applied-ai-018 commited on
Commit
10b733f
·
verified ·
1 Parent(s): 795428d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/16.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  2. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_cuda_dispatch.h +23 -0
  3. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_ops.h +28 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_forward_ops.h +28 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_ops.h +39 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cpu_dispatch.h +28 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_min.h +82 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cosh_compositeexplicitautograd_dispatch.h +24 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log1p_ops.h +50 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sinh.h +44 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_ops.h +50 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_cts_ops.h +39 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_tensors_cpu_dispatch.h +23 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_slogdet_cpu_dispatch.h +25 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_ops.h +39 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_mask_cuda_dispatch.h +23 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_mask_left_aligned_ops.h +28 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_cpu_dispatch.h +23 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unpack_dual_ops.h +28 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cartesian_prod_ops.h +28 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/constant_pad_nd.h +91 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward_compositeimplicitautograd_dispatch.h +23 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_transpose3d_compositeimplicitautograd_dispatch.h +24 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_affine_grid_generator_backward_native.h +22 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_native.h +22 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummin_compositeimplicitautograd_dispatch.h +25 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod_meta.h +27 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_backward.h +91 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward_native.h +23 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_ops.h +28 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_native.h +21 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_cpu_dispatch.h +23 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill_cpu_dispatch.h +24 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/flipud_native.h +21 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h +26 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmin_cuda_dispatch.h +25 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_backward_cpu_dispatch.h +25 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_cuda_dispatch.h +25 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf_cpu_dispatch.h +25 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_2d_compositeexplicitautograd_dispatch.h +24 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/histc_native.h +24 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_compositeexplicitautograd_dispatch.h +23 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h +22 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p.h +44 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_meta.h +27 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_native.h +29 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_compositeimplicitautograd_dispatch.h +23 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/minimum_cpu_dispatch.h +25 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward.h +91 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss_native.h +22 -0
ckpts/universal/global_step120/zero/16.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ac1ae4d8ee6befe4171f120ba7ecf1904fbe3c50f1b6c29a1d4b0bbdef69c4
3
+ size 50332843
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API void _amp_foreach_non_finite_check_and_unscale_(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _conj {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_conj")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_conj(Tensor(a) self) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficient_attention_forward_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _efficient_attention_forward {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, c10::optional<int64_t>, c10::optional<int64_t>, double, int64_t, bool, c10::optional<double>, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_efficient_attention_forward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, int? max_seqlen_q, int? max_seqlen_k, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? causal_diagonal=None, Tensor? seqlen_k=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, SymInt max_seqlen_batch_q, SymInt max_seqlen_batch_k)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt> call(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::optional<int64_t> max_seqlen_q, c10::optional<int64_t> max_seqlen_k, double dropout_p, int64_t custom_mask_type, bool compute_log_sumexp, c10::optional<double> scale, const c10::optional<at::Tensor> & causal_diagonal, const c10::optional<at::Tensor> & seqlen_k);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,c10::SymInt,c10::SymInt> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & cu_seqlens_q, const c10::optional<at::Tensor> & cu_seqlens_k, c10::optional<int64_t> max_seqlen_q, c10::optional<int64_t> max_seqlen_k, double dropout_p, int64_t custom_mask_type, bool compute_log_sumexp, c10::optional<double> scale, const c10::optional<at::Tensor> & causal_diagonal, const c10::optional<at::Tensor> & seqlen_k);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _embedding_bag {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, int64_t, bool, const c10::optional<at::Tensor> &, bool, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_embedding_bag")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<at::Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<at::Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx);
26
+ };
27
+
28
+ struct TORCH_API _embedding_bag_out {
29
+ using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const at::Tensor &, bool, int64_t, bool, const c10::optional<at::Tensor> &, bool, int64_t, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_embedding_bag")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_embedding_bag.out(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))")
35
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<at::Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
36
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<at::Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _fft_c2c(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward);
21
+ TORCH_API at::Tensor _fft_c2c_symint(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward);
22
+ TORCH_API at::Tensor & _fft_c2c_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward);
23
+ TORCH_API at::Tensor & _fft_c2c_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out);
24
+ TORCH_API at::Tensor & _fft_c2c_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward);
25
+ TORCH_API at::Tensor & _fft_c2c_symint_outf(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out);
26
+
27
+ } // namespace cpu
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_min.h ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_clamp_min_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_clamp_min.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_clamp_min(at::TensorList self, const at::Scalar & scalar) {
27
+ return at::_ops::_foreach_clamp_min_Scalar::call(self, scalar);
28
+ }
29
+
30
+ // aten::_foreach_clamp_min_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()
31
+ inline void _foreach_clamp_min_(at::TensorList self, const at::Scalar & scalar) {
32
+ return at::_ops::_foreach_clamp_min__Scalar::call(self, scalar);
33
+ }
34
+
35
+ // aten::_foreach_clamp_min.List(Tensor[] self, Tensor[] other) -> Tensor[]
36
+ inline ::std::vector<at::Tensor> _foreach_clamp_min(at::TensorList self, at::TensorList other) {
37
+ return at::_ops::_foreach_clamp_min_List::call(self, other);
38
+ }
39
+
40
+ // aten::_foreach_clamp_min_.List(Tensor(a!)[] self, Tensor[] other) -> ()
41
+ inline void _foreach_clamp_min_(at::TensorList self, at::TensorList other) {
42
+ return at::_ops::_foreach_clamp_min__List::call(self, other);
43
+ }
44
+
45
+ // aten::_foreach_clamp_min.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]
46
+ inline ::std::vector<at::Tensor> _foreach_clamp_min(at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
47
+ return at::_ops::_foreach_clamp_min_ScalarList::call(self, scalars);
48
+ }
49
+
50
+ // aten::_foreach_clamp_min_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()
51
+ inline void _foreach_clamp_min_(at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
52
+ return at::_ops::_foreach_clamp_min__ScalarList::call(self, scalars);
53
+ }
54
+
55
+ // aten::_foreach_clamp_min.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()
56
+ inline void _foreach_clamp_min_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar) {
57
+ return at::_ops::_foreach_clamp_min_Scalar_out::call(self, scalar, out);
58
+ }
59
+ // aten::_foreach_clamp_min.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()
60
+ inline void _foreach_clamp_min_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out) {
61
+ return at::_ops::_foreach_clamp_min_Scalar_out::call(self, scalar, out);
62
+ }
63
+
64
+ // aten::_foreach_clamp_min.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()
65
+ inline void _foreach_clamp_min_out(at::TensorList out, at::TensorList self, at::TensorList other) {
66
+ return at::_ops::_foreach_clamp_min_List_out::call(self, other, out);
67
+ }
68
+ // aten::_foreach_clamp_min.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()
69
+ inline void _foreach_clamp_min_outf(at::TensorList self, at::TensorList other, at::TensorList out) {
70
+ return at::_ops::_foreach_clamp_min_List_out::call(self, other, out);
71
+ }
72
+
73
+ // aten::_foreach_clamp_min.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()
74
+ inline void _foreach_clamp_min_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars) {
75
+ return at::_ops::_foreach_clamp_min_ScalarList_out::call(self, scalars, out);
76
+ }
77
+ // aten::_foreach_clamp_min.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()
78
+ inline void _foreach_clamp_min_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out) {
79
+ return at::_ops::_foreach_clamp_min_ScalarList_out::call(self, scalars, out);
80
+ }
81
+
82
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cosh_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API void _foreach_cosh_out(at::TensorList out, at::TensorList self);
21
+ TORCH_API void _foreach_cosh_outf(at::TensorList self, at::TensorList out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log1p_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_log1p {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log1p")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log1p(Tensor[] self) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
26
+ };
27
+
28
+ struct TORCH_API _foreach_log1p_ {
29
+ using schema = void (at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log1p_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log1p_(Tensor(a!)[] self) -> ()")
35
+ static void call(at::TensorList self);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
37
+ };
38
+
39
+ struct TORCH_API _foreach_log1p_out {
40
+ using schema = void (at::TensorList, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log1p")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log1p.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
48
+ };
49
+
50
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sinh.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_sinh_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_sinh(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_sinh(at::TensorList self) {
27
+ return at::_ops::_foreach_sinh::call(self);
28
+ }
29
+
30
+ // aten::_foreach_sinh_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_sinh_(at::TensorList self) {
32
+ return at::_ops::_foreach_sinh_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_sinh.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_sinh_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_sinh_out::call(self, out);
38
+ }
39
+ // aten::_foreach_sinh.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_sinh_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_sinh_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_tan {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan(Tensor[] self) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
26
+ };
27
+
28
+ struct TORCH_API _foreach_tan_ {
29
+ using schema = void (at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan_(Tensor(a!)[] self) -> ()")
35
+ static void call(at::TensorList self);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
37
+ };
38
+
39
+ struct TORCH_API _foreach_tan_out {
40
+ using schema = void (at::TensorList, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_tan")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_tan.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
48
+ };
49
+
50
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_cts_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _histogramdd_from_bin_cts {
18
+ using schema = at::Tensor (const at::Tensor &, at::IntArrayRef, c10::optional<at::ArrayRef<double>>, const c10::optional<at::Tensor> &, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_histogramdd_from_bin_cts")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_histogramdd_from_bin_cts(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density);
26
+ };
27
+
28
+ struct TORCH_API _histogramdd_from_bin_cts_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::IntArrayRef, c10::optional<at::ArrayRef<double>>, const c10::optional<at::Tensor> &, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_histogramdd_from_bin_cts")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_histogramdd_from_bin_cts.out(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::IntArrayRef bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_tensors_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _histogramdd_from_bin_tensors(const at::Tensor & self, at::TensorList bins, const c10::optional<at::Tensor> & weight={}, bool density=false);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_slogdet_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _linalg_slogdet(const at::Tensor & A);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _linalg_slogdet_out(at::Tensor & sign, at::Tensor & logabsdet, at::Tensor & LU, at::Tensor & pivots, const at::Tensor & A);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _linalg_slogdet_outf(const at::Tensor & A, at::Tensor & sign, at::Tensor & logabsdet, at::Tensor & LU, at::Tensor & pivots);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_mps_convolution_transpose_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _mps_convolution_transpose {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_mps_convolution_transpose")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_mps_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups);
26
+ };
27
+
28
+ struct TORCH_API _mps_convolution_transpose_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymIntArrayRef, c10::SymInt, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_mps_convolution_transpose")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_mps_convolution_transpose.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_mask_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _nested_tensor_from_mask(const at::Tensor & t, const at::Tensor & mask, bool mask_check=true);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_tensor_from_mask_left_aligned_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _nested_tensor_from_mask_left_aligned {
18
+ using schema = bool (const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_tensor_from_mask_left_aligned")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_tensor_from_mask_left_aligned(Tensor t, Tensor mask) -> bool")
24
+ static bool call(const at::Tensor & t, const at::Tensor & mask);
25
+ static bool redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & t, const at::Tensor & mask);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _unique(const at::Tensor & self, bool sorted=true, bool return_inverse=false);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unpack_dual_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _unpack_dual {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_unpack_dual")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent)")
24
+ static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & dual, int64_t level);
25
+ static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & dual, int64_t level);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cartesian_prod_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API cartesian_prod {
18
+ using schema = at::Tensor (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::cartesian_prod")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "cartesian_prod(Tensor[] tensors) -> Tensor")
24
+ static at::Tensor call(at::TensorList tensors);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/constant_pad_nd.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/constant_pad_nd_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::constant_pad_nd(Tensor self, SymInt[] pad, Scalar value=0) -> Tensor
26
+ inline at::Tensor constant_pad_nd(const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value=0) {
27
+ return at::_ops::constant_pad_nd::call(self, c10::fromIntArrayRefSlow(pad), value);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor constant_pad_nd(const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value=0) {
32
+ return at::_ops::constant_pad_nd::call(self, c10::fromIntArrayRefSlow(pad), value);
33
+ }
34
+ }
35
+
36
+ // aten::constant_pad_nd(Tensor self, SymInt[] pad, Scalar value=0) -> Tensor
37
+ inline at::Tensor constant_pad_nd_symint(const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value=0) {
38
+ return at::_ops::constant_pad_nd::call(self, pad, value);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor constant_pad_nd(const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value=0) {
43
+ return at::_ops::constant_pad_nd::call(self, pad, value);
44
+ }
45
+ }
46
+
47
+ // aten::constant_pad_nd.out(Tensor self, SymInt[] pad, Scalar value=0, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & constant_pad_nd_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value=0) {
49
+ return at::_ops::constant_pad_nd_out::call(self, c10::fromIntArrayRefSlow(pad), value, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & constant_pad_nd_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value=0) {
54
+ return at::_ops::constant_pad_nd_out::call(self, c10::fromIntArrayRefSlow(pad), value, out);
55
+ }
56
+ }
57
+
58
+ // aten::constant_pad_nd.out(Tensor self, SymInt[] pad, Scalar value=0, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & constant_pad_nd_outf(const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value, at::Tensor & out) {
60
+ return at::_ops::constant_pad_nd_out::call(self, c10::fromIntArrayRefSlow(pad), value, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & constant_pad_nd_outf(const at::Tensor & self, at::IntArrayRef pad, const at::Scalar & value, at::Tensor & out) {
65
+ return at::_ops::constant_pad_nd_out::call(self, c10::fromIntArrayRefSlow(pad), value, out);
66
+ }
67
+ }
68
+
69
+ // aten::constant_pad_nd.out(Tensor self, SymInt[] pad, Scalar value=0, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & constant_pad_nd_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value=0) {
71
+ return at::_ops::constant_pad_nd_out::call(self, pad, value, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & constant_pad_nd_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value=0) {
76
+ return at::_ops::constant_pad_nd_out::call(self, pad, value, out);
77
+ }
78
+ }
79
+
80
+ // aten::constant_pad_nd.out(Tensor self, SymInt[] pad, Scalar value=0, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & constant_pad_nd_symint_outf(const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value, at::Tensor & out) {
82
+ return at::_ops::constant_pad_nd_out::call(self, pad, value, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & constant_pad_nd_outf(const at::Tensor & self, c10::SymIntArrayRef pad, const at::Scalar & value, at::Tensor & out) {
87
+ return at::_ops::constant_pad_nd_out::call(self, pad, value, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc_backward_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> conv_tbc_backward(const at::Tensor & self, const at::Tensor & input, const at::Tensor & weight, const at::Tensor & bias, int64_t pad);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_transpose3d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor conv_transpose3d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef output_padding=0, int64_t groups=1, at::IntArrayRef dilation=1);
21
+ TORCH_API at::Tensor conv_transpose3d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef output_padding=c10::SymInt(0), c10::SymInt groups=1, c10::SymIntArrayRef dilation=c10::SymInt(1));
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_affine_grid_generator_backward_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & cudnn_affine_grid_generator_backward_out(const at::Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W, at::Tensor & out);
20
+ TORCH_API at::Tensor cudnn_affine_grid_generator_backward(const at::Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor cudnn_convolution(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic, bool allow_tf32);
20
+ TORCH_API at::Tensor & cudnn_convolution_out(const at::Tensor & self, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic, bool allow_tf32, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummin_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> cummin(const at::Tensor & self, at::Dimname dim);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cummin_out(at::Tensor & values, at::Tensor & indices, const at::Tensor & self, at::Dimname dim);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> cummin_outf(const at::Tensor & self, at::Dimname dim, at::Tensor & values, at::Tensor & indices);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumprod_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_cumprod : public at::impl::MetaBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/diagonal_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor
26
+ inline at::Tensor diagonal_backward(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
27
+ return at::_ops::diagonal_backward::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor diagonal_backward(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
32
+ return at::_ops::diagonal_backward::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2);
33
+ }
34
+ }
35
+
36
+ // aten::diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor
37
+ inline at::Tensor diagonal_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
38
+ return at::_ops::diagonal_backward::call(grad_output, input_sizes, offset, dim1, dim2);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor diagonal_backward(const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
43
+ return at::_ops::diagonal_backward::call(grad_output, input_sizes, offset, dim1, dim2);
44
+ }
45
+ }
46
+
47
+ // aten::diagonal_backward.out(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & diagonal_backward_out(at::Tensor & out, const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
49
+ return at::_ops::diagonal_backward_out::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & diagonal_backward_out(at::Tensor & out, const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
54
+ return at::_ops::diagonal_backward_out::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2, out);
55
+ }
56
+ }
57
+
58
+ // aten::diagonal_backward.out(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & diagonal_backward_outf(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out) {
60
+ return at::_ops::diagonal_backward_out::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & diagonal_backward_outf(const at::Tensor & grad_output, at::IntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out) {
65
+ return at::_ops::diagonal_backward_out::call(grad_output, c10::fromIntArrayRefSlow(input_sizes), offset, dim1, dim2, out);
66
+ }
67
+ }
68
+
69
+ // aten::diagonal_backward.out(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & diagonal_backward_symint_out(at::Tensor & out, const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
71
+ return at::_ops::diagonal_backward_out::call(grad_output, input_sizes, offset, dim1, dim2, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & diagonal_backward_out(at::Tensor & out, const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2) {
76
+ return at::_ops::diagonal_backward_out::call(grad_output, input_sizes, offset, dim1, dim2, out);
77
+ }
78
+ }
79
+
80
+ // aten::diagonal_backward.out(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & diagonal_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out) {
82
+ return at::_ops::diagonal_backward_out::call(grad_output, input_sizes, offset, dim1, dim2, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & diagonal_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out) {
87
+ return at::_ops::diagonal_backward_out::call(grad_output, input_sizes, offset, dim1, dim2, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & embedding_dense_backward_out_symint(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out);
20
+ TORCH_API at::Tensor embedding_dense_backward_cpu(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq);
21
+ TORCH_API at::Tensor embedding_dense_backward_cuda(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API fake_quantize_per_channel_affine {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t, int64_t, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fake_quantize_per_channel_affine")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fake_quantize_per_tensor_affine_cachemask_backward(const at::Tensor & grad, const at::Tensor & mask);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_tensor_affine_cachemask_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> fake_quantize_per_tensor_affine_cachemask(const at::Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Scalar & value);
21
+ TORCH_API at::Tensor & fill_(at::Tensor & self, const at::Tensor & value);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/flipud_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor flipud(const at::Tensor & self);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor floor(const at::Tensor & self);
21
+ TORCH_API at::Tensor & floor_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & floor_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & floor_(at::Tensor & self);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmin_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor fmin(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & fmin_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & fmin_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor fractional_max_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
21
+ TORCH_API at::Tensor & fractional_max_pool2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
22
+ TORCH_API at::Tensor & fractional_max_pool2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool3d_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor fractional_max_pool3d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
21
+ TORCH_API at::Tensor & fractional_max_pool3d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices);
22
+ TORCH_API at::Tensor & fractional_max_pool3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & indices, at::Tensor & grad_input);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/geqrf_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> geqrf(const at::Tensor & self);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> geqrf_out(at::Tensor & a, at::Tensor & tau, const at::Tensor & self);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> geqrf_outf(const at::Tensor & self, at::Tensor & a, at::Tensor & tau);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_2d_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & grid_sampler_2d_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
21
+ TORCH_API at::Tensor & grid_sampler_2d_outf(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/histc_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor histogram_histc(const at::Tensor & self, int64_t bins=100, const at::Scalar & min=0, const at::Scalar & max=0);
20
+ TORCH_API at::Tensor & histogram_histc_out(const at::Tensor & self, int64_t bins, const at::Scalar & min, const at::Scalar & max, at::Tensor & out);
21
+ TORCH_API at::Tensor _histc_cuda(const at::Tensor & self, int64_t bins=100, const at::Scalar & min=0, const at::Scalar & max=0);
22
+ TORCH_API at::Tensor & _histc_out_cuda(const at::Tensor & self, int64_t bins, const at::Scalar & min, const at::Scalar & max, at::Tensor & out);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API bool is_same_size(const at::Tensor & self, const at::Tensor & other);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eigvals_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor linalg_eigvals(const at::Tensor & self);
20
+ TORCH_API at::Tensor & linalg_eigvals_out(const at::Tensor & self, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/log1p_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::log1p(Tensor self) -> Tensor
26
+ inline at::Tensor log1p(const at::Tensor & self) {
27
+ return at::_ops::log1p::call(self);
28
+ }
29
+
30
+ // aten::log1p_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & log1p_(at::Tensor & self) {
32
+ return at::_ops::log1p_::call(self);
33
+ }
34
+
35
+ // aten::log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & log1p_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::log1p_out::call(self, out);
38
+ }
39
+ // aten::log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & log1p_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::log1p_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_log1p : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log1p_native.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/log1p_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_log1p_out : public at::meta::structured_log1p {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor log1p_sparse(const at::Tensor & self);
23
+ TORCH_API at::Tensor & log1p_sparse_out(const at::Tensor & self, at::Tensor & out);
24
+ TORCH_API at::Tensor & log1p_sparse_(at::Tensor & self);
25
+ TORCH_API at::Tensor log1p_sparse_csr(const at::Tensor & self);
26
+ TORCH_API at::Tensor & log1p_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
27
+ TORCH_API at::Tensor & log1p_sparse_csr_(at::Tensor & self);
28
+ } // namespace native
29
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor max_pool2d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride={}, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, bool ceil_mode=false);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/minimum_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor minimum(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & minimum_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & minimum_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss2d_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/nll_loss2d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & nll_loss2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight) {
27
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & nll_loss2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight) {
32
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & nll_loss2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input) {
38
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & nll_loss2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input) {
43
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & nll_loss2d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight) {
49
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & nll_loss2d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight) {
54
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & nll_loss2d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input) {
60
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & nll_loss2d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight, at::Tensor & grad_input) {
65
+ return at::_ops::nll_loss2d_backward_grad_input::call(grad_output, self, target, weight, reduction, ignore_index, total_weight, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor
70
+ inline at::Tensor nll_loss2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight) {
71
+ return at::_ops::nll_loss2d_backward::call(grad_output, self, target, weight, reduction, ignore_index, total_weight);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor nll_loss2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, const at::Tensor & total_weight) {
76
+ return at::_ops::nll_loss2d_backward::call(grad_output, self, target, weight, reduction, ignore_index, total_weight);
77
+ }
78
+ }
79
+
80
+ // aten::nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor
81
+ inline at::Tensor nll_loss2d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight) {
82
+ return at::_ops::nll_loss2d_backward::call(grad_output, self, target, weight, reduction, ignore_index, total_weight);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor nll_loss2d_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const at::Tensor & total_weight) {
87
+ return at::_ops::nll_loss2d_backward::call(grad_output, self, target, weight, reduction, ignore_index, total_weight);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/nll_loss_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor nll_loss_symint(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, int64_t reduction=at::Reduction::Mean, c10::SymInt ignore_index=-100);
20
+ TORCH_API at::Tensor & nll_loss_out(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, int64_t reduction, int64_t ignore_index, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at