+
6
+ __all__ = ["LogNormal"]
7
+
8
+
9
+ class LogNormal(TransformedDistribution):
10
+ r"""
11
+ Creates a log-normal distribution parameterized by
12
+ :attr:`loc` and :attr:`scale` where::
13
+
14
+ X ~ Normal(loc, scale)
15
+ Y = exp(X) ~ LogNormal(loc, scale)
16
+
17
+ Example::
18
+
19
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
20
+ >>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0]))
21
+ >>> m.sample() # log-normal distributed with mean=0 and stddev=1
22
+ tensor([ 0.1046])
23
+
24
+ Args:
25
+ loc (float or Tensor): mean of log of distribution
26
+ scale (float or Tensor): standard deviation of log of the distribution
27
+ """
28
+ arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
29
+ support = constraints.positive
30
+ has_rsample = True
31
+
32
+ def __init__(self, loc, scale, validate_args=None):
33
+ base_dist = Normal(loc, scale, validate_args=validate_args)
34
+ super().__init__(base_dist, ExpTransform(), validate_args=validate_args)
35
+
36
+ def expand(self, batch_shape, _instance=None):
37
+ new = self._get_checked_instance(LogNormal, _instance)
38
+ return super().expand(batch_shape, _instance=new)
39
+
40
+ @property
41
+ def loc(self):
42
+ return self.base_dist.loc
43
+
44
+ @property
45
+ def scale(self):
46
+ return self.base_dist.scale
47
+
48
+ @property
49
+ def mean(self):
50
+ return (self.loc + self.scale.pow(2) / 2).exp()
51
+
52
+ @property
53
+ def mode(self):
54
+ return (self.loc - self.scale.square()).exp()
55
+
56
+ @property
57
+ def variance(self):
58
+ scale_sq = self.scale.pow(2)
59
+ return scale_sq.expm1() * (2 * self.loc + scale_sq).exp()
60
+
61
+ def entropy(self):
62
+ return self.base_dist.entropy() + self.loc
venv/lib/python3.10/site-packages/torch/distributions/multinomial.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import inf
3
+ from torch.distributions import Categorical, constraints
4
+ from torch.distributions.binomial import Binomial
5
+ from torch.distributions.distribution import Distribution
6
+ from torch.distributions.utils import broadcast_all
7
+
8
+ __all__ = ["Multinomial"]
9
+
10
+
11
+ class Multinomial(Distribution):
12
+ r"""
13
+ Creates a Multinomial distribution parameterized by :attr:`total_count` and
14
+ either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of
15
+ :attr:`probs` indexes over categories. All other dimensions index over batches.
16
+
17
+ Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is
18
+ called (see example below)
19
+
20
+ .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
21
+ and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
22
+ will return this normalized value.
23
+ The `logits` argument will be interpreted as unnormalized log probabilities
24
+ and can therefore be any real number. It will likewise be normalized so that
25
+ the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
26
+ will return this normalized value.
27
+
28
+ - :meth:`sample` requires a single shared `total_count` for all
29
+ parameters and samples.
30
+ - :meth:`log_prob` allows different `total_count` for each parameter and
31
+ sample.
32
+
33
+ Example::
34
+
35
+ >>> # xdoctest: +SKIP("FIXME: found invalid values")
36
+ >>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.]))
37
+ >>> x = m.sample() # equal probability of 0, 1, 2, 3
38
+ tensor([ 21., 24., 30., 25.])
39
+
40
+ >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x)
41
+ tensor([-4.1338])
42
+
43
+ Args:
44
+ total_count (int): number of trials
45
+ probs (Tensor): event probabilities
46
+ logits (Tensor): event log probabilities (unnormalized)
47
+ """
48
+ arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
49
+ total_count: int
50
+
51
+ @property
52
+ def mean(self):
53
+ return self.probs * self.total_count
54
+
55
+ @property
56
+ def variance(self):
57
+ return self.total_count * self.probs * (1 - self.probs)
58
+
59
+ def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
60
+ if not isinstance(total_count, int):
61
+ raise NotImplementedError("inhomogeneous total_count is not supported")
62
+ self.total_count = total_count
63
+ self._categorical = Categorical(probs=probs, logits=logits)
64
+ self._binomial = Binomial(total_count=total_count, probs=self.probs)
65
+ batch_shape = self._categorical.batch_shape
66
+ event_shape = self._categorical.param_shape[-1:]
67
+ super().__init__(batch_shape, event_shape, validate_args=validate_args)
68
+
69
+ def expand(self, batch_shape, _instance=None):
70
+ new = self._get_checked_instance(Multinomial, _instance)
71
+ batch_shape = torch.Size(batch_shape)
72
+ new.total_count = self.total_count
73
+ new._categorical = self._categorical.expand(batch_shape)
74
+ super(Multinomial, new).__init__(
75
+ batch_shape, self.event_shape, validate_args=False
76
+ )
77
+ new._validate_args = self._validate_args
78
+ return new
79
+
80
+ def _new(self, *args, **kwargs):
81
+ return self._categorical._new(*args, **kwargs)
82
+
83
+ @constraints.dependent_property(is_discrete=True, event_dim=1)
84
+ def support(self):
85
+ return constraints.multinomial(self.total_count)
86
+
87
+ @property
88
+ def logits(self):
89
+ return self._categorical.logits
90
+
91
+ @property
92
+ def probs(self):
93
+ return self._categorical.probs
94
+
95
+ @property
96
+ def param_shape(self):
97
+ return self._categorical.param_shape
98
+
99
+ def sample(self, sample_shape=torch.Size()):
100
+ sample_shape = torch.Size(sample_shape)
101
+ samples = self._categorical.sample(
102
+ torch.Size((self.total_count,)) + sample_shape
103
+ )
104
+ # samples.shape is (total_count, sample_shape, batch_shape), need to change it to
105
+ # (sample_shape, batch_shape, total_count)
106
+ shifted_idx = list(range(samples.dim()))
107
+ shifted_idx.append(shifted_idx.pop(0))
108
+ samples = samples.permute(*shifted_idx)
109
+ counts = samples.new(self._extended_shape(sample_shape)).zero_()
110
+ counts.scatter_add_(-1, samples, torch.ones_like(samples))
111
+ return counts.type_as(self.probs)
112
+
113
+ def entropy(self):
114
+ n = torch.tensor(self.total_count)
115
+
116
+ cat_entropy = self._categorical.entropy()
117
+ term1 = n * cat_entropy - torch.lgamma(n + 1)
118
+
119
+ support = self._binomial.enumerate_support(expand=False)[1:]
120
+ binomial_probs = torch.exp(self._binomial.log_prob(support))
121
+ weights = torch.lgamma(support + 1)
122
+ term2 = (binomial_probs * weights).sum([0, -1])
123
+
124
+ return term1 + term2
125
+
126
+ def log_prob(self, value):
127
+ if self._validate_args:
128
+ self._validate_sample(value)
129
+ logits, value = broadcast_all(self.logits, value)
130
+ logits = logits.clone(memory_format=torch.contiguous_format)
131
+ log_factorial_n = torch.lgamma(value.sum(-1) + 1)
132
+ log_factorial_xs = torch.lgamma(value + 1).sum(-1)
133
+ logits[(value == 0) & (logits == -inf)] = 0
134
+ log_powers = (logits * value).sum(-1)
135
+ return log_factorial_n - log_factorial_xs + log_powers
venv/lib/python3.10/site-packages/torch/distributions/pareto.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.distributions import constraints
2
+ from torch.distributions.exponential import Exponential
3
+ from torch.distributions.transformed_distribution import TransformedDistribution
4
+ from torch.distributions.transforms import AffineTransform, ExpTransform
5
+ from torch.distributions.utils import broadcast_all
6
+
7
+ __all__ = ["Pareto"]
8
+
9
+
10
+ class Pareto(TransformedDistribution):
11
+ r"""
12
+ Samples from a Pareto Type 1 distribution.
13
+
14
+ Example::
15
+
16
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
17
+ >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0]))
18
+ >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1
19
+ tensor([ 1.5623])
20
+
21
+ Args:
22
+ scale (float or Tensor): Scale parameter of the distribution
23
+ alpha (float or Tensor): Shape parameter of the distribution
24
+ """
25
+ arg_constraints = {"alpha": constraints.positive, "scale": constraints.positive}
26
+
27
+ def __init__(self, scale, alpha, validate_args=None):
28
+ self.scale, self.alpha = broadcast_all(scale, alpha)
29
+ base_dist = Exponential(self.alpha, validate_args=validate_args)
30
+ transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)]
31
+ super().__init__(base_dist, transforms, validate_args=validate_args)
32
+
33
+ def expand(self, batch_shape, _instance=None):
34
+ new = self._get_checked_instance(Pareto, _instance)
35
+ new.scale = self.scale.expand(batch_shape)
36
+ new.alpha = self.alpha.expand(batch_shape)
37
+ return super().expand(batch_shape, _instance=new)
38
+
39
+ @property
40
+ def mean(self):
41
+ # mean is inf for alpha <= 1
42
+ a = self.alpha.clamp(min=1)
43
+ return a * self.scale / (a - 1)
44
+
45
+ @property
46
+ def mode(self):
47
+ return self.scale
48
+
49
+ @property
50
+ def variance(self):
51
+ # var is inf for alpha <= 2
52
+ a = self.alpha.clamp(min=2)
53
+ return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2))
54
+
55
+ @constraints.dependent_property(is_discrete=False, event_dim=0)
56
+ def support(self):
57
+ return constraints.greater_than_eq(self.scale)
58
+
59
+ def entropy(self):
60
+ return (self.scale / self.alpha).log() + (1 + self.alpha.reciprocal())
venv/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numbers import Number
2
+
3
+ import torch
4
+ from torch.distributions import constraints
5
+ from torch.distributions.distribution import Distribution
6
+ from torch.distributions.transformed_distribution import TransformedDistribution
7
+ from torch.distributions.transforms import SigmoidTransform
8
+ from torch.distributions.utils import (
9
+ broadcast_all,
10
+ clamp_probs,
11
+ lazy_property,
12
+ logits_to_probs,
13
+ probs_to_logits,
14
+ )
15
+
16
+ __all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"]
17
+
18
+
19
+ class LogitRelaxedBernoulli(Distribution):
20
+ r"""
21
+ Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
22
+ or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
23
+ distribution.
24
+
25
+ Samples are logits of values in (0, 1). See [1] for more details.
26
+
27
+ Args:
28
+ temperature (Tensor): relaxation temperature
29
+ probs (Number, Tensor): the probability of sampling `1`
30
+ logits (Number, Tensor): the log-odds of sampling `1`
31
+
32
+ [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random
33
+ Variables (Maddison et al, 2017)
34
+
35
+ [2] Categorical Reparametrization with Gumbel-Softmax
36
+ (Jang et al, 2017)
37
+ """
38
+ arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
39
+ support = constraints.real
40
+
41
+ def __init__(self, temperature, probs=None, logits=None, validate_args=None):
42
+ self.temperature = temperature
43
+ if (probs is None) == (logits is None):
44
+ raise ValueError(
45
+ "Either `probs` or `logits` must be specified, but not both."
46
+ )
47
+ if probs is not None:
48
+ is_scalar = isinstance(probs, Number)
49
+ (self.probs,) = broadcast_all(probs)
50
+ else:
51
+ is_scalar = isinstance(logits, Number)
52
+ (self.logits,) = broadcast_all(logits)
53
+ self._param = self.probs if probs is not None else self.logits
54
+ if is_scalar:
55
+ batch_shape = torch.Size()
56
+ else:
57
+ batch_shape = self._param.size()
58
+ super().__init__(batch_shape, validate_args=validate_args)
59
+
60
+ def expand(self, batch_shape, _instance=None):
61
+ new = self._get_checked_instance(LogitRelaxedBernoulli, _instance)
62
+ batch_shape = torch.Size(batch_shape)
63
+ new.temperature = self.temperature
64
+ if "probs" in self.__dict__:
65
+ new.probs = self.probs.expand(batch_shape)
66
+ new._param = new.probs
67
+ if "logits" in self.__dict__:
68
+ new.logits = self.logits.expand(batch_shape)
69
+ new._param = new.logits
70
+ super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False)
71
+ new._validate_args = self._validate_args
72
+ return new
73
+
74
+ def _new(self, *args, **kwargs):
75
+ return self._param.new(*args, **kwargs)
76
+
77
+ @lazy_property
78
+ def logits(self):
79
+ return probs_to_logits(self.probs, is_binary=True)
80
+
81
+ @lazy_property
82
+ def probs(self):
83
+ return logits_to_probs(self.logits, is_binary=True)
84
+
85
+ @property
86
+ def param_shape(self):
87
+ return self._param.size()
88
+
89
+ def rsample(self, sample_shape=torch.Size()):
90
+ shape = self._extended_shape(sample_shape)
91
+ probs = clamp_probs(self.probs.expand(shape))
92
+ uniforms = clamp_probs(
93
+ torch.rand(shape, dtype=probs.dtype, device=probs.device)
94
+ )
95
+ return (
96
+ uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()
97
+ ) / self.temperature
98
+
99
+ def log_prob(self, value):
100
+ if self._validate_args:
101
+ self._validate_sample(value)
102
+ logits, value = broadcast_all(self.logits, value)
103
+ diff = logits - value.mul(self.temperature)
104
+ return self.temperature.log() + diff - 2 * diff.exp().log1p()
105
+
106
+
107
+ class RelaxedBernoulli(TransformedDistribution):
108
+ r"""
109
+ Creates a RelaxedBernoulli distribution, parametrized by
110
+ :attr:`temperature`, and either :attr:`probs` or :attr:`logits`
111
+ (but not both). This is a relaxed version of the `Bernoulli` distribution,
112
+ so the values are in (0, 1), and has reparametrizable samples.
113
+
114
+ Example::
115
+
116
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
117
+ >>> m = RelaxedBernoulli(torch.tensor([2.2]),
118
+ ... torch.tensor([0.1, 0.2, 0.3, 0.99]))
119
+ >>> m.sample()
120
+ tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
121
+
122
+ Args:
123
+ temperature (Tensor): relaxation temperature
124
+ probs (Number, Tensor): the probability of sampling `1`
125
+ logits (Number, Tensor): the log-odds of sampling `1`
126
+ """
127
+ arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
128
+ support = constraints.unit_interval
129
+ has_rsample = True
130
+
131
+ def __init__(self, temperature, probs=None, logits=None, validate_args=None):
132
+ base_dist = LogitRelaxedBernoulli(temperature, probs, logits)
133
+ super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args)
134
+
135
+ def expand(self, batch_shape, _instance=None):
136
+ new = self._get_checked_instance(RelaxedBernoulli, _instance)
137
+ return super().expand(batch_shape, _instance=new)
138
+
139
+ @property
140
+ def temperature(self):
141
+ return self.base_dist.temperature
142
+
143
+ @property
144
+ def logits(self):
145
+ return self.base_dist.logits
146
+
147
+ @property
148
+ def probs(self):
149
+ return self.base_dist.probs
venv/lib/python3.10/site-packages/torch/distributions/transforms.py ADDED
@@ -0,0 +1,1245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import math
3
+ import numbers
4
+ import operator
5
+ import weakref
6
+ from typing import List
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from torch.distributions import constraints
11
+ from torch.distributions.utils import (
12
+ _sum_rightmost,
13
+ broadcast_all,
14
+ lazy_property,
15
+ tril_matrix_to_vec,
16
+ vec_to_tril_matrix,
17
+ )
18
+ from torch.nn.functional import pad, softplus
19
+
20
+ __all__ = [
21
+ "AbsTransform",
22
+ "AffineTransform",
23
+ "CatTransform",
24
+ "ComposeTransform",
25
+ "CorrCholeskyTransform",
26
+ "CumulativeDistributionTransform",
27
+ "ExpTransform",
28
+ "IndependentTransform",
29
+ "LowerCholeskyTransform",
30
+ "PositiveDefiniteTransform",
31
+ "PowerTransform",
32
+ "ReshapeTransform",
33
+ "SigmoidTransform",
34
+ "SoftplusTransform",
35
+ "TanhTransform",
36
+ "SoftmaxTransform",
37
+ "StackTransform",
38
+ "StickBreakingTransform",
39
+ "Transform",
40
+ "identity_transform",
41
+ ]
42
+
43
+
44
+ class Transform:
45
+ """
46
+ Abstract class for invertable transformations with computable log
47
+ det jacobians. They are primarily used in
48
+ :class:`torch.distributions.TransformedDistribution`.
49
+
50
+ Caching is useful for transforms whose inverses are either expensive or
51
+ numerically unstable. Note that care must be taken with memoized values
52
+ since the autograd graph may be reversed. For example while the following
53
+ works with or without caching::
54
+
55
+ y = t(x)
56
+ t.log_abs_det_jacobian(x, y).backward() # x will receive gradients.
57
+
58
+ However the following will error when caching due to dependency reversal::
59
+
60
+ y = t(x)
61
+ z = t.inv(y)
62
+ grad(z.sum(), [y]) # error because z is x
63
+
64
+ Derived classes should implement one or both of :meth:`_call` or
65
+ :meth:`_inverse`. Derived classes that set `bijective=True` should also
66
+ implement :meth:`log_abs_det_jacobian`.
67
+
68
+ Args:
69
+ cache_size (int): Size of cache. If zero, no caching is done. If one,
70
+ the latest single value is cached. Only 0 and 1 are supported.
71
+
72
+ Attributes:
73
+ domain (:class:`~torch.distributions.constraints.Constraint`):
74
+ The constraint representing valid inputs to this transform.
75
+ codomain (:class:`~torch.distributions.constraints.Constraint`):
76
+ The constraint representing valid outputs to this transform
77
+ which are inputs to the inverse transform.
78
+ bijective (bool): Whether this transform is bijective. A transform
79
+ ``t`` is bijective iff ``t.inv(t(x)) == x`` and
80
+ ``t(t.inv(y)) == y`` for every ``x`` in the domain and ``y`` in
81
+ the codomain. Transforms that are not bijective should at least
82
+ maintain the weaker pseudoinverse properties
83
+ ``t(t.inv(t(x)) == t(x)`` and ``t.inv(t(t.inv(y))) == t.inv(y)``.
84
+ sign (int or Tensor): For bijective univariate transforms, this
85
+ should be +1 or -1 depending on whether transform is monotone
86
+ increasing or decreasing.
87
+ """
88
+
89
+ bijective = False
90
+ domain: constraints.Constraint
91
+ codomain: constraints.Constraint
92
+
93
+ def __init__(self, cache_size=0):
94
+ self._cache_size = cache_size
95
+ self._inv = None
96
+ if cache_size == 0:
97
+ pass # default behavior
98
+ elif cache_size == 1:
99
+ self._cached_x_y = None, None
100
+ else:
101
+ raise ValueError("cache_size must be 0 or 1")
102
+ super().__init__()
103
+
104
+ def __getstate__(self):
105
+ state = self.__dict__.copy()
106
+ state["_inv"] = None
107
+ return state
108
+
109
+ @property
110
+ def event_dim(self):
111
+ if self.domain.event_dim == self.codomain.event_dim:
112
+ return self.domain.event_dim
113
+ raise ValueError("Please use either .domain.event_dim or .codomain.event_dim")
114
+
115
+ @property
116
+ def inv(self):
117
+ """
118
+ Returns the inverse :class:`Transform` of this transform.
119
+ This should satisfy ``t.inv.inv is t``.
120
+ """
121
+ inv = None
122
+ if self._inv is not None:
123
+ inv = self._inv()
124
+ if inv is None:
125
+ inv = _InverseTransform(self)
126
+ self._inv = weakref.ref(inv)
127
+ return inv
128
+
129
+ @property
130
+ def sign(self):
131
+ """
132
+ Returns the sign of the determinant of the Jacobian, if applicable.
133
+ In general this only makes sense for bijective transforms.
134
+ """
135
+ raise NotImplementedError
136
+
137
+ def with_cache(self, cache_size=1):
138
+ if self._cache_size == cache_size:
139
+ return self
140
+ if type(self).__init__ is Transform.__init__:
141
+ return type(self)(cache_size=cache_size)
142
+ raise NotImplementedError(f"{type(self)}.with_cache is not implemented")
143
+
144
+ def __eq__(self, other):
145
+ return self is other
146
+
147
+ def __ne__(self, other):
148
+ # Necessary for Python2
149
+ return not self.__eq__(other)
150
+
151
+ def __call__(self, x):
152
+ """
153
+ Computes the transform `x => y`.
154
+ """
155
+ if self._cache_size == 0:
156
+ return self._call(x)
157
+ x_old, y_old = self._cached_x_y
158
+ if x is x_old:
159
+ return y_old
160
+ y = self._call(x)
161
+ self._cached_x_y = x, y
162
+ return y
163
+
164
+ def _inv_call(self, y):
165
+ """
166
+ Inverts the transform `y => x`.
167
+ """
168
+ if self._cache_size == 0:
169
+ return self._inverse(y)
170
+ x_old, y_old = self._cached_x_y
171
+ if y is y_old:
172
+ return x_old
173
+ x = self._inverse(y)
174
+ self._cached_x_y = x, y
175
+ return x
176
+
177
+ def _call(self, x):
178
+ """
179
+ Abstract method to compute forward transformation.
180
+ """
181
+ raise NotImplementedError
182
+
183
+ def _inverse(self, y):
184
+ """
185
+ Abstract method to compute inverse transformation.
186
+ """
187
+ raise NotImplementedError
188
+
189
+ def log_abs_det_jacobian(self, x, y):
190
+ """
191
+ Computes the log det jacobian `log |dy/dx|` given input and output.
192
+ """
193
+ raise NotImplementedError
194
+
195
+ def __repr__(self):
196
+ return self.__class__.__name__ + "()"
197
+
198
+ def forward_shape(self, shape):
199
+ """
200
+ Infers the shape of the forward computation, given the input shape.
201
+ Defaults to preserving shape.
202
+ """
203
+ return shape
204
+
205
+ def inverse_shape(self, shape):
206
+ """
207
+ Infers the shapes of the inverse computation, given the output shape.
208
+ Defaults to preserving shape.
209
+ """
210
+ return shape
211
+
212
+
213
+ class _InverseTransform(Transform):
214
+ """
215
+ Inverts a single :class:`Transform`.
216
+ This class is private; please instead use the ``Transform.inv`` property.
217
+ """
218
+
219
+ def __init__(self, transform: Transform):
220
+ super().__init__(cache_size=transform._cache_size)
221
+ self._inv: Transform = transform
222
+
223
+ @constraints.dependent_property(is_discrete=False)
224
+ def domain(self):
225
+ assert self._inv is not None
226
+ return self._inv.codomain
227
+
228
+ @constraints.dependent_property(is_discrete=False)
229
+ def codomain(self):
230
+ assert self._inv is not None
231
+ return self._inv.domain
232
+
233
+ @property
234
+ def bijective(self):
235
+ assert self._inv is not None
236
+ return self._inv.bijective
237
+
238
+ @property
239
+ def sign(self):
240
+ assert self._inv is not None
241
+ return self._inv.sign
242
+
243
+ @property
244
+ def inv(self):
245
+ return self._inv
246
+
247
+ def with_cache(self, cache_size=1):
248
+ assert self._inv is not None
249
+ return self.inv.with_cache(cache_size).inv
250
+
251
+ def __eq__(self, other):
252
+ if not isinstance(other, _InverseTransform):
253
+ return False
254
+ assert self._inv is not None
255
+ return self._inv == other._inv
256
+
257
+ def __repr__(self):
258
+ return f"{self.__class__.__name__}({repr(self._inv)})"
259
+
260
+ def __call__(self, x):
261
+ assert self._inv is not None
262
+ return self._inv._inv_call(x)
263
+
264
+ def log_abs_det_jacobian(self, x, y):
265
+ assert self._inv is not None
266
+ return -self._inv.log_abs_det_jacobian(y, x)
267
+
268
+ def forward_shape(self, shape):
269
+ return self._inv.inverse_shape(shape)
270
+
271
+ def inverse_shape(self, shape):
272
+ return self._inv.forward_shape(shape)
273
+
274
+
275
+ class ComposeTransform(Transform):
276
+ """
277
+ Composes multiple transforms in a chain.
278
+ The transforms being composed are responsible for caching.
279
+
280
+ Args:
281
+ parts (list of :class:`Transform`): A list of transforms to compose.
282
+ cache_size (int): Size of cache. If zero, no caching is done. If one,
283
+ the latest single value is cached. Only 0 and 1 are supported.
284
+ """
285
+
286
+ def __init__(self, parts: List[Transform], cache_size=0):
287
+ if cache_size:
288
+ parts = [part.with_cache(cache_size) for part in parts]
289
+ super().__init__(cache_size=cache_size)
290
+ self.parts = parts
291
+
292
+ def __eq__(self, other):
293
+ if not isinstance(other, ComposeTransform):
294
+ return False
295
+ return self.parts == other.parts
296
+
297
+ @constraints.dependent_property(is_discrete=False)
298
+ def domain(self):
299
+ if not self.parts:
300
+ return constraints.real
301
+ domain = self.parts[0].domain
302
+ # Adjust event_dim to be maximum among all parts.
303
+ event_dim = self.parts[-1].codomain.event_dim
304
+ for part in reversed(self.parts):
305
+ event_dim += part.domain.event_dim - part.codomain.event_dim
306
+ event_dim = max(event_dim, part.domain.event_dim)
307
+ assert event_dim >= domain.event_dim
308
+ if event_dim > domain.event_dim:
309
+ domain = constraints.independent(domain, event_dim - domain.event_dim)
310
+ return domain
311
+
312
+ @constraints.dependent_property(is_discrete=False)
313
+ def codomain(self):
314
+ if not self.parts:
315
+ return constraints.real
316
+ codomain = self.parts[-1].codomain
317
+ # Adjust event_dim to be maximum among all parts.
318
+ event_dim = self.parts[0].domain.event_dim
319
+ for part in self.parts:
320
+ event_dim += part.codomain.event_dim - part.domain.event_dim
321
+ event_dim = max(event_dim, part.codomain.event_dim)
322
+ assert event_dim >= codomain.event_dim
323
+ if event_dim > codomain.event_dim:
324
+ codomain = constraints.independent(codomain, event_dim - codomain.event_dim)
325
+ return codomain
326
+
327
+ @lazy_property
328
+ def bijective(self):
329
+ return all(p.bijective for p in self.parts)
330
+
331
+ @lazy_property
332
+ def sign(self):
333
+ sign = 1
334
+ for p in self.parts:
335
+ sign = sign * p.sign
336
+ return sign
337
+
338
+ @property
339
+ def inv(self):
340
+ inv = None
341
+ if self._inv is not None:
342
+ inv = self._inv()
343
+ if inv is None:
344
+ inv = ComposeTransform([p.inv for p in reversed(self.parts)])
345
+ self._inv = weakref.ref(inv)
346
+ inv._inv = weakref.ref(self)
347
+ return inv
348
+
349
+ def with_cache(self, cache_size=1):
350
+ if self._cache_size == cache_size:
351
+ return self
352
+ return ComposeTransform(self.parts, cache_size=cache_size)
353
+
354
+ def __call__(self, x):
355
+ for part in self.parts:
356
+ x = part(x)
357
+ return x
358
+
359
+ def log_abs_det_jacobian(self, x, y):
360
+ if not self.parts:
361
+ return torch.zeros_like(x)
362
+
363
+ # Compute intermediates. This will be free if parts[:-1] are all cached.
364
+ xs = [x]
365
+ for part in self.parts[:-1]:
366
+ xs.append(part(xs[-1]))
367
+ xs.append(y)
368
+
369
+ terms = []
370
+ event_dim = self.domain.event_dim
371
+ for part, x, y in zip(self.parts, xs[:-1], xs[1:]):
372
+ terms.append(
373
+ _sum_rightmost(
374
+ part.log_abs_det_jacobian(x, y), event_dim - part.domain.event_dim
375
+ )
376
+ )
377
+ event_dim += part.codomain.event_dim - part.domain.event_dim
378
+ return functools.reduce(operator.add, terms)
379
+
380
+ def forward_shape(self, shape):
381
+ for part in self.parts:
382
+ shape = part.forward_shape(shape)
383
+ return shape
384
+
385
+ def inverse_shape(self, shape):
386
+ for part in reversed(self.parts):
387
+ shape = part.inverse_shape(shape)
388
+ return shape
389
+
390
+ def __repr__(self):
391
+ fmt_string = self.__class__.__name__ + "(\n "
392
+ fmt_string += ",\n ".join([p.__repr__() for p in self.parts])
393
+ fmt_string += "\n)"
394
+ return fmt_string
395
+
396
+
397
+ identity_transform = ComposeTransform([])
398
+
399
+
400
+ class IndependentTransform(Transform):
401
+ """
402
+ Wrapper around another transform to treat
403
+ ``reinterpreted_batch_ndims``-many extra of the right most dimensions as
404
+ dependent. This has no effect on the forward or backward transforms, but
405
+ does sum out ``reinterpreted_batch_ndims``-many of the rightmost dimensions
406
+ in :meth:`log_abs_det_jacobian`.
407
+
408
+ Args:
409
+ base_transform (:class:`Transform`): A base transform.
410
+ reinterpreted_batch_ndims (int): The number of extra rightmost
411
+ dimensions to treat as dependent.
412
+ """
413
+
414
+ def __init__(self, base_transform, reinterpreted_batch_ndims, cache_size=0):
415
+ super().__init__(cache_size=cache_size)
416
+ self.base_transform = base_transform.with_cache(cache_size)
417
+ self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
418
+
419
+ def with_cache(self, cache_size=1):
420
+ if self._cache_size == cache_size:
421
+ return self
422
+ return IndependentTransform(
423
+ self.base_transform, self.reinterpreted_batch_ndims, cache_size=cache_size
424
+ )
425
+
426
+ @constraints.dependent_property(is_discrete=False)
427
+ def domain(self):
428
+ return constraints.independent(
429
+ self.base_transform.domain, self.reinterpreted_batch_ndims
430
+ )
431
+
432
+ @constraints.dependent_property(is_discrete=False)
433
+ def codomain(self):
434
+ return constraints.independent(
435
+ self.base_transform.codomain, self.reinterpreted_batch_ndims
436
+ )
437
+
438
+ @property
439
+ def bijective(self):
440
+ return self.base_transform.bijective
441
+
442
+ @property
443
+ def sign(self):
444
+ return self.base_transform.sign
445
+
446
+ def _call(self, x):
447
+ if x.dim() < self.domain.event_dim:
448
+ raise ValueError("Too few dimensions on input")
449
+ return self.base_transform(x)
450
+
451
+ def _inverse(self, y):
452
+ if y.dim() < self.codomain.event_dim:
453
+ raise ValueError("Too few dimensions on input")
454
+ return self.base_transform.inv(y)
455
+
456
+ def log_abs_det_jacobian(self, x, y):
457
+ result = self.base_transform.log_abs_det_jacobian(x, y)
458
+ result = _sum_rightmost(result, self.reinterpreted_batch_ndims)
459
+ return result
460
+
461
+ def __repr__(self):
462
+ return f"{self.__class__.__name__}({repr(self.base_transform)}, {self.reinterpreted_batch_ndims})"
463
+
464
+ def forward_shape(self, shape):
465
+ return self.base_transform.forward_shape(shape)
466
+
467
+ def inverse_shape(self, shape):
468
+ return self.base_transform.inverse_shape(shape)
469
+
470
+
471
+ class ReshapeTransform(Transform):
472
+ """
473
+ Unit Jacobian transform to reshape the rightmost part of a tensor.
474
+
475
+ Note that ``in_shape`` and ``out_shape`` must have the same number of
476
+ elements, just as for :meth:`torch.Tensor.reshape`.
477
+
478
+ Arguments:
479
+ in_shape (torch.Size): The input event shape.
480
+ out_shape (torch.Size): The output event shape.
481
+ """
482
+
483
+ bijective = True
484
+
485
+ def __init__(self, in_shape, out_shape, cache_size=0):
486
+ self.in_shape = torch.Size(in_shape)
487
+ self.out_shape = torch.Size(out_shape)
488
+ if self.in_shape.numel() != self.out_shape.numel():
489
+ raise ValueError("in_shape, out_shape have different numbers of elements")
490
+ super().__init__(cache_size=cache_size)
491
+
492
+ @constraints.dependent_property
493
+ def domain(self):
494
+ return constraints.independent(constraints.real, len(self.in_shape))
495
+
496
+ @constraints.dependent_property
497
+ def codomain(self):
498
+ return constraints.independent(constraints.real, len(self.out_shape))
499
+
500
+ def with_cache(self, cache_size=1):
501
+ if self._cache_size == cache_size:
502
+ return self
503
+ return ReshapeTransform(self.in_shape, self.out_shape, cache_size=cache_size)
504
+
505
+ def _call(self, x):
506
+ batch_shape = x.shape[: x.dim() - len(self.in_shape)]
507
+ return x.reshape(batch_shape + self.out_shape)
508
+
509
+ def _inverse(self, y):
510
+ batch_shape = y.shape[: y.dim() - len(self.out_shape)]
511
+ return y.reshape(batch_shape + self.in_shape)
512
+
513
+ def log_abs_det_jacobian(self, x, y):
514
+ batch_shape = x.shape[: x.dim() - len(self.in_shape)]
515
+ return x.new_zeros(batch_shape)
516
+
517
+ def forward_shape(self, shape):
518
+ if len(shape) < len(self.in_shape):
519
+ raise ValueError("Too few dimensions on input")
520
+ cut = len(shape) - len(self.in_shape)
521
+ if shape[cut:] != self.in_shape:
522
+ raise ValueError(
523
+ f"Shape mismatch: expected {shape[cut:]} but got {self.in_shape}"
524
+ )
525
+ return shape[:cut] + self.out_shape
526
+
527
+ def inverse_shape(self, shape):
528
+ if len(shape) < len(self.out_shape):
529
+ raise ValueError("Too few dimensions on input")
530
+ cut = len(shape) - len(self.out_shape)
531
+ if shape[cut:] != self.out_shape:
532
+ raise ValueError(
533
+ f"Shape mismatch: expected {shape[cut:]} but got {self.out_shape}"
534
+ )
535
+ return shape[:cut] + self.in_shape
536
+
537
+
538
+ class ExpTransform(Transform):
539
+ r"""
540
+ Transform via the mapping :math:`y = \exp(x)`.
541
+ """
542
+ domain = constraints.real
543
+ codomain = constraints.positive
544
+ bijective = True
545
+ sign = +1
546
+
547
+ def __eq__(self, other):
548
+ return isinstance(other, ExpTransform)
549
+
550
+ def _call(self, x):
551
+ return x.exp()
552
+
553
+ def _inverse(self, y):
554
+ return y.log()
555
+
556
+ def log_abs_det_jacobian(self, x, y):
557
+ return x
558
+
559
+
560
+ class PowerTransform(Transform):
561
+ r"""
562
+ Transform via the mapping :math:`y = x^{\text{exponent}}`.
563
+ """
564
+ domain = constraints.positive
565
+ codomain = constraints.positive
566
+ bijective = True
567
+
568
+ def __init__(self, exponent, cache_size=0):
569
+ super().__init__(cache_size=cache_size)
570
+ (self.exponent,) = broadcast_all(exponent)
571
+
572
+ def with_cache(self, cache_size=1):
573
+ if self._cache_size == cache_size:
574
+ return self
575
+ return PowerTransform(self.exponent, cache_size=cache_size)
576
+
577
+ @lazy_property
578
+ def sign(self):
579
+ return self.exponent.sign()
580
+
581
+ def __eq__(self, other):
582
+ if not isinstance(other, PowerTransform):
583
+ return False
584
+ return self.exponent.eq(other.exponent).all().item()
585
+
586
+ def _call(self, x):
587
+ return x.pow(self.exponent)
588
+
589
+ def _inverse(self, y):
590
+ return y.pow(1 / self.exponent)
591
+
592
+ def log_abs_det_jacobian(self, x, y):
593
+ return (self.exponent * y / x).abs().log()
594
+
595
+ def forward_shape(self, shape):
596
+ return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))
597
+
598
+ def inverse_shape(self, shape):
599
+ return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))
600
+
601
+
602
+ def _clipped_sigmoid(x):
603
+ finfo = torch.finfo(x.dtype)
604
+ return torch.clamp(torch.sigmoid(x), min=finfo.tiny, max=1.0 - finfo.eps)
605
+
606
+
607
+ class SigmoidTransform(Transform):
608
+ r"""
609
+ Transform via the mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.
610
+ """
611
+ domain = constraints.real
612
+ codomain = constraints.unit_interval
613
+ bijective = True
614
+ sign = +1
615
+
616
+ def __eq__(self, other):
617
+ return isinstance(other, SigmoidTransform)
618
+
619
+ def _call(self, x):
620
+ return _clipped_sigmoid(x)
621
+
622
+ def _inverse(self, y):
623
+ finfo = torch.finfo(y.dtype)
624
+ y = y.clamp(min=finfo.tiny, max=1.0 - finfo.eps)
625
+ return y.log() - (-y).log1p()
626
+
627
+ def log_abs_det_jacobian(self, x, y):
628
+ return -F.softplus(-x) - F.softplus(x)
629
+
630
+
631
+ class SoftplusTransform(Transform):
632
+ r"""
633
+ Transform via the mapping :math:`\text{Softplus}(x) = \log(1 + \exp(x))`.
634
+ The implementation reverts to the linear function when :math:`x > 20`.
635
+ """
636
+ domain = constraints.real
637
+ codomain = constraints.positive
638
+ bijective = True
639
+ sign = +1
640
+
641
+ def __eq__(self, other):
642
+ return isinstance(other, SoftplusTransform)
643
+
644
+ def _call(self, x):
645
+ return softplus(x)
646
+
647
+ def _inverse(self, y):
648
+ return (-y).expm1().neg().log() + y
649
+
650
+ def log_abs_det_jacobian(self, x, y):
651
+ return -softplus(-x)
652
+
653
+
654
+ class TanhTransform(Transform):
655
+ r"""
656
+ Transform via the mapping :math:`y = \tanh(x)`.
657
+
658
+ It is equivalent to
659
+ ```
660
+ ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])
661
+ ```
662
+ However this might not be numerically stable, thus it is recommended to use `TanhTransform`
663
+ instead.
664
+
665
+ Note that one should use `cache_size=1` when it comes to `NaN/Inf` values.
666
+
667
+ """
668
+ domain = constraints.real
669
+ codomain = constraints.interval(-1.0, 1.0)
670
+ bijective = True
671
+ sign = +1
672
+
673
+ def __eq__(self, other):
674
+ return isinstance(other, TanhTransform)
675
+
676
+ def _call(self, x):
677
+ return x.tanh()
678
+
679
+ def _inverse(self, y):
680
+ # We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
681
+ # one should use `cache_size=1` instead
682
+ return torch.atanh(y)
683
+
684
+ def log_abs_det_jacobian(self, x, y):
685
+ # We use a formula that is more numerically stable, see details in the following link
686
+ # https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
687
+ return 2.0 * (math.log(2.0) - x - softplus(-2.0 * x))
688
+
689
+
690
+ class AbsTransform(Transform):
691
+ r"""
692
+ Transform via the mapping :math:`y = |x|`.
693
+ """
694
+ domain = constraints.real
695
+ codomain = constraints.positive
696
+
697
+ def __eq__(self, other):
698
+ return isinstance(other, AbsTransform)
699
+
700
+ def _call(self, x):
701
+ return x.abs()
702
+
703
+ def _inverse(self, y):
704
+ return y
705
+
706
+
707
+ class AffineTransform(Transform):
708
+ r"""
709
+ Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`.
710
+
711
+ Args:
712
+ loc (Tensor or float): Location parameter.
713
+ scale (Tensor or float): Scale parameter.
714
+ event_dim (int): Optional size of `event_shape`. This should be zero
715
+ for univariate random variables, 1 for distributions over vectors,
716
+ 2 for distributions over matrices, etc.
717
+ """
718
+ bijective = True
719
+
720
+ def __init__(self, loc, scale, event_dim=0, cache_size=0):
721
+ super().__init__(cache_size=cache_size)
722
+ self.loc = loc
723
+ self.scale = scale
724
+ self._event_dim = event_dim
725
+
726
+ @property
727
+ def event_dim(self):
728
+ return self._event_dim
729
+
730
+ @constraints.dependent_property(is_discrete=False)
731
+ def domain(self):
732
+ if self.event_dim == 0:
733
+ return constraints.real
734
+ return constraints.independent(constraints.real, self.event_dim)
735
+
736
+ @constraints.dependent_property(is_discrete=False)
737
+ def codomain(self):
738
+ if self.event_dim == 0:
739
+ return constraints.real
740
+ return constraints.independent(constraints.real, self.event_dim)
741
+
742
+ def with_cache(self, cache_size=1):
743
+ if self._cache_size == cache_size:
744
+ return self
745
+ return AffineTransform(
746
+ self.loc, self.scale, self.event_dim, cache_size=cache_size
747
+ )
748
+
749
+ def __eq__(self, other):
750
+ if not isinstance(other, AffineTransform):
751
+ return False
752
+
753
+ if isinstance(self.loc, numbers.Number) and isinstance(
754
+ other.loc, numbers.Number
755
+ ):
756
+ if self.loc != other.loc:
757
+ return False
758
+ else:
759
+ if not (self.loc == other.loc).all().item():
760
+ return False
761
+
762
+ if isinstance(self.scale, numbers.Number) and isinstance(
763
+ other.scale, numbers.Number
764
+ ):
765
+ if self.scale != other.scale:
766
+ return False
767
+ else:
768
+ if not (self.scale == other.scale).all().item():
769
+ return False
770
+
771
+ return True
772
+
773
+ @property
774
+ def sign(self):
775
+ if isinstance(self.scale, numbers.Real):
776
+ return 1 if float(self.scale) > 0 else -1 if float(self.scale) < 0 else 0
777
+ return self.scale.sign()
778
+
779
+ def _call(self, x):
780
+ return self.loc + self.scale * x
781
+
782
+ def _inverse(self, y):
783
+ return (y - self.loc) / self.scale
784
+
785
+ def log_abs_det_jacobian(self, x, y):
786
+ shape = x.shape
787
+ scale = self.scale
788
+ if isinstance(scale, numbers.Real):
789
+ result = torch.full_like(x, math.log(abs(scale)))
790
+ else:
791
+ result = torch.abs(scale).log()
792
+ if self.event_dim:
793
+ result_size = result.size()[: -self.event_dim] + (-1,)
794
+ result = result.view(result_size).sum(-1)
795
+ shape = shape[: -self.event_dim]
796
+ return result.expand(shape)
797
+
798
+ def forward_shape(self, shape):
799
+ return torch.broadcast_shapes(
800
+ shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
801
+ )
802
+
803
+ def inverse_shape(self, shape):
804
+ return torch.broadcast_shapes(
805
+ shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
806
+ )
807
+
808
+
809
+ class CorrCholeskyTransform(Transform):
810
+ r"""
811
+ Transforms an uncontrained real vector :math:`x` with length :math:`D*(D-1)/2` into the
812
+ Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower
813
+ triangular matrix with positive diagonals and unit Euclidean norm for each row.
814
+ The transform is processed as follows:
815
+
816
+ 1. First we convert x into a lower triangular matrix in row order.
817
+ 2. For each row :math:`X_i` of the lower triangular part, we apply a *signed* version of
818
+ class :class:`StickBreakingTransform` to transform :math:`X_i` into a
819
+ unit Euclidean length vector using the following steps:
820
+ - Scales into the interval :math:`(-1, 1)` domain: :math:`r_i = \tanh(X_i)`.
821
+ - Transforms into an unsigned domain: :math:`z_i = r_i^2`.
822
+ - Applies :math:`s_i = StickBreakingTransform(z_i)`.
823
+ - Transforms back into signed domain: :math:`y_i = sign(r_i) * \sqrt{s_i}`.
824
+ """
825
+ domain = constraints.real_vector
826
+ codomain = constraints.corr_cholesky
827
+ bijective = True
828
+
829
+ def _call(self, x):
830
+ x = torch.tanh(x)
831
+ eps = torch.finfo(x.dtype).eps
832
+ x = x.clamp(min=-1 + eps, max=1 - eps)
833
+ r = vec_to_tril_matrix(x, diag=-1)
834
+ # apply stick-breaking on the squared values
835
+ # Note that y = sign(r) * sqrt(z * z1m_cumprod)
836
+ # = (sign(r) * sqrt(z)) * sqrt(z1m_cumprod) = r * sqrt(z1m_cumprod)
837
+ z = r**2
838
+ z1m_cumprod_sqrt = (1 - z).sqrt().cumprod(-1)
839
+ # Diagonal elements must be 1.
840
+ r = r + torch.eye(r.shape[-1], dtype=r.dtype, device=r.device)
841
+ y = r * pad(z1m_cumprod_sqrt[..., :-1], [1, 0], value=1)
842
+ return y
843
+
844
+ def _inverse(self, y):
845
+ # inverse stick-breaking
846
+ # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
847
+ y_cumsum = 1 - torch.cumsum(y * y, dim=-1)
848
+ y_cumsum_shifted = pad(y_cumsum[..., :-1], [1, 0], value=1)
849
+ y_vec = tril_matrix_to_vec(y, diag=-1)
850
+ y_cumsum_vec = tril_matrix_to_vec(y_cumsum_shifted, diag=-1)
851
+ t = y_vec / (y_cumsum_vec).sqrt()
852
+ # inverse of tanh
853
+ x = (t.log1p() - t.neg().log1p()) / 2
854
+ return x
855
+
856
+ def log_abs_det_jacobian(self, x, y, intermediates=None):
857
+ # Because domain and codomain are two spaces with different dimensions, determinant of
858
+ # Jacobian is not well-defined. We return `log_abs_det_jacobian` of `x` and the
859
+ # flattened lower triangular part of `y`.
860
+
861
+ # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
862
+ y1m_cumsum = 1 - (y * y).cumsum(dim=-1)
863
+ # by taking diagonal=-2, we don't need to shift z_cumprod to the right
864
+ # also works for 2 x 2 matrix
865
+ y1m_cumsum_tril = tril_matrix_to_vec(y1m_cumsum, diag=-2)
866
+ stick_breaking_logdet = 0.5 * (y1m_cumsum_tril).log().sum(-1)
867
+ tanh_logdet = -2 * (x + softplus(-2 * x) - math.log(2.0)).sum(dim=-1)
868
+ return stick_breaking_logdet + tanh_logdet
869
+
870
+ def forward_shape(self, shape):
871
+ # Reshape from (..., N) to (..., D, D).
872
+ if len(shape) < 1:
873
+ raise ValueError("Too few dimensions on input")
874
+ N = shape[-1]
875
+ D = round((0.25 + 2 * N) ** 0.5 + 0.5)
876
+ if D * (D - 1) // 2 != N:
877
+ raise ValueError("Input is not a flattend lower-diagonal number")
878
+ return shape[:-1] + (D, D)
879
+
880
+ def inverse_shape(self, shape):
881
+ # Reshape from (..., D, D) to (..., N).
882
+ if len(shape) < 2:
883
+ raise ValueError("Too few dimensions on input")
884
+ if shape[-2] != shape[-1]:
885
+ raise ValueError("Input is not square")
886
+ D = shape[-1]
887
+ N = D * (D - 1) // 2
888
+ return shape[:-2] + (N,)
889
+
890
+
891
+ class SoftmaxTransform(Transform):
892
+ r"""
893
+ Transform from unconstrained space to the simplex via :math:`y = \exp(x)` then
894
+ normalizing.
895
+
896
+ This is not bijective and cannot be used for HMC. However this acts mostly
897
+ coordinate-wise (except for the final normalization), and thus is
898
+ appropriate for coordinate-wise optimization algorithms.
899
+ """
900
+ domain = constraints.real_vector
901
+ codomain = constraints.simplex
902
+
903
+ def __eq__(self, other):
904
+ return isinstance(other, SoftmaxTransform)
905
+
906
+ def _call(self, x):
907
+ logprobs = x
908
+ probs = (logprobs - logprobs.max(-1, True)[0]).exp()
909
+ return probs / probs.sum(-1, True)
910
+
911
+ def _inverse(self, y):
912
+ probs = y
913
+ return probs.log()
914
+
915
+ def forward_shape(self, shape):
916
+ if len(shape) < 1:
917
+ raise ValueError("Too few dimensions on input")
918
+ return shape
919
+
920
+ def inverse_shape(self, shape):
921
+ if len(shape) < 1:
922
+ raise ValueError("Too few dimensions on input")
923
+ return shape
924
+
925
+
926
+ class StickBreakingTransform(Transform):
927
+ """
928
+ Transform from unconstrained space to the simplex of one additional
929
+ dimension via a stick-breaking process.
930
+
931
+ This transform arises as an iterated sigmoid transform in a stick-breaking
932
+ construction of the `Dirichlet` distribution: the first logit is
933
+ transformed via sigmoid to the first probability and the probability of
934
+ everything else, and then the process recurses.
935
+
936
+ This is bijective and appropriate for use in HMC; however it mixes
937
+ coordinates together and is less appropriate for optimization.
938
+ """
939
+
940
+ domain = constraints.real_vector
941
+ codomain = constraints.simplex
942
+ bijective = True
943
+
944
+ def __eq__(self, other):
945
+ return isinstance(other, StickBreakingTransform)
946
+
947
+ def _call(self, x):
948
+ offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
949
+ z = _clipped_sigmoid(x - offset.log())
950
+ z_cumprod = (1 - z).cumprod(-1)
951
+ y = pad(z, [0, 1], value=1) * pad(z_cumprod, [1, 0], value=1)
952
+ return y
953
+
954
+ def _inverse(self, y):
955
+ y_crop = y[..., :-1]
956
+ offset = y.shape[-1] - y.new_ones(y_crop.shape[-1]).cumsum(-1)
957
+ sf = 1 - y_crop.cumsum(-1)
958
+ # we clamp to make sure that sf is positive which sometimes does not
959
+ # happen when y[-1] ~ 0 or y[:-1].sum() ~ 1
960
+ sf = torch.clamp(sf, min=torch.finfo(y.dtype).tiny)
961
+ x = y_crop.log() - sf.log() + offset.log()
962
+ return x
963
+
964
+ def log_abs_det_jacobian(self, x, y):
965
+ offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
966
+ x = x - offset.log()
967
+ # use the identity 1 - sigmoid(x) = exp(-x) * sigmoid(x)
968
+ detJ = (-x + F.logsigmoid(x) + y[..., :-1].log()).sum(-1)
969
+ return detJ
970
+
971
+ def forward_shape(self, shape):
972
+ if len(shape) < 1:
973
+ raise ValueError("Too few dimensions on input")
974
+ return shape[:-1] + (shape[-1] + 1,)
975
+
976
+ def inverse_shape(self, shape):
977
+ if len(shape) < 1:
978
+ raise ValueError("Too few dimensions on input")
979
+ return shape[:-1] + (shape[-1] - 1,)
980
+
981
+
982
+ class LowerCholeskyTransform(Transform):
983
+ """
984
+ Transform from unconstrained matrices to lower-triangular matrices with
985
+ nonnegative diagonal entries.
986
+
987
+ This is useful for parameterizing positive definite matrices in terms of
988
+ their Cholesky factorization.
989
+ """
990
+
991
+ domain = constraints.independent(constraints.real, 2)
992
+ codomain = constraints.lower_cholesky
993
+
994
+ def __eq__(self, other):
995
+ return isinstance(other, LowerCholeskyTransform)
996
+
997
+ def _call(self, x):
998
+ return x.tril(-1) + x.diagonal(dim1=-2, dim2=-1).exp().diag_embed()
999
+
1000
+ def _inverse(self, y):
1001
+ return y.tril(-1) + y.diagonal(dim1=-2, dim2=-1).log().diag_embed()
1002
+
1003
+
1004
+ class PositiveDefiniteTransform(Transform):
1005
+ """
1006
+ Transform from unconstrained matrices to positive-definite matrices.
1007
+ """
1008
+
1009
+ domain = constraints.independent(constraints.real, 2)
1010
+ codomain = constraints.positive_definite # type: ignore[assignment]
1011
+
1012
+ def __eq__(self, other):
1013
+ return isinstance(other, PositiveDefiniteTransform)
1014
+
1015
+ def _call(self, x):
1016
+ x = LowerCholeskyTransform()(x)
1017
+ return x @ x.mT
1018
+
1019
+ def _inverse(self, y):
1020
+ y = torch.linalg.cholesky(y)
1021
+ return LowerCholeskyTransform().inv(y)
1022
+
1023
+
1024
+ class CatTransform(Transform):
1025
+ """
1026
+ Transform functor that applies a sequence of transforms `tseq`
1027
+ component-wise to each submatrix at `dim`, of length `lengths[dim]`,
1028
+ in a way compatible with :func:`torch.cat`.
1029
+
1030
+ Example::
1031
+
1032
+ x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0)
1033
+ x = torch.cat([x0, x0], dim=0)
1034
+ t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10])
1035
+ t = CatTransform([t0, t0], dim=0, lengths=[20, 20])
1036
+ y = t(x)
1037
+ """
1038
+
1039
+ transforms: List[Transform]
1040
+
1041
+ def __init__(self, tseq, dim=0, lengths=None, cache_size=0):
1042
+ assert all(isinstance(t, Transform) for t in tseq)
1043
+ if cache_size:
1044
+ tseq = [t.with_cache(cache_size) for t in tseq]
1045
+ super().__init__(cache_size=cache_size)
1046
+ self.transforms = list(tseq)
1047
+ if lengths is None:
1048
+ lengths = [1] * len(self.transforms)
1049
+ self.lengths = list(lengths)
1050
+ assert len(self.lengths) == len(self.transforms)
1051
+ self.dim = dim
1052
+
1053
+ @lazy_property
1054
+ def event_dim(self):
1055
+ return max(t.event_dim for t in self.transforms)
1056
+
1057
+ @lazy_property
1058
+ def length(self):
1059
+ return sum(self.lengths)
1060
+
1061
+ def with_cache(self, cache_size=1):
1062
+ if self._cache_size == cache_size:
1063
+ return self
1064
+ return CatTransform(self.transforms, self.dim, self.lengths, cache_size)
1065
+
1066
+ def _call(self, x):
1067
+ assert -x.dim() <= self.dim < x.dim()
1068
+ assert x.size(self.dim) == self.length
1069
+ yslices = []
1070
+ start = 0
1071
+ for trans, length in zip(self.transforms, self.lengths):
1072
+ xslice = x.narrow(self.dim, start, length)
1073
+ yslices.append(trans(xslice))
1074
+ start = start + length # avoid += for jit compat
1075
+ return torch.cat(yslices, dim=self.dim)
1076
+
1077
+ def _inverse(self, y):
1078
+ assert -y.dim() <= self.dim < y.dim()
1079
+ assert y.size(self.dim) == self.length
1080
+ xslices = []
1081
+ start = 0
1082
+ for trans, length in zip(self.transforms, self.lengths):
1083
+ yslice = y.narrow(self.dim, start, length)
1084
+ xslices.append(trans.inv(yslice))
1085
+ start = start + length # avoid += for jit compat
1086
+ return torch.cat(xslices, dim=self.dim)
1087
+
1088
+ def log_abs_det_jacobian(self, x, y):
1089
+ assert -x.dim() <= self.dim < x.dim()
1090
+ assert x.size(self.dim) == self.length
1091
+ assert -y.dim() <= self.dim < y.dim()
1092
+ assert y.size(self.dim) == self.length
1093
+ logdetjacs = []
1094
+ start = 0
1095
+ for trans, length in zip(self.transforms, self.lengths):
1096
+ xslice = x.narrow(self.dim, start, length)
1097
+ yslice = y.narrow(self.dim, start, length)
1098
+ logdetjac = trans.log_abs_det_jacobian(xslice, yslice)
1099
+ if trans.event_dim < self.event_dim:
1100
+ logdetjac = _sum_rightmost(logdetjac, self.event_dim - trans.event_dim)
1101
+ logdetjacs.append(logdetjac)
1102
+ start = start + length # avoid += for jit compat
1103
+ # Decide whether to concatenate or sum.
1104
+ dim = self.dim
1105
+ if dim >= 0:
1106
+ dim = dim - x.dim()
1107
+ dim = dim + self.event_dim
1108
+ if dim < 0:
1109
+ return torch.cat(logdetjacs, dim=dim)
1110
+ else:
1111
+ return sum(logdetjacs)
1112
+
1113
+ @property
1114
+ def bijective(self):
1115
+ return all(t.bijective for t in self.transforms)
1116
+
1117
+ @constraints.dependent_property
1118
+ def domain(self):
1119
+ return constraints.cat(
1120
+ [t.domain for t in self.transforms], self.dim, self.lengths
1121
+ )
1122
+
1123
+ @constraints.dependent_property
1124
+ def codomain(self):
1125
+ return constraints.cat(
1126
+ [t.codomain for t in self.transforms], self.dim, self.lengths
1127
+ )
1128
+
1129
+
1130
+ class StackTransform(Transform):
1131
+ """
1132
+ Transform functor that applies a sequence of transforms `tseq`
1133
+ component-wise to each submatrix at `dim`
1134
+ in a way compatible with :func:`torch.stack`.
1135
+
1136
+ Example::
1137
+
1138
+ x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1)
1139
+ t = StackTransform([ExpTransform(), identity_transform], dim=1)
1140
+ y = t(x)
1141
+ """
1142
+
1143
+ transforms: List[Transform]
1144
+
1145
+ def __init__(self, tseq, dim=0, cache_size=0):
1146
+ assert all(isinstance(t, Transform) for t in tseq)
1147
+ if cache_size:
1148
+ tseq = [t.with_cache(cache_size) for t in tseq]
1149
+ super().__init__(cache_size=cache_size)
1150
+ self.transforms = list(tseq)
1151
+ self.dim = dim
1152
+
1153
+ def with_cache(self, cache_size=1):
1154
+ if self._cache_size == cache_size:
1155
+ return self
1156
+ return StackTransform(self.transforms, self.dim, cache_size)
1157
+
1158
+ def _slice(self, z):
1159
+ return [z.select(self.dim, i) for i in range(z.size(self.dim))]
1160
+
1161
+ def _call(self, x):
1162
+ assert -x.dim() <= self.dim < x.dim()
1163
+ assert x.size(self.dim) == len(self.transforms)
1164
+ yslices = []
1165
+ for xslice, trans in zip(self._slice(x), self.transforms):
1166
+ yslices.append(trans(xslice))
1167
+ return torch.stack(yslices, dim=self.dim)
1168
+
1169
+ def _inverse(self, y):
1170
+ assert -y.dim() <= self.dim < y.dim()
1171
+ assert y.size(self.dim) == len(self.transforms)
1172
+ xslices = []
1173
+ for yslice, trans in zip(self._slice(y), self.transforms):
1174
+ xslices.append(trans.inv(yslice))
1175
+ return torch.stack(xslices, dim=self.dim)
1176
+
1177
+ def log_abs_det_jacobian(self, x, y):
1178
+ assert -x.dim() <= self.dim < x.dim()
1179
+ assert x.size(self.dim) == len(self.transforms)
1180
+ assert -y.dim() <= self.dim < y.dim()
1181
+ assert y.size(self.dim) == len(self.transforms)
1182
+ logdetjacs = []
1183
+ yslices = self._slice(y)
1184
+ xslices = self._slice(x)
1185
+ for xslice, yslice, trans in zip(xslices, yslices, self.transforms):
1186
+ logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice))
1187
+ return torch.stack(logdetjacs, dim=self.dim)
1188
+
1189
+ @property
1190
+ def bijective(self):
1191
+ return all(t.bijective for t in self.transforms)
1192
+
1193
+ @constraints.dependent_property
1194
+ def domain(self):
1195
+ return constraints.stack([t.domain for t in self.transforms], self.dim)
1196
+
1197
+ @constraints.dependent_property
1198
+ def codomain(self):
1199
+ return constraints.stack([t.codomain for t in self.transforms], self.dim)
1200
+
1201
+
1202
+ class CumulativeDistributionTransform(Transform):
1203
+ """
1204
+ Transform via the cumulative distribution function of a probability distribution.
1205
+
1206
+ Args:
1207
+ distribution (Distribution): Distribution whose cumulative distribution function to use for
1208
+ the transformation.
1209
+
1210
+ Example::
1211
+
1212
+ # Construct a Gaussian copula from a multivariate normal.
1213
+ base_dist = MultivariateNormal(
1214
+ loc=torch.zeros(2),
1215
+ scale_tril=LKJCholesky(2).sample(),
1216
+ )
1217
+ transform = CumulativeDistributionTransform(Normal(0, 1))
1218
+ copula = TransformedDistribution(base_dist, [transform])
1219
+ """
1220
+
1221
+ bijective = True
1222
+ codomain = constraints.unit_interval
1223
+ sign = +1
1224
+
1225
+ def __init__(self, distribution, cache_size=0):
1226
+ super().__init__(cache_size=cache_size)
1227
+ self.distribution = distribution
1228
+
1229
+ @property
1230
+ def domain(self):
1231
+ return self.distribution.support
1232
+
1233
+ def _call(self, x):
1234
+ return self.distribution.cdf(x)
1235
+
1236
+ def _inverse(self, y):
1237
+ return self.distribution.icdf(y)
1238
+
1239
+ def log_abs_det_jacobian(self, x, y):
1240
+ return self.distribution.log_prob(x)
1241
+
1242
+ def with_cache(self, cache_size=1):
1243
+ if self._cache_size == cache_size:
1244
+ return self
1245
+ return CumulativeDistributionTransform(self.distribution, cache_size=cache_size)
venv/lib/python3.10/site-packages/torch/distributions/uniform.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numbers import Number
2
+
3
+ import torch
4
+ from torch import nan
5
+ from torch.distributions import constraints
6
+ from torch.distributions.distribution import Distribution
7
+ from torch.distributions.utils import broadcast_all
8
+
9
+ __all__ = ["Uniform"]
10
+
11
+
12
+ class Uniform(Distribution):
13
+ r"""
14
+ Generates uniformly distributed random samples from the half-open interval
15
+ ``[low, high)``.
16
+
17
+ Example::
18
+
19
+ >>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
20
+ >>> m.sample() # uniformly distributed in the range [0.0, 5.0)
21
+ >>> # xdoctest: +SKIP
22
+ tensor([ 2.3418])
23
+
24
+ Args:
25
+ low (float or Tensor): lower range (inclusive).
26
+ high (float or Tensor): upper range (exclusive).
27
+ """
28
+ # TODO allow (loc,scale) parameterization to allow independent constraints.
29
+ arg_constraints = {
30
+ "low": constraints.dependent(is_discrete=False, event_dim=0),
31
+ "high": constraints.dependent(is_discrete=False, event_dim=0),
32
+ }
33
+ has_rsample = True
34
+
35
+ @property
36
+ def mean(self):
37
+ return (self.high + self.low) / 2
38
+
39
+ @property
40
+ def mode(self):
41
+ return nan * self.high
42
+
43
+ @property
44
+ def stddev(self):
45
+ return (self.high - self.low) / 12**0.5
46
+
47
+ @property
48
+ def variance(self):
49
+ return (self.high - self.low).pow(2) / 12
50
+
51
+ def __init__(self, low, high, validate_args=None):
52
+ self.low, self.high = broadcast_all(low, high)
53
+
54
+ if isinstance(low, Number) and isinstance(high, Number):
55
+ batch_shape = torch.Size()
56
+ else:
57
+ batch_shape = self.low.size()
58
+ super().__init__(batch_shape, validate_args=validate_args)
59
+
60
+ if self._validate_args and not torch.lt(self.low, self.high).all():
61
+ raise ValueError("Uniform is not defined when low>= high")
62
+
63
+ def expand(self, batch_shape, _instance=None):
64
+ new = self._get_checked_instance(Uniform, _instance)
65
+ batch_shape = torch.Size(batch_shape)
66
+ new.low = self.low.expand(batch_shape)
67
+ new.high = self.high.expand(batch_shape)
68
+ super(Uniform, new).__init__(batch_shape, validate_args=False)
69
+ new._validate_args = self._validate_args
70
+ return new
71
+
72
+ @constraints.dependent_property(is_discrete=False, event_dim=0)
73
+ def support(self):
74
+ return constraints.interval(self.low, self.high)
75
+
76
+ def rsample(self, sample_shape=torch.Size()):
77
+ shape = self._extended_shape(sample_shape)
78
+ rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device)
79
+ return self.low + rand * (self.high - self.low)
80
+
81
+ def log_prob(self, value):
82
+ if self._validate_args:
83
+ self._validate_sample(value)
84
+ lb = self.low.le(value).type_as(self.low)
85
+ ub = self.high.gt(value).type_as(self.low)
86
+ return torch.log(lb.mul(ub)) - torch.log(self.high - self.low)
87
+
88
+ def cdf(self, value):
89
+ if self._validate_args:
90
+ self._validate_sample(value)
91
+ result = (value - self.low) / (self.high - self.low)
92
+ return result.clamp(min=0, max=1)
93
+
94
+ def icdf(self, value):
95
+ result = value * (self.high - self.low) + self.low
96
+ return result
97
+
98
+ def entropy(self):
99
+ return torch.log(self.high - self.low)
venv/lib/python3.10/site-packages/torch/distributions/utils.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import update_wrapper
2
+ from numbers import Number
3
+ from typing import Any, Dict
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch.overrides import is_tensor_like
8
+
9
+ euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant
10
+
11
+ __all__ = [
12
+ "broadcast_all",
13
+ "logits_to_probs",
14
+ "clamp_probs",
15
+ "probs_to_logits",
16
+ "lazy_property",
17
+ "tril_matrix_to_vec",
18
+ "vec_to_tril_matrix",
19
+ ]
20
+
21
+
22
+ def broadcast_all(*values):
23
+ r"""
24
+ Given a list of values (possibly containing numbers), returns a list where each
25
+ value is broadcasted based on the following rules:
26
+ - `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`.
27
+ - numbers.Number instances (scalars) are upcast to tensors having
28
+ the same size and type as the first tensor passed to `values`. If all the
29
+ values are scalars, then they are upcasted to scalar Tensors.
30
+
31
+ Args:
32
+ values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__)
33
+
34
+ Raises:
35
+ ValueError: if any of the values is not a `numbers.Number` instance,
36
+ a `torch.*Tensor` instance, or an instance implementing __torch_function__
37
+ """
38
+ if not all(is_tensor_like(v) or isinstance(v, Number) for v in values):
39
+ raise ValueError(
40
+ "Input arguments must all be instances of numbers.Number, "
41
+ "torch.Tensor or objects implementing __torch_function__."
42
+ )
43
+ if not all(is_tensor_like(v) for v in values):
44
+ options: Dict[str, Any] = dict(dtype=torch.get_default_dtype())
45
+ for value in values:
46
+ if isinstance(value, torch.Tensor):
47
+ options = dict(dtype=value.dtype, device=value.device)
48
+ break
49
+ new_values = [
50
+ v if is_tensor_like(v) else torch.tensor(v, **options) for v in values
51
+ ]
52
+ return torch.broadcast_tensors(*new_values)
53
+ return torch.broadcast_tensors(*values)
54
+
55
+
56
+ def _standard_normal(shape, dtype, device):
57
+ if torch._C._get_tracing_state():
58
+ # [JIT WORKAROUND] lack of support for .normal_()
59
+ return torch.normal(
60
+ torch.zeros(shape, dtype=dtype, device=device),
61
+ torch.ones(shape, dtype=dtype, device=device),
62
+ )
63
+ return torch.empty(shape, dtype=dtype, device=device).normal_()
64
+
65
+
66
+ def _sum_rightmost(value, dim):
67
+ r"""
68
+ Sum out ``dim`` many rightmost dimensions of a given tensor.
69
+
70
+ Args:
71
+ value (Tensor): A tensor of ``.dim()`` at least ``dim``.
72
+ dim (int): The number of rightmost dims to sum out.
73
+ """
74
+ if dim == 0:
75
+ return value
76
+ required_shape = value.shape[:-dim] + (-1,)
77
+ return value.reshape(required_shape).sum(-1)
78
+
79
+
80
+ def logits_to_probs(logits, is_binary=False):
81
+ r"""
82
+ Converts a tensor of logits into probabilities. Note that for the
83
+ binary case, each value denotes log odds, whereas for the
84
+ multi-dimensional case, the values along the last dimension denote
85
+ the log probabilities (possibly unnormalized) of the events.
86
+ """
87
+ if is_binary:
88
+ return torch.sigmoid(logits)
89
+ return F.softmax(logits, dim=-1)
90
+
91
+
92
+ def clamp_probs(probs):
93
+ eps = torch.finfo(probs.dtype).eps
94
+ return probs.clamp(min=eps, max=1 - eps)
95
+
96
+
97
+ def probs_to_logits(probs, is_binary=False):
98
+ r"""
99
+ Converts a tensor of probabilities into logits. For the binary case,
100
+ this denotes the probability of occurrence of the event indexed by `1`.
101
+ For the multi-dimensional case, the values along the last dimension
102
+ denote the probabilities of occurrence of each of the events.
103
+ """
104
+ ps_clamped = clamp_probs(probs)
105
+ if is_binary:
106
+ return torch.log(ps_clamped) - torch.log1p(-ps_clamped)
107
+ return torch.log(ps_clamped)
108
+
109
+
110
+ class lazy_property:
111
+ r"""
112
+ Used as a decorator for lazy loading of class attributes. This uses a
113
+ non-data descriptor that calls the wrapped method to compute the property on
114
+ first call; thereafter replacing the wrapped method into an instance
115
+ attribute.
116
+ """
117
+
118
+ def __init__(self, wrapped):
119
+ self.wrapped = wrapped
120
+ update_wrapper(self, wrapped)
121
+
122
+ def __get__(self, instance, obj_type=None):
123
+ if instance is None:
124
+ return _lazy_property_and_property(self.wrapped)
125
+ with torch.enable_grad():
126
+ value = self.wrapped(instance)
127
+ setattr(instance, self.wrapped.__name__, value)
128
+ return value
129
+
130
+
131
+ class _lazy_property_and_property(lazy_property, property):
132
+ """We want lazy properties to look like multiple things.
133
+
134
+ * property when Sphinx autodoc looks
135
+ * lazy_property when Distribution validate_args looks
136
+ """
137
+
138
+ def __init__(self, wrapped):
139
+ property.__init__(self, wrapped)
140
+
141
+
142
+ def tril_matrix_to_vec(mat: torch.Tensor, diag: int = 0) -> torch.Tensor:
143
+ r"""
144
+ Convert a `D x D` matrix or a batch of matrices into a (batched) vector
145
+ which comprises of lower triangular elements from the matrix in row order.
146
+ """
147
+ n = mat.shape[-1]
148
+ if not torch._C._get_tracing_state() and (diag < -n or diag >= n):
149
+ raise ValueError(f"diag ({diag}) provided is outside [{-n}, {n-1}].")
150
+ arange = torch.arange(n, device=mat.device)
151
+ tril_mask = arange < arange.view(-1, 1) + (diag + 1)
152
+ vec = mat[..., tril_mask]
153
+ return vec
154
+
155
+
156
+ def vec_to_tril_matrix(vec: torch.Tensor, diag: int = 0) -> torch.Tensor:
157
+ r"""
158
+ Convert a vector or a batch of vectors into a batched `D x D`
159
+ lower triangular matrix containing elements from the vector in row order.
160
+ """
161
+ # +ve root of D**2 + (1+2*diag)*D - |diag| * (diag+1) - 2*vec.shape[-1] = 0
162
+ n = (
163
+ -(1 + 2 * diag)
164
+ + ((1 + 2 * diag) ** 2 + 8 * vec.shape[-1] + 4 * abs(diag) * (diag + 1)) ** 0.5
165
+ ) / 2
166
+ eps = torch.finfo(vec.dtype).eps
167
+ if not torch._C._get_tracing_state() and (round(n) - n > eps):
168
+ raise ValueError(
169
+ f"The size of last dimension is {vec.shape[-1]} which cannot be expressed as "
170
+ + "the lower triangular part of a square D x D matrix."
171
+ )
172
+ n = round(n.item()) if isinstance(n, torch.Tensor) else round(n)
173
+ mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n)))
174
+ arange = torch.arange(n, device=vec.device)
175
+ tril_mask = arange < arange.view(-1, 1) + (diag + 1)
176
+ mat[..., tril_mask] = vec
177
+ return mat
venv/lib/python3.10/site-packages/torch/distributions/von_mises.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.jit
5
+ from torch.distributions import constraints
6
+ from torch.distributions.distribution import Distribution
7
+ from torch.distributions.utils import broadcast_all, lazy_property
8
+
9
+ __all__ = ["VonMises"]
10
+
11
+
12
+ def _eval_poly(y, coef):
13
+ coef = list(coef)
14
+ result = coef.pop()
15
+ while coef:
16
+ result = coef.pop() + y * result
17
+ return result
18
+
19
+
20
+ _I0_COEF_SMALL = [
21
+ 1.0,
22
+ 3.5156229,
23
+ 3.0899424,
24
+ 1.2067492,
25
+ 0.2659732,
26
+ 0.360768e-1,
27
+ 0.45813e-2,
28
+ ]
29
+ _I0_COEF_LARGE = [
30
+ 0.39894228,
31
+ 0.1328592e-1,
32
+ 0.225319e-2,
33
+ -0.157565e-2,
34
+ 0.916281e-2,
35
+ -0.2057706e-1,
36
+ 0.2635537e-1,
37
+ -0.1647633e-1,
38
+ 0.392377e-2,
39
+ ]
40
+ _I1_COEF_SMALL = [
41
+ 0.5,
42
+ 0.87890594,
43
+ 0.51498869,
44
+ 0.15084934,
45
+ 0.2658733e-1,
46
+ 0.301532e-2,
47
+ 0.32411e-3,
48
+ ]
49
+ _I1_COEF_LARGE = [
50
+ 0.39894228,
51
+ -0.3988024e-1,
52
+ -0.362018e-2,
53
+ 0.163801e-2,
54
+ -0.1031555e-1,
55
+ 0.2282967e-1,
56
+ -0.2895312e-1,
57
+ 0.1787654e-1,
58
+ -0.420059e-2,
59
+ ]
60
+
61
+ _COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL]
62
+ _COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE]
63
+
64
+
65
+ def _log_modified_bessel_fn(x, order=0):
66
+ """
67
+ Returns ``log(I_order(x))`` for ``x > 0``,
68
+ where `order` is either 0 or 1.
69
+ """
70
+ assert order == 0 or order == 1
71
+
72
+ # compute small solution
73
+ y = x / 3.75
74
+ y = y * y
75
+ small = _eval_poly(y, _COEF_SMALL[order])
76
+ if order == 1:
77
+ small = x.abs() * small
78
+ small = small.log()
79
+
80
+ # compute large solution
81
+ y = 3.75 / x
82
+ large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log()
83
+
84
+ result = torch.where(x < 3.75, small, large)
85
+ return result
86
+
87
+
88
+ @torch.jit.script_if_tracing
89
+ def _rejection_sample(loc, concentration, proposal_r, x):
90
+ done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device)
91
+ while not done.all():
92
+ u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device)
93
+ u1, u2, u3 = u.unbind()
94
+ z = torch.cos(math.pi * u1)
95
+ f = (1 + proposal_r * z) / (proposal_r + z)
96
+ c = concentration * (proposal_r - f)
97
+ accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0)
98
+ if accept.any():
99
+ x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x)
100
+ done = done | accept
101
+ return (x + math.pi + loc) % (2 * math.pi) - math.pi
102
+
103
+
104
+ class VonMises(Distribution):
105
+ """
106
+ A circular von Mises distribution.
107
+
108
+ This implementation uses polar coordinates. The ``loc`` and ``value`` args
109
+ can be any real number (to facilitate unconstrained optimization), but are
110
+ interpreted as angles modulo 2 pi.
111
+
112
+ Example::
113
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
114
+ >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0]))
115
+ >>> m.sample() # von Mises distributed with loc=1 and concentration=1
116
+ tensor([1.9777])
117
+
118
+ :param torch.Tensor loc: an angle in radians.
119
+ :param torch.Tensor concentration: concentration parameter
120
+ """
121
+
122
+ arg_constraints = {"loc": constraints.real, "concentration": constraints.positive}
123
+ support = constraints.real
124
+ has_rsample = False
125
+
126
+ def __init__(self, loc, concentration, validate_args=None):
127
+ self.loc, self.concentration = broadcast_all(loc, concentration)
128
+ batch_shape = self.loc.shape
129
+ event_shape = torch.Size()
130
+ super().__init__(batch_shape, event_shape, validate_args)
131
+
132
+ def log_prob(self, value):
133
+ if self._validate_args:
134
+ self._validate_sample(value)
135
+ log_prob = self.concentration * torch.cos(value - self.loc)
136
+ log_prob = (
137
+ log_prob
138
+ - math.log(2 * math.pi)
139
+ - _log_modified_bessel_fn(self.concentration, order=0)
140
+ )
141
+ return log_prob
142
+
143
+ @lazy_property
144
+ def _loc(self):
145
+ return self.loc.to(torch.double)
146
+
147
+ @lazy_property
148
+ def _concentration(self):
149
+ return self.concentration.to(torch.double)
150
+
151
+ @lazy_property
152
+ def _proposal_r(self):
153
+ kappa = self._concentration
154
+ tau = 1 + (1 + 4 * kappa**2).sqrt()
155
+ rho = (tau - (2 * tau).sqrt()) / (2 * kappa)
156
+ _proposal_r = (1 + rho**2) / (2 * rho)
157
+ # second order Taylor expansion around 0 for small kappa
158
+ _proposal_r_taylor = 1 / kappa + kappa
159
+ return torch.where(kappa < 1e-5, _proposal_r_taylor, _proposal_r)
160
+
161
+ @torch.no_grad()
162
+ def sample(self, sample_shape=torch.Size()):
163
+ """
164
+ The sampling algorithm for the von Mises distribution is based on the
165
+ following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the
166
+ von Mises distribution." Applied Statistics (1979): 152-157.
167
+
168
+ Sampling is always done in double precision internally to avoid a hang
169
+ in _rejection_sample() for small values of the concentration, which
170
+ starts to happen for single precision around 1e-4 (see issue #88443).
171
+ """
172
+ shape = self._extended_shape(sample_shape)
173
+ x = torch.empty(shape, dtype=self._loc.dtype, device=self.loc.device)
174
+ return _rejection_sample(
175
+ self._loc, self._concentration, self._proposal_r, x
176
+ ).to(self.loc.dtype)
177
+
178
+ def expand(self, batch_shape):
179
+ try:
180
+ return super().expand(batch_shape)
181
+ except NotImplementedError:
182
+ validate_args = self.__dict__.get("_validate_args")
183
+ loc = self.loc.expand(batch_shape)
184
+ concentration = self.concentration.expand(batch_shape)
185
+ return type(self)(loc, concentration, validate_args=validate_args)
186
+
187
+ @property
188
+ def mean(self):
189
+ """
190
+ The provided mean is the circular one.
191
+ """
192
+ return self.loc
193
+
194
+ @property
195
+ def mode(self):
196
+ return self.loc
197
+
198
+ @lazy_property
199
+ def variance(self):
200
+ """
201
+ The provided variance is the circular one.
202
+ """
203
+ return (
204
+ 1
205
+ - (
206
+ _log_modified_bessel_fn(self.concentration, order=1)
207
+ - _log_modified_bessel_fn(self.concentration, order=0)
208
+ ).exp()
209
+ )
venv/lib/python3.10/site-packages/torch/distributions/weibull.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.distributions import constraints
3
+ from torch.distributions.exponential import Exponential
4
+ from torch.distributions.gumbel import euler_constant
5
+ from torch.distributions.transformed_distribution import TransformedDistribution
6
+ from torch.distributions.transforms import AffineTransform, PowerTransform
7
+ from torch.distributions.utils import broadcast_all
8
+
9
+ __all__ = ["Weibull"]
10
+
11
+
12
+ class Weibull(TransformedDistribution):
13
+ r"""
14
+ Samples from a two-parameter Weibull distribution.
15
+
16
+ Example:
17
+
18
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
19
+ >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0]))
20
+ >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1
21
+ tensor([ 0.4784])
22
+
23
+ Args:
24
+ scale (float or Tensor): Scale parameter of distribution (lambda).
25
+ concentration (float or Tensor): Concentration parameter of distribution (k/shape).
26
+ """
27
+ arg_constraints = {
28
+ "scale": constraints.positive,
29
+ "concentration": constraints.positive,
30
+ }
31
+ support = constraints.positive
32
+
33
+ def __init__(self, scale, concentration, validate_args=None):
34
+ self.scale, self.concentration = broadcast_all(scale, concentration)
35
+ self.concentration_reciprocal = self.concentration.reciprocal()
36
+ base_dist = Exponential(
37
+ torch.ones_like(self.scale), validate_args=validate_args
38
+ )
39
+ transforms = [
40
+ PowerTransform(exponent=self.concentration_reciprocal),
41
+ AffineTransform(loc=0, scale=self.scale),
42
+ ]
43
+ super().__init__(base_dist, transforms, validate_args=validate_args)
44
+
45
+ def expand(self, batch_shape, _instance=None):
46
+ new = self._get_checked_instance(Weibull, _instance)
47
+ new.scale = self.scale.expand(batch_shape)
48
+ new.concentration = self.concentration.expand(batch_shape)
49
+ new.concentration_reciprocal = new.concentration.reciprocal()
50
+ base_dist = self.base_dist.expand(batch_shape)
51
+ transforms = [
52
+ PowerTransform(exponent=new.concentration_reciprocal),
53
+ AffineTransform(loc=0, scale=new.scale),
54
+ ]
55
+ super(Weibull, new).__init__(base_dist, transforms, validate_args=False)
56
+ new._validate_args = self._validate_args
57
+ return new
58
+
59
+ @property
60
+ def mean(self):
61
+ return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal))
62
+
63
+ @property
64
+ def mode(self):
65
+ return (
66
+ self.scale
67
+ * ((self.concentration - 1) / self.concentration)
68
+ ** self.concentration.reciprocal()
69
+ )
70
+
71
+ @property
72
+ def variance(self):
73
+ return self.scale.pow(2) * (
74
+ torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal))
75
+ - torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal))
76
+ )
77
+
78
+ def entropy(self):
79
+ return (
80
+ euler_constant * (1 - self.concentration_reciprocal)
81
+ + torch.log(self.scale * self.concentration_reciprocal)
82
+ + 1
83
+ )
venv/lib/python3.10/site-packages/torch/mps/__init__.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""
2
+ This package enables an interface for accessing MPS (Metal Performance Shaders) backend in Python.
3
+ Metal is Apple's API for programming metal GPU (graphics processor unit). Using MPS means that increased
4
+ performance can be achieved, by running work on the metal GPU(s).
5
+ See https://developer.apple.com/documentation/metalperformanceshaders for more details.
6
+ """
7
+ import torch
8
+ from .. import Tensor
9
+
10
+ _is_in_bad_fork = getattr(torch._C, "_mps_is_in_bad_fork", lambda: False)
11
+ _default_mps_generator: torch._C.Generator = None # type: ignore[assignment]
12
+
13
+
14
+ # local helper function (not public or exported)
15
+ def _get_default_mps_generator() -> torch._C.Generator:
16
+ global _default_mps_generator
17
+ if _default_mps_generator is None:
18
+ _default_mps_generator = torch._C._mps_get_default_generator()
19
+ return _default_mps_generator
20
+
21
+
22
+ def synchronize() -> None:
23
+ r"""Waits for all kernels in all streams on a MPS device to complete."""
24
+ return torch._C._mps_deviceSynchronize()
25
+
26
+
27
+ def get_rng_state() -> Tensor:
28
+ r"""Returns the random number generator state as a ByteTensor."""
29
+ return _get_default_mps_generator().get_state()
30
+
31
+
32
+ def set_rng_state(new_state: Tensor) -> None:
33
+ r"""Sets the random number generator state.
34
+
35
+ Args:
36
+ new_state (torch.ByteTensor): The desired state
37
+ """
38
+ new_state_copy = new_state.clone(memory_format=torch.contiguous_format)
39
+ _get_default_mps_generator().set_state(new_state_copy)
40
+
41
+
42
+ def manual_seed(seed: int) -> None:
43
+ r"""Sets the seed for generating random numbers.
44
+
45
+ Args:
46
+ seed (int): The desired seed.
47
+ """
48
+ # the torch.mps.manual_seed() can be called from the global
49
+ # torch.manual_seed() in torch/random.py. So we need to make
50
+ # sure mps is available (otherwise we just return without
51
+ # erroring out)
52
+ if not torch._C._has_mps:
53
+ return
54
+ seed = int(seed)
55
+ _get_default_mps_generator().manual_seed(seed)
56
+
57
+
58
+ def seed() -> None:
59
+ r"""Sets the seed for generating random numbers to a random number."""
60
+ _get_default_mps_generator().seed()
61
+
62
+
63
+ def empty_cache() -> None:
64
+ r"""Releases all unoccupied cached memory currently held by the caching
65
+ allocator so that those can be used in other GPU applications.
66
+ """
67
+ torch._C._mps_emptyCache()
68
+
69
+
70
+ def set_per_process_memory_fraction(fraction) -> None:
71
+ r"""Set memory fraction for limiting process's memory allocation on MPS device.
72
+ The allowed value equals the fraction multiplied by recommended maximum device memory
73
+ (obtained from Metal API device.recommendedMaxWorkingSetSize).
74
+ If trying to allocate more than the allowed value in a process, it will raise an out of
75
+ memory error in allocator.
76
+
77
+ Args:
78
+ fraction(float): Range: 0~2. Allowed memory equals total_memory * fraction.
79
+
80
+ .. note::
81
+ Passing 0 to fraction means unlimited allocations
82
+ (may cause system failure if out of memory).
83
+ Passing fraction greater than 1.0 allows limits beyond the value
84
+ returned from device.recommendedMaxWorkingSetSize.
85
+ """
86
+
87
+ if not isinstance(fraction, float):
88
+ raise TypeError("Invalid type for fraction argument, must be `float`")
89
+ if fraction < 0 or fraction > 2:
90
+ raise ValueError(f"Invalid fraction value: {fraction}. Allowed range: 0~2")
91
+
92
+ torch._C._mps_setMemoryFraction(fraction)
93
+
94
+
95
+ def current_allocated_memory() -> int:
96
+ r"""Returns the current GPU memory occupied by tensors in bytes.
97
+
98
+ .. note::
99
+ The returned size does not include cached allocations in
100
+ memory pools of MPSAllocator.
101
+ """
102
+ return torch._C._mps_currentAllocatedMemory()
103
+
104
+
105
+ def driver_allocated_memory() -> int:
106
+ r"""Returns total GPU memory allocated by Metal driver for the process in bytes.
107
+
108
+ .. note::
109
+ The returned size includes cached allocations in MPSAllocator pools
110
+ as well as allocations from MPS/MPSGraph frameworks.
111
+ """
112
+ return torch._C._mps_driverAllocatedMemory()
113
+
114
+
115
+ from . import profiler
116
+ from .event import Event
117
+
118
+ __all__ = [
119
+ "get_rng_state",
120
+ "manual_seed",
121
+ "seed",
122
+ "set_rng_state",
123
+ "synchronize",
124
+ "empty_cache",
125
+ "set_per_process_memory_fraction",
126
+ "current_allocated_memory",
127
+ "driver_allocated_memory",
128
+ "Event",
129
+ "profiler",
130
+ ]
venv/lib/python3.10/site-packages/torch/mps/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.54 kB). View file
 
venv/lib/python3.10/site-packages/torch/mps/__pycache__/event.cpython-310.pyc ADDED
Binary file (2.33 kB). View file
 
venv/lib/python3.10/site-packages/torch/mps/__pycache__/profiler.cpython-310.pyc ADDED
Binary file (2.67 kB). View file
 
venv/lib/python3.10/site-packages/torch/mps/event.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class Event:
5
+ r"""Wrapper around an MPS event.
6
+
7
+ MPS events are synchronization markers that can be used to monitor the
8
+ device's progress, to accurately measure timing, and to synchronize MPS streams.
9
+
10
+ Args:
11
+ enable_timing (bool, optional): indicates if the event should measure time
12
+ (default: ``False``)
13
+ """
14
+
15
+ def __init__(self, enable_timing=False):
16
+ self.__eventId = torch._C._mps_acquireEvent(enable_timing)
17
+
18
+ def __del__(self):
19
+ # checks if torch._C is already destroyed
20
+ if hasattr(torch._C, "_mps_releaseEvent") and self.__eventId > 0:
21
+ torch._C._mps_releaseEvent(self.__eventId)
22
+
23
+ def record(self):
24
+ r"""Records the event in the default stream."""
25
+ torch._C._mps_recordEvent(self.__eventId)
26
+
27
+ def wait(self):
28
+ r"""Makes all future work submitted to the default stream wait for this event."""
29
+ torch._C._mps_waitForEvent(self.__eventId)
30
+
31
+ def query(self):
32
+ r"""Returns True if all work currently captured by event has completed."""
33
+ return torch._C._mps_queryEvent(self.__eventId)
34
+
35
+ def synchronize(self):
36
+ r"""Waits until the completion of all work currently captured in this event.
37
+ This prevents the CPU thread from proceeding until the event completes.
38
+ """
39
+ torch._C._mps_synchronizeEvent(self.__eventId)
40
+
41
+ def elapsed_time(self, end_event):
42
+ r"""Returns the time elapsed in milliseconds after the event was
43
+ recorded and before the end_event was recorded.
44
+ """
45
+ return torch._C._mps_elapsedTimeOfEvents(self.__eventId, end_event.__eventId)
venv/lib/python3.10/site-packages/torch/mps/profiler.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+
3
+ import torch
4
+
5
+ __all__ = ["start", "stop", "profile"]
6
+
7
+
8
+ def start(mode: str = "interval", wait_until_completed: bool = False) -> None:
9
+ r"""Start OS Signpost tracing from MPS backend.
10
+
11
+ The generated OS Signposts could be recorded and viewed in
12
+ XCode Instruments Logging tool.
13
+
14
+ Args:
15
+ mode(str): OS Signpost tracing mode could be "interval", "event",
16
+ or both "interval,event".
17
+ The interval mode traces the duration of execution of the operations,
18
+ whereas event mode marks the completion of executions.
19
+ See document `Recording Performance Data`_ for more info.
20
+ wait_until_completed(bool): Waits until the MPS Stream complete
21
+ executing each encoded GPU operation. This helps generating single
22
+ dispatches on the trace's timeline.
23
+ Note that enabling this option would affect the performance negatively.
24
+
25
+ .. _Recording Performance Data:
26
+ https://developer.apple.com/documentation/os/logging/recording_performance_data
27
+ """
28
+ mode_normalized = mode.lower().replace(" ", "")
29
+ torch._C._mps_profilerStartTrace(mode_normalized, wait_until_completed)
30
+
31
+
32
+ def stop():
33
+ r"""Stops generating OS Signpost tracing from MPS backend."""
34
+ torch._C._mps_profilerStopTrace()
35
+
36
+
37
+ @contextlib.contextmanager
38
+ def profile(mode: str = "interval", wait_until_completed: bool = False):
39
+ r"""Context Manager to enabling generating OS Signpost tracing from MPS backend.
40
+
41
+ Args:
42
+ mode(str): OS Signpost tracing mode could be "interval", "event",
43
+ or both "interval,event".
44
+ The interval mode traces the duration of execution of the operations,
45
+ whereas event mode marks the completion of executions.
46
+ See document `Recording Performance Data`_ for more info.
47
+ wait_until_completed(bool): Waits until the MPS Stream complete
48
+ executing each encoded GPU operation. This helps generating single
49
+ dispatches on the trace's timeline.
50
+ Note that enabling this option would affect the performance negatively.
51
+
52
+ .. _Recording Performance Data:
53
+ https://developer.apple.com/documentation/os/logging/recording_performance_data
54
+ """
55
+ try:
56
+ start(mode, wait_until_completed)
57
+ yield
58
+ finally:
59
+ stop()
venv/lib/python3.10/site-packages/torch/package/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .analyze.is_from_package import is_from_package
2
+ from .file_structure_representation import Directory
3
+ from .glob_group import GlobGroup
4
+ from .importer import (
5
+ Importer,
6
+ ObjMismatchError,
7
+ ObjNotFoundError,
8
+ OrderedImporter,
9
+ sys_importer,
10
+ )
11
+ from .package_exporter import EmptyMatchError, PackageExporter, PackagingError
12
+ from .package_importer import PackageImporter
venv/lib/python3.10/site-packages/torch/package/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (658 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_digraph.cpython-310.pyc ADDED
Binary file (5.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_directory_reader.cpython-310.pyc ADDED
Binary file (2.74 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_importlib.cpython-310.pyc ADDED
Binary file (2.37 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_mangling.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_mock.cpython-310.pyc ADDED
Binary file (2.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_package_pickler.cpython-310.pyc ADDED
Binary file (2.8 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_package_unpickler.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/_stdlib.cpython-310.pyc ADDED
Binary file (4.06 kB). View file
 
venv/lib/python3.10/site-packages/torch/package/__pycache__/file_structure_representation.cpython-310.pyc ADDED
Binary file (4.62 kB). View file