applied-ai-018 commited on
Commit
107775e
·
verified ·
1 Parent(s): 57fe09e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/10.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/10.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step40/zero/12.attention.dense.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step40/zero/12.attention.dense.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  7. ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/fp32.pt +3 -0
  8. ckpts/universal/global_step40/zero/9.attention.dense.weight/exp_avg.pt +3 -0
  9. ckpts/universal/global_step40/zero/9.attention.dense.weight/fp32.pt +3 -0
  10. venv/lib/python3.10/site-packages/numpy/lib/tests/__init__.py +0 -0
  11. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_financial_expired.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/numpy/lib/tests/test__datasource.py +350 -0
  38. venv/lib/python3.10/site-packages/numpy/lib/tests/test__iotools.py +353 -0
  39. venv/lib/python3.10/site-packages/numpy/lib/tests/test_arraysetops.py +944 -0
  40. venv/lib/python3.10/site-packages/numpy/lib/tests/test_arrayterator.py +46 -0
  41. venv/lib/python3.10/site-packages/numpy/lib/tests/test_recfunctions.py +1043 -0
  42. venv/lib/python3.10/site-packages/numpy/lib/tests/test_stride_tricks.py +645 -0
  43. venv/lib/python3.10/site-packages/numpy/lib/tests/test_twodim_base.py +541 -0
  44. venv/lib/python3.10/site-packages/numpy/lib/tests/test_type_check.py +478 -0
  45. venv/lib/python3.10/site-packages/numpy/polynomial/__init__.py +185 -0
  46. venv/lib/python3.10/site-packages/numpy/polynomial/__init__.pyi +22 -0
  47. venv/lib/python3.10/site-packages/numpy/polynomial/_polybase.py +1206 -0
  48. venv/lib/python3.10/site-packages/numpy/polynomial/_polybase.pyi +71 -0
  49. venv/lib/python3.10/site-packages/numpy/polynomial/chebyshev.py +2082 -0
  50. venv/lib/python3.10/site-packages/numpy/polynomial/chebyshev.pyi +51 -0
ckpts/universal/global_step40/zero/10.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07668e3c736ed7aee870347fca555aa27e3e5a06ef1f6b53f324bdb7448b7471
3
+ size 33555612
ckpts/universal/global_step40/zero/10.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec5da508486f706dc14540d9d806bf4295bae6a35ef889438cfc2213d13137e0
3
+ size 33555533
ckpts/universal/global_step40/zero/12.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69eb65755a49e34601e44dfdee33d5bb2bdb89d9202b41cf33ee53bedd7006ba
3
+ size 16778396
ckpts/universal/global_step40/zero/12.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:879afdd7645f14ea4414233174081716cc2ad3a6ebe0f1e7b3407dcf83e1e060
3
+ size 16778317
ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:503b302db904b251c1af1fdf78675b9c3a05a877edd1d41c361ede0e8747f1c0
3
+ size 9372
ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aabf39d0bc93dc514cb482dec68214e56a5a73e1c826ad7f4018c093fa26e0d4
3
+ size 9387
ckpts/universal/global_step40/zero/14.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c1d8bf442df2ada37b258ba5a0661fd6b591920a880d29b9d268557f78387e3
3
+ size 9293
ckpts/universal/global_step40/zero/9.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27380bef40fcbcbbb692a3afd6ead11c83757b56aa28b33ad12cd84aad5eb77e
3
+ size 16778396
ckpts/universal/global_step40/zero/9.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcac54f2919489c1db2ea365a871abfc284a0413ea41beabf4d9eda7ee8ab422
3
+ size 16778317
venv/lib/python3.10/site-packages/numpy/lib/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (183 Bytes). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-310.pyc ADDED
Binary file (11.3 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-310.pyc ADDED
Binary file (47.1 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-310.pyc ADDED
Binary file (25.5 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-310.pyc ADDED
Binary file (1.64 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_financial_expired.cpython-310.pyc ADDED
Binary file (596 Bytes). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-310.pyc ADDED
Binary file (36.1 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-310.pyc ADDED
Binary file (143 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-310.pyc ADDED
Binary file (28.9 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-310.pyc ADDED
Binary file (19.6 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-310.pyc ADDED
Binary file (96.5 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-310.pyc ADDED
Binary file (37.6 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-310.pyc ADDED
Binary file (7.46 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-310.pyc ADDED
Binary file (40.8 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-310.pyc ADDED
Binary file (14.3 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-310.pyc ADDED
Binary file (32.1 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-310.pyc ADDED
Binary file (30.2 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-310.pyc ADDED
Binary file (16.5 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-310.pyc ADDED
Binary file (16.8 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-310.pyc ADDED
Binary file (7.39 kB). View file
 
venv/lib/python3.10/site-packages/numpy/lib/tests/test__datasource.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pytest
3
+ from tempfile import mkdtemp, mkstemp, NamedTemporaryFile
4
+ from shutil import rmtree
5
+
6
+ import numpy.lib._datasource as datasource
7
+ from numpy.testing import assert_, assert_equal, assert_raises
8
+
9
+ import urllib.request as urllib_request
10
+ from urllib.parse import urlparse
11
+ from urllib.error import URLError
12
+
13
+
14
+ def urlopen_stub(url, data=None):
15
+ '''Stub to replace urlopen for testing.'''
16
+ if url == valid_httpurl():
17
+ tmpfile = NamedTemporaryFile(prefix='urltmp_')
18
+ return tmpfile
19
+ else:
20
+ raise URLError('Name or service not known')
21
+
22
+ # setup and teardown
23
+ old_urlopen = None
24
+
25
+
26
+ def setup_module():
27
+ global old_urlopen
28
+
29
+ old_urlopen = urllib_request.urlopen
30
+ urllib_request.urlopen = urlopen_stub
31
+
32
+
33
+ def teardown_module():
34
+ urllib_request.urlopen = old_urlopen
35
+
36
+ # A valid website for more robust testing
37
+ http_path = 'http://www.google.com/'
38
+ http_file = 'index.html'
39
+
40
+ http_fakepath = 'http://fake.abc.web/site/'
41
+ http_fakefile = 'fake.txt'
42
+
43
+ malicious_files = ['/etc/shadow', '../../shadow',
44
+ '..\\system.dat', 'c:\\windows\\system.dat']
45
+
46
+ magic_line = b'three is the magic number'
47
+
48
+
49
+ # Utility functions used by many tests
50
+ def valid_textfile(filedir):
51
+ # Generate and return a valid temporary file.
52
+ fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir, text=True)
53
+ os.close(fd)
54
+ return path
55
+
56
+
57
+ def invalid_textfile(filedir):
58
+ # Generate and return an invalid filename.
59
+ fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir)
60
+ os.close(fd)
61
+ os.remove(path)
62
+ return path
63
+
64
+
65
+ def valid_httpurl():
66
+ return http_path+http_file
67
+
68
+
69
+ def invalid_httpurl():
70
+ return http_fakepath+http_fakefile
71
+
72
+
73
+ def valid_baseurl():
74
+ return http_path
75
+
76
+
77
+ def invalid_baseurl():
78
+ return http_fakepath
79
+
80
+
81
+ def valid_httpfile():
82
+ return http_file
83
+
84
+
85
+ def invalid_httpfile():
86
+ return http_fakefile
87
+
88
+
89
+ class TestDataSourceOpen:
90
+ def setup_method(self):
91
+ self.tmpdir = mkdtemp()
92
+ self.ds = datasource.DataSource(self.tmpdir)
93
+
94
+ def teardown_method(self):
95
+ rmtree(self.tmpdir)
96
+ del self.ds
97
+
98
+ def test_ValidHTTP(self):
99
+ fh = self.ds.open(valid_httpurl())
100
+ assert_(fh)
101
+ fh.close()
102
+
103
+ def test_InvalidHTTP(self):
104
+ url = invalid_httpurl()
105
+ assert_raises(OSError, self.ds.open, url)
106
+ try:
107
+ self.ds.open(url)
108
+ except OSError as e:
109
+ # Regression test for bug fixed in r4342.
110
+ assert_(e.errno is None)
111
+
112
+ def test_InvalidHTTPCacheURLError(self):
113
+ assert_raises(URLError, self.ds._cache, invalid_httpurl())
114
+
115
+ def test_ValidFile(self):
116
+ local_file = valid_textfile(self.tmpdir)
117
+ fh = self.ds.open(local_file)
118
+ assert_(fh)
119
+ fh.close()
120
+
121
+ def test_InvalidFile(self):
122
+ invalid_file = invalid_textfile(self.tmpdir)
123
+ assert_raises(OSError, self.ds.open, invalid_file)
124
+
125
+ def test_ValidGzipFile(self):
126
+ try:
127
+ import gzip
128
+ except ImportError:
129
+ # We don't have the gzip capabilities to test.
130
+ pytest.skip()
131
+ # Test datasource's internal file_opener for Gzip files.
132
+ filepath = os.path.join(self.tmpdir, 'foobar.txt.gz')
133
+ fp = gzip.open(filepath, 'w')
134
+ fp.write(magic_line)
135
+ fp.close()
136
+ fp = self.ds.open(filepath)
137
+ result = fp.readline()
138
+ fp.close()
139
+ assert_equal(magic_line, result)
140
+
141
+ def test_ValidBz2File(self):
142
+ try:
143
+ import bz2
144
+ except ImportError:
145
+ # We don't have the bz2 capabilities to test.
146
+ pytest.skip()
147
+ # Test datasource's internal file_opener for BZip2 files.
148
+ filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2')
149
+ fp = bz2.BZ2File(filepath, 'w')
150
+ fp.write(magic_line)
151
+ fp.close()
152
+ fp = self.ds.open(filepath)
153
+ result = fp.readline()
154
+ fp.close()
155
+ assert_equal(magic_line, result)
156
+
157
+
158
+ class TestDataSourceExists:
159
+ def setup_method(self):
160
+ self.tmpdir = mkdtemp()
161
+ self.ds = datasource.DataSource(self.tmpdir)
162
+
163
+ def teardown_method(self):
164
+ rmtree(self.tmpdir)
165
+ del self.ds
166
+
167
+ def test_ValidHTTP(self):
168
+ assert_(self.ds.exists(valid_httpurl()))
169
+
170
+ def test_InvalidHTTP(self):
171
+ assert_equal(self.ds.exists(invalid_httpurl()), False)
172
+
173
+ def test_ValidFile(self):
174
+ # Test valid file in destpath
175
+ tmpfile = valid_textfile(self.tmpdir)
176
+ assert_(self.ds.exists(tmpfile))
177
+ # Test valid local file not in destpath
178
+ localdir = mkdtemp()
179
+ tmpfile = valid_textfile(localdir)
180
+ assert_(self.ds.exists(tmpfile))
181
+ rmtree(localdir)
182
+
183
+ def test_InvalidFile(self):
184
+ tmpfile = invalid_textfile(self.tmpdir)
185
+ assert_equal(self.ds.exists(tmpfile), False)
186
+
187
+
188
+ class TestDataSourceAbspath:
189
+ def setup_method(self):
190
+ self.tmpdir = os.path.abspath(mkdtemp())
191
+ self.ds = datasource.DataSource(self.tmpdir)
192
+
193
+ def teardown_method(self):
194
+ rmtree(self.tmpdir)
195
+ del self.ds
196
+
197
+ def test_ValidHTTP(self):
198
+ scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl())
199
+ local_path = os.path.join(self.tmpdir, netloc,
200
+ upath.strip(os.sep).strip('/'))
201
+ assert_equal(local_path, self.ds.abspath(valid_httpurl()))
202
+
203
+ def test_ValidFile(self):
204
+ tmpfile = valid_textfile(self.tmpdir)
205
+ tmpfilename = os.path.split(tmpfile)[-1]
206
+ # Test with filename only
207
+ assert_equal(tmpfile, self.ds.abspath(tmpfilename))
208
+ # Test filename with complete path
209
+ assert_equal(tmpfile, self.ds.abspath(tmpfile))
210
+
211
+ def test_InvalidHTTP(self):
212
+ scheme, netloc, upath, pms, qry, frg = urlparse(invalid_httpurl())
213
+ invalidhttp = os.path.join(self.tmpdir, netloc,
214
+ upath.strip(os.sep).strip('/'))
215
+ assert_(invalidhttp != self.ds.abspath(valid_httpurl()))
216
+
217
+ def test_InvalidFile(self):
218
+ invalidfile = valid_textfile(self.tmpdir)
219
+ tmpfile = valid_textfile(self.tmpdir)
220
+ tmpfilename = os.path.split(tmpfile)[-1]
221
+ # Test with filename only
222
+ assert_(invalidfile != self.ds.abspath(tmpfilename))
223
+ # Test filename with complete path
224
+ assert_(invalidfile != self.ds.abspath(tmpfile))
225
+
226
+ def test_sandboxing(self):
227
+ tmpfile = valid_textfile(self.tmpdir)
228
+ tmpfilename = os.path.split(tmpfile)[-1]
229
+
230
+ tmp_path = lambda x: os.path.abspath(self.ds.abspath(x))
231
+
232
+ assert_(tmp_path(valid_httpurl()).startswith(self.tmpdir))
233
+ assert_(tmp_path(invalid_httpurl()).startswith(self.tmpdir))
234
+ assert_(tmp_path(tmpfile).startswith(self.tmpdir))
235
+ assert_(tmp_path(tmpfilename).startswith(self.tmpdir))
236
+ for fn in malicious_files:
237
+ assert_(tmp_path(http_path+fn).startswith(self.tmpdir))
238
+ assert_(tmp_path(fn).startswith(self.tmpdir))
239
+
240
+ def test_windows_os_sep(self):
241
+ orig_os_sep = os.sep
242
+ try:
243
+ os.sep = '\\'
244
+ self.test_ValidHTTP()
245
+ self.test_ValidFile()
246
+ self.test_InvalidHTTP()
247
+ self.test_InvalidFile()
248
+ self.test_sandboxing()
249
+ finally:
250
+ os.sep = orig_os_sep
251
+
252
+
253
+ class TestRepositoryAbspath:
254
+ def setup_method(self):
255
+ self.tmpdir = os.path.abspath(mkdtemp())
256
+ self.repos = datasource.Repository(valid_baseurl(), self.tmpdir)
257
+
258
+ def teardown_method(self):
259
+ rmtree(self.tmpdir)
260
+ del self.repos
261
+
262
+ def test_ValidHTTP(self):
263
+ scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl())
264
+ local_path = os.path.join(self.repos._destpath, netloc,
265
+ upath.strip(os.sep).strip('/'))
266
+ filepath = self.repos.abspath(valid_httpfile())
267
+ assert_equal(local_path, filepath)
268
+
269
+ def test_sandboxing(self):
270
+ tmp_path = lambda x: os.path.abspath(self.repos.abspath(x))
271
+ assert_(tmp_path(valid_httpfile()).startswith(self.tmpdir))
272
+ for fn in malicious_files:
273
+ assert_(tmp_path(http_path+fn).startswith(self.tmpdir))
274
+ assert_(tmp_path(fn).startswith(self.tmpdir))
275
+
276
+ def test_windows_os_sep(self):
277
+ orig_os_sep = os.sep
278
+ try:
279
+ os.sep = '\\'
280
+ self.test_ValidHTTP()
281
+ self.test_sandboxing()
282
+ finally:
283
+ os.sep = orig_os_sep
284
+
285
+
286
+ class TestRepositoryExists:
287
+ def setup_method(self):
288
+ self.tmpdir = mkdtemp()
289
+ self.repos = datasource.Repository(valid_baseurl(), self.tmpdir)
290
+
291
+ def teardown_method(self):
292
+ rmtree(self.tmpdir)
293
+ del self.repos
294
+
295
+ def test_ValidFile(self):
296
+ # Create local temp file
297
+ tmpfile = valid_textfile(self.tmpdir)
298
+ assert_(self.repos.exists(tmpfile))
299
+
300
+ def test_InvalidFile(self):
301
+ tmpfile = invalid_textfile(self.tmpdir)
302
+ assert_equal(self.repos.exists(tmpfile), False)
303
+
304
+ def test_RemoveHTTPFile(self):
305
+ assert_(self.repos.exists(valid_httpurl()))
306
+
307
+ def test_CachedHTTPFile(self):
308
+ localfile = valid_httpurl()
309
+ # Create a locally cached temp file with an URL based
310
+ # directory structure. This is similar to what Repository.open
311
+ # would do.
312
+ scheme, netloc, upath, pms, qry, frg = urlparse(localfile)
313
+ local_path = os.path.join(self.repos._destpath, netloc)
314
+ os.mkdir(local_path, 0o0700)
315
+ tmpfile = valid_textfile(local_path)
316
+ assert_(self.repos.exists(tmpfile))
317
+
318
+
319
+ class TestOpenFunc:
320
+ def setup_method(self):
321
+ self.tmpdir = mkdtemp()
322
+
323
+ def teardown_method(self):
324
+ rmtree(self.tmpdir)
325
+
326
+ def test_DataSourceOpen(self):
327
+ local_file = valid_textfile(self.tmpdir)
328
+ # Test case where destpath is passed in
329
+ fp = datasource.open(local_file, destpath=self.tmpdir)
330
+ assert_(fp)
331
+ fp.close()
332
+ # Test case where default destpath is used
333
+ fp = datasource.open(local_file)
334
+ assert_(fp)
335
+ fp.close()
336
+
337
+ def test_del_attr_handling():
338
+ # DataSource __del__ can be called
339
+ # even if __init__ fails when the
340
+ # Exception object is caught by the
341
+ # caller as happens in refguide_check
342
+ # is_deprecated() function
343
+
344
+ ds = datasource.DataSource()
345
+ # simulate failed __init__ by removing key attribute
346
+ # produced within __init__ and expected by __del__
347
+ del ds._istmpdest
348
+ # should not raise an AttributeError if __del__
349
+ # gracefully handles failed __init__:
350
+ ds.__del__()
venv/lib/python3.10/site-packages/numpy/lib/tests/test__iotools.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ from datetime import date
3
+
4
+ import numpy as np
5
+ from numpy.testing import (
6
+ assert_, assert_equal, assert_allclose, assert_raises,
7
+ )
8
+ from numpy.lib._iotools import (
9
+ LineSplitter, NameValidator, StringConverter,
10
+ has_nested_fields, easy_dtype, flatten_dtype
11
+ )
12
+
13
+
14
+ class TestLineSplitter:
15
+ "Tests the LineSplitter class."
16
+
17
+ def test_no_delimiter(self):
18
+ "Test LineSplitter w/o delimiter"
19
+ strg = " 1 2 3 4 5 # test"
20
+ test = LineSplitter()(strg)
21
+ assert_equal(test, ['1', '2', '3', '4', '5'])
22
+ test = LineSplitter('')(strg)
23
+ assert_equal(test, ['1', '2', '3', '4', '5'])
24
+
25
+ def test_space_delimiter(self):
26
+ "Test space delimiter"
27
+ strg = " 1 2 3 4 5 # test"
28
+ test = LineSplitter(' ')(strg)
29
+ assert_equal(test, ['1', '2', '3', '4', '', '5'])
30
+ test = LineSplitter(' ')(strg)
31
+ assert_equal(test, ['1 2 3 4', '5'])
32
+
33
+ def test_tab_delimiter(self):
34
+ "Test tab delimiter"
35
+ strg = " 1\t 2\t 3\t 4\t 5 6"
36
+ test = LineSplitter('\t')(strg)
37
+ assert_equal(test, ['1', '2', '3', '4', '5 6'])
38
+ strg = " 1 2\t 3 4\t 5 6"
39
+ test = LineSplitter('\t')(strg)
40
+ assert_equal(test, ['1 2', '3 4', '5 6'])
41
+
42
+ def test_other_delimiter(self):
43
+ "Test LineSplitter on delimiter"
44
+ strg = "1,2,3,4,,5"
45
+ test = LineSplitter(',')(strg)
46
+ assert_equal(test, ['1', '2', '3', '4', '', '5'])
47
+ #
48
+ strg = " 1,2,3,4,,5 # test"
49
+ test = LineSplitter(',')(strg)
50
+ assert_equal(test, ['1', '2', '3', '4', '', '5'])
51
+
52
+ # gh-11028 bytes comment/delimiters should get encoded
53
+ strg = b" 1,2,3,4,,5 % test"
54
+ test = LineSplitter(delimiter=b',', comments=b'%')(strg)
55
+ assert_equal(test, ['1', '2', '3', '4', '', '5'])
56
+
57
+ def test_constant_fixed_width(self):
58
+ "Test LineSplitter w/ fixed-width fields"
59
+ strg = " 1 2 3 4 5 # test"
60
+ test = LineSplitter(3)(strg)
61
+ assert_equal(test, ['1', '2', '3', '4', '', '5', ''])
62
+ #
63
+ strg = " 1 3 4 5 6# test"
64
+ test = LineSplitter(20)(strg)
65
+ assert_equal(test, ['1 3 4 5 6'])
66
+ #
67
+ strg = " 1 3 4 5 6# test"
68
+ test = LineSplitter(30)(strg)
69
+ assert_equal(test, ['1 3 4 5 6'])
70
+
71
+ def test_variable_fixed_width(self):
72
+ strg = " 1 3 4 5 6# test"
73
+ test = LineSplitter((3, 6, 6, 3))(strg)
74
+ assert_equal(test, ['1', '3', '4 5', '6'])
75
+ #
76
+ strg = " 1 3 4 5 6# test"
77
+ test = LineSplitter((6, 6, 9))(strg)
78
+ assert_equal(test, ['1', '3 4', '5 6'])
79
+
80
+ # -----------------------------------------------------------------------------
81
+
82
+
83
+ class TestNameValidator:
84
+
85
+ def test_case_sensitivity(self):
86
+ "Test case sensitivity"
87
+ names = ['A', 'a', 'b', 'c']
88
+ test = NameValidator().validate(names)
89
+ assert_equal(test, ['A', 'a', 'b', 'c'])
90
+ test = NameValidator(case_sensitive=False).validate(names)
91
+ assert_equal(test, ['A', 'A_1', 'B', 'C'])
92
+ test = NameValidator(case_sensitive='upper').validate(names)
93
+ assert_equal(test, ['A', 'A_1', 'B', 'C'])
94
+ test = NameValidator(case_sensitive='lower').validate(names)
95
+ assert_equal(test, ['a', 'a_1', 'b', 'c'])
96
+
97
+ # check exceptions
98
+ assert_raises(ValueError, NameValidator, case_sensitive='foobar')
99
+
100
+ def test_excludelist(self):
101
+ "Test excludelist"
102
+ names = ['dates', 'data', 'Other Data', 'mask']
103
+ validator = NameValidator(excludelist=['dates', 'data', 'mask'])
104
+ test = validator.validate(names)
105
+ assert_equal(test, ['dates_', 'data_', 'Other_Data', 'mask_'])
106
+
107
+ def test_missing_names(self):
108
+ "Test validate missing names"
109
+ namelist = ('a', 'b', 'c')
110
+ validator = NameValidator()
111
+ assert_equal(validator(namelist), ['a', 'b', 'c'])
112
+ namelist = ('', 'b', 'c')
113
+ assert_equal(validator(namelist), ['f0', 'b', 'c'])
114
+ namelist = ('a', 'b', '')
115
+ assert_equal(validator(namelist), ['a', 'b', 'f0'])
116
+ namelist = ('', 'f0', '')
117
+ assert_equal(validator(namelist), ['f1', 'f0', 'f2'])
118
+
119
+ def test_validate_nb_names(self):
120
+ "Test validate nb names"
121
+ namelist = ('a', 'b', 'c')
122
+ validator = NameValidator()
123
+ assert_equal(validator(namelist, nbfields=1), ('a',))
124
+ assert_equal(validator(namelist, nbfields=5, defaultfmt="g%i"),
125
+ ['a', 'b', 'c', 'g0', 'g1'])
126
+
127
+ def test_validate_wo_names(self):
128
+ "Test validate no names"
129
+ namelist = None
130
+ validator = NameValidator()
131
+ assert_(validator(namelist) is None)
132
+ assert_equal(validator(namelist, nbfields=3), ['f0', 'f1', 'f2'])
133
+
134
+ # -----------------------------------------------------------------------------
135
+
136
+
137
+ def _bytes_to_date(s):
138
+ return date(*time.strptime(s, "%Y-%m-%d")[:3])
139
+
140
+
141
+ class TestStringConverter:
142
+ "Test StringConverter"
143
+
144
+ def test_creation(self):
145
+ "Test creation of a StringConverter"
146
+ converter = StringConverter(int, -99999)
147
+ assert_equal(converter._status, 1)
148
+ assert_equal(converter.default, -99999)
149
+
150
+ def test_upgrade(self):
151
+ "Tests the upgrade method."
152
+
153
+ converter = StringConverter()
154
+ assert_equal(converter._status, 0)
155
+
156
+ # test int
157
+ assert_equal(converter.upgrade('0'), 0)
158
+ assert_equal(converter._status, 1)
159
+
160
+ # On systems where long defaults to 32-bit, the statuses will be
161
+ # offset by one, so we check for this here.
162
+ import numpy.core.numeric as nx
163
+ status_offset = int(nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize)
164
+
165
+ # test int > 2**32
166
+ assert_equal(converter.upgrade('17179869184'), 17179869184)
167
+ assert_equal(converter._status, 1 + status_offset)
168
+
169
+ # test float
170
+ assert_allclose(converter.upgrade('0.'), 0.0)
171
+ assert_equal(converter._status, 2 + status_offset)
172
+
173
+ # test complex
174
+ assert_equal(converter.upgrade('0j'), complex('0j'))
175
+ assert_equal(converter._status, 3 + status_offset)
176
+
177
+ # test str
178
+ # note that the longdouble type has been skipped, so the
179
+ # _status increases by 2. Everything should succeed with
180
+ # unicode conversion (8).
181
+ for s in ['a', b'a']:
182
+ res = converter.upgrade(s)
183
+ assert_(type(res) is str)
184
+ assert_equal(res, 'a')
185
+ assert_equal(converter._status, 8 + status_offset)
186
+
187
+ def test_missing(self):
188
+ "Tests the use of missing values."
189
+ converter = StringConverter(missing_values=('missing',
190
+ 'missed'))
191
+ converter.upgrade('0')
192
+ assert_equal(converter('0'), 0)
193
+ assert_equal(converter(''), converter.default)
194
+ assert_equal(converter('missing'), converter.default)
195
+ assert_equal(converter('missed'), converter.default)
196
+ try:
197
+ converter('miss')
198
+ except ValueError:
199
+ pass
200
+
201
+ def test_upgrademapper(self):
202
+ "Tests updatemapper"
203
+ dateparser = _bytes_to_date
204
+ _original_mapper = StringConverter._mapper[:]
205
+ try:
206
+ StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1))
207
+ convert = StringConverter(dateparser, date(2000, 1, 1))
208
+ test = convert('2001-01-01')
209
+ assert_equal(test, date(2001, 1, 1))
210
+ test = convert('2009-01-01')
211
+ assert_equal(test, date(2009, 1, 1))
212
+ test = convert('')
213
+ assert_equal(test, date(2000, 1, 1))
214
+ finally:
215
+ StringConverter._mapper = _original_mapper
216
+
217
+ def test_string_to_object(self):
218
+ "Make sure that string-to-object functions are properly recognized"
219
+ old_mapper = StringConverter._mapper[:] # copy of list
220
+ conv = StringConverter(_bytes_to_date)
221
+ assert_equal(conv._mapper, old_mapper)
222
+ assert_(hasattr(conv, 'default'))
223
+
224
+ def test_keep_default(self):
225
+ "Make sure we don't lose an explicit default"
226
+ converter = StringConverter(None, missing_values='',
227
+ default=-999)
228
+ converter.upgrade('3.14159265')
229
+ assert_equal(converter.default, -999)
230
+ assert_equal(converter.type, np.dtype(float))
231
+ #
232
+ converter = StringConverter(
233
+ None, missing_values='', default=0)
234
+ converter.upgrade('3.14159265')
235
+ assert_equal(converter.default, 0)
236
+ assert_equal(converter.type, np.dtype(float))
237
+
238
+ def test_keep_default_zero(self):
239
+ "Check that we don't lose a default of 0"
240
+ converter = StringConverter(int, default=0,
241
+ missing_values="N/A")
242
+ assert_equal(converter.default, 0)
243
+
244
+ def test_keep_missing_values(self):
245
+ "Check that we're not losing missing values"
246
+ converter = StringConverter(int, default=0,
247
+ missing_values="N/A")
248
+ assert_equal(
249
+ converter.missing_values, {'', 'N/A'})
250
+
251
+ def test_int64_dtype(self):
252
+ "Check that int64 integer types can be specified"
253
+ converter = StringConverter(np.int64, default=0)
254
+ val = "-9223372036854775807"
255
+ assert_(converter(val) == -9223372036854775807)
256
+ val = "9223372036854775807"
257
+ assert_(converter(val) == 9223372036854775807)
258
+
259
+ def test_uint64_dtype(self):
260
+ "Check that uint64 integer types can be specified"
261
+ converter = StringConverter(np.uint64, default=0)
262
+ val = "9223372043271415339"
263
+ assert_(converter(val) == 9223372043271415339)
264
+
265
+
266
+ class TestMiscFunctions:
267
+
268
+ def test_has_nested_dtype(self):
269
+ "Test has_nested_dtype"
270
+ ndtype = np.dtype(float)
271
+ assert_equal(has_nested_fields(ndtype), False)
272
+ ndtype = np.dtype([('A', '|S3'), ('B', float)])
273
+ assert_equal(has_nested_fields(ndtype), False)
274
+ ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
275
+ assert_equal(has_nested_fields(ndtype), True)
276
+
277
+ def test_easy_dtype(self):
278
+ "Test ndtype on dtypes"
279
+ # Simple case
280
+ ndtype = float
281
+ assert_equal(easy_dtype(ndtype), np.dtype(float))
282
+ # As string w/o names
283
+ ndtype = "i4, f8"
284
+ assert_equal(easy_dtype(ndtype),
285
+ np.dtype([('f0', "i4"), ('f1', "f8")]))
286
+ # As string w/o names but different default format
287
+ assert_equal(easy_dtype(ndtype, defaultfmt="field_%03i"),
288
+ np.dtype([('field_000', "i4"), ('field_001', "f8")]))
289
+ # As string w/ names
290
+ ndtype = "i4, f8"
291
+ assert_equal(easy_dtype(ndtype, names="a, b"),
292
+ np.dtype([('a', "i4"), ('b', "f8")]))
293
+ # As string w/ names (too many)
294
+ ndtype = "i4, f8"
295
+ assert_equal(easy_dtype(ndtype, names="a, b, c"),
296
+ np.dtype([('a', "i4"), ('b', "f8")]))
297
+ # As string w/ names (not enough)
298
+ ndtype = "i4, f8"
299
+ assert_equal(easy_dtype(ndtype, names=", b"),
300
+ np.dtype([('f0', "i4"), ('b', "f8")]))
301
+ # ... (with different default format)
302
+ assert_equal(easy_dtype(ndtype, names="a", defaultfmt="f%02i"),
303
+ np.dtype([('a', "i4"), ('f00', "f8")]))
304
+ # As list of tuples w/o names
305
+ ndtype = [('A', int), ('B', float)]
306
+ assert_equal(easy_dtype(ndtype), np.dtype([('A', int), ('B', float)]))
307
+ # As list of tuples w/ names
308
+ assert_equal(easy_dtype(ndtype, names="a,b"),
309
+ np.dtype([('a', int), ('b', float)]))
310
+ # As list of tuples w/ not enough names
311
+ assert_equal(easy_dtype(ndtype, names="a"),
312
+ np.dtype([('a', int), ('f0', float)]))
313
+ # As list of tuples w/ too many names
314
+ assert_equal(easy_dtype(ndtype, names="a,b,c"),
315
+ np.dtype([('a', int), ('b', float)]))
316
+ # As list of types w/o names
317
+ ndtype = (int, float, float)
318
+ assert_equal(easy_dtype(ndtype),
319
+ np.dtype([('f0', int), ('f1', float), ('f2', float)]))
320
+ # As list of types w names
321
+ ndtype = (int, float, float)
322
+ assert_equal(easy_dtype(ndtype, names="a, b, c"),
323
+ np.dtype([('a', int), ('b', float), ('c', float)]))
324
+ # As simple dtype w/ names
325
+ ndtype = np.dtype(float)
326
+ assert_equal(easy_dtype(ndtype, names="a, b, c"),
327
+ np.dtype([(_, float) for _ in ('a', 'b', 'c')]))
328
+ # As simple dtype w/o names (but multiple fields)
329
+ ndtype = np.dtype(float)
330
+ assert_equal(
331
+ easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"),
332
+ np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')]))
333
+
334
+ def test_flatten_dtype(self):
335
+ "Testing flatten_dtype"
336
+ # Standard dtype
337
+ dt = np.dtype([("a", "f8"), ("b", "f8")])
338
+ dt_flat = flatten_dtype(dt)
339
+ assert_equal(dt_flat, [float, float])
340
+ # Recursive dtype
341
+ dt = np.dtype([("a", [("aa", '|S1'), ("ab", '|S2')]), ("b", int)])
342
+ dt_flat = flatten_dtype(dt)
343
+ assert_equal(dt_flat, [np.dtype('|S1'), np.dtype('|S2'), int])
344
+ # dtype with shaped fields
345
+ dt = np.dtype([("a", (float, 2)), ("b", (int, 3))])
346
+ dt_flat = flatten_dtype(dt)
347
+ assert_equal(dt_flat, [float, int])
348
+ dt_flat = flatten_dtype(dt, True)
349
+ assert_equal(dt_flat, [float] * 2 + [int] * 3)
350
+ # dtype w/ titles
351
+ dt = np.dtype([(("a", "A"), "f8"), (("b", "B"), "f8")])
352
+ dt_flat = flatten_dtype(dt)
353
+ assert_equal(dt_flat, [float, float])
venv/lib/python3.10/site-packages/numpy/lib/tests/test_arraysetops.py ADDED
@@ -0,0 +1,944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test functions for 1D array set operations.
2
+
3
+ """
4
+ import numpy as np
5
+
6
+ from numpy.testing import (assert_array_equal, assert_equal,
7
+ assert_raises, assert_raises_regex)
8
+ from numpy.lib.arraysetops import (
9
+ ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin
10
+ )
11
+ import pytest
12
+
13
+
14
+ class TestSetOps:
15
+
16
+ def test_intersect1d(self):
17
+ # unique inputs
18
+ a = np.array([5, 7, 1, 2])
19
+ b = np.array([2, 4, 3, 1, 5])
20
+
21
+ ec = np.array([1, 2, 5])
22
+ c = intersect1d(a, b, assume_unique=True)
23
+ assert_array_equal(c, ec)
24
+
25
+ # non-unique inputs
26
+ a = np.array([5, 5, 7, 1, 2])
27
+ b = np.array([2, 1, 4, 3, 3, 1, 5])
28
+
29
+ ed = np.array([1, 2, 5])
30
+ c = intersect1d(a, b)
31
+ assert_array_equal(c, ed)
32
+ assert_array_equal([], intersect1d([], []))
33
+
34
+ def test_intersect1d_array_like(self):
35
+ # See gh-11772
36
+ class Test:
37
+ def __array__(self):
38
+ return np.arange(3)
39
+
40
+ a = Test()
41
+ res = intersect1d(a, a)
42
+ assert_array_equal(res, a)
43
+ res = intersect1d([1, 2, 3], [1, 2, 3])
44
+ assert_array_equal(res, [1, 2, 3])
45
+
46
+ def test_intersect1d_indices(self):
47
+ # unique inputs
48
+ a = np.array([1, 2, 3, 4])
49
+ b = np.array([2, 1, 4, 6])
50
+ c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
51
+ ee = np.array([1, 2, 4])
52
+ assert_array_equal(c, ee)
53
+ assert_array_equal(a[i1], ee)
54
+ assert_array_equal(b[i2], ee)
55
+
56
+ # non-unique inputs
57
+ a = np.array([1, 2, 2, 3, 4, 3, 2])
58
+ b = np.array([1, 8, 4, 2, 2, 3, 2, 3])
59
+ c, i1, i2 = intersect1d(a, b, return_indices=True)
60
+ ef = np.array([1, 2, 3, 4])
61
+ assert_array_equal(c, ef)
62
+ assert_array_equal(a[i1], ef)
63
+ assert_array_equal(b[i2], ef)
64
+
65
+ # non1d, unique inputs
66
+ a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]])
67
+ b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]])
68
+ c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
69
+ ui1 = np.unravel_index(i1, a.shape)
70
+ ui2 = np.unravel_index(i2, b.shape)
71
+ ea = np.array([2, 6, 7, 8])
72
+ assert_array_equal(ea, a[ui1])
73
+ assert_array_equal(ea, b[ui2])
74
+
75
+ # non1d, not assumed to be uniqueinputs
76
+ a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]])
77
+ b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]])
78
+ c, i1, i2 = intersect1d(a, b, return_indices=True)
79
+ ui1 = np.unravel_index(i1, a.shape)
80
+ ui2 = np.unravel_index(i2, b.shape)
81
+ ea = np.array([2, 7, 8])
82
+ assert_array_equal(ea, a[ui1])
83
+ assert_array_equal(ea, b[ui2])
84
+
85
+ def test_setxor1d(self):
86
+ a = np.array([5, 7, 1, 2])
87
+ b = np.array([2, 4, 3, 1, 5])
88
+
89
+ ec = np.array([3, 4, 7])
90
+ c = setxor1d(a, b)
91
+ assert_array_equal(c, ec)
92
+
93
+ a = np.array([1, 2, 3])
94
+ b = np.array([6, 5, 4])
95
+
96
+ ec = np.array([1, 2, 3, 4, 5, 6])
97
+ c = setxor1d(a, b)
98
+ assert_array_equal(c, ec)
99
+
100
+ a = np.array([1, 8, 2, 3])
101
+ b = np.array([6, 5, 4, 8])
102
+
103
+ ec = np.array([1, 2, 3, 4, 5, 6])
104
+ c = setxor1d(a, b)
105
+ assert_array_equal(c, ec)
106
+
107
+ assert_array_equal([], setxor1d([], []))
108
+
109
+ def test_ediff1d(self):
110
+ zero_elem = np.array([])
111
+ one_elem = np.array([1])
112
+ two_elem = np.array([1, 2])
113
+
114
+ assert_array_equal([], ediff1d(zero_elem))
115
+ assert_array_equal([0], ediff1d(zero_elem, to_begin=0))
116
+ assert_array_equal([0], ediff1d(zero_elem, to_end=0))
117
+ assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0))
118
+ assert_array_equal([], ediff1d(one_elem))
119
+ assert_array_equal([1], ediff1d(two_elem))
120
+ assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9))
121
+ assert_array_equal([5, 6, 1, 7, 8],
122
+ ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8]))
123
+ assert_array_equal([1, 9], ediff1d(two_elem, to_end=9))
124
+ assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8]))
125
+ assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7))
126
+ assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6]))
127
+
128
+ @pytest.mark.parametrize("ary, prepend, append, expected", [
129
+ # should fail because trying to cast
130
+ # np.nan standard floating point value
131
+ # into an integer array:
132
+ (np.array([1, 2, 3], dtype=np.int64),
133
+ None,
134
+ np.nan,
135
+ 'to_end'),
136
+ # should fail because attempting
137
+ # to downcast to int type:
138
+ (np.array([1, 2, 3], dtype=np.int64),
139
+ np.array([5, 7, 2], dtype=np.float32),
140
+ None,
141
+ 'to_begin'),
142
+ # should fail because attempting to cast
143
+ # two special floating point values
144
+ # to integers (on both sides of ary),
145
+ # `to_begin` is in the error message as the impl checks this first:
146
+ (np.array([1., 3., 9.], dtype=np.int8),
147
+ np.nan,
148
+ np.nan,
149
+ 'to_begin'),
150
+ ])
151
+ def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected):
152
+ # verify resolution of gh-11490
153
+
154
+ # specifically, raise an appropriate
155
+ # Exception when attempting to append or
156
+ # prepend with an incompatible type
157
+ msg = 'dtype of `{}` must be compatible'.format(expected)
158
+ with assert_raises_regex(TypeError, msg):
159
+ ediff1d(ary=ary,
160
+ to_end=append,
161
+ to_begin=prepend)
162
+
163
+ @pytest.mark.parametrize(
164
+ "ary,prepend,append,expected",
165
+ [
166
+ (np.array([1, 2, 3], dtype=np.int16),
167
+ 2**16, # will be cast to int16 under same kind rule.
168
+ 2**16 + 4,
169
+ np.array([0, 1, 1, 4], dtype=np.int16)),
170
+ (np.array([1, 2, 3], dtype=np.float32),
171
+ np.array([5], dtype=np.float64),
172
+ None,
173
+ np.array([5, 1, 1], dtype=np.float32)),
174
+ (np.array([1, 2, 3], dtype=np.int32),
175
+ 0,
176
+ 0,
177
+ np.array([0, 1, 1, 0], dtype=np.int32)),
178
+ (np.array([1, 2, 3], dtype=np.int64),
179
+ 3,
180
+ -9,
181
+ np.array([3, 1, 1, -9], dtype=np.int64)),
182
+ ]
183
+ )
184
+ def test_ediff1d_scalar_handling(self,
185
+ ary,
186
+ prepend,
187
+ append,
188
+ expected):
189
+ # maintain backwards-compatibility
190
+ # of scalar prepend / append behavior
191
+ # in ediff1d following fix for gh-11490
192
+ actual = np.ediff1d(ary=ary,
193
+ to_end=append,
194
+ to_begin=prepend)
195
+ assert_equal(actual, expected)
196
+ assert actual.dtype == expected.dtype
197
+
198
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
199
+ def test_isin(self, kind):
200
+ # the tests for in1d cover most of isin's behavior
201
+ # if in1d is removed, would need to change those tests to test
202
+ # isin instead.
203
+ def _isin_slow(a, b):
204
+ b = np.asarray(b).flatten().tolist()
205
+ return a in b
206
+ isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1})
207
+
208
+ def assert_isin_equal(a, b):
209
+ x = isin(a, b, kind=kind)
210
+ y = isin_slow(a, b)
211
+ assert_array_equal(x, y)
212
+
213
+ # multidimensional arrays in both arguments
214
+ a = np.arange(24).reshape([2, 3, 4])
215
+ b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]])
216
+ assert_isin_equal(a, b)
217
+
218
+ # array-likes as both arguments
219
+ c = [(9, 8), (7, 6)]
220
+ d = (9, 7)
221
+ assert_isin_equal(c, d)
222
+
223
+ # zero-d array:
224
+ f = np.array(3)
225
+ assert_isin_equal(f, b)
226
+ assert_isin_equal(a, f)
227
+ assert_isin_equal(f, f)
228
+
229
+ # scalar:
230
+ assert_isin_equal(5, b)
231
+ assert_isin_equal(a, 6)
232
+ assert_isin_equal(5, 6)
233
+
234
+ # empty array-like:
235
+ if kind != "table":
236
+ # An empty list will become float64,
237
+ # which is invalid for kind="table"
238
+ x = []
239
+ assert_isin_equal(x, b)
240
+ assert_isin_equal(a, x)
241
+ assert_isin_equal(x, x)
242
+
243
+ # empty array with various types:
244
+ for dtype in [bool, np.int64, np.float64]:
245
+ if kind == "table" and dtype == np.float64:
246
+ continue
247
+
248
+ if dtype in {np.int64, np.float64}:
249
+ ar = np.array([10, 20, 30], dtype=dtype)
250
+ elif dtype in {bool}:
251
+ ar = np.array([True, False, False])
252
+
253
+ empty_array = np.array([], dtype=dtype)
254
+
255
+ assert_isin_equal(empty_array, ar)
256
+ assert_isin_equal(ar, empty_array)
257
+ assert_isin_equal(empty_array, empty_array)
258
+
259
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
260
+ def test_in1d(self, kind):
261
+ # we use two different sizes for the b array here to test the
262
+ # two different paths in in1d().
263
+ for mult in (1, 10):
264
+ # One check without np.array to make sure lists are handled correct
265
+ a = [5, 7, 1, 2]
266
+ b = [2, 4, 3, 1, 5] * mult
267
+ ec = np.array([True, False, True, True])
268
+ c = in1d(a, b, assume_unique=True, kind=kind)
269
+ assert_array_equal(c, ec)
270
+
271
+ a[0] = 8
272
+ ec = np.array([False, False, True, True])
273
+ c = in1d(a, b, assume_unique=True, kind=kind)
274
+ assert_array_equal(c, ec)
275
+
276
+ a[0], a[3] = 4, 8
277
+ ec = np.array([True, False, True, False])
278
+ c = in1d(a, b, assume_unique=True, kind=kind)
279
+ assert_array_equal(c, ec)
280
+
281
+ a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
282
+ b = [2, 3, 4] * mult
283
+ ec = [False, True, False, True, True, True, True, True, True,
284
+ False, True, False, False, False]
285
+ c = in1d(a, b, kind=kind)
286
+ assert_array_equal(c, ec)
287
+
288
+ b = b + [5, 5, 4] * mult
289
+ ec = [True, True, True, True, True, True, True, True, True, True,
290
+ True, False, True, True]
291
+ c = in1d(a, b, kind=kind)
292
+ assert_array_equal(c, ec)
293
+
294
+ a = np.array([5, 7, 1, 2])
295
+ b = np.array([2, 4, 3, 1, 5] * mult)
296
+ ec = np.array([True, False, True, True])
297
+ c = in1d(a, b, kind=kind)
298
+ assert_array_equal(c, ec)
299
+
300
+ a = np.array([5, 7, 1, 1, 2])
301
+ b = np.array([2, 4, 3, 3, 1, 5] * mult)
302
+ ec = np.array([True, False, True, True, True])
303
+ c = in1d(a, b, kind=kind)
304
+ assert_array_equal(c, ec)
305
+
306
+ a = np.array([5, 5])
307
+ b = np.array([2, 2] * mult)
308
+ ec = np.array([False, False])
309
+ c = in1d(a, b, kind=kind)
310
+ assert_array_equal(c, ec)
311
+
312
+ a = np.array([5])
313
+ b = np.array([2])
314
+ ec = np.array([False])
315
+ c = in1d(a, b, kind=kind)
316
+ assert_array_equal(c, ec)
317
+
318
+ if kind in {None, "sort"}:
319
+ assert_array_equal(in1d([], [], kind=kind), [])
320
+
321
+ def test_in1d_char_array(self):
322
+ a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
323
+ b = np.array(['a', 'c'])
324
+
325
+ ec = np.array([True, False, True, False, False, True, False, False])
326
+ c = in1d(a, b)
327
+
328
+ assert_array_equal(c, ec)
329
+
330
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
331
+ def test_in1d_invert(self, kind):
332
+ "Test in1d's invert parameter"
333
+ # We use two different sizes for the b array here to test the
334
+ # two different paths in in1d().
335
+ for mult in (1, 10):
336
+ a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
337
+ b = [2, 3, 4] * mult
338
+ assert_array_equal(np.invert(in1d(a, b, kind=kind)),
339
+ in1d(a, b, invert=True, kind=kind))
340
+
341
+ # float:
342
+ if kind in {None, "sort"}:
343
+ for mult in (1, 10):
344
+ a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5],
345
+ dtype=np.float32)
346
+ b = [2, 3, 4] * mult
347
+ b = np.array(b, dtype=np.float32)
348
+ assert_array_equal(np.invert(in1d(a, b, kind=kind)),
349
+ in1d(a, b, invert=True, kind=kind))
350
+
351
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
352
+ def test_in1d_ravel(self, kind):
353
+ # Test that in1d ravels its input arrays. This is not documented
354
+ # behavior however. The test is to ensure consistentency.
355
+ a = np.arange(6).reshape(2, 3)
356
+ b = np.arange(3, 9).reshape(3, 2)
357
+ long_b = np.arange(3, 63).reshape(30, 2)
358
+ ec = np.array([False, False, False, True, True, True])
359
+
360
+ assert_array_equal(in1d(a, b, assume_unique=True, kind=kind),
361
+ ec)
362
+ assert_array_equal(in1d(a, b, assume_unique=False,
363
+ kind=kind),
364
+ ec)
365
+ assert_array_equal(in1d(a, long_b, assume_unique=True,
366
+ kind=kind),
367
+ ec)
368
+ assert_array_equal(in1d(a, long_b, assume_unique=False,
369
+ kind=kind),
370
+ ec)
371
+
372
+ def test_in1d_hit_alternate_algorithm(self):
373
+ """Hit the standard isin code with integers"""
374
+ # Need extreme range to hit standard code
375
+ # This hits it without the use of kind='table'
376
+ a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64)
377
+ b = np.array([2, 3, 4, 1e9], dtype=np.int64)
378
+ expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool)
379
+ assert_array_equal(expected, in1d(a, b))
380
+ assert_array_equal(np.invert(expected), in1d(a, b, invert=True))
381
+
382
+ a = np.array([5, 7, 1, 2], dtype=np.int64)
383
+ b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64)
384
+ ec = np.array([True, False, True, True])
385
+ c = in1d(a, b, assume_unique=True)
386
+ assert_array_equal(c, ec)
387
+
388
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
389
+ def test_in1d_boolean(self, kind):
390
+ """Test that in1d works for boolean input"""
391
+ a = np.array([True, False])
392
+ b = np.array([False, False, False])
393
+ expected = np.array([False, True])
394
+ assert_array_equal(expected,
395
+ in1d(a, b, kind=kind))
396
+ assert_array_equal(np.invert(expected),
397
+ in1d(a, b, invert=True, kind=kind))
398
+
399
+ @pytest.mark.parametrize("kind", [None, "sort"])
400
+ def test_in1d_timedelta(self, kind):
401
+ """Test that in1d works for timedelta input"""
402
+ rstate = np.random.RandomState(0)
403
+ a = rstate.randint(0, 100, size=10)
404
+ b = rstate.randint(0, 100, size=10)
405
+ truth = in1d(a, b)
406
+ a_timedelta = a.astype("timedelta64[s]")
407
+ b_timedelta = b.astype("timedelta64[s]")
408
+ assert_array_equal(truth, in1d(a_timedelta, b_timedelta, kind=kind))
409
+
410
+ def test_in1d_table_timedelta_fails(self):
411
+ a = np.array([0, 1, 2], dtype="timedelta64[s]")
412
+ b = a
413
+ # Make sure it raises a value error:
414
+ with pytest.raises(ValueError):
415
+ in1d(a, b, kind="table")
416
+
417
+ @pytest.mark.parametrize(
418
+ "dtype1,dtype2",
419
+ [
420
+ (np.int8, np.int16),
421
+ (np.int16, np.int8),
422
+ (np.uint8, np.uint16),
423
+ (np.uint16, np.uint8),
424
+ (np.uint8, np.int16),
425
+ (np.int16, np.uint8),
426
+ ]
427
+ )
428
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
429
+ def test_in1d_mixed_dtype(self, dtype1, dtype2, kind):
430
+ """Test that in1d works as expected for mixed dtype input."""
431
+ is_dtype2_signed = np.issubdtype(dtype2, np.signedinteger)
432
+ ar1 = np.array([0, 0, 1, 1], dtype=dtype1)
433
+
434
+ if is_dtype2_signed:
435
+ ar2 = np.array([-128, 0, 127], dtype=dtype2)
436
+ else:
437
+ ar2 = np.array([127, 0, 255], dtype=dtype2)
438
+
439
+ expected = np.array([True, True, False, False])
440
+
441
+ expect_failure = kind == "table" and any((
442
+ dtype1 == np.int8 and dtype2 == np.int16,
443
+ dtype1 == np.int16 and dtype2 == np.int8
444
+ ))
445
+
446
+ if expect_failure:
447
+ with pytest.raises(RuntimeError, match="exceed the maximum"):
448
+ in1d(ar1, ar2, kind=kind)
449
+ else:
450
+ assert_array_equal(in1d(ar1, ar2, kind=kind), expected)
451
+
452
+ @pytest.mark.parametrize("kind", [None, "sort", "table"])
453
+ def test_in1d_mixed_boolean(self, kind):
454
+ """Test that in1d works as expected for bool/int input."""
455
+ for dtype in np.typecodes["AllInteger"]:
456
+ a = np.array([True, False, False], dtype=bool)
457
+ b = np.array([0, 0, 0, 0], dtype=dtype)
458
+ expected = np.array([False, True, True], dtype=bool)
459
+ assert_array_equal(in1d(a, b, kind=kind), expected)
460
+
461
+ a, b = b, a
462
+ expected = np.array([True, True, True, True], dtype=bool)
463
+ assert_array_equal(in1d(a, b, kind=kind), expected)
464
+
465
+ def test_in1d_first_array_is_object(self):
466
+ ar1 = [None]
467
+ ar2 = np.array([1]*10)
468
+ expected = np.array([False])
469
+ result = np.in1d(ar1, ar2)
470
+ assert_array_equal(result, expected)
471
+
472
+ def test_in1d_second_array_is_object(self):
473
+ ar1 = 1
474
+ ar2 = np.array([None]*10)
475
+ expected = np.array([False])
476
+ result = np.in1d(ar1, ar2)
477
+ assert_array_equal(result, expected)
478
+
479
+ def test_in1d_both_arrays_are_object(self):
480
+ ar1 = [None]
481
+ ar2 = np.array([None]*10)
482
+ expected = np.array([True])
483
+ result = np.in1d(ar1, ar2)
484
+ assert_array_equal(result, expected)
485
+
486
+ def test_in1d_both_arrays_have_structured_dtype(self):
487
+ # Test arrays of a structured data type containing an integer field
488
+ # and a field of dtype `object` allowing for arbitrary Python objects
489
+ dt = np.dtype([('field1', int), ('field2', object)])
490
+ ar1 = np.array([(1, None)], dtype=dt)
491
+ ar2 = np.array([(1, None)]*10, dtype=dt)
492
+ expected = np.array([True])
493
+ result = np.in1d(ar1, ar2)
494
+ assert_array_equal(result, expected)
495
+
496
+ def test_in1d_with_arrays_containing_tuples(self):
497
+ ar1 = np.array([(1,), 2], dtype=object)
498
+ ar2 = np.array([(1,), 2], dtype=object)
499
+ expected = np.array([True, True])
500
+ result = np.in1d(ar1, ar2)
501
+ assert_array_equal(result, expected)
502
+ result = np.in1d(ar1, ar2, invert=True)
503
+ assert_array_equal(result, np.invert(expected))
504
+
505
+ # An integer is added at the end of the array to make sure
506
+ # that the array builder will create the array with tuples
507
+ # and after it's created the integer is removed.
508
+ # There's a bug in the array constructor that doesn't handle
509
+ # tuples properly and adding the integer fixes that.
510
+ ar1 = np.array([(1,), (2, 1), 1], dtype=object)
511
+ ar1 = ar1[:-1]
512
+ ar2 = np.array([(1,), (2, 1), 1], dtype=object)
513
+ ar2 = ar2[:-1]
514
+ expected = np.array([True, True])
515
+ result = np.in1d(ar1, ar2)
516
+ assert_array_equal(result, expected)
517
+ result = np.in1d(ar1, ar2, invert=True)
518
+ assert_array_equal(result, np.invert(expected))
519
+
520
+ ar1 = np.array([(1,), (2, 3), 1], dtype=object)
521
+ ar1 = ar1[:-1]
522
+ ar2 = np.array([(1,), 2], dtype=object)
523
+ expected = np.array([True, False])
524
+ result = np.in1d(ar1, ar2)
525
+ assert_array_equal(result, expected)
526
+ result = np.in1d(ar1, ar2, invert=True)
527
+ assert_array_equal(result, np.invert(expected))
528
+
529
+ def test_in1d_errors(self):
530
+ """Test that in1d raises expected errors."""
531
+
532
+ # Error 1: `kind` is not one of 'sort' 'table' or None.
533
+ ar1 = np.array([1, 2, 3, 4, 5])
534
+ ar2 = np.array([2, 4, 6, 8, 10])
535
+ assert_raises(ValueError, in1d, ar1, ar2, kind='quicksort')
536
+
537
+ # Error 2: `kind="table"` does not work for non-integral arrays.
538
+ obj_ar1 = np.array([1, 'a', 3, 'b', 5], dtype=object)
539
+ obj_ar2 = np.array([1, 'a', 3, 'b', 5], dtype=object)
540
+ assert_raises(ValueError, in1d, obj_ar1, obj_ar2, kind='table')
541
+
542
+ for dtype in [np.int32, np.int64]:
543
+ ar1 = np.array([-1, 2, 3, 4, 5], dtype=dtype)
544
+ # The range of this array will overflow:
545
+ overflow_ar2 = np.array([-1, np.iinfo(dtype).max], dtype=dtype)
546
+
547
+ # Error 3: `kind="table"` will trigger a runtime error
548
+ # if there is an integer overflow expected when computing the
549
+ # range of ar2
550
+ assert_raises(
551
+ RuntimeError,
552
+ in1d, ar1, overflow_ar2, kind='table'
553
+ )
554
+
555
+ # Non-error: `kind=None` will *not* trigger a runtime error
556
+ # if there is an integer overflow, it will switch to
557
+ # the `sort` algorithm.
558
+ result = np.in1d(ar1, overflow_ar2, kind=None)
559
+ assert_array_equal(result, [True] + [False] * 4)
560
+ result = np.in1d(ar1, overflow_ar2, kind='sort')
561
+ assert_array_equal(result, [True] + [False] * 4)
562
+
563
+ def test_union1d(self):
564
+ a = np.array([5, 4, 7, 1, 2])
565
+ b = np.array([2, 4, 3, 3, 2, 1, 5])
566
+
567
+ ec = np.array([1, 2, 3, 4, 5, 7])
568
+ c = union1d(a, b)
569
+ assert_array_equal(c, ec)
570
+
571
+ # Tests gh-10340, arguments to union1d should be
572
+ # flattened if they are not already 1D
573
+ x = np.array([[0, 1, 2], [3, 4, 5]])
574
+ y = np.array([0, 1, 2, 3, 4])
575
+ ez = np.array([0, 1, 2, 3, 4, 5])
576
+ z = union1d(x, y)
577
+ assert_array_equal(z, ez)
578
+
579
+ assert_array_equal([], union1d([], []))
580
+
581
+ def test_setdiff1d(self):
582
+ a = np.array([6, 5, 4, 7, 1, 2, 7, 4])
583
+ b = np.array([2, 4, 3, 3, 2, 1, 5])
584
+
585
+ ec = np.array([6, 7])
586
+ c = setdiff1d(a, b)
587
+ assert_array_equal(c, ec)
588
+
589
+ a = np.arange(21)
590
+ b = np.arange(19)
591
+ ec = np.array([19, 20])
592
+ c = setdiff1d(a, b)
593
+ assert_array_equal(c, ec)
594
+
595
+ assert_array_equal([], setdiff1d([], []))
596
+ a = np.array((), np.uint32)
597
+ assert_equal(setdiff1d(a, []).dtype, np.uint32)
598
+
599
+ def test_setdiff1d_unique(self):
600
+ a = np.array([3, 2, 1])
601
+ b = np.array([7, 5, 2])
602
+ expected = np.array([3, 1])
603
+ actual = setdiff1d(a, b, assume_unique=True)
604
+ assert_equal(actual, expected)
605
+
606
+ def test_setdiff1d_char_array(self):
607
+ a = np.array(['a', 'b', 'c'])
608
+ b = np.array(['a', 'b', 's'])
609
+ assert_array_equal(setdiff1d(a, b), np.array(['c']))
610
+
611
+ def test_manyways(self):
612
+ a = np.array([5, 7, 1, 2, 8])
613
+ b = np.array([9, 8, 2, 4, 3, 1, 5])
614
+
615
+ c1 = setxor1d(a, b)
616
+ aux1 = intersect1d(a, b)
617
+ aux2 = union1d(a, b)
618
+ c2 = setdiff1d(aux2, aux1)
619
+ assert_array_equal(c1, c2)
620
+
621
+
622
+ class TestUnique:
623
+
624
+ def test_unique_1d(self):
625
+
626
+ def check_all(a, b, i1, i2, c, dt):
627
+ base_msg = 'check {0} failed for type {1}'
628
+
629
+ msg = base_msg.format('values', dt)
630
+ v = unique(a)
631
+ assert_array_equal(v, b, msg)
632
+
633
+ msg = base_msg.format('return_index', dt)
634
+ v, j = unique(a, True, False, False)
635
+ assert_array_equal(v, b, msg)
636
+ assert_array_equal(j, i1, msg)
637
+
638
+ msg = base_msg.format('return_inverse', dt)
639
+ v, j = unique(a, False, True, False)
640
+ assert_array_equal(v, b, msg)
641
+ assert_array_equal(j, i2, msg)
642
+
643
+ msg = base_msg.format('return_counts', dt)
644
+ v, j = unique(a, False, False, True)
645
+ assert_array_equal(v, b, msg)
646
+ assert_array_equal(j, c, msg)
647
+
648
+ msg = base_msg.format('return_index and return_inverse', dt)
649
+ v, j1, j2 = unique(a, True, True, False)
650
+ assert_array_equal(v, b, msg)
651
+ assert_array_equal(j1, i1, msg)
652
+ assert_array_equal(j2, i2, msg)
653
+
654
+ msg = base_msg.format('return_index and return_counts', dt)
655
+ v, j1, j2 = unique(a, True, False, True)
656
+ assert_array_equal(v, b, msg)
657
+ assert_array_equal(j1, i1, msg)
658
+ assert_array_equal(j2, c, msg)
659
+
660
+ msg = base_msg.format('return_inverse and return_counts', dt)
661
+ v, j1, j2 = unique(a, False, True, True)
662
+ assert_array_equal(v, b, msg)
663
+ assert_array_equal(j1, i2, msg)
664
+ assert_array_equal(j2, c, msg)
665
+
666
+ msg = base_msg.format(('return_index, return_inverse '
667
+ 'and return_counts'), dt)
668
+ v, j1, j2, j3 = unique(a, True, True, True)
669
+ assert_array_equal(v, b, msg)
670
+ assert_array_equal(j1, i1, msg)
671
+ assert_array_equal(j2, i2, msg)
672
+ assert_array_equal(j3, c, msg)
673
+
674
+ a = [5, 7, 1, 2, 1, 5, 7]*10
675
+ b = [1, 2, 5, 7]
676
+ i1 = [2, 3, 0, 1]
677
+ i2 = [2, 3, 0, 1, 0, 2, 3]*10
678
+ c = np.multiply([2, 1, 2, 2], 10)
679
+
680
+ # test for numeric arrays
681
+ types = []
682
+ types.extend(np.typecodes['AllInteger'])
683
+ types.extend(np.typecodes['AllFloat'])
684
+ types.append('datetime64[D]')
685
+ types.append('timedelta64[D]')
686
+ for dt in types:
687
+ aa = np.array(a, dt)
688
+ bb = np.array(b, dt)
689
+ check_all(aa, bb, i1, i2, c, dt)
690
+
691
+ # test for object arrays
692
+ dt = 'O'
693
+ aa = np.empty(len(a), dt)
694
+ aa[:] = a
695
+ bb = np.empty(len(b), dt)
696
+ bb[:] = b
697
+ check_all(aa, bb, i1, i2, c, dt)
698
+
699
+ # test for structured arrays
700
+ dt = [('', 'i'), ('', 'i')]
701
+ aa = np.array(list(zip(a, a)), dt)
702
+ bb = np.array(list(zip(b, b)), dt)
703
+ check_all(aa, bb, i1, i2, c, dt)
704
+
705
+ # test for ticket #2799
706
+ aa = [1. + 0.j, 1 - 1.j, 1]
707
+ assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j])
708
+
709
+ # test for ticket #4785
710
+ a = [(1, 2), (1, 2), (2, 3)]
711
+ unq = [1, 2, 3]
712
+ inv = [0, 1, 0, 1, 1, 2]
713
+ a1 = unique(a)
714
+ assert_array_equal(a1, unq)
715
+ a2, a2_inv = unique(a, return_inverse=True)
716
+ assert_array_equal(a2, unq)
717
+ assert_array_equal(a2_inv, inv)
718
+
719
+ # test for chararrays with return_inverse (gh-5099)
720
+ a = np.chararray(5)
721
+ a[...] = ''
722
+ a2, a2_inv = np.unique(a, return_inverse=True)
723
+ assert_array_equal(a2_inv, np.zeros(5))
724
+
725
+ # test for ticket #9137
726
+ a = []
727
+ a1_idx = np.unique(a, return_index=True)[1]
728
+ a2_inv = np.unique(a, return_inverse=True)[1]
729
+ a3_idx, a3_inv = np.unique(a, return_index=True,
730
+ return_inverse=True)[1:]
731
+ assert_equal(a1_idx.dtype, np.intp)
732
+ assert_equal(a2_inv.dtype, np.intp)
733
+ assert_equal(a3_idx.dtype, np.intp)
734
+ assert_equal(a3_inv.dtype, np.intp)
735
+
736
+ # test for ticket 2111 - float
737
+ a = [2.0, np.nan, 1.0, np.nan]
738
+ ua = [1.0, 2.0, np.nan]
739
+ ua_idx = [2, 0, 1]
740
+ ua_inv = [1, 2, 0, 2]
741
+ ua_cnt = [1, 1, 2]
742
+ assert_equal(np.unique(a), ua)
743
+ assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
744
+ assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
745
+ assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
746
+
747
+ # test for ticket 2111 - complex
748
+ a = [2.0-1j, np.nan, 1.0+1j, complex(0.0, np.nan), complex(1.0, np.nan)]
749
+ ua = [1.0+1j, 2.0-1j, complex(0.0, np.nan)]
750
+ ua_idx = [2, 0, 3]
751
+ ua_inv = [1, 2, 0, 2, 2]
752
+ ua_cnt = [1, 1, 3]
753
+ assert_equal(np.unique(a), ua)
754
+ assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
755
+ assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
756
+ assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
757
+
758
+ # test for ticket 2111 - datetime64
759
+ nat = np.datetime64('nat')
760
+ a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat]
761
+ ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat]
762
+ ua_idx = [2, 0, 1]
763
+ ua_inv = [1, 2, 0, 2]
764
+ ua_cnt = [1, 1, 2]
765
+ assert_equal(np.unique(a), ua)
766
+ assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
767
+ assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
768
+ assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
769
+
770
+ # test for ticket 2111 - timedelta
771
+ nat = np.timedelta64('nat')
772
+ a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat]
773
+ ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat]
774
+ ua_idx = [2, 0, 1]
775
+ ua_inv = [1, 2, 0, 2]
776
+ ua_cnt = [1, 1, 2]
777
+ assert_equal(np.unique(a), ua)
778
+ assert_equal(np.unique(a, return_index=True), (ua, ua_idx))
779
+ assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv))
780
+ assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt))
781
+
782
+ # test for gh-19300
783
+ all_nans = [np.nan] * 4
784
+ ua = [np.nan]
785
+ ua_idx = [0]
786
+ ua_inv = [0, 0, 0, 0]
787
+ ua_cnt = [4]
788
+ assert_equal(np.unique(all_nans), ua)
789
+ assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx))
790
+ assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv))
791
+ assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt))
792
+
793
+ def test_unique_axis_errors(self):
794
+ assert_raises(TypeError, self._run_axis_tests, object)
795
+ assert_raises(TypeError, self._run_axis_tests,
796
+ [('a', int), ('b', object)])
797
+
798
+ assert_raises(np.AxisError, unique, np.arange(10), axis=2)
799
+ assert_raises(np.AxisError, unique, np.arange(10), axis=-2)
800
+
801
+ def test_unique_axis_list(self):
802
+ msg = "Unique failed on list of lists"
803
+ inp = [[0, 1, 0], [0, 1, 0]]
804
+ inp_arr = np.asarray(inp)
805
+ assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg)
806
+ assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg)
807
+
808
+ def test_unique_axis(self):
809
+ types = []
810
+ types.extend(np.typecodes['AllInteger'])
811
+ types.extend(np.typecodes['AllFloat'])
812
+ types.append('datetime64[D]')
813
+ types.append('timedelta64[D]')
814
+ types.append([('a', int), ('b', int)])
815
+ types.append([('a', int), ('b', float)])
816
+
817
+ for dtype in types:
818
+ self._run_axis_tests(dtype)
819
+
820
+ msg = 'Non-bitwise-equal booleans test failed'
821
+ data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool)
822
+ result = np.array([[False, True], [True, True]], dtype=bool)
823
+ assert_array_equal(unique(data, axis=0), result, msg)
824
+
825
+ msg = 'Negative zero equality test failed'
826
+ data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]])
827
+ result = np.array([[-0.0, 0.0]])
828
+ assert_array_equal(unique(data, axis=0), result, msg)
829
+
830
+ @pytest.mark.parametrize("axis", [0, -1])
831
+ def test_unique_1d_with_axis(self, axis):
832
+ x = np.array([4, 3, 2, 3, 2, 1, 2, 2])
833
+ uniq = unique(x, axis=axis)
834
+ assert_array_equal(uniq, [1, 2, 3, 4])
835
+
836
+ def test_unique_axis_zeros(self):
837
+ # issue 15559
838
+ single_zero = np.empty(shape=(2, 0), dtype=np.int8)
839
+ uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True,
840
+ return_inverse=True, return_counts=True)
841
+
842
+ # there's 1 element of shape (0,) along axis 0
843
+ assert_equal(uniq.dtype, single_zero.dtype)
844
+ assert_array_equal(uniq, np.empty(shape=(1, 0)))
845
+ assert_array_equal(idx, np.array([0]))
846
+ assert_array_equal(inv, np.array([0, 0]))
847
+ assert_array_equal(cnt, np.array([2]))
848
+
849
+ # there's 0 elements of shape (2,) along axis 1
850
+ uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True,
851
+ return_inverse=True, return_counts=True)
852
+
853
+ assert_equal(uniq.dtype, single_zero.dtype)
854
+ assert_array_equal(uniq, np.empty(shape=(2, 0)))
855
+ assert_array_equal(idx, np.array([]))
856
+ assert_array_equal(inv, np.array([]))
857
+ assert_array_equal(cnt, np.array([]))
858
+
859
+ # test a "complicated" shape
860
+ shape = (0, 2, 0, 3, 0, 4, 0)
861
+ multiple_zeros = np.empty(shape=shape)
862
+ for axis in range(len(shape)):
863
+ expected_shape = list(shape)
864
+ if shape[axis] == 0:
865
+ expected_shape[axis] = 0
866
+ else:
867
+ expected_shape[axis] = 1
868
+
869
+ assert_array_equal(unique(multiple_zeros, axis=axis),
870
+ np.empty(shape=expected_shape))
871
+
872
+ def test_unique_masked(self):
873
+ # issue 8664
874
+ x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0],
875
+ dtype='uint8')
876
+ y = np.ma.masked_equal(x, 0)
877
+
878
+ v = np.unique(y)
879
+ v2, i, c = np.unique(y, return_index=True, return_counts=True)
880
+
881
+ msg = 'Unique returned different results when asked for index'
882
+ assert_array_equal(v.data, v2.data, msg)
883
+ assert_array_equal(v.mask, v2.mask, msg)
884
+
885
+ def test_unique_sort_order_with_axis(self):
886
+ # These tests fail if sorting along axis is done by treating subarrays
887
+ # as unsigned byte strings. See gh-10495.
888
+ fmt = "sort order incorrect for integer type '%s'"
889
+ for dt in 'bhilq':
890
+ a = np.array([[-1], [0]], dt)
891
+ b = np.unique(a, axis=0)
892
+ assert_array_equal(a, b, fmt % dt)
893
+
894
+ def _run_axis_tests(self, dtype):
895
+ data = np.array([[0, 1, 0, 0],
896
+ [1, 0, 0, 0],
897
+ [0, 1, 0, 0],
898
+ [1, 0, 0, 0]]).astype(dtype)
899
+
900
+ msg = 'Unique with 1d array and axis=0 failed'
901
+ result = np.array([0, 1])
902
+ assert_array_equal(unique(data), result.astype(dtype), msg)
903
+
904
+ msg = 'Unique with 2d array and axis=0 failed'
905
+ result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]])
906
+ assert_array_equal(unique(data, axis=0), result.astype(dtype), msg)
907
+
908
+ msg = 'Unique with 2d array and axis=1 failed'
909
+ result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]])
910
+ assert_array_equal(unique(data, axis=1), result.astype(dtype), msg)
911
+
912
+ msg = 'Unique with 3d array and axis=2 failed'
913
+ data3d = np.array([[[1, 1],
914
+ [1, 0]],
915
+ [[0, 1],
916
+ [0, 0]]]).astype(dtype)
917
+ result = np.take(data3d, [1, 0], axis=2)
918
+ assert_array_equal(unique(data3d, axis=2), result, msg)
919
+
920
+ uniq, idx, inv, cnt = unique(data, axis=0, return_index=True,
921
+ return_inverse=True, return_counts=True)
922
+ msg = "Unique's return_index=True failed with axis=0"
923
+ assert_array_equal(data[idx], uniq, msg)
924
+ msg = "Unique's return_inverse=True failed with axis=0"
925
+ assert_array_equal(uniq[inv], data)
926
+ msg = "Unique's return_counts=True failed with axis=0"
927
+ assert_array_equal(cnt, np.array([2, 2]), msg)
928
+
929
+ uniq, idx, inv, cnt = unique(data, axis=1, return_index=True,
930
+ return_inverse=True, return_counts=True)
931
+ msg = "Unique's return_index=True failed with axis=1"
932
+ assert_array_equal(data[:, idx], uniq)
933
+ msg = "Unique's return_inverse=True failed with axis=1"
934
+ assert_array_equal(uniq[:, inv], data)
935
+ msg = "Unique's return_counts=True failed with axis=1"
936
+ assert_array_equal(cnt, np.array([2, 1, 1]), msg)
937
+
938
+ def test_unique_nanequals(self):
939
+ # issue 20326
940
+ a = np.array([1, 1, np.nan, np.nan, np.nan])
941
+ unq = np.unique(a)
942
+ not_unq = np.unique(a, equal_nan=False)
943
+ assert_array_equal(unq, np.array([1, np.nan]))
944
+ assert_array_equal(not_unq, np.array([1, np.nan, np.nan, np.nan]))
venv/lib/python3.10/site-packages/numpy/lib/tests/test_arrayterator.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from operator import mul
2
+ from functools import reduce
3
+
4
+ import numpy as np
5
+ from numpy.random import randint
6
+ from numpy.lib import Arrayterator
7
+ from numpy.testing import assert_
8
+
9
+
10
+ def test():
11
+ np.random.seed(np.arange(10))
12
+
13
+ # Create a random array
14
+ ndims = randint(5)+1
15
+ shape = tuple(randint(10)+1 for dim in range(ndims))
16
+ els = reduce(mul, shape)
17
+ a = np.arange(els)
18
+ a.shape = shape
19
+
20
+ buf_size = randint(2*els)
21
+ b = Arrayterator(a, buf_size)
22
+
23
+ # Check that each block has at most ``buf_size`` elements
24
+ for block in b:
25
+ assert_(len(block.flat) <= (buf_size or els))
26
+
27
+ # Check that all elements are iterated correctly
28
+ assert_(list(b.flat) == list(a.flat))
29
+
30
+ # Slice arrayterator
31
+ start = [randint(dim) for dim in shape]
32
+ stop = [randint(dim)+1 for dim in shape]
33
+ step = [randint(dim)+1 for dim in shape]
34
+ slice_ = tuple(slice(*t) for t in zip(start, stop, step))
35
+ c = b[slice_]
36
+ d = a[slice_]
37
+
38
+ # Check that each block has at most ``buf_size`` elements
39
+ for block in c:
40
+ assert_(len(block.flat) <= (buf_size or els))
41
+
42
+ # Check that the arrayterator is sliced correctly
43
+ assert_(np.all(c.__array__() == d))
44
+
45
+ # Check that all elements are iterated correctly
46
+ assert_(list(c.flat) == list(d.flat))
venv/lib/python3.10/site-packages/numpy/lib/tests/test_recfunctions.py ADDED
@@ -0,0 +1,1043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import numpy as np
4
+ import numpy.ma as ma
5
+ from numpy.ma.mrecords import MaskedRecords
6
+ from numpy.ma.testutils import assert_equal
7
+ from numpy.testing import assert_, assert_raises
8
+ from numpy.lib.recfunctions import (
9
+ drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields,
10
+ find_duplicates, merge_arrays, append_fields, stack_arrays, join_by,
11
+ repack_fields, unstructured_to_structured, structured_to_unstructured,
12
+ apply_along_fields, require_fields, assign_fields_by_name)
13
+ get_fieldspec = np.lib.recfunctions._get_fieldspec
14
+ get_names = np.lib.recfunctions.get_names
15
+ get_names_flat = np.lib.recfunctions.get_names_flat
16
+ zip_descr = np.lib.recfunctions._zip_descr
17
+ zip_dtype = np.lib.recfunctions._zip_dtype
18
+
19
+
20
+ class TestRecFunctions:
21
+ # Misc tests
22
+
23
+ def setup_method(self):
24
+ x = np.array([1, 2, ])
25
+ y = np.array([10, 20, 30])
26
+ z = np.array([('A', 1.), ('B', 2.)],
27
+ dtype=[('A', '|S3'), ('B', float)])
28
+ w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
29
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
30
+ self.data = (w, x, y, z)
31
+
32
+ def test_zip_descr(self):
33
+ # Test zip_descr
34
+ (w, x, y, z) = self.data
35
+
36
+ # Std array
37
+ test = zip_descr((x, x), flatten=True)
38
+ assert_equal(test,
39
+ np.dtype([('', int), ('', int)]))
40
+ test = zip_descr((x, x), flatten=False)
41
+ assert_equal(test,
42
+ np.dtype([('', int), ('', int)]))
43
+
44
+ # Std & flexible-dtype
45
+ test = zip_descr((x, z), flatten=True)
46
+ assert_equal(test,
47
+ np.dtype([('', int), ('A', '|S3'), ('B', float)]))
48
+ test = zip_descr((x, z), flatten=False)
49
+ assert_equal(test,
50
+ np.dtype([('', int),
51
+ ('', [('A', '|S3'), ('B', float)])]))
52
+
53
+ # Standard & nested dtype
54
+ test = zip_descr((x, w), flatten=True)
55
+ assert_equal(test,
56
+ np.dtype([('', int),
57
+ ('a', int),
58
+ ('ba', float), ('bb', int)]))
59
+ test = zip_descr((x, w), flatten=False)
60
+ assert_equal(test,
61
+ np.dtype([('', int),
62
+ ('', [('a', int),
63
+ ('b', [('ba', float), ('bb', int)])])]))
64
+
65
+ def test_drop_fields(self):
66
+ # Test drop_fields
67
+ a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
68
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
69
+
70
+ # A basic field
71
+ test = drop_fields(a, 'a')
72
+ control = np.array([((2, 3.0),), ((5, 6.0),)],
73
+ dtype=[('b', [('ba', float), ('bb', int)])])
74
+ assert_equal(test, control)
75
+
76
+ # Another basic field (but nesting two fields)
77
+ test = drop_fields(a, 'b')
78
+ control = np.array([(1,), (4,)], dtype=[('a', int)])
79
+ assert_equal(test, control)
80
+
81
+ # A nested sub-field
82
+ test = drop_fields(a, ['ba', ])
83
+ control = np.array([(1, (3.0,)), (4, (6.0,))],
84
+ dtype=[('a', int), ('b', [('bb', int)])])
85
+ assert_equal(test, control)
86
+
87
+ # All the nested sub-field from a field: zap that field
88
+ test = drop_fields(a, ['ba', 'bb'])
89
+ control = np.array([(1,), (4,)], dtype=[('a', int)])
90
+ assert_equal(test, control)
91
+
92
+ # dropping all fields results in an array with no fields
93
+ test = drop_fields(a, ['a', 'b'])
94
+ control = np.array([(), ()], dtype=[])
95
+ assert_equal(test, control)
96
+
97
+ def test_rename_fields(self):
98
+ # Test rename fields
99
+ a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
100
+ dtype=[('a', int),
101
+ ('b', [('ba', float), ('bb', (float, 2))])])
102
+ test = rename_fields(a, {'a': 'A', 'bb': 'BB'})
103
+ newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])]
104
+ control = a.view(newdtype)
105
+ assert_equal(test.dtype, newdtype)
106
+ assert_equal(test, control)
107
+
108
+ def test_get_names(self):
109
+ # Test get_names
110
+ ndtype = np.dtype([('A', '|S3'), ('B', float)])
111
+ test = get_names(ndtype)
112
+ assert_equal(test, ('A', 'B'))
113
+
114
+ ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
115
+ test = get_names(ndtype)
116
+ assert_equal(test, ('a', ('b', ('ba', 'bb'))))
117
+
118
+ ndtype = np.dtype([('a', int), ('b', [])])
119
+ test = get_names(ndtype)
120
+ assert_equal(test, ('a', ('b', ())))
121
+
122
+ ndtype = np.dtype([])
123
+ test = get_names(ndtype)
124
+ assert_equal(test, ())
125
+
126
+ def test_get_names_flat(self):
127
+ # Test get_names_flat
128
+ ndtype = np.dtype([('A', '|S3'), ('B', float)])
129
+ test = get_names_flat(ndtype)
130
+ assert_equal(test, ('A', 'B'))
131
+
132
+ ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])])
133
+ test = get_names_flat(ndtype)
134
+ assert_equal(test, ('a', 'b', 'ba', 'bb'))
135
+
136
+ ndtype = np.dtype([('a', int), ('b', [])])
137
+ test = get_names_flat(ndtype)
138
+ assert_equal(test, ('a', 'b'))
139
+
140
+ ndtype = np.dtype([])
141
+ test = get_names_flat(ndtype)
142
+ assert_equal(test, ())
143
+
144
+ def test_get_fieldstructure(self):
145
+ # Test get_fieldstructure
146
+
147
+ # No nested fields
148
+ ndtype = np.dtype([('A', '|S3'), ('B', float)])
149
+ test = get_fieldstructure(ndtype)
150
+ assert_equal(test, {'A': [], 'B': []})
151
+
152
+ # One 1-nested field
153
+ ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])])
154
+ test = get_fieldstructure(ndtype)
155
+ assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']})
156
+
157
+ # One 2-nested fields
158
+ ndtype = np.dtype([('A', int),
159
+ ('B', [('BA', int),
160
+ ('BB', [('BBA', int), ('BBB', int)])])])
161
+ test = get_fieldstructure(ndtype)
162
+ control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'],
163
+ 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
164
+ assert_equal(test, control)
165
+
166
+ # 0 fields
167
+ ndtype = np.dtype([])
168
+ test = get_fieldstructure(ndtype)
169
+ assert_equal(test, {})
170
+
171
+ def test_find_duplicates(self):
172
+ # Test find_duplicates
173
+ a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
174
+ (1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))],
175
+ mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)),
176
+ (0, (0, 0)), (1, (0, 0)), (0, (1, 0))],
177
+ dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])])
178
+
179
+ test = find_duplicates(a, ignoremask=False, return_index=True)
180
+ control = [0, 2]
181
+ assert_equal(sorted(test[-1]), control)
182
+ assert_equal(test[0], a[test[-1]])
183
+
184
+ test = find_duplicates(a, key='A', return_index=True)
185
+ control = [0, 1, 2, 3, 5]
186
+ assert_equal(sorted(test[-1]), control)
187
+ assert_equal(test[0], a[test[-1]])
188
+
189
+ test = find_duplicates(a, key='B', return_index=True)
190
+ control = [0, 1, 2, 4]
191
+ assert_equal(sorted(test[-1]), control)
192
+ assert_equal(test[0], a[test[-1]])
193
+
194
+ test = find_duplicates(a, key='BA', return_index=True)
195
+ control = [0, 1, 2, 4]
196
+ assert_equal(sorted(test[-1]), control)
197
+ assert_equal(test[0], a[test[-1]])
198
+
199
+ test = find_duplicates(a, key='BB', return_index=True)
200
+ control = [0, 1, 2, 3, 4]
201
+ assert_equal(sorted(test[-1]), control)
202
+ assert_equal(test[0], a[test[-1]])
203
+
204
+ def test_find_duplicates_ignoremask(self):
205
+ # Test the ignoremask option of find_duplicates
206
+ ndtype = [('a', int)]
207
+ a = ma.array([1, 1, 1, 2, 2, 3, 3],
208
+ mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
209
+ test = find_duplicates(a, ignoremask=True, return_index=True)
210
+ control = [0, 1, 3, 4]
211
+ assert_equal(sorted(test[-1]), control)
212
+ assert_equal(test[0], a[test[-1]])
213
+
214
+ test = find_duplicates(a, ignoremask=False, return_index=True)
215
+ control = [0, 1, 2, 3, 4, 6]
216
+ assert_equal(sorted(test[-1]), control)
217
+ assert_equal(test[0], a[test[-1]])
218
+
219
+ def test_repack_fields(self):
220
+ dt = np.dtype('u1,f4,i8', align=True)
221
+ a = np.zeros(2, dtype=dt)
222
+
223
+ assert_equal(repack_fields(dt), np.dtype('u1,f4,i8'))
224
+ assert_equal(repack_fields(a).itemsize, 13)
225
+ assert_equal(repack_fields(repack_fields(dt), align=True), dt)
226
+
227
+ # make sure type is preserved
228
+ dt = np.dtype((np.record, dt))
229
+ assert_(repack_fields(dt).type is np.record)
230
+
231
+ def test_structured_to_unstructured(self, tmp_path):
232
+ a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
233
+ out = structured_to_unstructured(a)
234
+ assert_equal(out, np.zeros((4,5), dtype='f8'))
235
+
236
+ b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
237
+ dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
238
+ out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1)
239
+ assert_equal(out, np.array([ 3. , 5.5, 9. , 11. ]))
240
+ out = np.mean(structured_to_unstructured(b[['x']]), axis=-1)
241
+ assert_equal(out, np.array([ 1. , 4. , 7. , 10. ]))
242
+
243
+ c = np.arange(20).reshape((4,5))
244
+ out = unstructured_to_structured(c, a.dtype)
245
+ want = np.array([( 0, ( 1., 2), [ 3., 4.]),
246
+ ( 5, ( 6., 7), [ 8., 9.]),
247
+ (10, (11., 12), [13., 14.]),
248
+ (15, (16., 17), [18., 19.])],
249
+ dtype=[('a', 'i4'),
250
+ ('b', [('f0', 'f4'), ('f1', 'u2')]),
251
+ ('c', 'f4', (2,))])
252
+ assert_equal(out, want)
253
+
254
+ d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
255
+ dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
256
+ assert_equal(apply_along_fields(np.mean, d),
257
+ np.array([ 8.0/3, 16.0/3, 26.0/3, 11. ]))
258
+ assert_equal(apply_along_fields(np.mean, d[['x', 'z']]),
259
+ np.array([ 3. , 5.5, 9. , 11. ]))
260
+
261
+ # check that for uniform field dtypes we get a view, not a copy:
262
+ d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
263
+ dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')])
264
+ dd = structured_to_unstructured(d)
265
+ ddd = unstructured_to_structured(dd, d.dtype)
266
+ assert_(np.shares_memory(dd, d))
267
+ assert_(np.shares_memory(ddd, d))
268
+
269
+ # check that reversing the order of attributes works
270
+ dd_attrib_rev = structured_to_unstructured(d[['z', 'x']])
271
+ assert_equal(dd_attrib_rev, [[5, 1], [7, 4], [11, 7], [12, 10]])
272
+ assert_(np.shares_memory(dd_attrib_rev, d))
273
+
274
+ # including uniform fields with subarrays unpacked
275
+ d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]),
276
+ (8, [9, 10], [[11, 12], [13, 14]])],
277
+ dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
278
+ ('x2', ('i4', (2, 2)))])
279
+ dd = structured_to_unstructured(d)
280
+ ddd = unstructured_to_structured(dd, d.dtype)
281
+ assert_(np.shares_memory(dd, d))
282
+ assert_(np.shares_memory(ddd, d))
283
+
284
+ # check that reversing with sub-arrays works as expected
285
+ d_rev = d[::-1]
286
+ dd_rev = structured_to_unstructured(d_rev)
287
+ assert_equal(dd_rev, [[8, 9, 10, 11, 12, 13, 14],
288
+ [1, 2, 3, 4, 5, 6, 7]])
289
+
290
+ # check that sub-arrays keep the order of their values
291
+ d_attrib_rev = d[['x2', 'x1', 'x0']]
292
+ dd_attrib_rev = structured_to_unstructured(d_attrib_rev)
293
+ assert_equal(dd_attrib_rev, [[4, 5, 6, 7, 2, 3, 1],
294
+ [11, 12, 13, 14, 9, 10, 8]])
295
+
296
+ # with ignored field at the end
297
+ d = np.array([(1, [2, 3], [[4, 5], [6, 7]], 32),
298
+ (8, [9, 10], [[11, 12], [13, 14]], 64)],
299
+ dtype=[('x0', 'i4'), ('x1', ('i4', 2)),
300
+ ('x2', ('i4', (2, 2))), ('ignored', 'u1')])
301
+ dd = structured_to_unstructured(d[['x0', 'x1', 'x2']])
302
+ assert_(np.shares_memory(dd, d))
303
+ assert_equal(dd, [[1, 2, 3, 4, 5, 6, 7],
304
+ [8, 9, 10, 11, 12, 13, 14]])
305
+
306
+ # test that nested fields with identical names don't break anything
307
+ point = np.dtype([('x', int), ('y', int)])
308
+ triangle = np.dtype([('a', point), ('b', point), ('c', point)])
309
+ arr = np.zeros(10, triangle)
310
+ res = structured_to_unstructured(arr, dtype=int)
311
+ assert_equal(res, np.zeros((10, 6), dtype=int))
312
+
313
+
314
+ # test nested combinations of subarrays and structured arrays, gh-13333
315
+ def subarray(dt, shape):
316
+ return np.dtype((dt, shape))
317
+
318
+ def structured(*dts):
319
+ return np.dtype([('x{}'.format(i), dt) for i, dt in enumerate(dts)])
320
+
321
+ def inspect(dt, dtype=None):
322
+ arr = np.zeros((), dt)
323
+ ret = structured_to_unstructured(arr, dtype=dtype)
324
+ backarr = unstructured_to_structured(ret, dt)
325
+ return ret.shape, ret.dtype, backarr.dtype
326
+
327
+ dt = structured(subarray(structured(np.int32, np.int32), 3))
328
+ assert_equal(inspect(dt), ((6,), np.int32, dt))
329
+
330
+ dt = structured(subarray(subarray(np.int32, 2), 2))
331
+ assert_equal(inspect(dt), ((4,), np.int32, dt))
332
+
333
+ dt = structured(np.int32)
334
+ assert_equal(inspect(dt), ((1,), np.int32, dt))
335
+
336
+ dt = structured(np.int32, subarray(subarray(np.int32, 2), 2))
337
+ assert_equal(inspect(dt), ((5,), np.int32, dt))
338
+
339
+ dt = structured()
340
+ assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt))
341
+
342
+ # these currently don't work, but we may make it work in the future
343
+ assert_raises(NotImplementedError, structured_to_unstructured,
344
+ np.zeros(3, dt), dtype=np.int32)
345
+ assert_raises(NotImplementedError, unstructured_to_structured,
346
+ np.zeros((3,0), dtype=np.int32))
347
+
348
+ # test supported ndarray subclasses
349
+ d_plain = np.array([(1, 2), (3, 4)], dtype=[('a', 'i4'), ('b', 'i4')])
350
+ dd_expected = structured_to_unstructured(d_plain, copy=True)
351
+
352
+ # recarray
353
+ d = d_plain.view(np.recarray)
354
+
355
+ dd = structured_to_unstructured(d, copy=False)
356
+ ddd = structured_to_unstructured(d, copy=True)
357
+ assert_(np.shares_memory(d, dd))
358
+ assert_(type(dd) is np.recarray)
359
+ assert_(type(ddd) is np.recarray)
360
+ assert_equal(dd, dd_expected)
361
+ assert_equal(ddd, dd_expected)
362
+
363
+ # memmap
364
+ d = np.memmap(tmp_path / 'memmap',
365
+ mode='w+',
366
+ dtype=d_plain.dtype,
367
+ shape=d_plain.shape)
368
+ d[:] = d_plain
369
+ dd = structured_to_unstructured(d, copy=False)
370
+ ddd = structured_to_unstructured(d, copy=True)
371
+ assert_(np.shares_memory(d, dd))
372
+ assert_(type(dd) is np.memmap)
373
+ assert_(type(ddd) is np.memmap)
374
+ assert_equal(dd, dd_expected)
375
+ assert_equal(ddd, dd_expected)
376
+
377
+ def test_unstructured_to_structured(self):
378
+ # test if dtype is the args of np.dtype
379
+ a = np.zeros((20, 2))
380
+ test_dtype_args = [('x', float), ('y', float)]
381
+ test_dtype = np.dtype(test_dtype_args)
382
+ field1 = unstructured_to_structured(a, dtype=test_dtype_args) # now
383
+ field2 = unstructured_to_structured(a, dtype=test_dtype) # before
384
+ assert_equal(field1, field2)
385
+
386
+ def test_field_assignment_by_name(self):
387
+ a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
388
+ newdt = [('b', 'f4'), ('c', 'u1')]
389
+
390
+ assert_equal(require_fields(a, newdt), np.ones(2, newdt))
391
+
392
+ b = np.array([(1,2), (3,4)], dtype=newdt)
393
+ assign_fields_by_name(a, b, zero_unassigned=False)
394
+ assert_equal(a, np.array([(1,1,2),(1,3,4)], dtype=a.dtype))
395
+ assign_fields_by_name(a, b)
396
+ assert_equal(a, np.array([(0,1,2),(0,3,4)], dtype=a.dtype))
397
+
398
+ # test nested fields
399
+ a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])])
400
+ newdt = [('a', [('c', 'u1')])]
401
+ assert_equal(require_fields(a, newdt), np.ones(2, newdt))
402
+ b = np.array([((2,),), ((3,),)], dtype=newdt)
403
+ assign_fields_by_name(a, b, zero_unassigned=False)
404
+ assert_equal(a, np.array([((1,2),), ((1,3),)], dtype=a.dtype))
405
+ assign_fields_by_name(a, b)
406
+ assert_equal(a, np.array([((0,2),), ((0,3),)], dtype=a.dtype))
407
+
408
+ # test unstructured code path for 0d arrays
409
+ a, b = np.array(3), np.array(0)
410
+ assign_fields_by_name(b, a)
411
+ assert_equal(b[()], 3)
412
+
413
+
414
+ class TestRecursiveFillFields:
415
+ # Test recursive_fill_fields.
416
+ def test_simple_flexible(self):
417
+ # Test recursive_fill_fields on flexible-array
418
+ a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)])
419
+ b = np.zeros((3,), dtype=a.dtype)
420
+ test = recursive_fill_fields(a, b)
421
+ control = np.array([(1, 10.), (2, 20.), (0, 0.)],
422
+ dtype=[('A', int), ('B', float)])
423
+ assert_equal(test, control)
424
+
425
+ def test_masked_flexible(self):
426
+ # Test recursive_fill_fields on masked flexible-array
427
+ a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)],
428
+ dtype=[('A', int), ('B', float)])
429
+ b = ma.zeros((3,), dtype=a.dtype)
430
+ test = recursive_fill_fields(a, b)
431
+ control = ma.array([(1, 10.), (2, 20.), (0, 0.)],
432
+ mask=[(0, 1), (1, 0), (0, 0)],
433
+ dtype=[('A', int), ('B', float)])
434
+ assert_equal(test, control)
435
+
436
+
437
+ class TestMergeArrays:
438
+ # Test merge_arrays
439
+
440
+ def setup_method(self):
441
+ x = np.array([1, 2, ])
442
+ y = np.array([10, 20, 30])
443
+ z = np.array(
444
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
445
+ w = np.array(
446
+ [(1, (2, 3.0, ())), (4, (5, 6.0, ()))],
447
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])])
448
+ self.data = (w, x, y, z)
449
+
450
+ def test_solo(self):
451
+ # Test merge_arrays on a single array.
452
+ (_, x, _, z) = self.data
453
+
454
+ test = merge_arrays(x)
455
+ control = np.array([(1,), (2,)], dtype=[('f0', int)])
456
+ assert_equal(test, control)
457
+ test = merge_arrays((x,))
458
+ assert_equal(test, control)
459
+
460
+ test = merge_arrays(z, flatten=False)
461
+ assert_equal(test, z)
462
+ test = merge_arrays(z, flatten=True)
463
+ assert_equal(test, z)
464
+
465
+ def test_solo_w_flatten(self):
466
+ # Test merge_arrays on a single array w & w/o flattening
467
+ w = self.data[0]
468
+ test = merge_arrays(w, flatten=False)
469
+ assert_equal(test, w)
470
+
471
+ test = merge_arrays(w, flatten=True)
472
+ control = np.array([(1, 2, 3.0), (4, 5, 6.0)],
473
+ dtype=[('a', int), ('ba', float), ('bb', int)])
474
+ assert_equal(test, control)
475
+
476
+ def test_standard(self):
477
+ # Test standard & standard
478
+ # Test merge arrays
479
+ (_, x, y, _) = self.data
480
+ test = merge_arrays((x, y), usemask=False)
481
+ control = np.array([(1, 10), (2, 20), (-1, 30)],
482
+ dtype=[('f0', int), ('f1', int)])
483
+ assert_equal(test, control)
484
+
485
+ test = merge_arrays((x, y), usemask=True)
486
+ control = ma.array([(1, 10), (2, 20), (-1, 30)],
487
+ mask=[(0, 0), (0, 0), (1, 0)],
488
+ dtype=[('f0', int), ('f1', int)])
489
+ assert_equal(test, control)
490
+ assert_equal(test.mask, control.mask)
491
+
492
+ def test_flatten(self):
493
+ # Test standard & flexible
494
+ (_, x, _, z) = self.data
495
+ test = merge_arrays((x, z), flatten=True)
496
+ control = np.array([(1, 'A', 1.), (2, 'B', 2.)],
497
+ dtype=[('f0', int), ('A', '|S3'), ('B', float)])
498
+ assert_equal(test, control)
499
+
500
+ test = merge_arrays((x, z), flatten=False)
501
+ control = np.array([(1, ('A', 1.)), (2, ('B', 2.))],
502
+ dtype=[('f0', int),
503
+ ('f1', [('A', '|S3'), ('B', float)])])
504
+ assert_equal(test, control)
505
+
506
+ def test_flatten_wflexible(self):
507
+ # Test flatten standard & nested
508
+ (w, x, _, _) = self.data
509
+ test = merge_arrays((x, w), flatten=True)
510
+ control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)],
511
+ dtype=[('f0', int),
512
+ ('a', int), ('ba', float), ('bb', int)])
513
+ assert_equal(test, control)
514
+
515
+ test = merge_arrays((x, w), flatten=False)
516
+ controldtype = [('f0', int),
517
+ ('f1', [('a', int),
518
+ ('b', [('ba', float), ('bb', int), ('bc', [])])])]
519
+ control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))],
520
+ dtype=controldtype)
521
+ assert_equal(test, control)
522
+
523
+ def test_wmasked_arrays(self):
524
+ # Test merge_arrays masked arrays
525
+ (_, x, _, _) = self.data
526
+ mx = ma.array([1, 2, 3], mask=[1, 0, 0])
527
+ test = merge_arrays((x, mx), usemask=True)
528
+ control = ma.array([(1, 1), (2, 2), (-1, 3)],
529
+ mask=[(0, 1), (0, 0), (1, 0)],
530
+ dtype=[('f0', int), ('f1', int)])
531
+ assert_equal(test, control)
532
+ test = merge_arrays((x, mx), usemask=True, asrecarray=True)
533
+ assert_equal(test, control)
534
+ assert_(isinstance(test, MaskedRecords))
535
+
536
+ def test_w_singlefield(self):
537
+ # Test single field
538
+ test = merge_arrays((np.array([1, 2]).view([('a', int)]),
539
+ np.array([10., 20., 30.])),)
540
+ control = ma.array([(1, 10.), (2, 20.), (-1, 30.)],
541
+ mask=[(0, 0), (0, 0), (1, 0)],
542
+ dtype=[('a', int), ('f1', float)])
543
+ assert_equal(test, control)
544
+
545
+ def test_w_shorter_flex(self):
546
+ # Test merge_arrays w/ a shorter flexndarray.
547
+ z = self.data[-1]
548
+
549
+ # Fixme, this test looks incomplete and broken
550
+ #test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
551
+ #control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
552
+ # dtype=[('A', '|S3'), ('B', float), ('C', int)])
553
+ #assert_equal(test, control)
554
+
555
+ # Hack to avoid pyflakes warnings about unused variables
556
+ merge_arrays((z, np.array([10, 20, 30]).view([('C', int)])))
557
+ np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)],
558
+ dtype=[('A', '|S3'), ('B', float), ('C', int)])
559
+
560
+ def test_singlerecord(self):
561
+ (_, x, y, z) = self.data
562
+ test = merge_arrays((x[0], y[0], z[0]), usemask=False)
563
+ control = np.array([(1, 10, ('A', 1))],
564
+ dtype=[('f0', int),
565
+ ('f1', int),
566
+ ('f2', [('A', '|S3'), ('B', float)])])
567
+ assert_equal(test, control)
568
+
569
+
570
+ class TestAppendFields:
571
+ # Test append_fields
572
+
573
+ def setup_method(self):
574
+ x = np.array([1, 2, ])
575
+ y = np.array([10, 20, 30])
576
+ z = np.array(
577
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
578
+ w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
579
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
580
+ self.data = (w, x, y, z)
581
+
582
+ def test_append_single(self):
583
+ # Test simple case
584
+ (_, x, _, _) = self.data
585
+ test = append_fields(x, 'A', data=[10, 20, 30])
586
+ control = ma.array([(1, 10), (2, 20), (-1, 30)],
587
+ mask=[(0, 0), (0, 0), (1, 0)],
588
+ dtype=[('f0', int), ('A', int)],)
589
+ assert_equal(test, control)
590
+
591
+ def test_append_double(self):
592
+ # Test simple case
593
+ (_, x, _, _) = self.data
594
+ test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]])
595
+ control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)],
596
+ mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)],
597
+ dtype=[('f0', int), ('A', int), ('B', int)],)
598
+ assert_equal(test, control)
599
+
600
+ def test_append_on_flex(self):
601
+ # Test append_fields on flexible type arrays
602
+ z = self.data[-1]
603
+ test = append_fields(z, 'C', data=[10, 20, 30])
604
+ control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)],
605
+ mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)],
606
+ dtype=[('A', '|S3'), ('B', float), ('C', int)],)
607
+ assert_equal(test, control)
608
+
609
+ def test_append_on_nested(self):
610
+ # Test append_fields on nested fields
611
+ w = self.data[0]
612
+ test = append_fields(w, 'C', data=[10, 20, 30])
613
+ control = ma.array([(1, (2, 3.0), 10),
614
+ (4, (5, 6.0), 20),
615
+ (-1, (-1, -1.), 30)],
616
+ mask=[(
617
+ 0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)],
618
+ dtype=[('a', int),
619
+ ('b', [('ba', float), ('bb', int)]),
620
+ ('C', int)],)
621
+ assert_equal(test, control)
622
+
623
+
624
+ class TestStackArrays:
625
+ # Test stack_arrays
626
+ def setup_method(self):
627
+ x = np.array([1, 2, ])
628
+ y = np.array([10, 20, 30])
629
+ z = np.array(
630
+ [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)])
631
+ w = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
632
+ dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
633
+ self.data = (w, x, y, z)
634
+
635
+ def test_solo(self):
636
+ # Test stack_arrays on single arrays
637
+ (_, x, _, _) = self.data
638
+ test = stack_arrays((x,))
639
+ assert_equal(test, x)
640
+ assert_(test is x)
641
+
642
+ test = stack_arrays(x)
643
+ assert_equal(test, x)
644
+ assert_(test is x)
645
+
646
+ def test_unnamed_fields(self):
647
+ # Tests combinations of arrays w/o named fields
648
+ (_, x, y, _) = self.data
649
+
650
+ test = stack_arrays((x, x), usemask=False)
651
+ control = np.array([1, 2, 1, 2])
652
+ assert_equal(test, control)
653
+
654
+ test = stack_arrays((x, y), usemask=False)
655
+ control = np.array([1, 2, 10, 20, 30])
656
+ assert_equal(test, control)
657
+
658
+ test = stack_arrays((y, x), usemask=False)
659
+ control = np.array([10, 20, 30, 1, 2])
660
+ assert_equal(test, control)
661
+
662
+ def test_unnamed_and_named_fields(self):
663
+ # Test combination of arrays w/ & w/o named fields
664
+ (_, x, _, z) = self.data
665
+
666
+ test = stack_arrays((x, z))
667
+ control = ma.array([(1, -1, -1), (2, -1, -1),
668
+ (-1, 'A', 1), (-1, 'B', 2)],
669
+ mask=[(0, 1, 1), (0, 1, 1),
670
+ (1, 0, 0), (1, 0, 0)],
671
+ dtype=[('f0', int), ('A', '|S3'), ('B', float)])
672
+ assert_equal(test, control)
673
+ assert_equal(test.mask, control.mask)
674
+
675
+ test = stack_arrays((z, x))
676
+ control = ma.array([('A', 1, -1), ('B', 2, -1),
677
+ (-1, -1, 1), (-1, -1, 2), ],
678
+ mask=[(0, 0, 1), (0, 0, 1),
679
+ (1, 1, 0), (1, 1, 0)],
680
+ dtype=[('A', '|S3'), ('B', float), ('f2', int)])
681
+ assert_equal(test, control)
682
+ assert_equal(test.mask, control.mask)
683
+
684
+ test = stack_arrays((z, z, x))
685
+ control = ma.array([('A', 1, -1), ('B', 2, -1),
686
+ ('A', 1, -1), ('B', 2, -1),
687
+ (-1, -1, 1), (-1, -1, 2), ],
688
+ mask=[(0, 0, 1), (0, 0, 1),
689
+ (0, 0, 1), (0, 0, 1),
690
+ (1, 1, 0), (1, 1, 0)],
691
+ dtype=[('A', '|S3'), ('B', float), ('f2', int)])
692
+ assert_equal(test, control)
693
+
694
+ def test_matching_named_fields(self):
695
+ # Test combination of arrays w/ matching field names
696
+ (_, x, _, z) = self.data
697
+ zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
698
+ dtype=[('A', '|S3'), ('B', float), ('C', float)])
699
+ test = stack_arrays((z, zz))
700
+ control = ma.array([('A', 1, -1), ('B', 2, -1),
701
+ (
702
+ 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
703
+ dtype=[('A', '|S3'), ('B', float), ('C', float)],
704
+ mask=[(0, 0, 1), (0, 0, 1),
705
+ (0, 0, 0), (0, 0, 0), (0, 0, 0)])
706
+ assert_equal(test, control)
707
+ assert_equal(test.mask, control.mask)
708
+
709
+ test = stack_arrays((z, zz, x))
710
+ ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)]
711
+ control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1),
712
+ ('a', 10., 100., -1), ('b', 20., 200., -1),
713
+ ('c', 30., 300., -1),
714
+ (-1, -1, -1, 1), (-1, -1, -1, 2)],
715
+ dtype=ndtype,
716
+ mask=[(0, 0, 1, 1), (0, 0, 1, 1),
717
+ (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1),
718
+ (1, 1, 1, 0), (1, 1, 1, 0)])
719
+ assert_equal(test, control)
720
+ assert_equal(test.mask, control.mask)
721
+
722
+ def test_defaults(self):
723
+ # Test defaults: no exception raised if keys of defaults are not fields.
724
+ (_, _, _, z) = self.data
725
+ zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
726
+ dtype=[('A', '|S3'), ('B', float), ('C', float)])
727
+ defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.}
728
+ test = stack_arrays((z, zz), defaults=defaults)
729
+ control = ma.array([('A', 1, -9999.), ('B', 2, -9999.),
730
+ (
731
+ 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
732
+ dtype=[('A', '|S3'), ('B', float), ('C', float)],
733
+ mask=[(0, 0, 1), (0, 0, 1),
734
+ (0, 0, 0), (0, 0, 0), (0, 0, 0)])
735
+ assert_equal(test, control)
736
+ assert_equal(test.data, control.data)
737
+ assert_equal(test.mask, control.mask)
738
+
739
+ def test_autoconversion(self):
740
+ # Tests autoconversion
741
+ adtype = [('A', int), ('B', bool), ('C', float)]
742
+ a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
743
+ bdtype = [('A', int), ('B', float), ('C', float)]
744
+ b = ma.array([(4, 5, 6)], dtype=bdtype)
745
+ control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
746
+ dtype=bdtype)
747
+ test = stack_arrays((a, b), autoconvert=True)
748
+ assert_equal(test, control)
749
+ assert_equal(test.mask, control.mask)
750
+ with assert_raises(TypeError):
751
+ stack_arrays((a, b), autoconvert=False)
752
+
753
+ def test_checktitles(self):
754
+ # Test using titles in the field names
755
+ adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
756
+ a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype)
757
+ bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)]
758
+ b = ma.array([(4, 5, 6)], dtype=bdtype)
759
+ test = stack_arrays((a, b))
760
+ control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)],
761
+ dtype=bdtype)
762
+ assert_equal(test, control)
763
+ assert_equal(test.mask, control.mask)
764
+
765
+ def test_subdtype(self):
766
+ z = np.array([
767
+ ('A', 1), ('B', 2)
768
+ ], dtype=[('A', '|S3'), ('B', float, (1,))])
769
+ zz = np.array([
770
+ ('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.)
771
+ ], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)])
772
+
773
+ res = stack_arrays((z, zz))
774
+ expected = ma.array(
775
+ data=[
776
+ (b'A', [1.0], 0),
777
+ (b'B', [2.0], 0),
778
+ (b'a', [10.0], 100.0),
779
+ (b'b', [20.0], 200.0),
780
+ (b'c', [30.0], 300.0)],
781
+ mask=[
782
+ (False, [False], True),
783
+ (False, [False], True),
784
+ (False, [False], False),
785
+ (False, [False], False),
786
+ (False, [False], False)
787
+ ],
788
+ dtype=zz.dtype
789
+ )
790
+ assert_equal(res.dtype, expected.dtype)
791
+ assert_equal(res, expected)
792
+ assert_equal(res.mask, expected.mask)
793
+
794
+
795
+ class TestJoinBy:
796
+ def setup_method(self):
797
+ self.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
798
+ np.arange(100, 110))),
799
+ dtype=[('a', int), ('b', int), ('c', int)])
800
+ self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75),
801
+ np.arange(100, 110))),
802
+ dtype=[('a', int), ('b', int), ('d', int)])
803
+
804
+ def test_inner_join(self):
805
+ # Basic test of join_by
806
+ a, b = self.a, self.b
807
+
808
+ test = join_by('a', a, b, jointype='inner')
809
+ control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101),
810
+ (7, 57, 67, 107, 102), (8, 58, 68, 108, 103),
811
+ (9, 59, 69, 109, 104)],
812
+ dtype=[('a', int), ('b1', int), ('b2', int),
813
+ ('c', int), ('d', int)])
814
+ assert_equal(test, control)
815
+
816
+ def test_join(self):
817
+ a, b = self.a, self.b
818
+
819
+ # Fixme, this test is broken
820
+ #test = join_by(('a', 'b'), a, b)
821
+ #control = np.array([(5, 55, 105, 100), (6, 56, 106, 101),
822
+ # (7, 57, 107, 102), (8, 58, 108, 103),
823
+ # (9, 59, 109, 104)],
824
+ # dtype=[('a', int), ('b', int),
825
+ # ('c', int), ('d', int)])
826
+ #assert_equal(test, control)
827
+
828
+ # Hack to avoid pyflakes unused variable warnings
829
+ join_by(('a', 'b'), a, b)
830
+ np.array([(5, 55, 105, 100), (6, 56, 106, 101),
831
+ (7, 57, 107, 102), (8, 58, 108, 103),
832
+ (9, 59, 109, 104)],
833
+ dtype=[('a', int), ('b', int),
834
+ ('c', int), ('d', int)])
835
+
836
+ def test_join_subdtype(self):
837
+ # tests the bug in https://stackoverflow.com/q/44769632/102441
838
+ foo = np.array([(1,)],
839
+ dtype=[('key', int)])
840
+ bar = np.array([(1, np.array([1,2,3]))],
841
+ dtype=[('key', int), ('value', 'uint16', 3)])
842
+ res = join_by('key', foo, bar)
843
+ assert_equal(res, bar.view(ma.MaskedArray))
844
+
845
+ def test_outer_join(self):
846
+ a, b = self.a, self.b
847
+
848
+ test = join_by(('a', 'b'), a, b, 'outer')
849
+ control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
850
+ (2, 52, 102, -1), (3, 53, 103, -1),
851
+ (4, 54, 104, -1), (5, 55, 105, -1),
852
+ (5, 65, -1, 100), (6, 56, 106, -1),
853
+ (6, 66, -1, 101), (7, 57, 107, -1),
854
+ (7, 67, -1, 102), (8, 58, 108, -1),
855
+ (8, 68, -1, 103), (9, 59, 109, -1),
856
+ (9, 69, -1, 104), (10, 70, -1, 105),
857
+ (11, 71, -1, 106), (12, 72, -1, 107),
858
+ (13, 73, -1, 108), (14, 74, -1, 109)],
859
+ mask=[(0, 0, 0, 1), (0, 0, 0, 1),
860
+ (0, 0, 0, 1), (0, 0, 0, 1),
861
+ (0, 0, 0, 1), (0, 0, 0, 1),
862
+ (0, 0, 1, 0), (0, 0, 0, 1),
863
+ (0, 0, 1, 0), (0, 0, 0, 1),
864
+ (0, 0, 1, 0), (0, 0, 0, 1),
865
+ (0, 0, 1, 0), (0, 0, 0, 1),
866
+ (0, 0, 1, 0), (0, 0, 1, 0),
867
+ (0, 0, 1, 0), (0, 0, 1, 0),
868
+ (0, 0, 1, 0), (0, 0, 1, 0)],
869
+ dtype=[('a', int), ('b', int),
870
+ ('c', int), ('d', int)])
871
+ assert_equal(test, control)
872
+
873
+ def test_leftouter_join(self):
874
+ a, b = self.a, self.b
875
+
876
+ test = join_by(('a', 'b'), a, b, 'leftouter')
877
+ control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1),
878
+ (2, 52, 102, -1), (3, 53, 103, -1),
879
+ (4, 54, 104, -1), (5, 55, 105, -1),
880
+ (6, 56, 106, -1), (7, 57, 107, -1),
881
+ (8, 58, 108, -1), (9, 59, 109, -1)],
882
+ mask=[(0, 0, 0, 1), (0, 0, 0, 1),
883
+ (0, 0, 0, 1), (0, 0, 0, 1),
884
+ (0, 0, 0, 1), (0, 0, 0, 1),
885
+ (0, 0, 0, 1), (0, 0, 0, 1),
886
+ (0, 0, 0, 1), (0, 0, 0, 1)],
887
+ dtype=[('a', int), ('b', int), ('c', int), ('d', int)])
888
+ assert_equal(test, control)
889
+
890
+ def test_different_field_order(self):
891
+ # gh-8940
892
+ a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
893
+ b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
894
+ # this should not give a FutureWarning:
895
+ j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False)
896
+ assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2'])
897
+
898
+ def test_duplicate_keys(self):
899
+ a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
900
+ b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
901
+ assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b)
902
+
903
+ def test_same_name_different_dtypes_key(self):
904
+ a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')])
905
+ b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
906
+ expected_dtype = np.dtype([
907
+ ('key', 'S10'), ('value1', '<f4'), ('value2', '<f4')])
908
+
909
+ a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype)
910
+ b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
911
+ res = join_by('key', a, b)
912
+
913
+ assert_equal(res.dtype, expected_dtype)
914
+
915
+ def test_same_name_different_dtypes(self):
916
+ # gh-9338
917
+ a_dtype = np.dtype([('key', 'S10'), ('value', '<f4')])
918
+ b_dtype = np.dtype([('key', 'S10'), ('value', '<f8')])
919
+ expected_dtype = np.dtype([
920
+ ('key', '|S10'), ('value1', '<f4'), ('value2', '<f8')])
921
+
922
+ a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype)
923
+ b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype)
924
+ res = join_by('key', a, b)
925
+
926
+ assert_equal(res.dtype, expected_dtype)
927
+
928
+ def test_subarray_key(self):
929
+ a_dtype = np.dtype([('pos', int, 3), ('f', '<f4')])
930
+ a = np.array([([1, 1, 1], np.pi), ([1, 2, 3], 0.0)], dtype=a_dtype)
931
+
932
+ b_dtype = np.dtype([('pos', int, 3), ('g', '<f4')])
933
+ b = np.array([([1, 1, 1], 3), ([3, 2, 1], 0.0)], dtype=b_dtype)
934
+
935
+ expected_dtype = np.dtype([('pos', int, 3), ('f', '<f4'), ('g', '<f4')])
936
+ expected = np.array([([1, 1, 1], np.pi, 3)], dtype=expected_dtype)
937
+
938
+ res = join_by('pos', a, b)
939
+ assert_equal(res.dtype, expected_dtype)
940
+ assert_equal(res, expected)
941
+
942
+ def test_padded_dtype(self):
943
+ dt = np.dtype('i1,f4', align=True)
944
+ dt.names = ('k', 'v')
945
+ assert_(len(dt.descr), 3) # padding field is inserted
946
+
947
+ a = np.array([(1, 3), (3, 2)], dt)
948
+ b = np.array([(1, 1), (2, 2)], dt)
949
+ res = join_by('k', a, b)
950
+
951
+ # no padding fields remain
952
+ expected_dtype = np.dtype([
953
+ ('k', 'i1'), ('v1', 'f4'), ('v2', 'f4')
954
+ ])
955
+
956
+ assert_equal(res.dtype, expected_dtype)
957
+
958
+
959
+ class TestJoinBy2:
960
+ @classmethod
961
+ def setup_method(cls):
962
+ cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60),
963
+ np.arange(100, 110))),
964
+ dtype=[('a', int), ('b', int), ('c', int)])
965
+ cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75),
966
+ np.arange(100, 110))),
967
+ dtype=[('a', int), ('b', int), ('d', int)])
968
+
969
+ def test_no_r1postfix(self):
970
+ # Basic test of join_by no_r1postfix
971
+ a, b = self.a, self.b
972
+
973
+ test = join_by(
974
+ 'a', a, b, r1postfix='', r2postfix='2', jointype='inner')
975
+ control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
976
+ (2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
977
+ (4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
978
+ (6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
979
+ (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
980
+ dtype=[('a', int), ('b', int), ('b2', int),
981
+ ('c', int), ('d', int)])
982
+ assert_equal(test, control)
983
+
984
+ def test_no_postfix(self):
985
+ assert_raises(ValueError, join_by, 'a', self.a, self.b,
986
+ r1postfix='', r2postfix='')
987
+
988
+ def test_no_r2postfix(self):
989
+ # Basic test of join_by no_r2postfix
990
+ a, b = self.a, self.b
991
+
992
+ test = join_by(
993
+ 'a', a, b, r1postfix='1', r2postfix='', jointype='inner')
994
+ control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101),
995
+ (2, 52, 67, 102, 102), (3, 53, 68, 103, 103),
996
+ (4, 54, 69, 104, 104), (5, 55, 70, 105, 105),
997
+ (6, 56, 71, 106, 106), (7, 57, 72, 107, 107),
998
+ (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)],
999
+ dtype=[('a', int), ('b1', int), ('b', int),
1000
+ ('c', int), ('d', int)])
1001
+ assert_equal(test, control)
1002
+
1003
+ def test_two_keys_two_vars(self):
1004
+ a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
1005
+ np.arange(50, 60), np.arange(10, 20))),
1006
+ dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
1007
+
1008
+ b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2),
1009
+ np.arange(65, 75), np.arange(0, 10))),
1010
+ dtype=[('k', int), ('a', int), ('b', int), ('c', int)])
1011
+
1012
+ control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1),
1013
+ (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3),
1014
+ (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5),
1015
+ (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7),
1016
+ (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)],
1017
+ dtype=[('k', int), ('a', int), ('b1', int),
1018
+ ('b2', int), ('c1', int), ('c2', int)])
1019
+ test = join_by(
1020
+ ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner')
1021
+ assert_equal(test.dtype, control.dtype)
1022
+ assert_equal(test, control)
1023
+
1024
+ class TestAppendFieldsObj:
1025
+ """
1026
+ Test append_fields with arrays containing objects
1027
+ """
1028
+ # https://github.com/numpy/numpy/issues/2346
1029
+
1030
+ def setup_method(self):
1031
+ from datetime import date
1032
+ self.data = dict(obj=date(2000, 1, 1))
1033
+
1034
+ def test_append_to_objects(self):
1035
+ "Test append_fields when the base array contains objects"
1036
+ obj = self.data['obj']
1037
+ x = np.array([(obj, 1.), (obj, 2.)],
1038
+ dtype=[('A', object), ('B', float)])
1039
+ y = np.array([10, 20], dtype=int)
1040
+ test = append_fields(x, 'C', data=y, usemask=False)
1041
+ control = np.array([(obj, 1.0, 10), (obj, 2.0, 20)],
1042
+ dtype=[('A', object), ('B', float), ('C', int)])
1043
+ assert_equal(test, control)
venv/lib/python3.10/site-packages/numpy/lib/tests/test_stride_tricks.py ADDED
@@ -0,0 +1,645 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.core._rational_tests import rational
3
+ from numpy.testing import (
4
+ assert_equal, assert_array_equal, assert_raises, assert_,
5
+ assert_raises_regex, assert_warns,
6
+ )
7
+ from numpy.lib.stride_tricks import (
8
+ as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
9
+ broadcast_shapes, sliding_window_view,
10
+ )
11
+ import pytest
12
+
13
+
14
+ def assert_shapes_correct(input_shapes, expected_shape):
15
+ # Broadcast a list of arrays with the given input shapes and check the
16
+ # common output shape.
17
+
18
+ inarrays = [np.zeros(s) for s in input_shapes]
19
+ outarrays = broadcast_arrays(*inarrays)
20
+ outshapes = [a.shape for a in outarrays]
21
+ expected = [expected_shape] * len(inarrays)
22
+ assert_equal(outshapes, expected)
23
+
24
+
25
+ def assert_incompatible_shapes_raise(input_shapes):
26
+ # Broadcast a list of arrays with the given (incompatible) input shapes
27
+ # and check that they raise a ValueError.
28
+
29
+ inarrays = [np.zeros(s) for s in input_shapes]
30
+ assert_raises(ValueError, broadcast_arrays, *inarrays)
31
+
32
+
33
+ def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
34
+ # Broadcast two shapes against each other and check that the data layout
35
+ # is the same as if a ufunc did the broadcasting.
36
+
37
+ x0 = np.zeros(shape0, dtype=int)
38
+ # Note that multiply.reduce's identity element is 1.0, so when shape1==(),
39
+ # this gives the desired n==1.
40
+ n = int(np.multiply.reduce(shape1))
41
+ x1 = np.arange(n).reshape(shape1)
42
+ if transposed:
43
+ x0 = x0.T
44
+ x1 = x1.T
45
+ if flipped:
46
+ x0 = x0[::-1]
47
+ x1 = x1[::-1]
48
+ # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
49
+ # result should be exactly the same as the broadcasted view of x1.
50
+ y = x0 + x1
51
+ b0, b1 = broadcast_arrays(x0, x1)
52
+ assert_array_equal(y, b1)
53
+
54
+
55
+ def test_same():
56
+ x = np.arange(10)
57
+ y = np.arange(10)
58
+ bx, by = broadcast_arrays(x, y)
59
+ assert_array_equal(x, bx)
60
+ assert_array_equal(y, by)
61
+
62
+ def test_broadcast_kwargs():
63
+ # ensure that a TypeError is appropriately raised when
64
+ # np.broadcast_arrays() is called with any keyword
65
+ # argument other than 'subok'
66
+ x = np.arange(10)
67
+ y = np.arange(10)
68
+
69
+ with assert_raises_regex(TypeError, 'got an unexpected keyword'):
70
+ broadcast_arrays(x, y, dtype='float64')
71
+
72
+
73
+ def test_one_off():
74
+ x = np.array([[1, 2, 3]])
75
+ y = np.array([[1], [2], [3]])
76
+ bx, by = broadcast_arrays(x, y)
77
+ bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
78
+ by0 = bx0.T
79
+ assert_array_equal(bx0, bx)
80
+ assert_array_equal(by0, by)
81
+
82
+
83
+ def test_same_input_shapes():
84
+ # Check that the final shape is just the input shape.
85
+
86
+ data = [
87
+ (),
88
+ (1,),
89
+ (3,),
90
+ (0, 1),
91
+ (0, 3),
92
+ (1, 0),
93
+ (3, 0),
94
+ (1, 3),
95
+ (3, 1),
96
+ (3, 3),
97
+ ]
98
+ for shape in data:
99
+ input_shapes = [shape]
100
+ # Single input.
101
+ assert_shapes_correct(input_shapes, shape)
102
+ # Double input.
103
+ input_shapes2 = [shape, shape]
104
+ assert_shapes_correct(input_shapes2, shape)
105
+ # Triple input.
106
+ input_shapes3 = [shape, shape, shape]
107
+ assert_shapes_correct(input_shapes3, shape)
108
+
109
+
110
+ def test_two_compatible_by_ones_input_shapes():
111
+ # Check that two different input shapes of the same length, but some have
112
+ # ones, broadcast to the correct shape.
113
+
114
+ data = [
115
+ [[(1,), (3,)], (3,)],
116
+ [[(1, 3), (3, 3)], (3, 3)],
117
+ [[(3, 1), (3, 3)], (3, 3)],
118
+ [[(1, 3), (3, 1)], (3, 3)],
119
+ [[(1, 1), (3, 3)], (3, 3)],
120
+ [[(1, 1), (1, 3)], (1, 3)],
121
+ [[(1, 1), (3, 1)], (3, 1)],
122
+ [[(1, 0), (0, 0)], (0, 0)],
123
+ [[(0, 1), (0, 0)], (0, 0)],
124
+ [[(1, 0), (0, 1)], (0, 0)],
125
+ [[(1, 1), (0, 0)], (0, 0)],
126
+ [[(1, 1), (1, 0)], (1, 0)],
127
+ [[(1, 1), (0, 1)], (0, 1)],
128
+ ]
129
+ for input_shapes, expected_shape in data:
130
+ assert_shapes_correct(input_shapes, expected_shape)
131
+ # Reverse the input shapes since broadcasting should be symmetric.
132
+ assert_shapes_correct(input_shapes[::-1], expected_shape)
133
+
134
+
135
+ def test_two_compatible_by_prepending_ones_input_shapes():
136
+ # Check that two different input shapes (of different lengths) broadcast
137
+ # to the correct shape.
138
+
139
+ data = [
140
+ [[(), (3,)], (3,)],
141
+ [[(3,), (3, 3)], (3, 3)],
142
+ [[(3,), (3, 1)], (3, 3)],
143
+ [[(1,), (3, 3)], (3, 3)],
144
+ [[(), (3, 3)], (3, 3)],
145
+ [[(1, 1), (3,)], (1, 3)],
146
+ [[(1,), (3, 1)], (3, 1)],
147
+ [[(1,), (1, 3)], (1, 3)],
148
+ [[(), (1, 3)], (1, 3)],
149
+ [[(), (3, 1)], (3, 1)],
150
+ [[(), (0,)], (0,)],
151
+ [[(0,), (0, 0)], (0, 0)],
152
+ [[(0,), (0, 1)], (0, 0)],
153
+ [[(1,), (0, 0)], (0, 0)],
154
+ [[(), (0, 0)], (0, 0)],
155
+ [[(1, 1), (0,)], (1, 0)],
156
+ [[(1,), (0, 1)], (0, 1)],
157
+ [[(1,), (1, 0)], (1, 0)],
158
+ [[(), (1, 0)], (1, 0)],
159
+ [[(), (0, 1)], (0, 1)],
160
+ ]
161
+ for input_shapes, expected_shape in data:
162
+ assert_shapes_correct(input_shapes, expected_shape)
163
+ # Reverse the input shapes since broadcasting should be symmetric.
164
+ assert_shapes_correct(input_shapes[::-1], expected_shape)
165
+
166
+
167
+ def test_incompatible_shapes_raise_valueerror():
168
+ # Check that a ValueError is raised for incompatible shapes.
169
+
170
+ data = [
171
+ [(3,), (4,)],
172
+ [(2, 3), (2,)],
173
+ [(3,), (3,), (4,)],
174
+ [(1, 3, 4), (2, 3, 3)],
175
+ ]
176
+ for input_shapes in data:
177
+ assert_incompatible_shapes_raise(input_shapes)
178
+ # Reverse the input shapes since broadcasting should be symmetric.
179
+ assert_incompatible_shapes_raise(input_shapes[::-1])
180
+
181
+
182
+ def test_same_as_ufunc():
183
+ # Check that the data layout is the same as if a ufunc did the operation.
184
+
185
+ data = [
186
+ [[(1,), (3,)], (3,)],
187
+ [[(1, 3), (3, 3)], (3, 3)],
188
+ [[(3, 1), (3, 3)], (3, 3)],
189
+ [[(1, 3), (3, 1)], (3, 3)],
190
+ [[(1, 1), (3, 3)], (3, 3)],
191
+ [[(1, 1), (1, 3)], (1, 3)],
192
+ [[(1, 1), (3, 1)], (3, 1)],
193
+ [[(1, 0), (0, 0)], (0, 0)],
194
+ [[(0, 1), (0, 0)], (0, 0)],
195
+ [[(1, 0), (0, 1)], (0, 0)],
196
+ [[(1, 1), (0, 0)], (0, 0)],
197
+ [[(1, 1), (1, 0)], (1, 0)],
198
+ [[(1, 1), (0, 1)], (0, 1)],
199
+ [[(), (3,)], (3,)],
200
+ [[(3,), (3, 3)], (3, 3)],
201
+ [[(3,), (3, 1)], (3, 3)],
202
+ [[(1,), (3, 3)], (3, 3)],
203
+ [[(), (3, 3)], (3, 3)],
204
+ [[(1, 1), (3,)], (1, 3)],
205
+ [[(1,), (3, 1)], (3, 1)],
206
+ [[(1,), (1, 3)], (1, 3)],
207
+ [[(), (1, 3)], (1, 3)],
208
+ [[(), (3, 1)], (3, 1)],
209
+ [[(), (0,)], (0,)],
210
+ [[(0,), (0, 0)], (0, 0)],
211
+ [[(0,), (0, 1)], (0, 0)],
212
+ [[(1,), (0, 0)], (0, 0)],
213
+ [[(), (0, 0)], (0, 0)],
214
+ [[(1, 1), (0,)], (1, 0)],
215
+ [[(1,), (0, 1)], (0, 1)],
216
+ [[(1,), (1, 0)], (1, 0)],
217
+ [[(), (1, 0)], (1, 0)],
218
+ [[(), (0, 1)], (0, 1)],
219
+ ]
220
+ for input_shapes, expected_shape in data:
221
+ assert_same_as_ufunc(input_shapes[0], input_shapes[1],
222
+ "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
223
+ # Reverse the input shapes since broadcasting should be symmetric.
224
+ assert_same_as_ufunc(input_shapes[1], input_shapes[0])
225
+ # Try them transposed, too.
226
+ assert_same_as_ufunc(input_shapes[0], input_shapes[1], True)
227
+ # ... and flipped for non-rank-0 inputs in order to test negative
228
+ # strides.
229
+ if () not in input_shapes:
230
+ assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True)
231
+ assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True)
232
+
233
+
234
+ def test_broadcast_to_succeeds():
235
+ data = [
236
+ [np.array(0), (0,), np.array(0)],
237
+ [np.array(0), (1,), np.zeros(1)],
238
+ [np.array(0), (3,), np.zeros(3)],
239
+ [np.ones(1), (1,), np.ones(1)],
240
+ [np.ones(1), (2,), np.ones(2)],
241
+ [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
242
+ [np.arange(3), (3,), np.arange(3)],
243
+ [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)],
244
+ [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])],
245
+ # test if shape is not a tuple
246
+ [np.ones(0), 0, np.ones(0)],
247
+ [np.ones(1), 1, np.ones(1)],
248
+ [np.ones(1), 2, np.ones(2)],
249
+ # these cases with size 0 are strange, but they reproduce the behavior
250
+ # of broadcasting with ufuncs (see test_same_as_ufunc above)
251
+ [np.ones(1), (0,), np.ones(0)],
252
+ [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
253
+ [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
254
+ ]
255
+ for input_array, shape, expected in data:
256
+ actual = broadcast_to(input_array, shape)
257
+ assert_array_equal(expected, actual)
258
+
259
+
260
+ def test_broadcast_to_raises():
261
+ data = [
262
+ [(0,), ()],
263
+ [(1,), ()],
264
+ [(3,), ()],
265
+ [(3,), (1,)],
266
+ [(3,), (2,)],
267
+ [(3,), (4,)],
268
+ [(1, 2), (2, 1)],
269
+ [(1, 1), (1,)],
270
+ [(1,), -1],
271
+ [(1,), (-1,)],
272
+ [(1, 2), (-1, 2)],
273
+ ]
274
+ for orig_shape, target_shape in data:
275
+ arr = np.zeros(orig_shape)
276
+ assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))
277
+
278
+
279
+ def test_broadcast_shape():
280
+ # tests internal _broadcast_shape
281
+ # _broadcast_shape is already exercised indirectly by broadcast_arrays
282
+ # _broadcast_shape is also exercised by the public broadcast_shapes function
283
+ assert_equal(_broadcast_shape(), ())
284
+ assert_equal(_broadcast_shape([1, 2]), (2,))
285
+ assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1))
286
+ assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4))
287
+ assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2))
288
+ assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2))
289
+
290
+ # regression tests for gh-5862
291
+ assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,))
292
+ bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32
293
+ assert_raises(ValueError, lambda: _broadcast_shape(*bad_args))
294
+
295
+
296
+ def test_broadcast_shapes_succeeds():
297
+ # tests public broadcast_shapes
298
+ data = [
299
+ [[], ()],
300
+ [[()], ()],
301
+ [[(7,)], (7,)],
302
+ [[(1, 2), (2,)], (1, 2)],
303
+ [[(1, 1)], (1, 1)],
304
+ [[(1, 1), (3, 4)], (3, 4)],
305
+ [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)],
306
+ [[(5, 6, 1)], (5, 6, 1)],
307
+ [[(1, 3), (3, 1)], (3, 3)],
308
+ [[(1, 0), (0, 0)], (0, 0)],
309
+ [[(0, 1), (0, 0)], (0, 0)],
310
+ [[(1, 0), (0, 1)], (0, 0)],
311
+ [[(1, 1), (0, 0)], (0, 0)],
312
+ [[(1, 1), (1, 0)], (1, 0)],
313
+ [[(1, 1), (0, 1)], (0, 1)],
314
+ [[(), (0,)], (0,)],
315
+ [[(0,), (0, 0)], (0, 0)],
316
+ [[(0,), (0, 1)], (0, 0)],
317
+ [[(1,), (0, 0)], (0, 0)],
318
+ [[(), (0, 0)], (0, 0)],
319
+ [[(1, 1), (0,)], (1, 0)],
320
+ [[(1,), (0, 1)], (0, 1)],
321
+ [[(1,), (1, 0)], (1, 0)],
322
+ [[(), (1, 0)], (1, 0)],
323
+ [[(), (0, 1)], (0, 1)],
324
+ [[(1,), (3,)], (3,)],
325
+ [[2, (3, 2)], (3, 2)],
326
+ ]
327
+ for input_shapes, target_shape in data:
328
+ assert_equal(broadcast_shapes(*input_shapes), target_shape)
329
+
330
+ assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2))
331
+ assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2))
332
+
333
+ # regression tests for gh-5862
334
+ assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,))
335
+
336
+
337
+ def test_broadcast_shapes_raises():
338
+ # tests public broadcast_shapes
339
+ data = [
340
+ [(3,), (4,)],
341
+ [(2, 3), (2,)],
342
+ [(3,), (3,), (4,)],
343
+ [(1, 3, 4), (2, 3, 3)],
344
+ [(1, 2), (3,1), (3,2), (10, 5)],
345
+ [2, (2, 3)],
346
+ ]
347
+ for input_shapes in data:
348
+ assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes))
349
+
350
+ bad_args = [(2,)] * 32 + [(3,)] * 32
351
+ assert_raises(ValueError, lambda: broadcast_shapes(*bad_args))
352
+
353
+
354
+ def test_as_strided():
355
+ a = np.array([None])
356
+ a_view = as_strided(a)
357
+ expected = np.array([None])
358
+ assert_array_equal(a_view, np.array([None]))
359
+
360
+ a = np.array([1, 2, 3, 4])
361
+ a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
362
+ expected = np.array([1, 3])
363
+ assert_array_equal(a_view, expected)
364
+
365
+ a = np.array([1, 2, 3, 4])
366
+ a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
367
+ expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
368
+ assert_array_equal(a_view, expected)
369
+
370
+ # Regression test for gh-5081
371
+ dt = np.dtype([('num', 'i4'), ('obj', 'O')])
372
+ a = np.empty((4,), dtype=dt)
373
+ a['num'] = np.arange(1, 5)
374
+ a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
375
+ expected_num = [[1, 2, 3, 4]] * 3
376
+ expected_obj = [[None]*4]*3
377
+ assert_equal(a_view.dtype, dt)
378
+ assert_array_equal(expected_num, a_view['num'])
379
+ assert_array_equal(expected_obj, a_view['obj'])
380
+
381
+ # Make sure that void types without fields are kept unchanged
382
+ a = np.empty((4,), dtype='V4')
383
+ a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
384
+ assert_equal(a.dtype, a_view.dtype)
385
+
386
+ # Make sure that the only type that could fail is properly handled
387
+ dt = np.dtype({'names': [''], 'formats': ['V4']})
388
+ a = np.empty((4,), dtype=dt)
389
+ a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
390
+ assert_equal(a.dtype, a_view.dtype)
391
+
392
+ # Custom dtypes should not be lost (gh-9161)
393
+ r = [rational(i) for i in range(4)]
394
+ a = np.array(r, dtype=rational)
395
+ a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
396
+ assert_equal(a.dtype, a_view.dtype)
397
+ assert_array_equal([r] * 3, a_view)
398
+
399
+
400
+ class TestSlidingWindowView:
401
+ def test_1d(self):
402
+ arr = np.arange(5)
403
+ arr_view = sliding_window_view(arr, 2)
404
+ expected = np.array([[0, 1],
405
+ [1, 2],
406
+ [2, 3],
407
+ [3, 4]])
408
+ assert_array_equal(arr_view, expected)
409
+
410
+ def test_2d(self):
411
+ i, j = np.ogrid[:3, :4]
412
+ arr = 10*i + j
413
+ shape = (2, 2)
414
+ arr_view = sliding_window_view(arr, shape)
415
+ expected = np.array([[[[0, 1], [10, 11]],
416
+ [[1, 2], [11, 12]],
417
+ [[2, 3], [12, 13]]],
418
+ [[[10, 11], [20, 21]],
419
+ [[11, 12], [21, 22]],
420
+ [[12, 13], [22, 23]]]])
421
+ assert_array_equal(arr_view, expected)
422
+
423
+ def test_2d_with_axis(self):
424
+ i, j = np.ogrid[:3, :4]
425
+ arr = 10*i + j
426
+ arr_view = sliding_window_view(arr, 3, 0)
427
+ expected = np.array([[[0, 10, 20],
428
+ [1, 11, 21],
429
+ [2, 12, 22],
430
+ [3, 13, 23]]])
431
+ assert_array_equal(arr_view, expected)
432
+
433
+ def test_2d_repeated_axis(self):
434
+ i, j = np.ogrid[:3, :4]
435
+ arr = 10*i + j
436
+ arr_view = sliding_window_view(arr, (2, 3), (1, 1))
437
+ expected = np.array([[[[0, 1, 2],
438
+ [1, 2, 3]]],
439
+ [[[10, 11, 12],
440
+ [11, 12, 13]]],
441
+ [[[20, 21, 22],
442
+ [21, 22, 23]]]])
443
+ assert_array_equal(arr_view, expected)
444
+
445
+ def test_2d_without_axis(self):
446
+ i, j = np.ogrid[:4, :4]
447
+ arr = 10*i + j
448
+ shape = (2, 3)
449
+ arr_view = sliding_window_view(arr, shape)
450
+ expected = np.array([[[[0, 1, 2], [10, 11, 12]],
451
+ [[1, 2, 3], [11, 12, 13]]],
452
+ [[[10, 11, 12], [20, 21, 22]],
453
+ [[11, 12, 13], [21, 22, 23]]],
454
+ [[[20, 21, 22], [30, 31, 32]],
455
+ [[21, 22, 23], [31, 32, 33]]]])
456
+ assert_array_equal(arr_view, expected)
457
+
458
+ def test_errors(self):
459
+ i, j = np.ogrid[:4, :4]
460
+ arr = 10*i + j
461
+ with pytest.raises(ValueError, match='cannot contain negative values'):
462
+ sliding_window_view(arr, (-1, 3))
463
+ with pytest.raises(
464
+ ValueError,
465
+ match='must provide window_shape for all dimensions of `x`'):
466
+ sliding_window_view(arr, (1,))
467
+ with pytest.raises(
468
+ ValueError,
469
+ match='Must provide matching length window_shape and axis'):
470
+ sliding_window_view(arr, (1, 3, 4), axis=(0, 1))
471
+ with pytest.raises(
472
+ ValueError,
473
+ match='window shape cannot be larger than input array'):
474
+ sliding_window_view(arr, (5, 5))
475
+
476
+ def test_writeable(self):
477
+ arr = np.arange(5)
478
+ view = sliding_window_view(arr, 2, writeable=False)
479
+ assert_(not view.flags.writeable)
480
+ with pytest.raises(
481
+ ValueError,
482
+ match='assignment destination is read-only'):
483
+ view[0, 0] = 3
484
+ view = sliding_window_view(arr, 2, writeable=True)
485
+ assert_(view.flags.writeable)
486
+ view[0, 1] = 3
487
+ assert_array_equal(arr, np.array([0, 3, 2, 3, 4]))
488
+
489
+ def test_subok(self):
490
+ class MyArray(np.ndarray):
491
+ pass
492
+
493
+ arr = np.arange(5).view(MyArray)
494
+ assert_(not isinstance(sliding_window_view(arr, 2,
495
+ subok=False),
496
+ MyArray))
497
+ assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray))
498
+ # Default behavior
499
+ assert_(not isinstance(sliding_window_view(arr, 2), MyArray))
500
+
501
+
502
+ def as_strided_writeable():
503
+ arr = np.ones(10)
504
+ view = as_strided(arr, writeable=False)
505
+ assert_(not view.flags.writeable)
506
+
507
+ # Check that writeable also is fine:
508
+ view = as_strided(arr, writeable=True)
509
+ assert_(view.flags.writeable)
510
+ view[...] = 3
511
+ assert_array_equal(arr, np.full_like(arr, 3))
512
+
513
+ # Test that things do not break down for readonly:
514
+ arr.flags.writeable = False
515
+ view = as_strided(arr, writeable=False)
516
+ view = as_strided(arr, writeable=True)
517
+ assert_(not view.flags.writeable)
518
+
519
+
520
+ class VerySimpleSubClass(np.ndarray):
521
+ def __new__(cls, *args, **kwargs):
522
+ return np.array(*args, subok=True, **kwargs).view(cls)
523
+
524
+
525
+ class SimpleSubClass(VerySimpleSubClass):
526
+ def __new__(cls, *args, **kwargs):
527
+ self = np.array(*args, subok=True, **kwargs).view(cls)
528
+ self.info = 'simple'
529
+ return self
530
+
531
+ def __array_finalize__(self, obj):
532
+ self.info = getattr(obj, 'info', '') + ' finalized'
533
+
534
+
535
+ def test_subclasses():
536
+ # test that subclass is preserved only if subok=True
537
+ a = VerySimpleSubClass([1, 2, 3, 4])
538
+ assert_(type(a) is VerySimpleSubClass)
539
+ a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
540
+ assert_(type(a_view) is np.ndarray)
541
+ a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
542
+ assert_(type(a_view) is VerySimpleSubClass)
543
+ # test that if a subclass has __array_finalize__, it is used
544
+ a = SimpleSubClass([1, 2, 3, 4])
545
+ a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
546
+ assert_(type(a_view) is SimpleSubClass)
547
+ assert_(a_view.info == 'simple finalized')
548
+
549
+ # similar tests for broadcast_arrays
550
+ b = np.arange(len(a)).reshape(-1, 1)
551
+ a_view, b_view = broadcast_arrays(a, b)
552
+ assert_(type(a_view) is np.ndarray)
553
+ assert_(type(b_view) is np.ndarray)
554
+ assert_(a_view.shape == b_view.shape)
555
+ a_view, b_view = broadcast_arrays(a, b, subok=True)
556
+ assert_(type(a_view) is SimpleSubClass)
557
+ assert_(a_view.info == 'simple finalized')
558
+ assert_(type(b_view) is np.ndarray)
559
+ assert_(a_view.shape == b_view.shape)
560
+
561
+ # and for broadcast_to
562
+ shape = (2, 4)
563
+ a_view = broadcast_to(a, shape)
564
+ assert_(type(a_view) is np.ndarray)
565
+ assert_(a_view.shape == shape)
566
+ a_view = broadcast_to(a, shape, subok=True)
567
+ assert_(type(a_view) is SimpleSubClass)
568
+ assert_(a_view.info == 'simple finalized')
569
+ assert_(a_view.shape == shape)
570
+
571
+
572
+ def test_writeable():
573
+ # broadcast_to should return a readonly array
574
+ original = np.array([1, 2, 3])
575
+ result = broadcast_to(original, (2, 3))
576
+ assert_equal(result.flags.writeable, False)
577
+ assert_raises(ValueError, result.__setitem__, slice(None), 0)
578
+
579
+ # but the result of broadcast_arrays needs to be writeable, to
580
+ # preserve backwards compatibility
581
+ for is_broadcast, results in [(False, broadcast_arrays(original,)),
582
+ (True, broadcast_arrays(0, original))]:
583
+ for result in results:
584
+ # This will change to False in a future version
585
+ if is_broadcast:
586
+ with assert_warns(FutureWarning):
587
+ assert_equal(result.flags.writeable, True)
588
+ with assert_warns(DeprecationWarning):
589
+ result[:] = 0
590
+ # Warning not emitted, writing to the array resets it
591
+ assert_equal(result.flags.writeable, True)
592
+ else:
593
+ # No warning:
594
+ assert_equal(result.flags.writeable, True)
595
+
596
+ for results in [broadcast_arrays(original),
597
+ broadcast_arrays(0, original)]:
598
+ for result in results:
599
+ # resets the warn_on_write DeprecationWarning
600
+ result.flags.writeable = True
601
+ # check: no warning emitted
602
+ assert_equal(result.flags.writeable, True)
603
+ result[:] = 0
604
+
605
+ # keep readonly input readonly
606
+ original.flags.writeable = False
607
+ _, result = broadcast_arrays(0, original)
608
+ assert_equal(result.flags.writeable, False)
609
+
610
+ # regression test for GH6491
611
+ shape = (2,)
612
+ strides = [0]
613
+ tricky_array = as_strided(np.array(0), shape, strides)
614
+ other = np.zeros((1,))
615
+ first, second = broadcast_arrays(tricky_array, other)
616
+ assert_(first.shape == second.shape)
617
+
618
+
619
+ def test_writeable_memoryview():
620
+ # The result of broadcast_arrays exports as a non-writeable memoryview
621
+ # because otherwise there is no good way to opt in to the new behaviour
622
+ # (i.e. you would need to set writeable to False explicitly).
623
+ # See gh-13929.
624
+ original = np.array([1, 2, 3])
625
+
626
+ for is_broadcast, results in [(False, broadcast_arrays(original,)),
627
+ (True, broadcast_arrays(0, original))]:
628
+ for result in results:
629
+ # This will change to False in a future version
630
+ if is_broadcast:
631
+ # memoryview(result, writable=True) will give warning but cannot
632
+ # be tested using the python API.
633
+ assert memoryview(result).readonly
634
+ else:
635
+ assert not memoryview(result).readonly
636
+
637
+
638
+ def test_reference_types():
639
+ input_array = np.array('a', dtype=object)
640
+ expected = np.array(['a'] * 3, dtype=object)
641
+ actual = broadcast_to(input_array, (3,))
642
+ assert_array_equal(expected, actual)
643
+
644
+ actual, _ = broadcast_arrays(input_array, np.ones(3))
645
+ assert_array_equal(expected, actual)
venv/lib/python3.10/site-packages/numpy/lib/tests/test_twodim_base.py ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test functions for matrix module
2
+
3
+ """
4
+ from numpy.testing import (
5
+ assert_equal, assert_array_equal, assert_array_max_ulp,
6
+ assert_array_almost_equal, assert_raises, assert_
7
+ )
8
+ from numpy import (
9
+ arange, add, fliplr, flipud, zeros, ones, eye, array, diag, histogram2d,
10
+ tri, mask_indices, triu_indices, triu_indices_from, tril_indices,
11
+ tril_indices_from, vander,
12
+ )
13
+ import numpy as np
14
+
15
+ import pytest
16
+
17
+
18
+ def get_mat(n):
19
+ data = arange(n)
20
+ data = add.outer(data, data)
21
+ return data
22
+
23
+
24
+ class TestEye:
25
+ def test_basic(self):
26
+ assert_equal(eye(4),
27
+ array([[1, 0, 0, 0],
28
+ [0, 1, 0, 0],
29
+ [0, 0, 1, 0],
30
+ [0, 0, 0, 1]]))
31
+
32
+ assert_equal(eye(4, dtype='f'),
33
+ array([[1, 0, 0, 0],
34
+ [0, 1, 0, 0],
35
+ [0, 0, 1, 0],
36
+ [0, 0, 0, 1]], 'f'))
37
+
38
+ assert_equal(eye(3) == 1,
39
+ eye(3, dtype=bool))
40
+
41
+ def test_uint64(self):
42
+ # Regression test for gh-9982
43
+ assert_equal(eye(np.uint64(2), dtype=int), array([[1, 0], [0, 1]]))
44
+ assert_equal(eye(np.uint64(2), M=np.uint64(4), k=np.uint64(1)),
45
+ array([[0, 1, 0, 0], [0, 0, 1, 0]]))
46
+
47
+ def test_diag(self):
48
+ assert_equal(eye(4, k=1),
49
+ array([[0, 1, 0, 0],
50
+ [0, 0, 1, 0],
51
+ [0, 0, 0, 1],
52
+ [0, 0, 0, 0]]))
53
+
54
+ assert_equal(eye(4, k=-1),
55
+ array([[0, 0, 0, 0],
56
+ [1, 0, 0, 0],
57
+ [0, 1, 0, 0],
58
+ [0, 0, 1, 0]]))
59
+
60
+ def test_2d(self):
61
+ assert_equal(eye(4, 3),
62
+ array([[1, 0, 0],
63
+ [0, 1, 0],
64
+ [0, 0, 1],
65
+ [0, 0, 0]]))
66
+
67
+ assert_equal(eye(3, 4),
68
+ array([[1, 0, 0, 0],
69
+ [0, 1, 0, 0],
70
+ [0, 0, 1, 0]]))
71
+
72
+ def test_diag2d(self):
73
+ assert_equal(eye(3, 4, k=2),
74
+ array([[0, 0, 1, 0],
75
+ [0, 0, 0, 1],
76
+ [0, 0, 0, 0]]))
77
+
78
+ assert_equal(eye(4, 3, k=-2),
79
+ array([[0, 0, 0],
80
+ [0, 0, 0],
81
+ [1, 0, 0],
82
+ [0, 1, 0]]))
83
+
84
+ def test_eye_bounds(self):
85
+ assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]])
86
+ assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]])
87
+ assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]])
88
+ assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]])
89
+ assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]])
90
+ assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]])
91
+ assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]])
92
+ assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]])
93
+ assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]])
94
+
95
+ def test_strings(self):
96
+ assert_equal(eye(2, 2, dtype='S3'),
97
+ [[b'1', b''], [b'', b'1']])
98
+
99
+ def test_bool(self):
100
+ assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]])
101
+
102
+ def test_order(self):
103
+ mat_c = eye(4, 3, k=-1)
104
+ mat_f = eye(4, 3, k=-1, order='F')
105
+ assert_equal(mat_c, mat_f)
106
+ assert mat_c.flags.c_contiguous
107
+ assert not mat_c.flags.f_contiguous
108
+ assert not mat_f.flags.c_contiguous
109
+ assert mat_f.flags.f_contiguous
110
+
111
+
112
+ class TestDiag:
113
+ def test_vector(self):
114
+ vals = (100 * arange(5)).astype('l')
115
+ b = zeros((5, 5))
116
+ for k in range(5):
117
+ b[k, k] = vals[k]
118
+ assert_equal(diag(vals), b)
119
+ b = zeros((7, 7))
120
+ c = b.copy()
121
+ for k in range(5):
122
+ b[k, k + 2] = vals[k]
123
+ c[k + 2, k] = vals[k]
124
+ assert_equal(diag(vals, k=2), b)
125
+ assert_equal(diag(vals, k=-2), c)
126
+
127
+ def test_matrix(self, vals=None):
128
+ if vals is None:
129
+ vals = (100 * get_mat(5) + 1).astype('l')
130
+ b = zeros((5,))
131
+ for k in range(5):
132
+ b[k] = vals[k, k]
133
+ assert_equal(diag(vals), b)
134
+ b = b * 0
135
+ for k in range(3):
136
+ b[k] = vals[k, k + 2]
137
+ assert_equal(diag(vals, 2), b[:3])
138
+ for k in range(3):
139
+ b[k] = vals[k + 2, k]
140
+ assert_equal(diag(vals, -2), b[:3])
141
+
142
+ def test_fortran_order(self):
143
+ vals = array((100 * get_mat(5) + 1), order='F', dtype='l')
144
+ self.test_matrix(vals)
145
+
146
+ def test_diag_bounds(self):
147
+ A = [[1, 2], [3, 4], [5, 6]]
148
+ assert_equal(diag(A, k=2), [])
149
+ assert_equal(diag(A, k=1), [2])
150
+ assert_equal(diag(A, k=0), [1, 4])
151
+ assert_equal(diag(A, k=-1), [3, 6])
152
+ assert_equal(diag(A, k=-2), [5])
153
+ assert_equal(diag(A, k=-3), [])
154
+
155
+ def test_failure(self):
156
+ assert_raises(ValueError, diag, [[[1]]])
157
+
158
+
159
+ class TestFliplr:
160
+ def test_basic(self):
161
+ assert_raises(ValueError, fliplr, ones(4))
162
+ a = get_mat(4)
163
+ b = a[:, ::-1]
164
+ assert_equal(fliplr(a), b)
165
+ a = [[0, 1, 2],
166
+ [3, 4, 5]]
167
+ b = [[2, 1, 0],
168
+ [5, 4, 3]]
169
+ assert_equal(fliplr(a), b)
170
+
171
+
172
+ class TestFlipud:
173
+ def test_basic(self):
174
+ a = get_mat(4)
175
+ b = a[::-1, :]
176
+ assert_equal(flipud(a), b)
177
+ a = [[0, 1, 2],
178
+ [3, 4, 5]]
179
+ b = [[3, 4, 5],
180
+ [0, 1, 2]]
181
+ assert_equal(flipud(a), b)
182
+
183
+
184
+ class TestHistogram2d:
185
+ def test_simple(self):
186
+ x = array(
187
+ [0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
188
+ y = array(
189
+ [0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
190
+ xedges = np.linspace(0, 1, 10)
191
+ yedges = np.linspace(0, 1, 10)
192
+ H = histogram2d(x, y, (xedges, yedges))[0]
193
+ answer = array(
194
+ [[0, 0, 0, 1, 0, 0, 0, 0, 0],
195
+ [0, 0, 0, 0, 0, 0, 1, 0, 0],
196
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
197
+ [1, 0, 1, 0, 0, 0, 0, 0, 0],
198
+ [0, 1, 0, 0, 0, 0, 0, 0, 0],
199
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
200
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
201
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
202
+ [0, 0, 0, 0, 0, 0, 0, 0, 0]])
203
+ assert_array_equal(H.T, answer)
204
+ H = histogram2d(x, y, xedges)[0]
205
+ assert_array_equal(H.T, answer)
206
+ H, xedges, yedges = histogram2d(list(range(10)), list(range(10)))
207
+ assert_array_equal(H, eye(10, 10))
208
+ assert_array_equal(xedges, np.linspace(0, 9, 11))
209
+ assert_array_equal(yedges, np.linspace(0, 9, 11))
210
+
211
+ def test_asym(self):
212
+ x = array([1, 1, 2, 3, 4, 4, 4, 5])
213
+ y = array([1, 3, 2, 0, 1, 2, 3, 4])
214
+ H, xed, yed = histogram2d(
215
+ x, y, (6, 5), range=[[0, 6], [0, 5]], density=True)
216
+ answer = array(
217
+ [[0., 0, 0, 0, 0],
218
+ [0, 1, 0, 1, 0],
219
+ [0, 0, 1, 0, 0],
220
+ [1, 0, 0, 0, 0],
221
+ [0, 1, 1, 1, 0],
222
+ [0, 0, 0, 0, 1]])
223
+ assert_array_almost_equal(H, answer/8., 3)
224
+ assert_array_equal(xed, np.linspace(0, 6, 7))
225
+ assert_array_equal(yed, np.linspace(0, 5, 6))
226
+
227
+ def test_density(self):
228
+ x = array([1, 2, 3, 1, 2, 3, 1, 2, 3])
229
+ y = array([1, 1, 1, 2, 2, 2, 3, 3, 3])
230
+ H, xed, yed = histogram2d(
231
+ x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True)
232
+ answer = array([[1, 1, .5],
233
+ [1, 1, .5],
234
+ [.5, .5, .25]])/9.
235
+ assert_array_almost_equal(H, answer, 3)
236
+
237
+ def test_all_outliers(self):
238
+ r = np.random.rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6
239
+ H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1]))
240
+ assert_array_equal(H, 0)
241
+
242
+ def test_empty(self):
243
+ a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1]))
244
+ assert_array_max_ulp(a, array([[0.]]))
245
+
246
+ a, edge1, edge2 = histogram2d([], [], bins=4)
247
+ assert_array_max_ulp(a, np.zeros((4, 4)))
248
+
249
+ def test_binparameter_combination(self):
250
+ x = array(
251
+ [0, 0.09207008, 0.64575234, 0.12875982, 0.47390599,
252
+ 0.59944483, 1])
253
+ y = array(
254
+ [0, 0.14344267, 0.48988575, 0.30558665, 0.44700682,
255
+ 0.15886423, 1])
256
+ edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
257
+ H, xe, ye = histogram2d(x, y, (edges, 4))
258
+ answer = array(
259
+ [[2., 0., 0., 0.],
260
+ [0., 1., 0., 0.],
261
+ [0., 0., 0., 0.],
262
+ [0., 0., 0., 0.],
263
+ [0., 1., 0., 0.],
264
+ [1., 0., 0., 0.],
265
+ [0., 1., 0., 0.],
266
+ [0., 0., 0., 0.],
267
+ [0., 0., 0., 0.],
268
+ [0., 0., 0., 1.]])
269
+ assert_array_equal(H, answer)
270
+ assert_array_equal(ye, array([0., 0.25, 0.5, 0.75, 1]))
271
+ H, xe, ye = histogram2d(x, y, (4, edges))
272
+ answer = array(
273
+ [[1., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
274
+ [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
275
+ [0., 1., 0., 0., 1., 0., 0., 0., 0., 0.],
276
+ [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]])
277
+ assert_array_equal(H, answer)
278
+ assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1]))
279
+
280
+ def test_dispatch(self):
281
+ class ShouldDispatch:
282
+ def __array_function__(self, function, types, args, kwargs):
283
+ return types, args, kwargs
284
+
285
+ xy = [1, 2]
286
+ s_d = ShouldDispatch()
287
+ r = histogram2d(s_d, xy)
288
+ # Cannot use assert_equal since that dispatches...
289
+ assert_(r == ((ShouldDispatch,), (s_d, xy), {}))
290
+ r = histogram2d(xy, s_d)
291
+ assert_(r == ((ShouldDispatch,), (xy, s_d), {}))
292
+ r = histogram2d(xy, xy, bins=s_d)
293
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=s_d)))
294
+ r = histogram2d(xy, xy, bins=[s_d, 5])
295
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(bins=[s_d, 5])))
296
+ assert_raises(Exception, histogram2d, xy, xy, bins=[s_d])
297
+ r = histogram2d(xy, xy, weights=s_d)
298
+ assert_(r, ((ShouldDispatch,), (xy, xy), dict(weights=s_d)))
299
+
300
+ @pytest.mark.parametrize(("x_len", "y_len"), [(10, 11), (20, 19)])
301
+ def test_bad_length(self, x_len, y_len):
302
+ x, y = np.ones(x_len), np.ones(y_len)
303
+ with pytest.raises(ValueError,
304
+ match='x and y must have the same length.'):
305
+ histogram2d(x, y)
306
+
307
+
308
+ class TestTri:
309
+ def test_dtype(self):
310
+ out = array([[1, 0, 0],
311
+ [1, 1, 0],
312
+ [1, 1, 1]])
313
+ assert_array_equal(tri(3), out)
314
+ assert_array_equal(tri(3, dtype=bool), out.astype(bool))
315
+
316
+
317
+ def test_tril_triu_ndim2():
318
+ for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
319
+ a = np.ones((2, 2), dtype=dtype)
320
+ b = np.tril(a)
321
+ c = np.triu(a)
322
+ assert_array_equal(b, [[1, 0], [1, 1]])
323
+ assert_array_equal(c, b.T)
324
+ # should return the same dtype as the original array
325
+ assert_equal(b.dtype, a.dtype)
326
+ assert_equal(c.dtype, a.dtype)
327
+
328
+
329
+ def test_tril_triu_ndim3():
330
+ for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
331
+ a = np.array([
332
+ [[1, 1], [1, 1]],
333
+ [[1, 1], [1, 0]],
334
+ [[1, 1], [0, 0]],
335
+ ], dtype=dtype)
336
+ a_tril_desired = np.array([
337
+ [[1, 0], [1, 1]],
338
+ [[1, 0], [1, 0]],
339
+ [[1, 0], [0, 0]],
340
+ ], dtype=dtype)
341
+ a_triu_desired = np.array([
342
+ [[1, 1], [0, 1]],
343
+ [[1, 1], [0, 0]],
344
+ [[1, 1], [0, 0]],
345
+ ], dtype=dtype)
346
+ a_triu_observed = np.triu(a)
347
+ a_tril_observed = np.tril(a)
348
+ assert_array_equal(a_triu_observed, a_triu_desired)
349
+ assert_array_equal(a_tril_observed, a_tril_desired)
350
+ assert_equal(a_triu_observed.dtype, a.dtype)
351
+ assert_equal(a_tril_observed.dtype, a.dtype)
352
+
353
+
354
+ def test_tril_triu_with_inf():
355
+ # Issue 4859
356
+ arr = np.array([[1, 1, np.inf],
357
+ [1, 1, 1],
358
+ [np.inf, 1, 1]])
359
+ out_tril = np.array([[1, 0, 0],
360
+ [1, 1, 0],
361
+ [np.inf, 1, 1]])
362
+ out_triu = out_tril.T
363
+ assert_array_equal(np.triu(arr), out_triu)
364
+ assert_array_equal(np.tril(arr), out_tril)
365
+
366
+
367
+ def test_tril_triu_dtype():
368
+ # Issue 4916
369
+ # tril and triu should return the same dtype as input
370
+ for c in np.typecodes['All']:
371
+ if c == 'V':
372
+ continue
373
+ arr = np.zeros((3, 3), dtype=c)
374
+ assert_equal(np.triu(arr).dtype, arr.dtype)
375
+ assert_equal(np.tril(arr).dtype, arr.dtype)
376
+
377
+ # check special cases
378
+ arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'],
379
+ ['2004-01-01T12:00', '2003-01-03T13:45']],
380
+ dtype='datetime64')
381
+ assert_equal(np.triu(arr).dtype, arr.dtype)
382
+ assert_equal(np.tril(arr).dtype, arr.dtype)
383
+
384
+ arr = np.zeros((3, 3), dtype='f4,f4')
385
+ assert_equal(np.triu(arr).dtype, arr.dtype)
386
+ assert_equal(np.tril(arr).dtype, arr.dtype)
387
+
388
+
389
+ def test_mask_indices():
390
+ # simple test without offset
391
+ iu = mask_indices(3, np.triu)
392
+ a = np.arange(9).reshape(3, 3)
393
+ assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8]))
394
+ # Now with an offset
395
+ iu1 = mask_indices(3, np.triu, 1)
396
+ assert_array_equal(a[iu1], array([1, 2, 5]))
397
+
398
+
399
+ def test_tril_indices():
400
+ # indices without and with offset
401
+ il1 = tril_indices(4)
402
+ il2 = tril_indices(4, k=2)
403
+ il3 = tril_indices(4, m=5)
404
+ il4 = tril_indices(4, k=2, m=5)
405
+
406
+ a = np.array([[1, 2, 3, 4],
407
+ [5, 6, 7, 8],
408
+ [9, 10, 11, 12],
409
+ [13, 14, 15, 16]])
410
+ b = np.arange(1, 21).reshape(4, 5)
411
+
412
+ # indexing:
413
+ assert_array_equal(a[il1],
414
+ array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16]))
415
+ assert_array_equal(b[il3],
416
+ array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19]))
417
+
418
+ # And for assigning values:
419
+ a[il1] = -1
420
+ assert_array_equal(a,
421
+ array([[-1, 2, 3, 4],
422
+ [-1, -1, 7, 8],
423
+ [-1, -1, -1, 12],
424
+ [-1, -1, -1, -1]]))
425
+ b[il3] = -1
426
+ assert_array_equal(b,
427
+ array([[-1, 2, 3, 4, 5],
428
+ [-1, -1, 8, 9, 10],
429
+ [-1, -1, -1, 14, 15],
430
+ [-1, -1, -1, -1, 20]]))
431
+ # These cover almost the whole array (two diagonals right of the main one):
432
+ a[il2] = -10
433
+ assert_array_equal(a,
434
+ array([[-10, -10, -10, 4],
435
+ [-10, -10, -10, -10],
436
+ [-10, -10, -10, -10],
437
+ [-10, -10, -10, -10]]))
438
+ b[il4] = -10
439
+ assert_array_equal(b,
440
+ array([[-10, -10, -10, 4, 5],
441
+ [-10, -10, -10, -10, 10],
442
+ [-10, -10, -10, -10, -10],
443
+ [-10, -10, -10, -10, -10]]))
444
+
445
+
446
+ class TestTriuIndices:
447
+ def test_triu_indices(self):
448
+ iu1 = triu_indices(4)
449
+ iu2 = triu_indices(4, k=2)
450
+ iu3 = triu_indices(4, m=5)
451
+ iu4 = triu_indices(4, k=2, m=5)
452
+
453
+ a = np.array([[1, 2, 3, 4],
454
+ [5, 6, 7, 8],
455
+ [9, 10, 11, 12],
456
+ [13, 14, 15, 16]])
457
+ b = np.arange(1, 21).reshape(4, 5)
458
+
459
+ # Both for indexing:
460
+ assert_array_equal(a[iu1],
461
+ array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16]))
462
+ assert_array_equal(b[iu3],
463
+ array([1, 2, 3, 4, 5, 7, 8, 9,
464
+ 10, 13, 14, 15, 19, 20]))
465
+
466
+ # And for assigning values:
467
+ a[iu1] = -1
468
+ assert_array_equal(a,
469
+ array([[-1, -1, -1, -1],
470
+ [5, -1, -1, -1],
471
+ [9, 10, -1, -1],
472
+ [13, 14, 15, -1]]))
473
+ b[iu3] = -1
474
+ assert_array_equal(b,
475
+ array([[-1, -1, -1, -1, -1],
476
+ [6, -1, -1, -1, -1],
477
+ [11, 12, -1, -1, -1],
478
+ [16, 17, 18, -1, -1]]))
479
+
480
+ # These cover almost the whole array (two diagonals right of the
481
+ # main one):
482
+ a[iu2] = -10
483
+ assert_array_equal(a,
484
+ array([[-1, -1, -10, -10],
485
+ [5, -1, -1, -10],
486
+ [9, 10, -1, -1],
487
+ [13, 14, 15, -1]]))
488
+ b[iu4] = -10
489
+ assert_array_equal(b,
490
+ array([[-1, -1, -10, -10, -10],
491
+ [6, -1, -1, -10, -10],
492
+ [11, 12, -1, -1, -10],
493
+ [16, 17, 18, -1, -1]]))
494
+
495
+
496
+ class TestTrilIndicesFrom:
497
+ def test_exceptions(self):
498
+ assert_raises(ValueError, tril_indices_from, np.ones((2,)))
499
+ assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2)))
500
+ # assert_raises(ValueError, tril_indices_from, np.ones((2, 3)))
501
+
502
+
503
+ class TestTriuIndicesFrom:
504
+ def test_exceptions(self):
505
+ assert_raises(ValueError, triu_indices_from, np.ones((2,)))
506
+ assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2)))
507
+ # assert_raises(ValueError, triu_indices_from, np.ones((2, 3)))
508
+
509
+
510
+ class TestVander:
511
+ def test_basic(self):
512
+ c = np.array([0, 1, -2, 3])
513
+ v = vander(c)
514
+ powers = np.array([[0, 0, 0, 0, 1],
515
+ [1, 1, 1, 1, 1],
516
+ [16, -8, 4, -2, 1],
517
+ [81, 27, 9, 3, 1]])
518
+ # Check default value of N:
519
+ assert_array_equal(v, powers[:, 1:])
520
+ # Check a range of N values, including 0 and 5 (greater than default)
521
+ m = powers.shape[1]
522
+ for n in range(6):
523
+ v = vander(c, N=n)
524
+ assert_array_equal(v, powers[:, m-n:m])
525
+
526
+ def test_dtypes(self):
527
+ c = array([11, -12, 13], dtype=np.int8)
528
+ v = vander(c)
529
+ expected = np.array([[121, 11, 1],
530
+ [144, -12, 1],
531
+ [169, 13, 1]])
532
+ assert_array_equal(v, expected)
533
+
534
+ c = array([1.0+1j, 1.0-1j])
535
+ v = vander(c, N=3)
536
+ expected = np.array([[2j, 1+1j, 1],
537
+ [-2j, 1-1j, 1]])
538
+ # The data is floating point, but the values are small integers,
539
+ # so assert_array_equal *should* be safe here (rather than, say,
540
+ # assert_array_almost_equal).
541
+ assert_array_equal(v, expected)
venv/lib/python3.10/site-packages/numpy/lib/tests/test_type_check.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.testing import (
3
+ assert_, assert_equal, assert_array_equal, assert_raises
4
+ )
5
+ from numpy.lib.type_check import (
6
+ common_type, mintypecode, isreal, iscomplex, isposinf, isneginf,
7
+ nan_to_num, isrealobj, iscomplexobj, asfarray, real_if_close
8
+ )
9
+
10
+
11
+ def assert_all(x):
12
+ assert_(np.all(x), x)
13
+
14
+
15
+ class TestCommonType:
16
+ def test_basic(self):
17
+ ai32 = np.array([[1, 2], [3, 4]], dtype=np.int32)
18
+ af16 = np.array([[1, 2], [3, 4]], dtype=np.float16)
19
+ af32 = np.array([[1, 2], [3, 4]], dtype=np.float32)
20
+ af64 = np.array([[1, 2], [3, 4]], dtype=np.float64)
21
+ acs = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.csingle)
22
+ acd = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.cdouble)
23
+ assert_(common_type(ai32) == np.float64)
24
+ assert_(common_type(af16) == np.float16)
25
+ assert_(common_type(af32) == np.float32)
26
+ assert_(common_type(af64) == np.float64)
27
+ assert_(common_type(acs) == np.csingle)
28
+ assert_(common_type(acd) == np.cdouble)
29
+
30
+
31
+ class TestMintypecode:
32
+
33
+ def test_default_1(self):
34
+ for itype in '1bcsuwil':
35
+ assert_equal(mintypecode(itype), 'd')
36
+ assert_equal(mintypecode('f'), 'f')
37
+ assert_equal(mintypecode('d'), 'd')
38
+ assert_equal(mintypecode('F'), 'F')
39
+ assert_equal(mintypecode('D'), 'D')
40
+
41
+ def test_default_2(self):
42
+ for itype in '1bcsuwil':
43
+ assert_equal(mintypecode(itype+'f'), 'f')
44
+ assert_equal(mintypecode(itype+'d'), 'd')
45
+ assert_equal(mintypecode(itype+'F'), 'F')
46
+ assert_equal(mintypecode(itype+'D'), 'D')
47
+ assert_equal(mintypecode('ff'), 'f')
48
+ assert_equal(mintypecode('fd'), 'd')
49
+ assert_equal(mintypecode('fF'), 'F')
50
+ assert_equal(mintypecode('fD'), 'D')
51
+ assert_equal(mintypecode('df'), 'd')
52
+ assert_equal(mintypecode('dd'), 'd')
53
+ #assert_equal(mintypecode('dF',savespace=1),'F')
54
+ assert_equal(mintypecode('dF'), 'D')
55
+ assert_equal(mintypecode('dD'), 'D')
56
+ assert_equal(mintypecode('Ff'), 'F')
57
+ #assert_equal(mintypecode('Fd',savespace=1),'F')
58
+ assert_equal(mintypecode('Fd'), 'D')
59
+ assert_equal(mintypecode('FF'), 'F')
60
+ assert_equal(mintypecode('FD'), 'D')
61
+ assert_equal(mintypecode('Df'), 'D')
62
+ assert_equal(mintypecode('Dd'), 'D')
63
+ assert_equal(mintypecode('DF'), 'D')
64
+ assert_equal(mintypecode('DD'), 'D')
65
+
66
+ def test_default_3(self):
67
+ assert_equal(mintypecode('fdF'), 'D')
68
+ #assert_equal(mintypecode('fdF',savespace=1),'F')
69
+ assert_equal(mintypecode('fdD'), 'D')
70
+ assert_equal(mintypecode('fFD'), 'D')
71
+ assert_equal(mintypecode('dFD'), 'D')
72
+
73
+ assert_equal(mintypecode('ifd'), 'd')
74
+ assert_equal(mintypecode('ifF'), 'F')
75
+ assert_equal(mintypecode('ifD'), 'D')
76
+ assert_equal(mintypecode('idF'), 'D')
77
+ #assert_equal(mintypecode('idF',savespace=1),'F')
78
+ assert_equal(mintypecode('idD'), 'D')
79
+
80
+
81
+ class TestIsscalar:
82
+
83
+ def test_basic(self):
84
+ assert_(np.isscalar(3))
85
+ assert_(not np.isscalar([3]))
86
+ assert_(not np.isscalar((3,)))
87
+ assert_(np.isscalar(3j))
88
+ assert_(np.isscalar(4.0))
89
+
90
+
91
+ class TestReal:
92
+
93
+ def test_real(self):
94
+ y = np.random.rand(10,)
95
+ assert_array_equal(y, np.real(y))
96
+
97
+ y = np.array(1)
98
+ out = np.real(y)
99
+ assert_array_equal(y, out)
100
+ assert_(isinstance(out, np.ndarray))
101
+
102
+ y = 1
103
+ out = np.real(y)
104
+ assert_equal(y, out)
105
+ assert_(not isinstance(out, np.ndarray))
106
+
107
+ def test_cmplx(self):
108
+ y = np.random.rand(10,)+1j*np.random.rand(10,)
109
+ assert_array_equal(y.real, np.real(y))
110
+
111
+ y = np.array(1 + 1j)
112
+ out = np.real(y)
113
+ assert_array_equal(y.real, out)
114
+ assert_(isinstance(out, np.ndarray))
115
+
116
+ y = 1 + 1j
117
+ out = np.real(y)
118
+ assert_equal(1.0, out)
119
+ assert_(not isinstance(out, np.ndarray))
120
+
121
+
122
+ class TestImag:
123
+
124
+ def test_real(self):
125
+ y = np.random.rand(10,)
126
+ assert_array_equal(0, np.imag(y))
127
+
128
+ y = np.array(1)
129
+ out = np.imag(y)
130
+ assert_array_equal(0, out)
131
+ assert_(isinstance(out, np.ndarray))
132
+
133
+ y = 1
134
+ out = np.imag(y)
135
+ assert_equal(0, out)
136
+ assert_(not isinstance(out, np.ndarray))
137
+
138
+ def test_cmplx(self):
139
+ y = np.random.rand(10,)+1j*np.random.rand(10,)
140
+ assert_array_equal(y.imag, np.imag(y))
141
+
142
+ y = np.array(1 + 1j)
143
+ out = np.imag(y)
144
+ assert_array_equal(y.imag, out)
145
+ assert_(isinstance(out, np.ndarray))
146
+
147
+ y = 1 + 1j
148
+ out = np.imag(y)
149
+ assert_equal(1.0, out)
150
+ assert_(not isinstance(out, np.ndarray))
151
+
152
+
153
+ class TestIscomplex:
154
+
155
+ def test_fail(self):
156
+ z = np.array([-1, 0, 1])
157
+ res = iscomplex(z)
158
+ assert_(not np.any(res, axis=0))
159
+
160
+ def test_pass(self):
161
+ z = np.array([-1j, 1, 0])
162
+ res = iscomplex(z)
163
+ assert_array_equal(res, [1, 0, 0])
164
+
165
+
166
+ class TestIsreal:
167
+
168
+ def test_pass(self):
169
+ z = np.array([-1, 0, 1j])
170
+ res = isreal(z)
171
+ assert_array_equal(res, [1, 1, 0])
172
+
173
+ def test_fail(self):
174
+ z = np.array([-1j, 1, 0])
175
+ res = isreal(z)
176
+ assert_array_equal(res, [0, 1, 1])
177
+
178
+
179
+ class TestIscomplexobj:
180
+
181
+ def test_basic(self):
182
+ z = np.array([-1, 0, 1])
183
+ assert_(not iscomplexobj(z))
184
+ z = np.array([-1j, 0, -1])
185
+ assert_(iscomplexobj(z))
186
+
187
+ def test_scalar(self):
188
+ assert_(not iscomplexobj(1.0))
189
+ assert_(iscomplexobj(1+0j))
190
+
191
+ def test_list(self):
192
+ assert_(iscomplexobj([3, 1+0j, True]))
193
+ assert_(not iscomplexobj([3, 1, True]))
194
+
195
+ def test_duck(self):
196
+ class DummyComplexArray:
197
+ @property
198
+ def dtype(self):
199
+ return np.dtype(complex)
200
+ dummy = DummyComplexArray()
201
+ assert_(iscomplexobj(dummy))
202
+
203
+ def test_pandas_duck(self):
204
+ # This tests a custom np.dtype duck-typed class, such as used by pandas
205
+ # (pandas.core.dtypes)
206
+ class PdComplex(np.complex128):
207
+ pass
208
+ class PdDtype:
209
+ name = 'category'
210
+ names = None
211
+ type = PdComplex
212
+ kind = 'c'
213
+ str = '<c16'
214
+ base = np.dtype('complex128')
215
+ class DummyPd:
216
+ @property
217
+ def dtype(self):
218
+ return PdDtype
219
+ dummy = DummyPd()
220
+ assert_(iscomplexobj(dummy))
221
+
222
+ def test_custom_dtype_duck(self):
223
+ class MyArray(list):
224
+ @property
225
+ def dtype(self):
226
+ return complex
227
+
228
+ a = MyArray([1+0j, 2+0j, 3+0j])
229
+ assert_(iscomplexobj(a))
230
+
231
+
232
+ class TestIsrealobj:
233
+ def test_basic(self):
234
+ z = np.array([-1, 0, 1])
235
+ assert_(isrealobj(z))
236
+ z = np.array([-1j, 0, -1])
237
+ assert_(not isrealobj(z))
238
+
239
+
240
+ class TestIsnan:
241
+
242
+ def test_goodvalues(self):
243
+ z = np.array((-1., 0., 1.))
244
+ res = np.isnan(z) == 0
245
+ assert_all(np.all(res, axis=0))
246
+
247
+ def test_posinf(self):
248
+ with np.errstate(divide='ignore'):
249
+ assert_all(np.isnan(np.array((1.,))/0.) == 0)
250
+
251
+ def test_neginf(self):
252
+ with np.errstate(divide='ignore'):
253
+ assert_all(np.isnan(np.array((-1.,))/0.) == 0)
254
+
255
+ def test_ind(self):
256
+ with np.errstate(divide='ignore', invalid='ignore'):
257
+ assert_all(np.isnan(np.array((0.,))/0.) == 1)
258
+
259
+ def test_integer(self):
260
+ assert_all(np.isnan(1) == 0)
261
+
262
+ def test_complex(self):
263
+ assert_all(np.isnan(1+1j) == 0)
264
+
265
+ def test_complex1(self):
266
+ with np.errstate(divide='ignore', invalid='ignore'):
267
+ assert_all(np.isnan(np.array(0+0j)/0.) == 1)
268
+
269
+
270
+ class TestIsfinite:
271
+ # Fixme, wrong place, isfinite now ufunc
272
+
273
+ def test_goodvalues(self):
274
+ z = np.array((-1., 0., 1.))
275
+ res = np.isfinite(z) == 1
276
+ assert_all(np.all(res, axis=0))
277
+
278
+ def test_posinf(self):
279
+ with np.errstate(divide='ignore', invalid='ignore'):
280
+ assert_all(np.isfinite(np.array((1.,))/0.) == 0)
281
+
282
+ def test_neginf(self):
283
+ with np.errstate(divide='ignore', invalid='ignore'):
284
+ assert_all(np.isfinite(np.array((-1.,))/0.) == 0)
285
+
286
+ def test_ind(self):
287
+ with np.errstate(divide='ignore', invalid='ignore'):
288
+ assert_all(np.isfinite(np.array((0.,))/0.) == 0)
289
+
290
+ def test_integer(self):
291
+ assert_all(np.isfinite(1) == 1)
292
+
293
+ def test_complex(self):
294
+ assert_all(np.isfinite(1+1j) == 1)
295
+
296
+ def test_complex1(self):
297
+ with np.errstate(divide='ignore', invalid='ignore'):
298
+ assert_all(np.isfinite(np.array(1+1j)/0.) == 0)
299
+
300
+
301
+ class TestIsinf:
302
+ # Fixme, wrong place, isinf now ufunc
303
+
304
+ def test_goodvalues(self):
305
+ z = np.array((-1., 0., 1.))
306
+ res = np.isinf(z) == 0
307
+ assert_all(np.all(res, axis=0))
308
+
309
+ def test_posinf(self):
310
+ with np.errstate(divide='ignore', invalid='ignore'):
311
+ assert_all(np.isinf(np.array((1.,))/0.) == 1)
312
+
313
+ def test_posinf_scalar(self):
314
+ with np.errstate(divide='ignore', invalid='ignore'):
315
+ assert_all(np.isinf(np.array(1.,)/0.) == 1)
316
+
317
+ def test_neginf(self):
318
+ with np.errstate(divide='ignore', invalid='ignore'):
319
+ assert_all(np.isinf(np.array((-1.,))/0.) == 1)
320
+
321
+ def test_neginf_scalar(self):
322
+ with np.errstate(divide='ignore', invalid='ignore'):
323
+ assert_all(np.isinf(np.array(-1.)/0.) == 1)
324
+
325
+ def test_ind(self):
326
+ with np.errstate(divide='ignore', invalid='ignore'):
327
+ assert_all(np.isinf(np.array((0.,))/0.) == 0)
328
+
329
+
330
+ class TestIsposinf:
331
+
332
+ def test_generic(self):
333
+ with np.errstate(divide='ignore', invalid='ignore'):
334
+ vals = isposinf(np.array((-1., 0, 1))/0.)
335
+ assert_(vals[0] == 0)
336
+ assert_(vals[1] == 0)
337
+ assert_(vals[2] == 1)
338
+
339
+
340
+ class TestIsneginf:
341
+
342
+ def test_generic(self):
343
+ with np.errstate(divide='ignore', invalid='ignore'):
344
+ vals = isneginf(np.array((-1., 0, 1))/0.)
345
+ assert_(vals[0] == 1)
346
+ assert_(vals[1] == 0)
347
+ assert_(vals[2] == 0)
348
+
349
+
350
+ class TestNanToNum:
351
+
352
+ def test_generic(self):
353
+ with np.errstate(divide='ignore', invalid='ignore'):
354
+ vals = nan_to_num(np.array((-1., 0, 1))/0.)
355
+ assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0]))
356
+ assert_(vals[1] == 0)
357
+ assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
358
+ assert_equal(type(vals), np.ndarray)
359
+
360
+ # perform the same tests but with nan, posinf and neginf keywords
361
+ with np.errstate(divide='ignore', invalid='ignore'):
362
+ vals = nan_to_num(np.array((-1., 0, 1))/0.,
363
+ nan=10, posinf=20, neginf=30)
364
+ assert_equal(vals, [30, 10, 20])
365
+ assert_all(np.isfinite(vals[[0, 2]]))
366
+ assert_equal(type(vals), np.ndarray)
367
+
368
+ # perform the same test but in-place
369
+ with np.errstate(divide='ignore', invalid='ignore'):
370
+ vals = np.array((-1., 0, 1))/0.
371
+ result = nan_to_num(vals, copy=False)
372
+
373
+ assert_(result is vals)
374
+ assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0]))
375
+ assert_(vals[1] == 0)
376
+ assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
377
+ assert_equal(type(vals), np.ndarray)
378
+
379
+ # perform the same test but in-place
380
+ with np.errstate(divide='ignore', invalid='ignore'):
381
+ vals = np.array((-1., 0, 1))/0.
382
+ result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30)
383
+
384
+ assert_(result is vals)
385
+ assert_equal(vals, [30, 10, 20])
386
+ assert_all(np.isfinite(vals[[0, 2]]))
387
+ assert_equal(type(vals), np.ndarray)
388
+
389
+ def test_array(self):
390
+ vals = nan_to_num([1])
391
+ assert_array_equal(vals, np.array([1], int))
392
+ assert_equal(type(vals), np.ndarray)
393
+ vals = nan_to_num([1], nan=10, posinf=20, neginf=30)
394
+ assert_array_equal(vals, np.array([1], int))
395
+ assert_equal(type(vals), np.ndarray)
396
+
397
+ def test_integer(self):
398
+ vals = nan_to_num(1)
399
+ assert_all(vals == 1)
400
+ assert_equal(type(vals), np.int_)
401
+ vals = nan_to_num(1, nan=10, posinf=20, neginf=30)
402
+ assert_all(vals == 1)
403
+ assert_equal(type(vals), np.int_)
404
+
405
+ def test_float(self):
406
+ vals = nan_to_num(1.0)
407
+ assert_all(vals == 1.0)
408
+ assert_equal(type(vals), np.float_)
409
+ vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30)
410
+ assert_all(vals == 1.1)
411
+ assert_equal(type(vals), np.float_)
412
+
413
+ def test_complex_good(self):
414
+ vals = nan_to_num(1+1j)
415
+ assert_all(vals == 1+1j)
416
+ assert_equal(type(vals), np.complex_)
417
+ vals = nan_to_num(1+1j, nan=10, posinf=20, neginf=30)
418
+ assert_all(vals == 1+1j)
419
+ assert_equal(type(vals), np.complex_)
420
+
421
+ def test_complex_bad(self):
422
+ with np.errstate(divide='ignore', invalid='ignore'):
423
+ v = 1 + 1j
424
+ v += np.array(0+1.j)/0.
425
+ vals = nan_to_num(v)
426
+ # !! This is actually (unexpectedly) zero
427
+ assert_all(np.isfinite(vals))
428
+ assert_equal(type(vals), np.complex_)
429
+
430
+ def test_complex_bad2(self):
431
+ with np.errstate(divide='ignore', invalid='ignore'):
432
+ v = 1 + 1j
433
+ v += np.array(-1+1.j)/0.
434
+ vals = nan_to_num(v)
435
+ assert_all(np.isfinite(vals))
436
+ assert_equal(type(vals), np.complex_)
437
+ # Fixme
438
+ #assert_all(vals.imag > 1e10) and assert_all(np.isfinite(vals))
439
+ # !! This is actually (unexpectedly) positive
440
+ # !! inf. Comment out for now, and see if it
441
+ # !! changes
442
+ #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals))
443
+
444
+ def test_do_not_rewrite_previous_keyword(self):
445
+ # This is done to test that when, for instance, nan=np.inf then these
446
+ # values are not rewritten by posinf keyword to the posinf value.
447
+ with np.errstate(divide='ignore', invalid='ignore'):
448
+ vals = nan_to_num(np.array((-1., 0, 1))/0., nan=np.inf, posinf=999)
449
+ assert_all(np.isfinite(vals[[0, 2]]))
450
+ assert_all(vals[0] < -1e10)
451
+ assert_equal(vals[[1, 2]], [np.inf, 999])
452
+ assert_equal(type(vals), np.ndarray)
453
+
454
+
455
+ class TestRealIfClose:
456
+
457
+ def test_basic(self):
458
+ a = np.random.rand(10)
459
+ b = real_if_close(a+1e-15j)
460
+ assert_all(isrealobj(b))
461
+ assert_array_equal(a, b)
462
+ b = real_if_close(a+1e-7j)
463
+ assert_all(iscomplexobj(b))
464
+ b = real_if_close(a+1e-7j, tol=1e-6)
465
+ assert_all(isrealobj(b))
466
+
467
+
468
+ class TestArrayConversion:
469
+
470
+ def test_asfarray(self):
471
+ a = asfarray(np.array([1, 2, 3]))
472
+ assert_equal(a.__class__, np.ndarray)
473
+ assert_(np.issubdtype(a.dtype, np.floating))
474
+
475
+ # previously this would infer dtypes from arrays, unlike every single
476
+ # other numpy function
477
+ assert_raises(TypeError,
478
+ asfarray, np.array([1, 2, 3]), dtype=np.array(1.0))
venv/lib/python3.10/site-packages/numpy/polynomial/__init__.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A sub-package for efficiently dealing with polynomials.
3
+
4
+ Within the documentation for this sub-package, a "finite power series,"
5
+ i.e., a polynomial (also referred to simply as a "series") is represented
6
+ by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
7
+ order term to highest. For example, array([1,2,3]) represents
8
+ ``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
9
+ applicable to the specific module in question, e.g., `polynomial` (which
10
+ "wraps" the "standard" basis) or `chebyshev`. For optimal performance,
11
+ all operations on polynomials, including evaluation at an argument, are
12
+ implemented as operations on the coefficients. Additional (module-specific)
13
+ information can be found in the docstring for the module of interest.
14
+
15
+ This package provides *convenience classes* for each of six different kinds
16
+ of polynomials:
17
+
18
+ ======================== ================
19
+ **Name** **Provides**
20
+ ======================== ================
21
+ `~polynomial.Polynomial` Power series
22
+ `~chebyshev.Chebyshev` Chebyshev series
23
+ `~legendre.Legendre` Legendre series
24
+ `~laguerre.Laguerre` Laguerre series
25
+ `~hermite.Hermite` Hermite series
26
+ `~hermite_e.HermiteE` HermiteE series
27
+ ======================== ================
28
+
29
+ These *convenience classes* provide a consistent interface for creating,
30
+ manipulating, and fitting data with polynomials of different bases.
31
+ The convenience classes are the preferred interface for the `~numpy.polynomial`
32
+ package, and are available from the ``numpy.polynomial`` namespace.
33
+ This eliminates the need to navigate to the corresponding submodules, e.g.
34
+ ``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
35
+ ``np.polynomial.polynomial.Polynomial`` or
36
+ ``np.polynomial.chebyshev.Chebyshev``, respectively.
37
+ The classes provide a more consistent and concise interface than the
38
+ type-specific functions defined in the submodules for each type of polynomial.
39
+ For example, to fit a Chebyshev polynomial with degree ``1`` to data given
40
+ by arrays ``xdata`` and ``ydata``, the
41
+ `~chebyshev.Chebyshev.fit` class method::
42
+
43
+ >>> from numpy.polynomial import Chebyshev
44
+ >>> c = Chebyshev.fit(xdata, ydata, deg=1)
45
+
46
+ is preferred over the `chebyshev.chebfit` function from the
47
+ ``np.polynomial.chebyshev`` module::
48
+
49
+ >>> from numpy.polynomial.chebyshev import chebfit
50
+ >>> c = chebfit(xdata, ydata, deg=1)
51
+
52
+ See :doc:`routines.polynomials.classes` for more details.
53
+
54
+ Convenience Classes
55
+ ===================
56
+
57
+ The following lists the various constants and methods common to all of
58
+ the classes representing the various kinds of polynomials. In the following,
59
+ the term ``Poly`` represents any one of the convenience classes (e.g.
60
+ `~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
61
+ while the lowercase ``p`` represents an **instance** of a polynomial class.
62
+
63
+ Constants
64
+ ---------
65
+
66
+ - ``Poly.domain`` -- Default domain
67
+ - ``Poly.window`` -- Default window
68
+ - ``Poly.basis_name`` -- String used to represent the basis
69
+ - ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed
70
+ - ``Poly.nickname`` -- String used in printing
71
+
72
+ Creation
73
+ --------
74
+
75
+ Methods for creating polynomial instances.
76
+
77
+ - ``Poly.basis(degree)`` -- Basis polynomial of given degree
78
+ - ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x``
79
+ - ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients
80
+ determined by the least-squares fit to the data ``x``, ``y``
81
+ - ``Poly.fromroots(roots)`` -- ``p`` with specified roots
82
+ - ``p.copy()`` -- Create a copy of ``p``
83
+
84
+ Conversion
85
+ ----------
86
+
87
+ Methods for converting a polynomial instance of one kind to another.
88
+
89
+ - ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly``
90
+ - ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
91
+ between ``domain`` and ``window``
92
+
93
+ Calculus
94
+ --------
95
+ - ``p.deriv()`` -- Take the derivative of ``p``
96
+ - ``p.integ()`` -- Integrate ``p``
97
+
98
+ Validation
99
+ ----------
100
+ - ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match
101
+ - ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
102
+ - ``Poly.has_sametype(p1, p2)`` -- Check if types match
103
+ - ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
104
+
105
+ Misc
106
+ ----
107
+ - ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
108
+ - ``p.mapparms()`` -- Return the parameters for the linear mapping between
109
+ ``domain`` and ``window``.
110
+ - ``p.roots()`` -- Return the roots of `p`.
111
+ - ``p.trim()`` -- Remove trailing coefficients.
112
+ - ``p.cutdeg(degree)`` -- Truncate p to given degree
113
+ - ``p.truncate(size)`` -- Truncate p to given size
114
+
115
+ """
116
+ from .polynomial import Polynomial
117
+ from .chebyshev import Chebyshev
118
+ from .legendre import Legendre
119
+ from .hermite import Hermite
120
+ from .hermite_e import HermiteE
121
+ from .laguerre import Laguerre
122
+
123
+ __all__ = [
124
+ "set_default_printstyle",
125
+ "polynomial", "Polynomial",
126
+ "chebyshev", "Chebyshev",
127
+ "legendre", "Legendre",
128
+ "hermite", "Hermite",
129
+ "hermite_e", "HermiteE",
130
+ "laguerre", "Laguerre",
131
+ ]
132
+
133
+
134
+ def set_default_printstyle(style):
135
+ """
136
+ Set the default format for the string representation of polynomials.
137
+
138
+ Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
139
+ or 'unicode'.
140
+
141
+ Parameters
142
+ ----------
143
+ style : str
144
+ Format string for default printing style. Must be either 'ascii' or
145
+ 'unicode'.
146
+
147
+ Notes
148
+ -----
149
+ The default format depends on the platform: 'unicode' is used on
150
+ Unix-based systems and 'ascii' on Windows. This determination is based on
151
+ default font support for the unicode superscript and subscript ranges.
152
+
153
+ Examples
154
+ --------
155
+ >>> p = np.polynomial.Polynomial([1, 2, 3])
156
+ >>> c = np.polynomial.Chebyshev([1, 2, 3])
157
+ >>> np.polynomial.set_default_printstyle('unicode')
158
+ >>> print(p)
159
+ 1.0 + 2.0·x + 3.0·x²
160
+ >>> print(c)
161
+ 1.0 + 2.0·T₁(x) + 3.0·T₂(x)
162
+ >>> np.polynomial.set_default_printstyle('ascii')
163
+ >>> print(p)
164
+ 1.0 + 2.0 x + 3.0 x**2
165
+ >>> print(c)
166
+ 1.0 + 2.0 T_1(x) + 3.0 T_2(x)
167
+ >>> # Formatting supersedes all class/package-level defaults
168
+ >>> print(f"{p:unicode}")
169
+ 1.0 + 2.0·x + 3.0·x²
170
+ """
171
+ if style not in ('unicode', 'ascii'):
172
+ raise ValueError(
173
+ f"Unsupported format string '{style}'. Valid options are 'ascii' "
174
+ f"and 'unicode'"
175
+ )
176
+ _use_unicode = True
177
+ if style == 'ascii':
178
+ _use_unicode = False
179
+ from ._polybase import ABCPolyBase
180
+ ABCPolyBase._use_unicode = _use_unicode
181
+
182
+
183
+ from numpy._pytesttester import PytestTester
184
+ test = PytestTester(__name__)
185
+ del PytestTester
venv/lib/python3.10/site-packages/numpy/polynomial/__init__.pyi ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy._pytesttester import PytestTester
2
+
3
+ from numpy.polynomial import (
4
+ chebyshev as chebyshev,
5
+ hermite as hermite,
6
+ hermite_e as hermite_e,
7
+ laguerre as laguerre,
8
+ legendre as legendre,
9
+ polynomial as polynomial,
10
+ )
11
+ from numpy.polynomial.chebyshev import Chebyshev as Chebyshev
12
+ from numpy.polynomial.hermite import Hermite as Hermite
13
+ from numpy.polynomial.hermite_e import HermiteE as HermiteE
14
+ from numpy.polynomial.laguerre import Laguerre as Laguerre
15
+ from numpy.polynomial.legendre import Legendre as Legendre
16
+ from numpy.polynomial.polynomial import Polynomial as Polynomial
17
+
18
+ __all__: list[str]
19
+ __path__: list[str]
20
+ test: PytestTester
21
+
22
+ def set_default_printstyle(style): ...
venv/lib/python3.10/site-packages/numpy/polynomial/_polybase.py ADDED
@@ -0,0 +1,1206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Abstract base class for the various polynomial Classes.
3
+
4
+ The ABCPolyBase class provides the methods needed to implement the common API
5
+ for the various polynomial classes. It operates as a mixin, but uses the
6
+ abc module from the stdlib, hence it is only available for Python >= 2.6.
7
+
8
+ """
9
+ import os
10
+ import abc
11
+ import numbers
12
+
13
+ import numpy as np
14
+ from . import polyutils as pu
15
+
16
+ __all__ = ['ABCPolyBase']
17
+
18
+ class ABCPolyBase(abc.ABC):
19
+ """An abstract base class for immutable series classes.
20
+
21
+ ABCPolyBase provides the standard Python numerical methods
22
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the
23
+ methods listed below.
24
+
25
+ .. versionadded:: 1.9.0
26
+
27
+ Parameters
28
+ ----------
29
+ coef : array_like
30
+ Series coefficients in order of increasing degree, i.e.,
31
+ ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where
32
+ ``P_i`` is the basis polynomials of degree ``i``.
33
+ domain : (2,) array_like, optional
34
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
35
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
36
+ The default value is the derived class domain.
37
+ window : (2,) array_like, optional
38
+ Window, see domain for its use. The default value is the
39
+ derived class window.
40
+ symbol : str, optional
41
+ Symbol used to represent the independent variable in string
42
+ representations of the polynomial expression, e.g. for printing.
43
+ The symbol must be a valid Python identifier. Default value is 'x'.
44
+
45
+ .. versionadded:: 1.24
46
+
47
+ Attributes
48
+ ----------
49
+ coef : (N,) ndarray
50
+ Series coefficients in order of increasing degree.
51
+ domain : (2,) ndarray
52
+ Domain that is mapped to window.
53
+ window : (2,) ndarray
54
+ Window that domain is mapped to.
55
+ symbol : str
56
+ Symbol representing the independent variable.
57
+
58
+ Class Attributes
59
+ ----------------
60
+ maxpower : int
61
+ Maximum power allowed, i.e., the largest number ``n`` such that
62
+ ``p(x)**n`` is allowed. This is to limit runaway polynomial size.
63
+ domain : (2,) ndarray
64
+ Default domain of the class.
65
+ window : (2,) ndarray
66
+ Default window of the class.
67
+
68
+ """
69
+
70
+ # Not hashable
71
+ __hash__ = None
72
+
73
+ # Opt out of numpy ufuncs and Python ops with ndarray subclasses.
74
+ __array_ufunc__ = None
75
+
76
+ # Limit runaway size. T_n^m has degree n*m
77
+ maxpower = 100
78
+
79
+ # Unicode character mappings for improved __str__
80
+ _superscript_mapping = str.maketrans({
81
+ "0": "⁰",
82
+ "1": "¹",
83
+ "2": "²",
84
+ "3": "³",
85
+ "4": "⁴",
86
+ "5": "⁵",
87
+ "6": "⁶",
88
+ "7": "⁷",
89
+ "8": "⁸",
90
+ "9": "⁹"
91
+ })
92
+ _subscript_mapping = str.maketrans({
93
+ "0": "₀",
94
+ "1": "₁",
95
+ "2": "₂",
96
+ "3": "₃",
97
+ "4": "₄",
98
+ "5": "₅",
99
+ "6": "₆",
100
+ "7": "₇",
101
+ "8": "₈",
102
+ "9": "₉"
103
+ })
104
+ # Some fonts don't support full unicode character ranges necessary for
105
+ # the full set of superscripts and subscripts, including common/default
106
+ # fonts in Windows shells/terminals. Therefore, default to ascii-only
107
+ # printing on windows.
108
+ _use_unicode = not os.name == 'nt'
109
+
110
+ @property
111
+ def symbol(self):
112
+ return self._symbol
113
+
114
+ @property
115
+ @abc.abstractmethod
116
+ def domain(self):
117
+ pass
118
+
119
+ @property
120
+ @abc.abstractmethod
121
+ def window(self):
122
+ pass
123
+
124
+ @property
125
+ @abc.abstractmethod
126
+ def basis_name(self):
127
+ pass
128
+
129
+ @staticmethod
130
+ @abc.abstractmethod
131
+ def _add(c1, c2):
132
+ pass
133
+
134
+ @staticmethod
135
+ @abc.abstractmethod
136
+ def _sub(c1, c2):
137
+ pass
138
+
139
+ @staticmethod
140
+ @abc.abstractmethod
141
+ def _mul(c1, c2):
142
+ pass
143
+
144
+ @staticmethod
145
+ @abc.abstractmethod
146
+ def _div(c1, c2):
147
+ pass
148
+
149
+ @staticmethod
150
+ @abc.abstractmethod
151
+ def _pow(c, pow, maxpower=None):
152
+ pass
153
+
154
+ @staticmethod
155
+ @abc.abstractmethod
156
+ def _val(x, c):
157
+ pass
158
+
159
+ @staticmethod
160
+ @abc.abstractmethod
161
+ def _int(c, m, k, lbnd, scl):
162
+ pass
163
+
164
+ @staticmethod
165
+ @abc.abstractmethod
166
+ def _der(c, m, scl):
167
+ pass
168
+
169
+ @staticmethod
170
+ @abc.abstractmethod
171
+ def _fit(x, y, deg, rcond, full):
172
+ pass
173
+
174
+ @staticmethod
175
+ @abc.abstractmethod
176
+ def _line(off, scl):
177
+ pass
178
+
179
+ @staticmethod
180
+ @abc.abstractmethod
181
+ def _roots(c):
182
+ pass
183
+
184
+ @staticmethod
185
+ @abc.abstractmethod
186
+ def _fromroots(r):
187
+ pass
188
+
189
+ def has_samecoef(self, other):
190
+ """Check if coefficients match.
191
+
192
+ .. versionadded:: 1.6.0
193
+
194
+ Parameters
195
+ ----------
196
+ other : class instance
197
+ The other class must have the ``coef`` attribute.
198
+
199
+ Returns
200
+ -------
201
+ bool : boolean
202
+ True if the coefficients are the same, False otherwise.
203
+
204
+ """
205
+ if len(self.coef) != len(other.coef):
206
+ return False
207
+ elif not np.all(self.coef == other.coef):
208
+ return False
209
+ else:
210
+ return True
211
+
212
+ def has_samedomain(self, other):
213
+ """Check if domains match.
214
+
215
+ .. versionadded:: 1.6.0
216
+
217
+ Parameters
218
+ ----------
219
+ other : class instance
220
+ The other class must have the ``domain`` attribute.
221
+
222
+ Returns
223
+ -------
224
+ bool : boolean
225
+ True if the domains are the same, False otherwise.
226
+
227
+ """
228
+ return np.all(self.domain == other.domain)
229
+
230
+ def has_samewindow(self, other):
231
+ """Check if windows match.
232
+
233
+ .. versionadded:: 1.6.0
234
+
235
+ Parameters
236
+ ----------
237
+ other : class instance
238
+ The other class must have the ``window`` attribute.
239
+
240
+ Returns
241
+ -------
242
+ bool : boolean
243
+ True if the windows are the same, False otherwise.
244
+
245
+ """
246
+ return np.all(self.window == other.window)
247
+
248
+ def has_sametype(self, other):
249
+ """Check if types match.
250
+
251
+ .. versionadded:: 1.7.0
252
+
253
+ Parameters
254
+ ----------
255
+ other : object
256
+ Class instance.
257
+
258
+ Returns
259
+ -------
260
+ bool : boolean
261
+ True if other is same class as self
262
+
263
+ """
264
+ return isinstance(other, self.__class__)
265
+
266
+ def _get_coefficients(self, other):
267
+ """Interpret other as polynomial coefficients.
268
+
269
+ The `other` argument is checked to see if it is of the same
270
+ class as self with identical domain and window. If so,
271
+ return its coefficients, otherwise return `other`.
272
+
273
+ .. versionadded:: 1.9.0
274
+
275
+ Parameters
276
+ ----------
277
+ other : anything
278
+ Object to be checked.
279
+
280
+ Returns
281
+ -------
282
+ coef
283
+ The coefficients of`other` if it is a compatible instance,
284
+ of ABCPolyBase, otherwise `other`.
285
+
286
+ Raises
287
+ ------
288
+ TypeError
289
+ When `other` is an incompatible instance of ABCPolyBase.
290
+
291
+ """
292
+ if isinstance(other, ABCPolyBase):
293
+ if not isinstance(other, self.__class__):
294
+ raise TypeError("Polynomial types differ")
295
+ elif not np.all(self.domain == other.domain):
296
+ raise TypeError("Domains differ")
297
+ elif not np.all(self.window == other.window):
298
+ raise TypeError("Windows differ")
299
+ elif self.symbol != other.symbol:
300
+ raise ValueError("Polynomial symbols differ")
301
+ return other.coef
302
+ return other
303
+
304
+ def __init__(self, coef, domain=None, window=None, symbol='x'):
305
+ [coef] = pu.as_series([coef], trim=False)
306
+ self.coef = coef
307
+
308
+ if domain is not None:
309
+ [domain] = pu.as_series([domain], trim=False)
310
+ if len(domain) != 2:
311
+ raise ValueError("Domain has wrong number of elements.")
312
+ self.domain = domain
313
+
314
+ if window is not None:
315
+ [window] = pu.as_series([window], trim=False)
316
+ if len(window) != 2:
317
+ raise ValueError("Window has wrong number of elements.")
318
+ self.window = window
319
+
320
+ # Validation for symbol
321
+ try:
322
+ if not symbol.isidentifier():
323
+ raise ValueError(
324
+ "Symbol string must be a valid Python identifier"
325
+ )
326
+ # If a user passes in something other than a string, the above
327
+ # results in an AttributeError. Catch this and raise a more
328
+ # informative exception
329
+ except AttributeError:
330
+ raise TypeError("Symbol must be a non-empty string")
331
+
332
+ self._symbol = symbol
333
+
334
+ def __repr__(self):
335
+ coef = repr(self.coef)[6:-1]
336
+ domain = repr(self.domain)[6:-1]
337
+ window = repr(self.window)[6:-1]
338
+ name = self.__class__.__name__
339
+ return (f"{name}({coef}, domain={domain}, window={window}, "
340
+ f"symbol='{self.symbol}')")
341
+
342
+ def __format__(self, fmt_str):
343
+ if fmt_str == '':
344
+ return self.__str__()
345
+ if fmt_str not in ('ascii', 'unicode'):
346
+ raise ValueError(
347
+ f"Unsupported format string '{fmt_str}' passed to "
348
+ f"{self.__class__}.__format__. Valid options are "
349
+ f"'ascii' and 'unicode'"
350
+ )
351
+ if fmt_str == 'ascii':
352
+ return self._generate_string(self._str_term_ascii)
353
+ return self._generate_string(self._str_term_unicode)
354
+
355
+ def __str__(self):
356
+ if self._use_unicode:
357
+ return self._generate_string(self._str_term_unicode)
358
+ return self._generate_string(self._str_term_ascii)
359
+
360
+ def _generate_string(self, term_method):
361
+ """
362
+ Generate the full string representation of the polynomial, using
363
+ ``term_method`` to generate each polynomial term.
364
+ """
365
+ # Get configuration for line breaks
366
+ linewidth = np.get_printoptions().get('linewidth', 75)
367
+ if linewidth < 1:
368
+ linewidth = 1
369
+ out = pu.format_float(self.coef[0])
370
+ for i, coef in enumerate(self.coef[1:]):
371
+ out += " "
372
+ power = str(i + 1)
373
+ # Polynomial coefficient
374
+ # The coefficient array can be an object array with elements that
375
+ # will raise a TypeError with >= 0 (e.g. strings or Python
376
+ # complex). In this case, represent the coefficient as-is.
377
+ try:
378
+ if coef >= 0:
379
+ next_term = f"+ " + pu.format_float(coef, parens=True)
380
+ else:
381
+ next_term = f"- " + pu.format_float(-coef, parens=True)
382
+ except TypeError:
383
+ next_term = f"+ {coef}"
384
+ # Polynomial term
385
+ next_term += term_method(power, self.symbol)
386
+ # Length of the current line with next term added
387
+ line_len = len(out.split('\n')[-1]) + len(next_term)
388
+ # If not the last term in the polynomial, it will be two
389
+ # characters longer due to the +/- with the next term
390
+ if i < len(self.coef[1:]) - 1:
391
+ line_len += 2
392
+ # Handle linebreaking
393
+ if line_len >= linewidth:
394
+ next_term = next_term.replace(" ", "\n", 1)
395
+ out += next_term
396
+ return out
397
+
398
+ @classmethod
399
+ def _str_term_unicode(cls, i, arg_str):
400
+ """
401
+ String representation of single polynomial term using unicode
402
+ characters for superscripts and subscripts.
403
+ """
404
+ if cls.basis_name is None:
405
+ raise NotImplementedError(
406
+ "Subclasses must define either a basis_name, or override "
407
+ "_str_term_unicode(cls, i, arg_str)"
408
+ )
409
+ return (f"·{cls.basis_name}{i.translate(cls._subscript_mapping)}"
410
+ f"({arg_str})")
411
+
412
+ @classmethod
413
+ def _str_term_ascii(cls, i, arg_str):
414
+ """
415
+ String representation of a single polynomial term using ** and _ to
416
+ represent superscripts and subscripts, respectively.
417
+ """
418
+ if cls.basis_name is None:
419
+ raise NotImplementedError(
420
+ "Subclasses must define either a basis_name, or override "
421
+ "_str_term_ascii(cls, i, arg_str)"
422
+ )
423
+ return f" {cls.basis_name}_{i}({arg_str})"
424
+
425
+ @classmethod
426
+ def _repr_latex_term(cls, i, arg_str, needs_parens):
427
+ if cls.basis_name is None:
428
+ raise NotImplementedError(
429
+ "Subclasses must define either a basis name, or override "
430
+ "_repr_latex_term(i, arg_str, needs_parens)")
431
+ # since we always add parens, we don't care if the expression needs them
432
+ return f"{{{cls.basis_name}}}_{{{i}}}({arg_str})"
433
+
434
+ @staticmethod
435
+ def _repr_latex_scalar(x, parens=False):
436
+ # TODO: we're stuck with disabling math formatting until we handle
437
+ # exponents in this function
438
+ return r'\text{{{}}}'.format(pu.format_float(x, parens=parens))
439
+
440
+ def _repr_latex_(self):
441
+ # get the scaled argument string to the basis functions
442
+ off, scale = self.mapparms()
443
+ if off == 0 and scale == 1:
444
+ term = self.symbol
445
+ needs_parens = False
446
+ elif scale == 1:
447
+ term = f"{self._repr_latex_scalar(off)} + {self.symbol}"
448
+ needs_parens = True
449
+ elif off == 0:
450
+ term = f"{self._repr_latex_scalar(scale)}{self.symbol}"
451
+ needs_parens = True
452
+ else:
453
+ term = (
454
+ f"{self._repr_latex_scalar(off)} + "
455
+ f"{self._repr_latex_scalar(scale)}{self.symbol}"
456
+ )
457
+ needs_parens = True
458
+
459
+ mute = r"\color{{LightGray}}{{{}}}".format
460
+
461
+ parts = []
462
+ for i, c in enumerate(self.coef):
463
+ # prevent duplication of + and - signs
464
+ if i == 0:
465
+ coef_str = f"{self._repr_latex_scalar(c)}"
466
+ elif not isinstance(c, numbers.Real):
467
+ coef_str = f" + ({self._repr_latex_scalar(c)})"
468
+ elif not np.signbit(c):
469
+ coef_str = f" + {self._repr_latex_scalar(c, parens=True)}"
470
+ else:
471
+ coef_str = f" - {self._repr_latex_scalar(-c, parens=True)}"
472
+
473
+ # produce the string for the term
474
+ term_str = self._repr_latex_term(i, term, needs_parens)
475
+ if term_str == '1':
476
+ part = coef_str
477
+ else:
478
+ part = rf"{coef_str}\,{term_str}"
479
+
480
+ if c == 0:
481
+ part = mute(part)
482
+
483
+ parts.append(part)
484
+
485
+ if parts:
486
+ body = ''.join(parts)
487
+ else:
488
+ # in case somehow there are no coefficients at all
489
+ body = '0'
490
+
491
+ return rf"${self.symbol} \mapsto {body}$"
492
+
493
+
494
+
495
+ # Pickle and copy
496
+
497
+ def __getstate__(self):
498
+ ret = self.__dict__.copy()
499
+ ret['coef'] = self.coef.copy()
500
+ ret['domain'] = self.domain.copy()
501
+ ret['window'] = self.window.copy()
502
+ ret['symbol'] = self.symbol
503
+ return ret
504
+
505
+ def __setstate__(self, dict):
506
+ self.__dict__ = dict
507
+
508
+ # Call
509
+
510
+ def __call__(self, arg):
511
+ off, scl = pu.mapparms(self.domain, self.window)
512
+ arg = off + scl*arg
513
+ return self._val(arg, self.coef)
514
+
515
+ def __iter__(self):
516
+ return iter(self.coef)
517
+
518
+ def __len__(self):
519
+ return len(self.coef)
520
+
521
+ # Numeric properties.
522
+
523
+ def __neg__(self):
524
+ return self.__class__(
525
+ -self.coef, self.domain, self.window, self.symbol
526
+ )
527
+
528
+ def __pos__(self):
529
+ return self
530
+
531
+ def __add__(self, other):
532
+ othercoef = self._get_coefficients(other)
533
+ try:
534
+ coef = self._add(self.coef, othercoef)
535
+ except Exception:
536
+ return NotImplemented
537
+ return self.__class__(coef, self.domain, self.window, self.symbol)
538
+
539
+ def __sub__(self, other):
540
+ othercoef = self._get_coefficients(other)
541
+ try:
542
+ coef = self._sub(self.coef, othercoef)
543
+ except Exception:
544
+ return NotImplemented
545
+ return self.__class__(coef, self.domain, self.window, self.symbol)
546
+
547
+ def __mul__(self, other):
548
+ othercoef = self._get_coefficients(other)
549
+ try:
550
+ coef = self._mul(self.coef, othercoef)
551
+ except Exception:
552
+ return NotImplemented
553
+ return self.__class__(coef, self.domain, self.window, self.symbol)
554
+
555
+ def __truediv__(self, other):
556
+ # there is no true divide if the rhs is not a Number, although it
557
+ # could return the first n elements of an infinite series.
558
+ # It is hard to see where n would come from, though.
559
+ if not isinstance(other, numbers.Number) or isinstance(other, bool):
560
+ raise TypeError(
561
+ f"unsupported types for true division: "
562
+ f"'{type(self)}', '{type(other)}'"
563
+ )
564
+ return self.__floordiv__(other)
565
+
566
+ def __floordiv__(self, other):
567
+ res = self.__divmod__(other)
568
+ if res is NotImplemented:
569
+ return res
570
+ return res[0]
571
+
572
+ def __mod__(self, other):
573
+ res = self.__divmod__(other)
574
+ if res is NotImplemented:
575
+ return res
576
+ return res[1]
577
+
578
+ def __divmod__(self, other):
579
+ othercoef = self._get_coefficients(other)
580
+ try:
581
+ quo, rem = self._div(self.coef, othercoef)
582
+ except ZeroDivisionError:
583
+ raise
584
+ except Exception:
585
+ return NotImplemented
586
+ quo = self.__class__(quo, self.domain, self.window, self.symbol)
587
+ rem = self.__class__(rem, self.domain, self.window, self.symbol)
588
+ return quo, rem
589
+
590
+ def __pow__(self, other):
591
+ coef = self._pow(self.coef, other, maxpower=self.maxpower)
592
+ res = self.__class__(coef, self.domain, self.window, self.symbol)
593
+ return res
594
+
595
+ def __radd__(self, other):
596
+ try:
597
+ coef = self._add(other, self.coef)
598
+ except Exception:
599
+ return NotImplemented
600
+ return self.__class__(coef, self.domain, self.window, self.symbol)
601
+
602
+ def __rsub__(self, other):
603
+ try:
604
+ coef = self._sub(other, self.coef)
605
+ except Exception:
606
+ return NotImplemented
607
+ return self.__class__(coef, self.domain, self.window, self.symbol)
608
+
609
+ def __rmul__(self, other):
610
+ try:
611
+ coef = self._mul(other, self.coef)
612
+ except Exception:
613
+ return NotImplemented
614
+ return self.__class__(coef, self.domain, self.window, self.symbol)
615
+
616
+ def __rdiv__(self, other):
617
+ # set to __floordiv__ /.
618
+ return self.__rfloordiv__(other)
619
+
620
+ def __rtruediv__(self, other):
621
+ # An instance of ABCPolyBase is not considered a
622
+ # Number.
623
+ return NotImplemented
624
+
625
+ def __rfloordiv__(self, other):
626
+ res = self.__rdivmod__(other)
627
+ if res is NotImplemented:
628
+ return res
629
+ return res[0]
630
+
631
+ def __rmod__(self, other):
632
+ res = self.__rdivmod__(other)
633
+ if res is NotImplemented:
634
+ return res
635
+ return res[1]
636
+
637
+ def __rdivmod__(self, other):
638
+ try:
639
+ quo, rem = self._div(other, self.coef)
640
+ except ZeroDivisionError:
641
+ raise
642
+ except Exception:
643
+ return NotImplemented
644
+ quo = self.__class__(quo, self.domain, self.window, self.symbol)
645
+ rem = self.__class__(rem, self.domain, self.window, self.symbol)
646
+ return quo, rem
647
+
648
+ def __eq__(self, other):
649
+ res = (isinstance(other, self.__class__) and
650
+ np.all(self.domain == other.domain) and
651
+ np.all(self.window == other.window) and
652
+ (self.coef.shape == other.coef.shape) and
653
+ np.all(self.coef == other.coef) and
654
+ (self.symbol == other.symbol))
655
+ return res
656
+
657
+ def __ne__(self, other):
658
+ return not self.__eq__(other)
659
+
660
+ #
661
+ # Extra methods.
662
+ #
663
+
664
+ def copy(self):
665
+ """Return a copy.
666
+
667
+ Returns
668
+ -------
669
+ new_series : series
670
+ Copy of self.
671
+
672
+ """
673
+ return self.__class__(self.coef, self.domain, self.window, self.symbol)
674
+
675
+ def degree(self):
676
+ """The degree of the series.
677
+
678
+ .. versionadded:: 1.5.0
679
+
680
+ Returns
681
+ -------
682
+ degree : int
683
+ Degree of the series, one less than the number of coefficients.
684
+
685
+ Examples
686
+ --------
687
+
688
+ Create a polynomial object for ``1 + 7*x + 4*x**2``:
689
+
690
+ >>> poly = np.polynomial.Polynomial([1, 7, 4])
691
+ >>> print(poly)
692
+ 1.0 + 7.0·x + 4.0·x²
693
+ >>> poly.degree()
694
+ 2
695
+
696
+ Note that this method does not check for non-zero coefficients.
697
+ You must trim the polynomial to remove any trailing zeroes:
698
+
699
+ >>> poly = np.polynomial.Polynomial([1, 7, 0])
700
+ >>> print(poly)
701
+ 1.0 + 7.0·x + 0.0·x²
702
+ >>> poly.degree()
703
+ 2
704
+ >>> poly.trim().degree()
705
+ 1
706
+
707
+ """
708
+ return len(self) - 1
709
+
710
+ def cutdeg(self, deg):
711
+ """Truncate series to the given degree.
712
+
713
+ Reduce the degree of the series to `deg` by discarding the
714
+ high order terms. If `deg` is greater than the current degree a
715
+ copy of the current series is returned. This can be useful in least
716
+ squares where the coefficients of the high degree terms may be very
717
+ small.
718
+
719
+ .. versionadded:: 1.5.0
720
+
721
+ Parameters
722
+ ----------
723
+ deg : non-negative int
724
+ The series is reduced to degree `deg` by discarding the high
725
+ order terms. The value of `deg` must be a non-negative integer.
726
+
727
+ Returns
728
+ -------
729
+ new_series : series
730
+ New instance of series with reduced degree.
731
+
732
+ """
733
+ return self.truncate(deg + 1)
734
+
735
+ def trim(self, tol=0):
736
+ """Remove trailing coefficients
737
+
738
+ Remove trailing coefficients until a coefficient is reached whose
739
+ absolute value greater than `tol` or the beginning of the series is
740
+ reached. If all the coefficients would be removed the series is set
741
+ to ``[0]``. A new series instance is returned with the new
742
+ coefficients. The current instance remains unchanged.
743
+
744
+ Parameters
745
+ ----------
746
+ tol : non-negative number.
747
+ All trailing coefficients less than `tol` will be removed.
748
+
749
+ Returns
750
+ -------
751
+ new_series : series
752
+ New instance of series with trimmed coefficients.
753
+
754
+ """
755
+ coef = pu.trimcoef(self.coef, tol)
756
+ return self.__class__(coef, self.domain, self.window, self.symbol)
757
+
758
+ def truncate(self, size):
759
+ """Truncate series to length `size`.
760
+
761
+ Reduce the series to length `size` by discarding the high
762
+ degree terms. The value of `size` must be a positive integer. This
763
+ can be useful in least squares where the coefficients of the
764
+ high degree terms may be very small.
765
+
766
+ Parameters
767
+ ----------
768
+ size : positive int
769
+ The series is reduced to length `size` by discarding the high
770
+ degree terms. The value of `size` must be a positive integer.
771
+
772
+ Returns
773
+ -------
774
+ new_series : series
775
+ New instance of series with truncated coefficients.
776
+
777
+ """
778
+ isize = int(size)
779
+ if isize != size or isize < 1:
780
+ raise ValueError("size must be a positive integer")
781
+ if isize >= len(self.coef):
782
+ coef = self.coef
783
+ else:
784
+ coef = self.coef[:isize]
785
+ return self.__class__(coef, self.domain, self.window, self.symbol)
786
+
787
+ def convert(self, domain=None, kind=None, window=None):
788
+ """Convert series to a different kind and/or domain and/or window.
789
+
790
+ Parameters
791
+ ----------
792
+ domain : array_like, optional
793
+ The domain of the converted series. If the value is None,
794
+ the default domain of `kind` is used.
795
+ kind : class, optional
796
+ The polynomial series type class to which the current instance
797
+ should be converted. If kind is None, then the class of the
798
+ current instance is used.
799
+ window : array_like, optional
800
+ The window of the converted series. If the value is None,
801
+ the default window of `kind` is used.
802
+
803
+ Returns
804
+ -------
805
+ new_series : series
806
+ The returned class can be of different type than the current
807
+ instance and/or have a different domain and/or different
808
+ window.
809
+
810
+ Notes
811
+ -----
812
+ Conversion between domains and class types can result in
813
+ numerically ill defined series.
814
+
815
+ """
816
+ if kind is None:
817
+ kind = self.__class__
818
+ if domain is None:
819
+ domain = kind.domain
820
+ if window is None:
821
+ window = kind.window
822
+ return self(kind.identity(domain, window=window, symbol=self.symbol))
823
+
824
+ def mapparms(self):
825
+ """Return the mapping parameters.
826
+
827
+ The returned values define a linear map ``off + scl*x`` that is
828
+ applied to the input arguments before the series is evaluated. The
829
+ map depends on the ``domain`` and ``window``; if the current
830
+ ``domain`` is equal to the ``window`` the resulting map is the
831
+ identity. If the coefficients of the series instance are to be
832
+ used by themselves outside this class, then the linear function
833
+ must be substituted for the ``x`` in the standard representation of
834
+ the base polynomials.
835
+
836
+ Returns
837
+ -------
838
+ off, scl : float or complex
839
+ The mapping function is defined by ``off + scl*x``.
840
+
841
+ Notes
842
+ -----
843
+ If the current domain is the interval ``[l1, r1]`` and the window
844
+ is ``[l2, r2]``, then the linear mapping function ``L`` is
845
+ defined by the equations::
846
+
847
+ L(l1) = l2
848
+ L(r1) = r2
849
+
850
+ """
851
+ return pu.mapparms(self.domain, self.window)
852
+
853
+ def integ(self, m=1, k=[], lbnd=None):
854
+ """Integrate.
855
+
856
+ Return a series instance that is the definite integral of the
857
+ current series.
858
+
859
+ Parameters
860
+ ----------
861
+ m : non-negative int
862
+ The number of integrations to perform.
863
+ k : array_like
864
+ Integration constants. The first constant is applied to the
865
+ first integration, the second to the second, and so on. The
866
+ list of values must less than or equal to `m` in length and any
867
+ missing values are set to zero.
868
+ lbnd : Scalar
869
+ The lower bound of the definite integral.
870
+
871
+ Returns
872
+ -------
873
+ new_series : series
874
+ A new series representing the integral. The domain is the same
875
+ as the domain of the integrated series.
876
+
877
+ """
878
+ off, scl = self.mapparms()
879
+ if lbnd is None:
880
+ lbnd = 0
881
+ else:
882
+ lbnd = off + scl*lbnd
883
+ coef = self._int(self.coef, m, k, lbnd, 1./scl)
884
+ return self.__class__(coef, self.domain, self.window, self.symbol)
885
+
886
+ def deriv(self, m=1):
887
+ """Differentiate.
888
+
889
+ Return a series instance of that is the derivative of the current
890
+ series.
891
+
892
+ Parameters
893
+ ----------
894
+ m : non-negative int
895
+ Find the derivative of order `m`.
896
+
897
+ Returns
898
+ -------
899
+ new_series : series
900
+ A new series representing the derivative. The domain is the same
901
+ as the domain of the differentiated series.
902
+
903
+ """
904
+ off, scl = self.mapparms()
905
+ coef = self._der(self.coef, m, scl)
906
+ return self.__class__(coef, self.domain, self.window, self.symbol)
907
+
908
+ def roots(self):
909
+ """Return the roots of the series polynomial.
910
+
911
+ Compute the roots for the series. Note that the accuracy of the
912
+ roots decreases the further outside the `domain` they lie.
913
+
914
+ Returns
915
+ -------
916
+ roots : ndarray
917
+ Array containing the roots of the series.
918
+
919
+ """
920
+ roots = self._roots(self.coef)
921
+ return pu.mapdomain(roots, self.window, self.domain)
922
+
923
+ def linspace(self, n=100, domain=None):
924
+ """Return x, y values at equally spaced points in domain.
925
+
926
+ Returns the x, y values at `n` linearly spaced points across the
927
+ domain. Here y is the value of the polynomial at the points x. By
928
+ default the domain is the same as that of the series instance.
929
+ This method is intended mostly as a plotting aid.
930
+
931
+ .. versionadded:: 1.5.0
932
+
933
+ Parameters
934
+ ----------
935
+ n : int, optional
936
+ Number of point pairs to return. The default value is 100.
937
+ domain : {None, array_like}, optional
938
+ If not None, the specified domain is used instead of that of
939
+ the calling instance. It should be of the form ``[beg,end]``.
940
+ The default is None which case the class domain is used.
941
+
942
+ Returns
943
+ -------
944
+ x, y : ndarray
945
+ x is equal to linspace(self.domain[0], self.domain[1], n) and
946
+ y is the series evaluated at element of x.
947
+
948
+ """
949
+ if domain is None:
950
+ domain = self.domain
951
+ x = np.linspace(domain[0], domain[1], n)
952
+ y = self(x)
953
+ return x, y
954
+
955
+ @classmethod
956
+ def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None,
957
+ window=None, symbol='x'):
958
+ """Least squares fit to data.
959
+
960
+ Return a series instance that is the least squares fit to the data
961
+ `y` sampled at `x`. The domain of the returned instance can be
962
+ specified and this will often result in a superior fit with less
963
+ chance of ill conditioning.
964
+
965
+ Parameters
966
+ ----------
967
+ x : array_like, shape (M,)
968
+ x-coordinates of the M sample points ``(x[i], y[i])``.
969
+ y : array_like, shape (M,)
970
+ y-coordinates of the M sample points ``(x[i], y[i])``.
971
+ deg : int or 1-D array_like
972
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
973
+ all terms up to and including the `deg`'th term are included in the
974
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
975
+ degrees of the terms to include may be used instead.
976
+ domain : {None, [beg, end], []}, optional
977
+ Domain to use for the returned series. If ``None``,
978
+ then a minimal domain that covers the points `x` is chosen. If
979
+ ``[]`` the class domain is used. The default value was the
980
+ class domain in NumPy 1.4 and ``None`` in later versions.
981
+ The ``[]`` option was added in numpy 1.5.0.
982
+ rcond : float, optional
983
+ Relative condition number of the fit. Singular values smaller
984
+ than this relative to the largest singular value will be
985
+ ignored. The default value is len(x)*eps, where eps is the
986
+ relative precision of the float type, about 2e-16 in most
987
+ cases.
988
+ full : bool, optional
989
+ Switch determining nature of return value. When it is False
990
+ (the default) just the coefficients are returned, when True
991
+ diagnostic information from the singular value decomposition is
992
+ also returned.
993
+ w : array_like, shape (M,), optional
994
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
995
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
996
+ chosen so that the errors of the products ``w[i]*y[i]`` all have
997
+ the same variance. When using inverse-variance weighting, use
998
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
999
+
1000
+ .. versionadded:: 1.5.0
1001
+ window : {[beg, end]}, optional
1002
+ Window to use for the returned series. The default
1003
+ value is the default class domain
1004
+
1005
+ .. versionadded:: 1.6.0
1006
+ symbol : str, optional
1007
+ Symbol representing the independent variable. Default is 'x'.
1008
+
1009
+ Returns
1010
+ -------
1011
+ new_series : series
1012
+ A series that represents the least squares fit to the data and
1013
+ has the domain and window specified in the call. If the
1014
+ coefficients for the unscaled and unshifted basis polynomials are
1015
+ of interest, do ``new_series.convert().coef``.
1016
+
1017
+ [resid, rank, sv, rcond] : list
1018
+ These values are only returned if ``full == True``
1019
+
1020
+ - resid -- sum of squared residuals of the least squares fit
1021
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1022
+ - sv -- singular values of the scaled Vandermonde matrix
1023
+ - rcond -- value of `rcond`.
1024
+
1025
+ For more details, see `linalg.lstsq`.
1026
+
1027
+ """
1028
+ if domain is None:
1029
+ domain = pu.getdomain(x)
1030
+ elif type(domain) is list and len(domain) == 0:
1031
+ domain = cls.domain
1032
+
1033
+ if window is None:
1034
+ window = cls.window
1035
+
1036
+ xnew = pu.mapdomain(x, domain, window)
1037
+ res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full)
1038
+ if full:
1039
+ [coef, status] = res
1040
+ return (
1041
+ cls(coef, domain=domain, window=window, symbol=symbol), status
1042
+ )
1043
+ else:
1044
+ coef = res
1045
+ return cls(coef, domain=domain, window=window, symbol=symbol)
1046
+
1047
+ @classmethod
1048
+ def fromroots(cls, roots, domain=[], window=None, symbol='x'):
1049
+ """Return series instance that has the specified roots.
1050
+
1051
+ Returns a series representing the product
1052
+ ``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a
1053
+ list of roots.
1054
+
1055
+ Parameters
1056
+ ----------
1057
+ roots : array_like
1058
+ List of roots.
1059
+ domain : {[], None, array_like}, optional
1060
+ Domain for the resulting series. If None the domain is the
1061
+ interval from the smallest root to the largest. If [] the
1062
+ domain is the class domain. The default is [].
1063
+ window : {None, array_like}, optional
1064
+ Window for the returned series. If None the class window is
1065
+ used. The default is None.
1066
+ symbol : str, optional
1067
+ Symbol representing the independent variable. Default is 'x'.
1068
+
1069
+ Returns
1070
+ -------
1071
+ new_series : series
1072
+ Series with the specified roots.
1073
+
1074
+ """
1075
+ [roots] = pu.as_series([roots], trim=False)
1076
+ if domain is None:
1077
+ domain = pu.getdomain(roots)
1078
+ elif type(domain) is list and len(domain) == 0:
1079
+ domain = cls.domain
1080
+
1081
+ if window is None:
1082
+ window = cls.window
1083
+
1084
+ deg = len(roots)
1085
+ off, scl = pu.mapparms(domain, window)
1086
+ rnew = off + scl*roots
1087
+ coef = cls._fromroots(rnew) / scl**deg
1088
+ return cls(coef, domain=domain, window=window, symbol=symbol)
1089
+
1090
+ @classmethod
1091
+ def identity(cls, domain=None, window=None, symbol='x'):
1092
+ """Identity function.
1093
+
1094
+ If ``p`` is the returned series, then ``p(x) == x`` for all
1095
+ values of x.
1096
+
1097
+ Parameters
1098
+ ----------
1099
+ domain : {None, array_like}, optional
1100
+ If given, the array must be of the form ``[beg, end]``, where
1101
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
1102
+ given then the class domain is used. The default is None.
1103
+ window : {None, array_like}, optional
1104
+ If given, the resulting array must be if the form
1105
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
1106
+ the window. If None is given then the class window is used. The
1107
+ default is None.
1108
+ symbol : str, optional
1109
+ Symbol representing the independent variable. Default is 'x'.
1110
+
1111
+ Returns
1112
+ -------
1113
+ new_series : series
1114
+ Series of representing the identity.
1115
+
1116
+ """
1117
+ if domain is None:
1118
+ domain = cls.domain
1119
+ if window is None:
1120
+ window = cls.window
1121
+ off, scl = pu.mapparms(window, domain)
1122
+ coef = cls._line(off, scl)
1123
+ return cls(coef, domain, window, symbol)
1124
+
1125
+ @classmethod
1126
+ def basis(cls, deg, domain=None, window=None, symbol='x'):
1127
+ """Series basis polynomial of degree `deg`.
1128
+
1129
+ Returns the series representing the basis polynomial of degree `deg`.
1130
+
1131
+ .. versionadded:: 1.7.0
1132
+
1133
+ Parameters
1134
+ ----------
1135
+ deg : int
1136
+ Degree of the basis polynomial for the series. Must be >= 0.
1137
+ domain : {None, array_like}, optional
1138
+ If given, the array must be of the form ``[beg, end]``, where
1139
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
1140
+ given then the class domain is used. The default is None.
1141
+ window : {None, array_like}, optional
1142
+ If given, the resulting array must be if the form
1143
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
1144
+ the window. If None is given then the class window is used. The
1145
+ default is None.
1146
+ symbol : str, optional
1147
+ Symbol representing the independent variable. Default is 'x'.
1148
+
1149
+ Returns
1150
+ -------
1151
+ new_series : series
1152
+ A series with the coefficient of the `deg` term set to one and
1153
+ all others zero.
1154
+
1155
+ """
1156
+ if domain is None:
1157
+ domain = cls.domain
1158
+ if window is None:
1159
+ window = cls.window
1160
+ ideg = int(deg)
1161
+
1162
+ if ideg != deg or ideg < 0:
1163
+ raise ValueError("deg must be non-negative integer")
1164
+ return cls([0]*ideg + [1], domain, window, symbol)
1165
+
1166
+ @classmethod
1167
+ def cast(cls, series, domain=None, window=None):
1168
+ """Convert series to series of this class.
1169
+
1170
+ The `series` is expected to be an instance of some polynomial
1171
+ series of one of the types supported by by the numpy.polynomial
1172
+ module, but could be some other class that supports the convert
1173
+ method.
1174
+
1175
+ .. versionadded:: 1.7.0
1176
+
1177
+ Parameters
1178
+ ----------
1179
+ series : series
1180
+ The series instance to be converted.
1181
+ domain : {None, array_like}, optional
1182
+ If given, the array must be of the form ``[beg, end]``, where
1183
+ ``beg`` and ``end`` are the endpoints of the domain. If None is
1184
+ given then the class domain is used. The default is None.
1185
+ window : {None, array_like}, optional
1186
+ If given, the resulting array must be if the form
1187
+ ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of
1188
+ the window. If None is given then the class window is used. The
1189
+ default is None.
1190
+
1191
+ Returns
1192
+ -------
1193
+ new_series : series
1194
+ A series of the same kind as the calling class and equal to
1195
+ `series` when evaluated.
1196
+
1197
+ See Also
1198
+ --------
1199
+ convert : similar instance method
1200
+
1201
+ """
1202
+ if domain is None:
1203
+ domain = cls.domain
1204
+ if window is None:
1205
+ window = cls.window
1206
+ return series.convert(domain, cls, window)
venv/lib/python3.10/site-packages/numpy/polynomial/_polybase.pyi ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import abc
2
+ from typing import Any, ClassVar
3
+
4
+ __all__: list[str]
5
+
6
+ class ABCPolyBase(abc.ABC):
7
+ __hash__: ClassVar[None] # type: ignore[assignment]
8
+ __array_ufunc__: ClassVar[None]
9
+ maxpower: ClassVar[int]
10
+ coef: Any
11
+ @property
12
+ def symbol(self) -> str: ...
13
+ @property
14
+ @abc.abstractmethod
15
+ def domain(self): ...
16
+ @property
17
+ @abc.abstractmethod
18
+ def window(self): ...
19
+ @property
20
+ @abc.abstractmethod
21
+ def basis_name(self): ...
22
+ def has_samecoef(self, other): ...
23
+ def has_samedomain(self, other): ...
24
+ def has_samewindow(self, other): ...
25
+ def has_sametype(self, other): ...
26
+ def __init__(self, coef, domain=..., window=..., symbol: str = ...) -> None: ...
27
+ def __format__(self, fmt_str): ...
28
+ def __call__(self, arg): ...
29
+ def __iter__(self): ...
30
+ def __len__(self): ...
31
+ def __neg__(self): ...
32
+ def __pos__(self): ...
33
+ def __add__(self, other): ...
34
+ def __sub__(self, other): ...
35
+ def __mul__(self, other): ...
36
+ def __truediv__(self, other): ...
37
+ def __floordiv__(self, other): ...
38
+ def __mod__(self, other): ...
39
+ def __divmod__(self, other): ...
40
+ def __pow__(self, other): ...
41
+ def __radd__(self, other): ...
42
+ def __rsub__(self, other): ...
43
+ def __rmul__(self, other): ...
44
+ def __rdiv__(self, other): ...
45
+ def __rtruediv__(self, other): ...
46
+ def __rfloordiv__(self, other): ...
47
+ def __rmod__(self, other): ...
48
+ def __rdivmod__(self, other): ...
49
+ def __eq__(self, other): ...
50
+ def __ne__(self, other): ...
51
+ def copy(self): ...
52
+ def degree(self): ...
53
+ def cutdeg(self, deg): ...
54
+ def trim(self, tol=...): ...
55
+ def truncate(self, size): ...
56
+ def convert(self, domain=..., kind=..., window=...): ...
57
+ def mapparms(self): ...
58
+ def integ(self, m=..., k = ..., lbnd=...): ...
59
+ def deriv(self, m=...): ...
60
+ def roots(self): ...
61
+ def linspace(self, n=..., domain=...): ...
62
+ @classmethod
63
+ def fit(cls, x, y, deg, domain=..., rcond=..., full=..., w=..., window=...): ...
64
+ @classmethod
65
+ def fromroots(cls, roots, domain = ..., window=...): ...
66
+ @classmethod
67
+ def identity(cls, domain=..., window=...): ...
68
+ @classmethod
69
+ def basis(cls, deg, domain=..., window=...): ...
70
+ @classmethod
71
+ def cast(cls, series, domain=..., window=...): ...
venv/lib/python3.10/site-packages/numpy/polynomial/chebyshev.py ADDED
@@ -0,0 +1,2082 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ====================================================
3
+ Chebyshev Series (:mod:`numpy.polynomial.chebyshev`)
4
+ ====================================================
5
+
6
+ This module provides a number of objects (mostly functions) useful for
7
+ dealing with Chebyshev series, including a `Chebyshev` class that
8
+ encapsulates the usual arithmetic operations. (General information
9
+ on how this module represents and works with such polynomials is in the
10
+ docstring for its "parent" sub-package, `numpy.polynomial`).
11
+
12
+ Classes
13
+ -------
14
+
15
+ .. autosummary::
16
+ :toctree: generated/
17
+
18
+ Chebyshev
19
+
20
+
21
+ Constants
22
+ ---------
23
+
24
+ .. autosummary::
25
+ :toctree: generated/
26
+
27
+ chebdomain
28
+ chebzero
29
+ chebone
30
+ chebx
31
+
32
+ Arithmetic
33
+ ----------
34
+
35
+ .. autosummary::
36
+ :toctree: generated/
37
+
38
+ chebadd
39
+ chebsub
40
+ chebmulx
41
+ chebmul
42
+ chebdiv
43
+ chebpow
44
+ chebval
45
+ chebval2d
46
+ chebval3d
47
+ chebgrid2d
48
+ chebgrid3d
49
+
50
+ Calculus
51
+ --------
52
+
53
+ .. autosummary::
54
+ :toctree: generated/
55
+
56
+ chebder
57
+ chebint
58
+
59
+ Misc Functions
60
+ --------------
61
+
62
+ .. autosummary::
63
+ :toctree: generated/
64
+
65
+ chebfromroots
66
+ chebroots
67
+ chebvander
68
+ chebvander2d
69
+ chebvander3d
70
+ chebgauss
71
+ chebweight
72
+ chebcompanion
73
+ chebfit
74
+ chebpts1
75
+ chebpts2
76
+ chebtrim
77
+ chebline
78
+ cheb2poly
79
+ poly2cheb
80
+ chebinterpolate
81
+
82
+ See also
83
+ --------
84
+ `numpy.polynomial`
85
+
86
+ Notes
87
+ -----
88
+ The implementations of multiplication, division, integration, and
89
+ differentiation use the algebraic identities [1]_:
90
+
91
+ .. math::
92
+ T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
93
+ z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
94
+
95
+ where
96
+
97
+ .. math:: x = \\frac{z + z^{-1}}{2}.
98
+
99
+ These identities allow a Chebyshev series to be expressed as a finite,
100
+ symmetric Laurent series. In this module, this sort of Laurent series
101
+ is referred to as a "z-series."
102
+
103
+ References
104
+ ----------
105
+ .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
106
+ Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
107
+ (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
108
+
109
+ """
110
+ import numpy as np
111
+ import numpy.linalg as la
112
+ from numpy.core.multiarray import normalize_axis_index
113
+
114
+ from . import polyutils as pu
115
+ from ._polybase import ABCPolyBase
116
+
117
+ __all__ = [
118
+ 'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
119
+ 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
120
+ 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
121
+ 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
122
+ 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
123
+ 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
124
+ 'chebgauss', 'chebweight', 'chebinterpolate']
125
+
126
+ chebtrim = pu.trimcoef
127
+
128
+ #
129
+ # A collection of functions for manipulating z-series. These are private
130
+ # functions and do minimal error checking.
131
+ #
132
+
133
+ def _cseries_to_zseries(c):
134
+ """Convert Chebyshev series to z-series.
135
+
136
+ Convert a Chebyshev series to the equivalent z-series. The result is
137
+ never an empty array. The dtype of the return is the same as that of
138
+ the input. No checks are run on the arguments as this routine is for
139
+ internal use.
140
+
141
+ Parameters
142
+ ----------
143
+ c : 1-D ndarray
144
+ Chebyshev coefficients, ordered from low to high
145
+
146
+ Returns
147
+ -------
148
+ zs : 1-D ndarray
149
+ Odd length symmetric z-series, ordered from low to high.
150
+
151
+ """
152
+ n = c.size
153
+ zs = np.zeros(2*n-1, dtype=c.dtype)
154
+ zs[n-1:] = c/2
155
+ return zs + zs[::-1]
156
+
157
+
158
+ def _zseries_to_cseries(zs):
159
+ """Convert z-series to a Chebyshev series.
160
+
161
+ Convert a z series to the equivalent Chebyshev series. The result is
162
+ never an empty array. The dtype of the return is the same as that of
163
+ the input. No checks are run on the arguments as this routine is for
164
+ internal use.
165
+
166
+ Parameters
167
+ ----------
168
+ zs : 1-D ndarray
169
+ Odd length symmetric z-series, ordered from low to high.
170
+
171
+ Returns
172
+ -------
173
+ c : 1-D ndarray
174
+ Chebyshev coefficients, ordered from low to high.
175
+
176
+ """
177
+ n = (zs.size + 1)//2
178
+ c = zs[n-1:].copy()
179
+ c[1:n] *= 2
180
+ return c
181
+
182
+
183
+ def _zseries_mul(z1, z2):
184
+ """Multiply two z-series.
185
+
186
+ Multiply two z-series to produce a z-series.
187
+
188
+ Parameters
189
+ ----------
190
+ z1, z2 : 1-D ndarray
191
+ The arrays must be 1-D but this is not checked.
192
+
193
+ Returns
194
+ -------
195
+ product : 1-D ndarray
196
+ The product z-series.
197
+
198
+ Notes
199
+ -----
200
+ This is simply convolution. If symmetric/anti-symmetric z-series are
201
+ denoted by S/A then the following rules apply:
202
+
203
+ S*S, A*A -> S
204
+ S*A, A*S -> A
205
+
206
+ """
207
+ return np.convolve(z1, z2)
208
+
209
+
210
+ def _zseries_div(z1, z2):
211
+ """Divide the first z-series by the second.
212
+
213
+ Divide `z1` by `z2` and return the quotient and remainder as z-series.
214
+ Warning: this implementation only applies when both z1 and z2 have the
215
+ same symmetry, which is sufficient for present purposes.
216
+
217
+ Parameters
218
+ ----------
219
+ z1, z2 : 1-D ndarray
220
+ The arrays must be 1-D and have the same symmetry, but this is not
221
+ checked.
222
+
223
+ Returns
224
+ -------
225
+
226
+ (quotient, remainder) : 1-D ndarrays
227
+ Quotient and remainder as z-series.
228
+
229
+ Notes
230
+ -----
231
+ This is not the same as polynomial division on account of the desired form
232
+ of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
233
+ then the following rules apply:
234
+
235
+ S/S -> S,S
236
+ A/A -> S,A
237
+
238
+ The restriction to types of the same symmetry could be fixed but seems like
239
+ unneeded generality. There is no natural form for the remainder in the case
240
+ where there is no symmetry.
241
+
242
+ """
243
+ z1 = z1.copy()
244
+ z2 = z2.copy()
245
+ lc1 = len(z1)
246
+ lc2 = len(z2)
247
+ if lc2 == 1:
248
+ z1 /= z2
249
+ return z1, z1[:1]*0
250
+ elif lc1 < lc2:
251
+ return z1[:1]*0, z1
252
+ else:
253
+ dlen = lc1 - lc2
254
+ scl = z2[0]
255
+ z2 /= scl
256
+ quo = np.empty(dlen + 1, dtype=z1.dtype)
257
+ i = 0
258
+ j = dlen
259
+ while i < j:
260
+ r = z1[i]
261
+ quo[i] = z1[i]
262
+ quo[dlen - i] = r
263
+ tmp = r*z2
264
+ z1[i:i+lc2] -= tmp
265
+ z1[j:j+lc2] -= tmp
266
+ i += 1
267
+ j -= 1
268
+ r = z1[i]
269
+ quo[i] = r
270
+ tmp = r*z2
271
+ z1[i:i+lc2] -= tmp
272
+ quo /= scl
273
+ rem = z1[i+1:i-1+lc2].copy()
274
+ return quo, rem
275
+
276
+
277
+ def _zseries_der(zs):
278
+ """Differentiate a z-series.
279
+
280
+ The derivative is with respect to x, not z. This is achieved using the
281
+ chain rule and the value of dx/dz given in the module notes.
282
+
283
+ Parameters
284
+ ----------
285
+ zs : z-series
286
+ The z-series to differentiate.
287
+
288
+ Returns
289
+ -------
290
+ derivative : z-series
291
+ The derivative
292
+
293
+ Notes
294
+ -----
295
+ The zseries for x (ns) has been multiplied by two in order to avoid
296
+ using floats that are incompatible with Decimal and likely other
297
+ specialized scalar types. This scaling has been compensated by
298
+ multiplying the value of zs by two also so that the two cancels in the
299
+ division.
300
+
301
+ """
302
+ n = len(zs)//2
303
+ ns = np.array([-1, 0, 1], dtype=zs.dtype)
304
+ zs *= np.arange(-n, n+1)*2
305
+ d, r = _zseries_div(zs, ns)
306
+ return d
307
+
308
+
309
+ def _zseries_int(zs):
310
+ """Integrate a z-series.
311
+
312
+ The integral is with respect to x, not z. This is achieved by a change
313
+ of variable using dx/dz given in the module notes.
314
+
315
+ Parameters
316
+ ----------
317
+ zs : z-series
318
+ The z-series to integrate
319
+
320
+ Returns
321
+ -------
322
+ integral : z-series
323
+ The indefinite integral
324
+
325
+ Notes
326
+ -----
327
+ The zseries for x (ns) has been multiplied by two in order to avoid
328
+ using floats that are incompatible with Decimal and likely other
329
+ specialized scalar types. This scaling has been compensated by
330
+ dividing the resulting zs by two.
331
+
332
+ """
333
+ n = 1 + len(zs)//2
334
+ ns = np.array([-1, 0, 1], dtype=zs.dtype)
335
+ zs = _zseries_mul(zs, ns)
336
+ div = np.arange(-n, n+1)*2
337
+ zs[:n] /= div[:n]
338
+ zs[n+1:] /= div[n+1:]
339
+ zs[n] = 0
340
+ return zs
341
+
342
+ #
343
+ # Chebyshev series functions
344
+ #
345
+
346
+
347
+ def poly2cheb(pol):
348
+ """
349
+ Convert a polynomial to a Chebyshev series.
350
+
351
+ Convert an array representing the coefficients of a polynomial (relative
352
+ to the "standard" basis) ordered from lowest degree to highest, to an
353
+ array of the coefficients of the equivalent Chebyshev series, ordered
354
+ from lowest to highest degree.
355
+
356
+ Parameters
357
+ ----------
358
+ pol : array_like
359
+ 1-D array containing the polynomial coefficients
360
+
361
+ Returns
362
+ -------
363
+ c : ndarray
364
+ 1-D array containing the coefficients of the equivalent Chebyshev
365
+ series.
366
+
367
+ See Also
368
+ --------
369
+ cheb2poly
370
+
371
+ Notes
372
+ -----
373
+ The easy way to do conversions between polynomial basis sets
374
+ is to use the convert method of a class instance.
375
+
376
+ Examples
377
+ --------
378
+ >>> from numpy import polynomial as P
379
+ >>> p = P.Polynomial(range(4))
380
+ >>> p
381
+ Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
382
+ >>> c = p.convert(kind=P.Chebyshev)
383
+ >>> c
384
+ Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., 1.])
385
+ >>> P.chebyshev.poly2cheb(range(4))
386
+ array([1. , 3.25, 1. , 0.75])
387
+
388
+ """
389
+ [pol] = pu.as_series([pol])
390
+ deg = len(pol) - 1
391
+ res = 0
392
+ for i in range(deg, -1, -1):
393
+ res = chebadd(chebmulx(res), pol[i])
394
+ return res
395
+
396
+
397
+ def cheb2poly(c):
398
+ """
399
+ Convert a Chebyshev series to a polynomial.
400
+
401
+ Convert an array representing the coefficients of a Chebyshev series,
402
+ ordered from lowest degree to highest, to an array of the coefficients
403
+ of the equivalent polynomial (relative to the "standard" basis) ordered
404
+ from lowest to highest degree.
405
+
406
+ Parameters
407
+ ----------
408
+ c : array_like
409
+ 1-D array containing the Chebyshev series coefficients, ordered
410
+ from lowest order term to highest.
411
+
412
+ Returns
413
+ -------
414
+ pol : ndarray
415
+ 1-D array containing the coefficients of the equivalent polynomial
416
+ (relative to the "standard" basis) ordered from lowest order term
417
+ to highest.
418
+
419
+ See Also
420
+ --------
421
+ poly2cheb
422
+
423
+ Notes
424
+ -----
425
+ The easy way to do conversions between polynomial basis sets
426
+ is to use the convert method of a class instance.
427
+
428
+ Examples
429
+ --------
430
+ >>> from numpy import polynomial as P
431
+ >>> c = P.Chebyshev(range(4))
432
+ >>> c
433
+ Chebyshev([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
434
+ >>> p = c.convert(kind=P.Polynomial)
435
+ >>> p
436
+ Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.])
437
+ >>> P.chebyshev.cheb2poly(range(4))
438
+ array([-2., -8., 4., 12.])
439
+
440
+ """
441
+ from .polynomial import polyadd, polysub, polymulx
442
+
443
+ [c] = pu.as_series([c])
444
+ n = len(c)
445
+ if n < 3:
446
+ return c
447
+ else:
448
+ c0 = c[-2]
449
+ c1 = c[-1]
450
+ # i is the current degree of c1
451
+ for i in range(n - 1, 1, -1):
452
+ tmp = c0
453
+ c0 = polysub(c[i - 2], c1)
454
+ c1 = polyadd(tmp, polymulx(c1)*2)
455
+ return polyadd(c0, polymulx(c1))
456
+
457
+
458
+ #
459
+ # These are constant arrays are of integer type so as to be compatible
460
+ # with the widest range of other types, such as Decimal.
461
+ #
462
+
463
+ # Chebyshev default domain.
464
+ chebdomain = np.array([-1, 1])
465
+
466
+ # Chebyshev coefficients representing zero.
467
+ chebzero = np.array([0])
468
+
469
+ # Chebyshev coefficients representing one.
470
+ chebone = np.array([1])
471
+
472
+ # Chebyshev coefficients representing the identity x.
473
+ chebx = np.array([0, 1])
474
+
475
+
476
+ def chebline(off, scl):
477
+ """
478
+ Chebyshev series whose graph is a straight line.
479
+
480
+ Parameters
481
+ ----------
482
+ off, scl : scalars
483
+ The specified line is given by ``off + scl*x``.
484
+
485
+ Returns
486
+ -------
487
+ y : ndarray
488
+ This module's representation of the Chebyshev series for
489
+ ``off + scl*x``.
490
+
491
+ See Also
492
+ --------
493
+ numpy.polynomial.polynomial.polyline
494
+ numpy.polynomial.legendre.legline
495
+ numpy.polynomial.laguerre.lagline
496
+ numpy.polynomial.hermite.hermline
497
+ numpy.polynomial.hermite_e.hermeline
498
+
499
+ Examples
500
+ --------
501
+ >>> import numpy.polynomial.chebyshev as C
502
+ >>> C.chebline(3,2)
503
+ array([3, 2])
504
+ >>> C.chebval(-3, C.chebline(3,2)) # should be -3
505
+ -3.0
506
+
507
+ """
508
+ if scl != 0:
509
+ return np.array([off, scl])
510
+ else:
511
+ return np.array([off])
512
+
513
+
514
+ def chebfromroots(roots):
515
+ """
516
+ Generate a Chebyshev series with given roots.
517
+
518
+ The function returns the coefficients of the polynomial
519
+
520
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
521
+
522
+ in Chebyshev form, where the `r_n` are the roots specified in `roots`.
523
+ If a zero has multiplicity n, then it must appear in `roots` n times.
524
+ For instance, if 2 is a root of multiplicity three and 3 is a root of
525
+ multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
526
+ roots can appear in any order.
527
+
528
+ If the returned coefficients are `c`, then
529
+
530
+ .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x)
531
+
532
+ The coefficient of the last term is not generally 1 for monic
533
+ polynomials in Chebyshev form.
534
+
535
+ Parameters
536
+ ----------
537
+ roots : array_like
538
+ Sequence containing the roots.
539
+
540
+ Returns
541
+ -------
542
+ out : ndarray
543
+ 1-D array of coefficients. If all roots are real then `out` is a
544
+ real array, if some of the roots are complex, then `out` is complex
545
+ even if all the coefficients in the result are real (see Examples
546
+ below).
547
+
548
+ See Also
549
+ --------
550
+ numpy.polynomial.polynomial.polyfromroots
551
+ numpy.polynomial.legendre.legfromroots
552
+ numpy.polynomial.laguerre.lagfromroots
553
+ numpy.polynomial.hermite.hermfromroots
554
+ numpy.polynomial.hermite_e.hermefromroots
555
+
556
+ Examples
557
+ --------
558
+ >>> import numpy.polynomial.chebyshev as C
559
+ >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
560
+ array([ 0. , -0.25, 0. , 0.25])
561
+ >>> j = complex(0,1)
562
+ >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
563
+ array([1.5+0.j, 0. +0.j, 0.5+0.j])
564
+
565
+ """
566
+ return pu._fromroots(chebline, chebmul, roots)
567
+
568
+
569
+ def chebadd(c1, c2):
570
+ """
571
+ Add one Chebyshev series to another.
572
+
573
+ Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
574
+ are sequences of coefficients ordered from lowest order term to
575
+ highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
576
+
577
+ Parameters
578
+ ----------
579
+ c1, c2 : array_like
580
+ 1-D arrays of Chebyshev series coefficients ordered from low to
581
+ high.
582
+
583
+ Returns
584
+ -------
585
+ out : ndarray
586
+ Array representing the Chebyshev series of their sum.
587
+
588
+ See Also
589
+ --------
590
+ chebsub, chebmulx, chebmul, chebdiv, chebpow
591
+
592
+ Notes
593
+ -----
594
+ Unlike multiplication, division, etc., the sum of two Chebyshev series
595
+ is a Chebyshev series (without having to "reproject" the result onto
596
+ the basis set) so addition, just like that of "standard" polynomials,
597
+ is simply "component-wise."
598
+
599
+ Examples
600
+ --------
601
+ >>> from numpy.polynomial import chebyshev as C
602
+ >>> c1 = (1,2,3)
603
+ >>> c2 = (3,2,1)
604
+ >>> C.chebadd(c1,c2)
605
+ array([4., 4., 4.])
606
+
607
+ """
608
+ return pu._add(c1, c2)
609
+
610
+
611
+ def chebsub(c1, c2):
612
+ """
613
+ Subtract one Chebyshev series from another.
614
+
615
+ Returns the difference of two Chebyshev series `c1` - `c2`. The
616
+ sequences of coefficients are from lowest order term to highest, i.e.,
617
+ [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
618
+
619
+ Parameters
620
+ ----------
621
+ c1, c2 : array_like
622
+ 1-D arrays of Chebyshev series coefficients ordered from low to
623
+ high.
624
+
625
+ Returns
626
+ -------
627
+ out : ndarray
628
+ Of Chebyshev series coefficients representing their difference.
629
+
630
+ See Also
631
+ --------
632
+ chebadd, chebmulx, chebmul, chebdiv, chebpow
633
+
634
+ Notes
635
+ -----
636
+ Unlike multiplication, division, etc., the difference of two Chebyshev
637
+ series is a Chebyshev series (without having to "reproject" the result
638
+ onto the basis set) so subtraction, just like that of "standard"
639
+ polynomials, is simply "component-wise."
640
+
641
+ Examples
642
+ --------
643
+ >>> from numpy.polynomial import chebyshev as C
644
+ >>> c1 = (1,2,3)
645
+ >>> c2 = (3,2,1)
646
+ >>> C.chebsub(c1,c2)
647
+ array([-2., 0., 2.])
648
+ >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
649
+ array([ 2., 0., -2.])
650
+
651
+ """
652
+ return pu._sub(c1, c2)
653
+
654
+
655
+ def chebmulx(c):
656
+ """Multiply a Chebyshev series by x.
657
+
658
+ Multiply the polynomial `c` by x, where x is the independent
659
+ variable.
660
+
661
+
662
+ Parameters
663
+ ----------
664
+ c : array_like
665
+ 1-D array of Chebyshev series coefficients ordered from low to
666
+ high.
667
+
668
+ Returns
669
+ -------
670
+ out : ndarray
671
+ Array representing the result of the multiplication.
672
+
673
+ Notes
674
+ -----
675
+
676
+ .. versionadded:: 1.5.0
677
+
678
+ Examples
679
+ --------
680
+ >>> from numpy.polynomial import chebyshev as C
681
+ >>> C.chebmulx([1,2,3])
682
+ array([1. , 2.5, 1. , 1.5])
683
+
684
+ """
685
+ # c is a trimmed copy
686
+ [c] = pu.as_series([c])
687
+ # The zero series needs special treatment
688
+ if len(c) == 1 and c[0] == 0:
689
+ return c
690
+
691
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
692
+ prd[0] = c[0]*0
693
+ prd[1] = c[0]
694
+ if len(c) > 1:
695
+ tmp = c[1:]/2
696
+ prd[2:] = tmp
697
+ prd[0:-2] += tmp
698
+ return prd
699
+
700
+
701
+ def chebmul(c1, c2):
702
+ """
703
+ Multiply one Chebyshev series by another.
704
+
705
+ Returns the product of two Chebyshev series `c1` * `c2`. The arguments
706
+ are sequences of coefficients, from lowest order "term" to highest,
707
+ e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
708
+
709
+ Parameters
710
+ ----------
711
+ c1, c2 : array_like
712
+ 1-D arrays of Chebyshev series coefficients ordered from low to
713
+ high.
714
+
715
+ Returns
716
+ -------
717
+ out : ndarray
718
+ Of Chebyshev series coefficients representing their product.
719
+
720
+ See Also
721
+ --------
722
+ chebadd, chebsub, chebmulx, chebdiv, chebpow
723
+
724
+ Notes
725
+ -----
726
+ In general, the (polynomial) product of two C-series results in terms
727
+ that are not in the Chebyshev polynomial basis set. Thus, to express
728
+ the product as a C-series, it is typically necessary to "reproject"
729
+ the product onto said basis set, which typically produces
730
+ "unintuitive live" (but correct) results; see Examples section below.
731
+
732
+ Examples
733
+ --------
734
+ >>> from numpy.polynomial import chebyshev as C
735
+ >>> c1 = (1,2,3)
736
+ >>> c2 = (3,2,1)
737
+ >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
738
+ array([ 6.5, 12. , 12. , 4. , 1.5])
739
+
740
+ """
741
+ # c1, c2 are trimmed copies
742
+ [c1, c2] = pu.as_series([c1, c2])
743
+ z1 = _cseries_to_zseries(c1)
744
+ z2 = _cseries_to_zseries(c2)
745
+ prd = _zseries_mul(z1, z2)
746
+ ret = _zseries_to_cseries(prd)
747
+ return pu.trimseq(ret)
748
+
749
+
750
+ def chebdiv(c1, c2):
751
+ """
752
+ Divide one Chebyshev series by another.
753
+
754
+ Returns the quotient-with-remainder of two Chebyshev series
755
+ `c1` / `c2`. The arguments are sequences of coefficients from lowest
756
+ order "term" to highest, e.g., [1,2,3] represents the series
757
+ ``T_0 + 2*T_1 + 3*T_2``.
758
+
759
+ Parameters
760
+ ----------
761
+ c1, c2 : array_like
762
+ 1-D arrays of Chebyshev series coefficients ordered from low to
763
+ high.
764
+
765
+ Returns
766
+ -------
767
+ [quo, rem] : ndarrays
768
+ Of Chebyshev series coefficients representing the quotient and
769
+ remainder.
770
+
771
+ See Also
772
+ --------
773
+ chebadd, chebsub, chebmulx, chebmul, chebpow
774
+
775
+ Notes
776
+ -----
777
+ In general, the (polynomial) division of one C-series by another
778
+ results in quotient and remainder terms that are not in the Chebyshev
779
+ polynomial basis set. Thus, to express these results as C-series, it
780
+ is typically necessary to "reproject" the results onto said basis
781
+ set, which typically produces "unintuitive" (but correct) results;
782
+ see Examples section below.
783
+
784
+ Examples
785
+ --------
786
+ >>> from numpy.polynomial import chebyshev as C
787
+ >>> c1 = (1,2,3)
788
+ >>> c2 = (3,2,1)
789
+ >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
790
+ (array([3.]), array([-8., -4.]))
791
+ >>> c2 = (0,1,2,3)
792
+ >>> C.chebdiv(c2,c1) # neither "intuitive"
793
+ (array([0., 2.]), array([-2., -4.]))
794
+
795
+ """
796
+ # c1, c2 are trimmed copies
797
+ [c1, c2] = pu.as_series([c1, c2])
798
+ if c2[-1] == 0:
799
+ raise ZeroDivisionError()
800
+
801
+ # note: this is more efficient than `pu._div(chebmul, c1, c2)`
802
+ lc1 = len(c1)
803
+ lc2 = len(c2)
804
+ if lc1 < lc2:
805
+ return c1[:1]*0, c1
806
+ elif lc2 == 1:
807
+ return c1/c2[-1], c1[:1]*0
808
+ else:
809
+ z1 = _cseries_to_zseries(c1)
810
+ z2 = _cseries_to_zseries(c2)
811
+ quo, rem = _zseries_div(z1, z2)
812
+ quo = pu.trimseq(_zseries_to_cseries(quo))
813
+ rem = pu.trimseq(_zseries_to_cseries(rem))
814
+ return quo, rem
815
+
816
+
817
+ def chebpow(c, pow, maxpower=16):
818
+ """Raise a Chebyshev series to a power.
819
+
820
+ Returns the Chebyshev series `c` raised to the power `pow`. The
821
+ argument `c` is a sequence of coefficients ordered from low to high.
822
+ i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
823
+
824
+ Parameters
825
+ ----------
826
+ c : array_like
827
+ 1-D array of Chebyshev series coefficients ordered from low to
828
+ high.
829
+ pow : integer
830
+ Power to which the series will be raised
831
+ maxpower : integer, optional
832
+ Maximum power allowed. This is mainly to limit growth of the series
833
+ to unmanageable size. Default is 16
834
+
835
+ Returns
836
+ -------
837
+ coef : ndarray
838
+ Chebyshev series of power.
839
+
840
+ See Also
841
+ --------
842
+ chebadd, chebsub, chebmulx, chebmul, chebdiv
843
+
844
+ Examples
845
+ --------
846
+ >>> from numpy.polynomial import chebyshev as C
847
+ >>> C.chebpow([1, 2, 3, 4], 2)
848
+ array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ])
849
+
850
+ """
851
+ # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
852
+ # avoids converting between z and c series repeatedly
853
+
854
+ # c is a trimmed copy
855
+ [c] = pu.as_series([c])
856
+ power = int(pow)
857
+ if power != pow or power < 0:
858
+ raise ValueError("Power must be a non-negative integer.")
859
+ elif maxpower is not None and power > maxpower:
860
+ raise ValueError("Power is too large")
861
+ elif power == 0:
862
+ return np.array([1], dtype=c.dtype)
863
+ elif power == 1:
864
+ return c
865
+ else:
866
+ # This can be made more efficient by using powers of two
867
+ # in the usual way.
868
+ zs = _cseries_to_zseries(c)
869
+ prd = zs
870
+ for i in range(2, power + 1):
871
+ prd = np.convolve(prd, zs)
872
+ return _zseries_to_cseries(prd)
873
+
874
+
875
+ def chebder(c, m=1, scl=1, axis=0):
876
+ """
877
+ Differentiate a Chebyshev series.
878
+
879
+ Returns the Chebyshev series coefficients `c` differentiated `m` times
880
+ along `axis`. At each iteration the result is multiplied by `scl` (the
881
+ scaling factor is for use in a linear change of variable). The argument
882
+ `c` is an array of coefficients from low to high degree along each
883
+ axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
884
+ while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
885
+ 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
886
+ ``y``.
887
+
888
+ Parameters
889
+ ----------
890
+ c : array_like
891
+ Array of Chebyshev series coefficients. If c is multidimensional
892
+ the different axis correspond to different variables with the
893
+ degree in each axis given by the corresponding index.
894
+ m : int, optional
895
+ Number of derivatives taken, must be non-negative. (Default: 1)
896
+ scl : scalar, optional
897
+ Each differentiation is multiplied by `scl`. The end result is
898
+ multiplication by ``scl**m``. This is for use in a linear change of
899
+ variable. (Default: 1)
900
+ axis : int, optional
901
+ Axis over which the derivative is taken. (Default: 0).
902
+
903
+ .. versionadded:: 1.7.0
904
+
905
+ Returns
906
+ -------
907
+ der : ndarray
908
+ Chebyshev series of the derivative.
909
+
910
+ See Also
911
+ --------
912
+ chebint
913
+
914
+ Notes
915
+ -----
916
+ In general, the result of differentiating a C-series needs to be
917
+ "reprojected" onto the C-series basis set. Thus, typically, the
918
+ result of this function is "unintuitive," albeit correct; see Examples
919
+ section below.
920
+
921
+ Examples
922
+ --------
923
+ >>> from numpy.polynomial import chebyshev as C
924
+ >>> c = (1,2,3,4)
925
+ >>> C.chebder(c)
926
+ array([14., 12., 24.])
927
+ >>> C.chebder(c,3)
928
+ array([96.])
929
+ >>> C.chebder(c,scl=-1)
930
+ array([-14., -12., -24.])
931
+ >>> C.chebder(c,2,-1)
932
+ array([12., 96.])
933
+
934
+ """
935
+ c = np.array(c, ndmin=1, copy=True)
936
+ if c.dtype.char in '?bBhHiIlLqQpP':
937
+ c = c.astype(np.double)
938
+ cnt = pu._deprecate_as_int(m, "the order of derivation")
939
+ iaxis = pu._deprecate_as_int(axis, "the axis")
940
+ if cnt < 0:
941
+ raise ValueError("The order of derivation must be non-negative")
942
+ iaxis = normalize_axis_index(iaxis, c.ndim)
943
+
944
+ if cnt == 0:
945
+ return c
946
+
947
+ c = np.moveaxis(c, iaxis, 0)
948
+ n = len(c)
949
+ if cnt >= n:
950
+ c = c[:1]*0
951
+ else:
952
+ for i in range(cnt):
953
+ n = n - 1
954
+ c *= scl
955
+ der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
956
+ for j in range(n, 2, -1):
957
+ der[j - 1] = (2*j)*c[j]
958
+ c[j - 2] += (j*c[j])/(j - 2)
959
+ if n > 1:
960
+ der[1] = 4*c[2]
961
+ der[0] = c[1]
962
+ c = der
963
+ c = np.moveaxis(c, 0, iaxis)
964
+ return c
965
+
966
+
967
+ def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
968
+ """
969
+ Integrate a Chebyshev series.
970
+
971
+ Returns the Chebyshev series coefficients `c` integrated `m` times from
972
+ `lbnd` along `axis`. At each iteration the resulting series is
973
+ **multiplied** by `scl` and an integration constant, `k`, is added.
974
+ The scaling factor is for use in a linear change of variable. ("Buyer
975
+ beware": note that, depending on what one is doing, one may want `scl`
976
+ to be the reciprocal of what one might expect; for more information,
977
+ see the Notes section below.) The argument `c` is an array of
978
+ coefficients from low to high degree along each axis, e.g., [1,2,3]
979
+ represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
980
+ represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
981
+ 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.
982
+
983
+ Parameters
984
+ ----------
985
+ c : array_like
986
+ Array of Chebyshev series coefficients. If c is multidimensional
987
+ the different axis correspond to different variables with the
988
+ degree in each axis given by the corresponding index.
989
+ m : int, optional
990
+ Order of integration, must be positive. (Default: 1)
991
+ k : {[], list, scalar}, optional
992
+ Integration constant(s). The value of the first integral at zero
993
+ is the first value in the list, the value of the second integral
994
+ at zero is the second value, etc. If ``k == []`` (the default),
995
+ all constants are set to zero. If ``m == 1``, a single scalar can
996
+ be given instead of a list.
997
+ lbnd : scalar, optional
998
+ The lower bound of the integral. (Default: 0)
999
+ scl : scalar, optional
1000
+ Following each integration the result is *multiplied* by `scl`
1001
+ before the integration constant is added. (Default: 1)
1002
+ axis : int, optional
1003
+ Axis over which the integral is taken. (Default: 0).
1004
+
1005
+ .. versionadded:: 1.7.0
1006
+
1007
+ Returns
1008
+ -------
1009
+ S : ndarray
1010
+ C-series coefficients of the integral.
1011
+
1012
+ Raises
1013
+ ------
1014
+ ValueError
1015
+ If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
1016
+ ``np.ndim(scl) != 0``.
1017
+
1018
+ See Also
1019
+ --------
1020
+ chebder
1021
+
1022
+ Notes
1023
+ -----
1024
+ Note that the result of each integration is *multiplied* by `scl`.
1025
+ Why is this important to note? Say one is making a linear change of
1026
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
1027
+ :math:`dx = du/a`, so one will need to set `scl` equal to
1028
+ :math:`1/a`- perhaps not what one would have first thought.
1029
+
1030
+ Also note that, in general, the result of integrating a C-series needs
1031
+ to be "reprojected" onto the C-series basis set. Thus, typically,
1032
+ the result of this function is "unintuitive," albeit correct; see
1033
+ Examples section below.
1034
+
1035
+ Examples
1036
+ --------
1037
+ >>> from numpy.polynomial import chebyshev as C
1038
+ >>> c = (1,2,3)
1039
+ >>> C.chebint(c)
1040
+ array([ 0.5, -0.5, 0.5, 0.5])
1041
+ >>> C.chebint(c,3)
1042
+ array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary
1043
+ 0.00625 ])
1044
+ >>> C.chebint(c, k=3)
1045
+ array([ 3.5, -0.5, 0.5, 0.5])
1046
+ >>> C.chebint(c,lbnd=-2)
1047
+ array([ 8.5, -0.5, 0.5, 0.5])
1048
+ >>> C.chebint(c,scl=-2)
1049
+ array([-1., 1., -1., -1.])
1050
+
1051
+ """
1052
+ c = np.array(c, ndmin=1, copy=True)
1053
+ if c.dtype.char in '?bBhHiIlLqQpP':
1054
+ c = c.astype(np.double)
1055
+ if not np.iterable(k):
1056
+ k = [k]
1057
+ cnt = pu._deprecate_as_int(m, "the order of integration")
1058
+ iaxis = pu._deprecate_as_int(axis, "the axis")
1059
+ if cnt < 0:
1060
+ raise ValueError("The order of integration must be non-negative")
1061
+ if len(k) > cnt:
1062
+ raise ValueError("Too many integration constants")
1063
+ if np.ndim(lbnd) != 0:
1064
+ raise ValueError("lbnd must be a scalar.")
1065
+ if np.ndim(scl) != 0:
1066
+ raise ValueError("scl must be a scalar.")
1067
+ iaxis = normalize_axis_index(iaxis, c.ndim)
1068
+
1069
+ if cnt == 0:
1070
+ return c
1071
+
1072
+ c = np.moveaxis(c, iaxis, 0)
1073
+ k = list(k) + [0]*(cnt - len(k))
1074
+ for i in range(cnt):
1075
+ n = len(c)
1076
+ c *= scl
1077
+ if n == 1 and np.all(c[0] == 0):
1078
+ c[0] += k[i]
1079
+ else:
1080
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
1081
+ tmp[0] = c[0]*0
1082
+ tmp[1] = c[0]
1083
+ if n > 1:
1084
+ tmp[2] = c[1]/4
1085
+ for j in range(2, n):
1086
+ tmp[j + 1] = c[j]/(2*(j + 1))
1087
+ tmp[j - 1] -= c[j]/(2*(j - 1))
1088
+ tmp[0] += k[i] - chebval(lbnd, tmp)
1089
+ c = tmp
1090
+ c = np.moveaxis(c, 0, iaxis)
1091
+ return c
1092
+
1093
+
1094
+ def chebval(x, c, tensor=True):
1095
+ """
1096
+ Evaluate a Chebyshev series at points x.
1097
+
1098
+ If `c` is of length `n + 1`, this function returns the value:
1099
+
1100
+ .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)
1101
+
1102
+ The parameter `x` is converted to an array only if it is a tuple or a
1103
+ list, otherwise it is treated as a scalar. In either case, either `x`
1104
+ or its elements must support multiplication and addition both with
1105
+ themselves and with the elements of `c`.
1106
+
1107
+ If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
1108
+ `c` is multidimensional, then the shape of the result depends on the
1109
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
1110
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
1111
+ scalars have shape (,).
1112
+
1113
+ Trailing zeros in the coefficients will be used in the evaluation, so
1114
+ they should be avoided if efficiency is a concern.
1115
+
1116
+ Parameters
1117
+ ----------
1118
+ x : array_like, compatible object
1119
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
1120
+ it is left unchanged and treated as a scalar. In either case, `x`
1121
+ or its elements must support addition and multiplication with
1122
+ themselves and with the elements of `c`.
1123
+ c : array_like
1124
+ Array of coefficients ordered so that the coefficients for terms of
1125
+ degree n are contained in c[n]. If `c` is multidimensional the
1126
+ remaining indices enumerate multiple polynomials. In the two
1127
+ dimensional case the coefficients may be thought of as stored in
1128
+ the columns of `c`.
1129
+ tensor : boolean, optional
1130
+ If True, the shape of the coefficient array is extended with ones
1131
+ on the right, one for each dimension of `x`. Scalars have dimension 0
1132
+ for this action. The result is that every column of coefficients in
1133
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
1134
+ over the columns of `c` for the evaluation. This keyword is useful
1135
+ when `c` is multidimensional. The default value is True.
1136
+
1137
+ .. versionadded:: 1.7.0
1138
+
1139
+ Returns
1140
+ -------
1141
+ values : ndarray, algebra_like
1142
+ The shape of the return value is described above.
1143
+
1144
+ See Also
1145
+ --------
1146
+ chebval2d, chebgrid2d, chebval3d, chebgrid3d
1147
+
1148
+ Notes
1149
+ -----
1150
+ The evaluation uses Clenshaw recursion, aka synthetic division.
1151
+
1152
+ """
1153
+ c = np.array(c, ndmin=1, copy=True)
1154
+ if c.dtype.char in '?bBhHiIlLqQpP':
1155
+ c = c.astype(np.double)
1156
+ if isinstance(x, (tuple, list)):
1157
+ x = np.asarray(x)
1158
+ if isinstance(x, np.ndarray) and tensor:
1159
+ c = c.reshape(c.shape + (1,)*x.ndim)
1160
+
1161
+ if len(c) == 1:
1162
+ c0 = c[0]
1163
+ c1 = 0
1164
+ elif len(c) == 2:
1165
+ c0 = c[0]
1166
+ c1 = c[1]
1167
+ else:
1168
+ x2 = 2*x
1169
+ c0 = c[-2]
1170
+ c1 = c[-1]
1171
+ for i in range(3, len(c) + 1):
1172
+ tmp = c0
1173
+ c0 = c[-i] - c1
1174
+ c1 = tmp + c1*x2
1175
+ return c0 + c1*x
1176
+
1177
+
1178
+ def chebval2d(x, y, c):
1179
+ """
1180
+ Evaluate a 2-D Chebyshev series at points (x, y).
1181
+
1182
+ This function returns the values:
1183
+
1184
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)
1185
+
1186
+ The parameters `x` and `y` are converted to arrays only if they are
1187
+ tuples or a lists, otherwise they are treated as a scalars and they
1188
+ must have the same shape after conversion. In either case, either `x`
1189
+ and `y` or their elements must support multiplication and addition both
1190
+ with themselves and with the elements of `c`.
1191
+
1192
+ If `c` is a 1-D array a one is implicitly appended to its shape to make
1193
+ it 2-D. The shape of the result will be c.shape[2:] + x.shape.
1194
+
1195
+ Parameters
1196
+ ----------
1197
+ x, y : array_like, compatible objects
1198
+ The two dimensional series is evaluated at the points `(x, y)`,
1199
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
1200
+ or tuple, it is first converted to an ndarray, otherwise it is left
1201
+ unchanged and if it isn't an ndarray it is treated as a scalar.
1202
+ c : array_like
1203
+ Array of coefficients ordered so that the coefficient of the term
1204
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
1205
+ dimension greater than 2 the remaining indices enumerate multiple
1206
+ sets of coefficients.
1207
+
1208
+ Returns
1209
+ -------
1210
+ values : ndarray, compatible object
1211
+ The values of the two dimensional Chebyshev series at points formed
1212
+ from pairs of corresponding values from `x` and `y`.
1213
+
1214
+ See Also
1215
+ --------
1216
+ chebval, chebgrid2d, chebval3d, chebgrid3d
1217
+
1218
+ Notes
1219
+ -----
1220
+
1221
+ .. versionadded:: 1.7.0
1222
+
1223
+ """
1224
+ return pu._valnd(chebval, c, x, y)
1225
+
1226
+
1227
+ def chebgrid2d(x, y, c):
1228
+ """
1229
+ Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
1230
+
1231
+ This function returns the values:
1232
+
1233
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),
1234
+
1235
+ where the points `(a, b)` consist of all pairs formed by taking
1236
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
1237
+ `x` in the first dimension and `y` in the second.
1238
+
1239
+ The parameters `x` and `y` are converted to arrays only if they are
1240
+ tuples or a lists, otherwise they are treated as a scalars. In either
1241
+ case, either `x` and `y` or their elements must support multiplication
1242
+ and addition both with themselves and with the elements of `c`.
1243
+
1244
+ If `c` has fewer than two dimensions, ones are implicitly appended to
1245
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
1246
+ x.shape + y.shape.
1247
+
1248
+ Parameters
1249
+ ----------
1250
+ x, y : array_like, compatible objects
1251
+ The two dimensional series is evaluated at the points in the
1252
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
1253
+ tuple, it is first converted to an ndarray, otherwise it is left
1254
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
1255
+ c : array_like
1256
+ Array of coefficients ordered so that the coefficient of the term of
1257
+ multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
1258
+ greater than two the remaining indices enumerate multiple sets of
1259
+ coefficients.
1260
+
1261
+ Returns
1262
+ -------
1263
+ values : ndarray, compatible object
1264
+ The values of the two dimensional Chebyshev series at points in the
1265
+ Cartesian product of `x` and `y`.
1266
+
1267
+ See Also
1268
+ --------
1269
+ chebval, chebval2d, chebval3d, chebgrid3d
1270
+
1271
+ Notes
1272
+ -----
1273
+
1274
+ .. versionadded:: 1.7.0
1275
+
1276
+ """
1277
+ return pu._gridnd(chebval, c, x, y)
1278
+
1279
+
1280
+ def chebval3d(x, y, z, c):
1281
+ """
1282
+ Evaluate a 3-D Chebyshev series at points (x, y, z).
1283
+
1284
+ This function returns the values:
1285
+
1286
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)
1287
+
1288
+ The parameters `x`, `y`, and `z` are converted to arrays only if
1289
+ they are tuples or a lists, otherwise they are treated as a scalars and
1290
+ they must have the same shape after conversion. In either case, either
1291
+ `x`, `y`, and `z` or their elements must support multiplication and
1292
+ addition both with themselves and with the elements of `c`.
1293
+
1294
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
1295
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
1296
+ x.shape.
1297
+
1298
+ Parameters
1299
+ ----------
1300
+ x, y, z : array_like, compatible object
1301
+ The three dimensional series is evaluated at the points
1302
+ `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
1303
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
1304
+ to an ndarray, otherwise it is left unchanged and if it isn't an
1305
+ ndarray it is treated as a scalar.
1306
+ c : array_like
1307
+ Array of coefficients ordered so that the coefficient of the term of
1308
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
1309
+ greater than 3 the remaining indices enumerate multiple sets of
1310
+ coefficients.
1311
+
1312
+ Returns
1313
+ -------
1314
+ values : ndarray, compatible object
1315
+ The values of the multidimensional polynomial on points formed with
1316
+ triples of corresponding values from `x`, `y`, and `z`.
1317
+
1318
+ See Also
1319
+ --------
1320
+ chebval, chebval2d, chebgrid2d, chebgrid3d
1321
+
1322
+ Notes
1323
+ -----
1324
+
1325
+ .. versionadded:: 1.7.0
1326
+
1327
+ """
1328
+ return pu._valnd(chebval, c, x, y, z)
1329
+
1330
+
1331
+ def chebgrid3d(x, y, z, c):
1332
+ """
1333
+ Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
1334
+
1335
+ This function returns the values:
1336
+
1337
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)
1338
+
1339
+ where the points `(a, b, c)` consist of all triples formed by taking
1340
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
1341
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
1342
+ the third.
1343
+
1344
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
1345
+ are tuples or a lists, otherwise they are treated as a scalars. In
1346
+ either case, either `x`, `y`, and `z` or their elements must support
1347
+ multiplication and addition both with themselves and with the elements
1348
+ of `c`.
1349
+
1350
+ If `c` has fewer than three dimensions, ones are implicitly appended to
1351
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
1352
+ x.shape + y.shape + z.shape.
1353
+
1354
+ Parameters
1355
+ ----------
1356
+ x, y, z : array_like, compatible objects
1357
+ The three dimensional series is evaluated at the points in the
1358
+ Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
1359
+ list or tuple, it is first converted to an ndarray, otherwise it is
1360
+ left unchanged and, if it isn't an ndarray, it is treated as a
1361
+ scalar.
1362
+ c : array_like
1363
+ Array of coefficients ordered so that the coefficients for terms of
1364
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
1365
+ greater than two the remaining indices enumerate multiple sets of
1366
+ coefficients.
1367
+
1368
+ Returns
1369
+ -------
1370
+ values : ndarray, compatible object
1371
+ The values of the two dimensional polynomial at points in the Cartesian
1372
+ product of `x` and `y`.
1373
+
1374
+ See Also
1375
+ --------
1376
+ chebval, chebval2d, chebgrid2d, chebval3d
1377
+
1378
+ Notes
1379
+ -----
1380
+
1381
+ .. versionadded:: 1.7.0
1382
+
1383
+ """
1384
+ return pu._gridnd(chebval, c, x, y, z)
1385
+
1386
+
1387
+ def chebvander(x, deg):
1388
+ """Pseudo-Vandermonde matrix of given degree.
1389
+
1390
+ Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
1391
+ `x`. The pseudo-Vandermonde matrix is defined by
1392
+
1393
+ .. math:: V[..., i] = T_i(x),
1394
+
1395
+ where `0 <= i <= deg`. The leading indices of `V` index the elements of
1396
+ `x` and the last index is the degree of the Chebyshev polynomial.
1397
+
1398
+ If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
1399
+ matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
1400
+ ``chebval(x, c)`` are the same up to roundoff. This equivalence is
1401
+ useful both for least squares fitting and for the evaluation of a large
1402
+ number of Chebyshev series of the same degree and sample points.
1403
+
1404
+ Parameters
1405
+ ----------
1406
+ x : array_like
1407
+ Array of points. The dtype is converted to float64 or complex128
1408
+ depending on whether any of the elements are complex. If `x` is
1409
+ scalar it is converted to a 1-D array.
1410
+ deg : int
1411
+ Degree of the resulting matrix.
1412
+
1413
+ Returns
1414
+ -------
1415
+ vander : ndarray
1416
+ The pseudo Vandermonde matrix. The shape of the returned matrix is
1417
+ ``x.shape + (deg + 1,)``, where The last index is the degree of the
1418
+ corresponding Chebyshev polynomial. The dtype will be the same as
1419
+ the converted `x`.
1420
+
1421
+ """
1422
+ ideg = pu._deprecate_as_int(deg, "deg")
1423
+ if ideg < 0:
1424
+ raise ValueError("deg must be non-negative")
1425
+
1426
+ x = np.array(x, copy=False, ndmin=1) + 0.0
1427
+ dims = (ideg + 1,) + x.shape
1428
+ dtyp = x.dtype
1429
+ v = np.empty(dims, dtype=dtyp)
1430
+ # Use forward recursion to generate the entries.
1431
+ v[0] = x*0 + 1
1432
+ if ideg > 0:
1433
+ x2 = 2*x
1434
+ v[1] = x
1435
+ for i in range(2, ideg + 1):
1436
+ v[i] = v[i-1]*x2 - v[i-2]
1437
+ return np.moveaxis(v, 0, -1)
1438
+
1439
+
1440
+ def chebvander2d(x, y, deg):
1441
+ """Pseudo-Vandermonde matrix of given degrees.
1442
+
1443
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1444
+ points `(x, y)`. The pseudo-Vandermonde matrix is defined by
1445
+
1446
+ .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),
1447
+
1448
+ where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
1449
+ `V` index the points `(x, y)` and the last index encodes the degrees of
1450
+ the Chebyshev polynomials.
1451
+
1452
+ If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
1453
+ correspond to the elements of a 2-D coefficient array `c` of shape
1454
+ (xdeg + 1, ydeg + 1) in the order
1455
+
1456
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
1457
+
1458
+ and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
1459
+ up to roundoff. This equivalence is useful both for least squares
1460
+ fitting and for the evaluation of a large number of 2-D Chebyshev
1461
+ series of the same degrees and sample points.
1462
+
1463
+ Parameters
1464
+ ----------
1465
+ x, y : array_like
1466
+ Arrays of point coordinates, all of the same shape. The dtypes
1467
+ will be converted to either float64 or complex128 depending on
1468
+ whether any of the elements are complex. Scalars are converted to
1469
+ 1-D arrays.
1470
+ deg : list of ints
1471
+ List of maximum degrees of the form [x_deg, y_deg].
1472
+
1473
+ Returns
1474
+ -------
1475
+ vander2d : ndarray
1476
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1477
+ :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same
1478
+ as the converted `x` and `y`.
1479
+
1480
+ See Also
1481
+ --------
1482
+ chebvander, chebvander3d, chebval2d, chebval3d
1483
+
1484
+ Notes
1485
+ -----
1486
+
1487
+ .. versionadded:: 1.7.0
1488
+
1489
+ """
1490
+ return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)
1491
+
1492
+
1493
+ def chebvander3d(x, y, z, deg):
1494
+ """Pseudo-Vandermonde matrix of given degrees.
1495
+
1496
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1497
+ points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
1498
+ then The pseudo-Vandermonde matrix is defined by
1499
+
1500
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),
1501
+
1502
+ where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
1503
+ indices of `V` index the points `(x, y, z)` and the last index encodes
1504
+ the degrees of the Chebyshev polynomials.
1505
+
1506
+ If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
1507
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
1508
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
1509
+
1510
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
1511
+
1512
+ and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
1513
+ same up to roundoff. This equivalence is useful both for least squares
1514
+ fitting and for the evaluation of a large number of 3-D Chebyshev
1515
+ series of the same degrees and sample points.
1516
+
1517
+ Parameters
1518
+ ----------
1519
+ x, y, z : array_like
1520
+ Arrays of point coordinates, all of the same shape. The dtypes will
1521
+ be converted to either float64 or complex128 depending on whether
1522
+ any of the elements are complex. Scalars are converted to 1-D
1523
+ arrays.
1524
+ deg : list of ints
1525
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
1526
+
1527
+ Returns
1528
+ -------
1529
+ vander3d : ndarray
1530
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1531
+ :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will
1532
+ be the same as the converted `x`, `y`, and `z`.
1533
+
1534
+ See Also
1535
+ --------
1536
+ chebvander, chebvander3d, chebval2d, chebval3d
1537
+
1538
+ Notes
1539
+ -----
1540
+
1541
+ .. versionadded:: 1.7.0
1542
+
1543
+ """
1544
+ return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)
1545
+
1546
+
1547
+ def chebfit(x, y, deg, rcond=None, full=False, w=None):
1548
+ """
1549
+ Least squares fit of Chebyshev series to data.
1550
+
1551
+ Return the coefficients of a Chebyshev series of degree `deg` that is the
1552
+ least squares fit to the data values `y` given at points `x`. If `y` is
1553
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
1554
+ fits are done, one for each column of `y`, and the resulting
1555
+ coefficients are stored in the corresponding columns of a 2-D return.
1556
+ The fitted polynomial(s) are in the form
1557
+
1558
+ .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),
1559
+
1560
+ where `n` is `deg`.
1561
+
1562
+ Parameters
1563
+ ----------
1564
+ x : array_like, shape (M,)
1565
+ x-coordinates of the M sample points ``(x[i], y[i])``.
1566
+ y : array_like, shape (M,) or (M, K)
1567
+ y-coordinates of the sample points. Several data sets of sample
1568
+ points sharing the same x-coordinates can be fitted at once by
1569
+ passing in a 2D-array that contains one dataset per column.
1570
+ deg : int or 1-D array_like
1571
+ Degree(s) of the fitting polynomials. If `deg` is a single integer,
1572
+ all terms up to and including the `deg`'th term are included in the
1573
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
1574
+ degrees of the terms to include may be used instead.
1575
+ rcond : float, optional
1576
+ Relative condition number of the fit. Singular values smaller than
1577
+ this relative to the largest singular value will be ignored. The
1578
+ default value is len(x)*eps, where eps is the relative precision of
1579
+ the float type, about 2e-16 in most cases.
1580
+ full : bool, optional
1581
+ Switch determining nature of return value. When it is False (the
1582
+ default) just the coefficients are returned, when True diagnostic
1583
+ information from the singular value decomposition is also returned.
1584
+ w : array_like, shape (`M`,), optional
1585
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
1586
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
1587
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
1588
+ same variance. When using inverse-variance weighting, use
1589
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
1590
+
1591
+ .. versionadded:: 1.5.0
1592
+
1593
+ Returns
1594
+ -------
1595
+ coef : ndarray, shape (M,) or (M, K)
1596
+ Chebyshev coefficients ordered from low to high. If `y` was 2-D,
1597
+ the coefficients for the data in column k of `y` are in column
1598
+ `k`.
1599
+
1600
+ [residuals, rank, singular_values, rcond] : list
1601
+ These values are only returned if ``full == True``
1602
+
1603
+ - residuals -- sum of squared residuals of the least squares fit
1604
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1605
+ - singular_values -- singular values of the scaled Vandermonde matrix
1606
+ - rcond -- value of `rcond`.
1607
+
1608
+ For more details, see `numpy.linalg.lstsq`.
1609
+
1610
+ Warns
1611
+ -----
1612
+ RankWarning
1613
+ The rank of the coefficient matrix in the least-squares fit is
1614
+ deficient. The warning is only raised if ``full == False``. The
1615
+ warnings can be turned off by
1616
+
1617
+ >>> import warnings
1618
+ >>> warnings.simplefilter('ignore', np.RankWarning)
1619
+
1620
+ See Also
1621
+ --------
1622
+ numpy.polynomial.polynomial.polyfit
1623
+ numpy.polynomial.legendre.legfit
1624
+ numpy.polynomial.laguerre.lagfit
1625
+ numpy.polynomial.hermite.hermfit
1626
+ numpy.polynomial.hermite_e.hermefit
1627
+ chebval : Evaluates a Chebyshev series.
1628
+ chebvander : Vandermonde matrix of Chebyshev series.
1629
+ chebweight : Chebyshev weight function.
1630
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
1631
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
1632
+
1633
+ Notes
1634
+ -----
1635
+ The solution is the coefficients of the Chebyshev series `p` that
1636
+ minimizes the sum of the weighted squared errors
1637
+
1638
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
1639
+
1640
+ where :math:`w_j` are the weights. This problem is solved by setting up
1641
+ as the (typically) overdetermined matrix equation
1642
+
1643
+ .. math:: V(x) * c = w * y,
1644
+
1645
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
1646
+ coefficients to be solved for, `w` are the weights, and `y` are the
1647
+ observed values. This equation is then solved using the singular value
1648
+ decomposition of `V`.
1649
+
1650
+ If some of the singular values of `V` are so small that they are
1651
+ neglected, then a `RankWarning` will be issued. This means that the
1652
+ coefficient values may be poorly determined. Using a lower order fit
1653
+ will usually get rid of the warning. The `rcond` parameter can also be
1654
+ set to a value smaller than its default, but the resulting fit may be
1655
+ spurious and have large contributions from roundoff error.
1656
+
1657
+ Fits using Chebyshev series are usually better conditioned than fits
1658
+ using power series, but much can depend on the distribution of the
1659
+ sample points and the smoothness of the data. If the quality of the fit
1660
+ is inadequate splines may be a good alternative.
1661
+
1662
+ References
1663
+ ----------
1664
+ .. [1] Wikipedia, "Curve fitting",
1665
+ https://en.wikipedia.org/wiki/Curve_fitting
1666
+
1667
+ Examples
1668
+ --------
1669
+
1670
+ """
1671
+ return pu._fit(chebvander, x, y, deg, rcond, full, w)
1672
+
1673
+
1674
+ def chebcompanion(c):
1675
+ """Return the scaled companion matrix of c.
1676
+
1677
+ The basis polynomials are scaled so that the companion matrix is
1678
+ symmetric when `c` is a Chebyshev basis polynomial. This provides
1679
+ better eigenvalue estimates than the unscaled case and for basis
1680
+ polynomials the eigenvalues are guaranteed to be real if
1681
+ `numpy.linalg.eigvalsh` is used to obtain them.
1682
+
1683
+ Parameters
1684
+ ----------
1685
+ c : array_like
1686
+ 1-D array of Chebyshev series coefficients ordered from low to high
1687
+ degree.
1688
+
1689
+ Returns
1690
+ -------
1691
+ mat : ndarray
1692
+ Scaled companion matrix of dimensions (deg, deg).
1693
+
1694
+ Notes
1695
+ -----
1696
+
1697
+ .. versionadded:: 1.7.0
1698
+
1699
+ """
1700
+ # c is a trimmed copy
1701
+ [c] = pu.as_series([c])
1702
+ if len(c) < 2:
1703
+ raise ValueError('Series must have maximum degree of at least 1.')
1704
+ if len(c) == 2:
1705
+ return np.array([[-c[0]/c[1]]])
1706
+
1707
+ n = len(c) - 1
1708
+ mat = np.zeros((n, n), dtype=c.dtype)
1709
+ scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
1710
+ top = mat.reshape(-1)[1::n+1]
1711
+ bot = mat.reshape(-1)[n::n+1]
1712
+ top[0] = np.sqrt(.5)
1713
+ top[1:] = 1/2
1714
+ bot[...] = top
1715
+ mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
1716
+ return mat
1717
+
1718
+
1719
+ def chebroots(c):
1720
+ """
1721
+ Compute the roots of a Chebyshev series.
1722
+
1723
+ Return the roots (a.k.a. "zeros") of the polynomial
1724
+
1725
+ .. math:: p(x) = \\sum_i c[i] * T_i(x).
1726
+
1727
+ Parameters
1728
+ ----------
1729
+ c : 1-D array_like
1730
+ 1-D array of coefficients.
1731
+
1732
+ Returns
1733
+ -------
1734
+ out : ndarray
1735
+ Array of the roots of the series. If all the roots are real,
1736
+ then `out` is also real, otherwise it is complex.
1737
+
1738
+ See Also
1739
+ --------
1740
+ numpy.polynomial.polynomial.polyroots
1741
+ numpy.polynomial.legendre.legroots
1742
+ numpy.polynomial.laguerre.lagroots
1743
+ numpy.polynomial.hermite.hermroots
1744
+ numpy.polynomial.hermite_e.hermeroots
1745
+
1746
+ Notes
1747
+ -----
1748
+ The root estimates are obtained as the eigenvalues of the companion
1749
+ matrix, Roots far from the origin of the complex plane may have large
1750
+ errors due to the numerical instability of the series for such
1751
+ values. Roots with multiplicity greater than 1 will also show larger
1752
+ errors as the value of the series near such points is relatively
1753
+ insensitive to errors in the roots. Isolated roots near the origin can
1754
+ be improved by a few iterations of Newton's method.
1755
+
1756
+ The Chebyshev series basis polynomials aren't powers of `x` so the
1757
+ results of this function may seem unintuitive.
1758
+
1759
+ Examples
1760
+ --------
1761
+ >>> import numpy.polynomial.chebyshev as cheb
1762
+ >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
1763
+ array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary
1764
+
1765
+ """
1766
+ # c is a trimmed copy
1767
+ [c] = pu.as_series([c])
1768
+ if len(c) < 2:
1769
+ return np.array([], dtype=c.dtype)
1770
+ if len(c) == 2:
1771
+ return np.array([-c[0]/c[1]])
1772
+
1773
+ # rotated companion matrix reduces error
1774
+ m = chebcompanion(c)[::-1,::-1]
1775
+ r = la.eigvals(m)
1776
+ r.sort()
1777
+ return r
1778
+
1779
+
1780
+ def chebinterpolate(func, deg, args=()):
1781
+ """Interpolate a function at the Chebyshev points of the first kind.
1782
+
1783
+ Returns the Chebyshev series that interpolates `func` at the Chebyshev
1784
+ points of the first kind in the interval [-1, 1]. The interpolating
1785
+ series tends to a minmax approximation to `func` with increasing `deg`
1786
+ if the function is continuous in the interval.
1787
+
1788
+ .. versionadded:: 1.14.0
1789
+
1790
+ Parameters
1791
+ ----------
1792
+ func : function
1793
+ The function to be approximated. It must be a function of a single
1794
+ variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
1795
+ extra arguments passed in the `args` parameter.
1796
+ deg : int
1797
+ Degree of the interpolating polynomial
1798
+ args : tuple, optional
1799
+ Extra arguments to be used in the function call. Default is no extra
1800
+ arguments.
1801
+
1802
+ Returns
1803
+ -------
1804
+ coef : ndarray, shape (deg + 1,)
1805
+ Chebyshev coefficients of the interpolating series ordered from low to
1806
+ high.
1807
+
1808
+ Examples
1809
+ --------
1810
+ >>> import numpy.polynomial.chebyshev as C
1811
+ >>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
1812
+ array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17,
1813
+ -5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
1814
+ 2.46716228e-17, -3.79694221e-04, -3.26899002e-16])
1815
+
1816
+ Notes
1817
+ -----
1818
+
1819
+ The Chebyshev polynomials used in the interpolation are orthogonal when
1820
+ sampled at the Chebyshev points of the first kind. If it is desired to
1821
+ constrain some of the coefficients they can simply be set to the desired
1822
+ value after the interpolation, no new interpolation or fit is needed. This
1823
+ is especially useful if it is known apriori that some of coefficients are
1824
+ zero. For instance, if the function is even then the coefficients of the
1825
+ terms of odd degree in the result can be set to zero.
1826
+
1827
+ """
1828
+ deg = np.asarray(deg)
1829
+
1830
+ # check arguments.
1831
+ if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
1832
+ raise TypeError("deg must be an int")
1833
+ if deg < 0:
1834
+ raise ValueError("expected deg >= 0")
1835
+
1836
+ order = deg + 1
1837
+ xcheb = chebpts1(order)
1838
+ yfunc = func(xcheb, *args)
1839
+ m = chebvander(xcheb, deg)
1840
+ c = np.dot(m.T, yfunc)
1841
+ c[0] /= order
1842
+ c[1:] /= 0.5*order
1843
+
1844
+ return c
1845
+
1846
+
1847
+ def chebgauss(deg):
1848
+ """
1849
+ Gauss-Chebyshev quadrature.
1850
+
1851
+ Computes the sample points and weights for Gauss-Chebyshev quadrature.
1852
+ These sample points and weights will correctly integrate polynomials of
1853
+ degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
1854
+ the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.
1855
+
1856
+ Parameters
1857
+ ----------
1858
+ deg : int
1859
+ Number of sample points and weights. It must be >= 1.
1860
+
1861
+ Returns
1862
+ -------
1863
+ x : ndarray
1864
+ 1-D ndarray containing the sample points.
1865
+ y : ndarray
1866
+ 1-D ndarray containing the weights.
1867
+
1868
+ Notes
1869
+ -----
1870
+
1871
+ .. versionadded:: 1.7.0
1872
+
1873
+ The results have only been tested up to degree 100, higher degrees may
1874
+ be problematic. For Gauss-Chebyshev there are closed form solutions for
1875
+ the sample points and weights. If n = `deg`, then
1876
+
1877
+ .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))
1878
+
1879
+ .. math:: w_i = \\pi / n
1880
+
1881
+ """
1882
+ ideg = pu._deprecate_as_int(deg, "deg")
1883
+ if ideg <= 0:
1884
+ raise ValueError("deg must be a positive integer")
1885
+
1886
+ x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
1887
+ w = np.ones(ideg)*(np.pi/ideg)
1888
+
1889
+ return x, w
1890
+
1891
+
1892
+ def chebweight(x):
1893
+ """
1894
+ The weight function of the Chebyshev polynomials.
1895
+
1896
+ The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
1897
+ integration is :math:`[-1, 1]`. The Chebyshev polynomials are
1898
+ orthogonal, but not normalized, with respect to this weight function.
1899
+
1900
+ Parameters
1901
+ ----------
1902
+ x : array_like
1903
+ Values at which the weight function will be computed.
1904
+
1905
+ Returns
1906
+ -------
1907
+ w : ndarray
1908
+ The weight function at `x`.
1909
+
1910
+ Notes
1911
+ -----
1912
+
1913
+ .. versionadded:: 1.7.0
1914
+
1915
+ """
1916
+ w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
1917
+ return w
1918
+
1919
+
1920
+ def chebpts1(npts):
1921
+ """
1922
+ Chebyshev points of the first kind.
1923
+
1924
+ The Chebyshev points of the first kind are the points ``cos(x)``,
1925
+ where ``x = [pi*(k + .5)/npts for k in range(npts)]``.
1926
+
1927
+ Parameters
1928
+ ----------
1929
+ npts : int
1930
+ Number of sample points desired.
1931
+
1932
+ Returns
1933
+ -------
1934
+ pts : ndarray
1935
+ The Chebyshev points of the first kind.
1936
+
1937
+ See Also
1938
+ --------
1939
+ chebpts2
1940
+
1941
+ Notes
1942
+ -----
1943
+
1944
+ .. versionadded:: 1.5.0
1945
+
1946
+ """
1947
+ _npts = int(npts)
1948
+ if _npts != npts:
1949
+ raise ValueError("npts must be integer")
1950
+ if _npts < 1:
1951
+ raise ValueError("npts must be >= 1")
1952
+
1953
+ x = 0.5 * np.pi / _npts * np.arange(-_npts+1, _npts+1, 2)
1954
+ return np.sin(x)
1955
+
1956
+
1957
+ def chebpts2(npts):
1958
+ """
1959
+ Chebyshev points of the second kind.
1960
+
1961
+ The Chebyshev points of the second kind are the points ``cos(x)``,
1962
+ where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending
1963
+ order.
1964
+
1965
+ Parameters
1966
+ ----------
1967
+ npts : int
1968
+ Number of sample points desired.
1969
+
1970
+ Returns
1971
+ -------
1972
+ pts : ndarray
1973
+ The Chebyshev points of the second kind.
1974
+
1975
+ Notes
1976
+ -----
1977
+
1978
+ .. versionadded:: 1.5.0
1979
+
1980
+ """
1981
+ _npts = int(npts)
1982
+ if _npts != npts:
1983
+ raise ValueError("npts must be integer")
1984
+ if _npts < 2:
1985
+ raise ValueError("npts must be >= 2")
1986
+
1987
+ x = np.linspace(-np.pi, 0, _npts)
1988
+ return np.cos(x)
1989
+
1990
+
1991
+ #
1992
+ # Chebyshev series class
1993
+ #
1994
+
1995
+ class Chebyshev(ABCPolyBase):
1996
+ """A Chebyshev series class.
1997
+
1998
+ The Chebyshev class provides the standard Python numerical methods
1999
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
2000
+ methods listed below.
2001
+
2002
+ Parameters
2003
+ ----------
2004
+ coef : array_like
2005
+ Chebyshev coefficients in order of increasing degree, i.e.,
2006
+ ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
2007
+ domain : (2,) array_like, optional
2008
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
2009
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
2010
+ The default value is [-1, 1].
2011
+ window : (2,) array_like, optional
2012
+ Window, see `domain` for its use. The default value is [-1, 1].
2013
+
2014
+ .. versionadded:: 1.6.0
2015
+ symbol : str, optional
2016
+ Symbol used to represent the independent variable in string
2017
+ representations of the polynomial expression, e.g. for printing.
2018
+ The symbol must be a valid Python identifier. Default value is 'x'.
2019
+
2020
+ .. versionadded:: 1.24
2021
+
2022
+ """
2023
+ # Virtual Functions
2024
+ _add = staticmethod(chebadd)
2025
+ _sub = staticmethod(chebsub)
2026
+ _mul = staticmethod(chebmul)
2027
+ _div = staticmethod(chebdiv)
2028
+ _pow = staticmethod(chebpow)
2029
+ _val = staticmethod(chebval)
2030
+ _int = staticmethod(chebint)
2031
+ _der = staticmethod(chebder)
2032
+ _fit = staticmethod(chebfit)
2033
+ _line = staticmethod(chebline)
2034
+ _roots = staticmethod(chebroots)
2035
+ _fromroots = staticmethod(chebfromroots)
2036
+
2037
+ @classmethod
2038
+ def interpolate(cls, func, deg, domain=None, args=()):
2039
+ """Interpolate a function at the Chebyshev points of the first kind.
2040
+
2041
+ Returns the series that interpolates `func` at the Chebyshev points of
2042
+ the first kind scaled and shifted to the `domain`. The resulting series
2043
+ tends to a minmax approximation of `func` when the function is
2044
+ continuous in the domain.
2045
+
2046
+ .. versionadded:: 1.14.0
2047
+
2048
+ Parameters
2049
+ ----------
2050
+ func : function
2051
+ The function to be interpolated. It must be a function of a single
2052
+ variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
2053
+ extra arguments passed in the `args` parameter.
2054
+ deg : int
2055
+ Degree of the interpolating polynomial.
2056
+ domain : {None, [beg, end]}, optional
2057
+ Domain over which `func` is interpolated. The default is None, in
2058
+ which case the domain is [-1, 1].
2059
+ args : tuple, optional
2060
+ Extra arguments to be used in the function call. Default is no
2061
+ extra arguments.
2062
+
2063
+ Returns
2064
+ -------
2065
+ polynomial : Chebyshev instance
2066
+ Interpolating Chebyshev instance.
2067
+
2068
+ Notes
2069
+ -----
2070
+ See `numpy.polynomial.chebfromfunction` for more details.
2071
+
2072
+ """
2073
+ if domain is None:
2074
+ domain = cls.domain
2075
+ xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
2076
+ coef = chebinterpolate(xfunc, deg)
2077
+ return cls(coef, domain=domain)
2078
+
2079
+ # Virtual properties
2080
+ domain = np.array(chebdomain)
2081
+ window = np.array(chebdomain)
2082
+ basis_name = 'T'
venv/lib/python3.10/site-packages/numpy/polynomial/chebyshev.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from numpy import ndarray, dtype, int_
4
+ from numpy.polynomial._polybase import ABCPolyBase
5
+ from numpy.polynomial.polyutils import trimcoef
6
+
7
+ __all__: list[str]
8
+
9
+ chebtrim = trimcoef
10
+
11
+ def poly2cheb(pol): ...
12
+ def cheb2poly(c): ...
13
+
14
+ chebdomain: ndarray[Any, dtype[int_]]
15
+ chebzero: ndarray[Any, dtype[int_]]
16
+ chebone: ndarray[Any, dtype[int_]]
17
+ chebx: ndarray[Any, dtype[int_]]
18
+
19
+ def chebline(off, scl): ...
20
+ def chebfromroots(roots): ...
21
+ def chebadd(c1, c2): ...
22
+ def chebsub(c1, c2): ...
23
+ def chebmulx(c): ...
24
+ def chebmul(c1, c2): ...
25
+ def chebdiv(c1, c2): ...
26
+ def chebpow(c, pow, maxpower=...): ...
27
+ def chebder(c, m=..., scl=..., axis=...): ...
28
+ def chebint(c, m=..., k = ..., lbnd=..., scl=..., axis=...): ...
29
+ def chebval(x, c, tensor=...): ...
30
+ def chebval2d(x, y, c): ...
31
+ def chebgrid2d(x, y, c): ...
32
+ def chebval3d(x, y, z, c): ...
33
+ def chebgrid3d(x, y, z, c): ...
34
+ def chebvander(x, deg): ...
35
+ def chebvander2d(x, y, deg): ...
36
+ def chebvander3d(x, y, z, deg): ...
37
+ def chebfit(x, y, deg, rcond=..., full=..., w=...): ...
38
+ def chebcompanion(c): ...
39
+ def chebroots(c): ...
40
+ def chebinterpolate(func, deg, args = ...): ...
41
+ def chebgauss(deg): ...
42
+ def chebweight(x): ...
43
+ def chebpts1(npts): ...
44
+ def chebpts2(npts): ...
45
+
46
+ class Chebyshev(ABCPolyBase):
47
+ @classmethod
48
+ def interpolate(cls, func, deg, domain=..., args = ...): ...
49
+ domain: Any
50
+ window: Any
51
+ basis_name: Any