diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_190_mp_rank_02_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_190_mp_rank_02_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..3c4fd1999fbc8d955d73fa9214e82c09c7f2fcb9 --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_190_mp_rank_02_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ee245d9b8158e5a18d39ffd9c5038a3e6510f18776cd3ae455eb0e06997a343 +size 41830340 diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_53_mp_rank_03_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_53_mp_rank_03_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..23692da2ef93255f297c962372173b9884672358 --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_53_mp_rank_03_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:90c86106f7427f754687ceebac29d04393f519099b9e9c22b47168ae69b6576f +size 41830394 diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_7_mp_rank_01_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_7_mp_rank_01_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..abc5565708cc83442b21fc3d662e1287a7825dfb --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_7_mp_rank_01_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:adc788ab0ddcc8662da5d228bf2721d6c62ab9b5bf4e511e8bd6f805bd88ab2f +size 41830128 diff --git a/ckpts/llama-3b/global_step100/layer_24-model_00-model_states.pt b/ckpts/llama-3b/global_step100/layer_24-model_00-model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..84040bbf992ff31d52fe7de8e07952041528780c --- /dev/null +++ b/ckpts/llama-3b/global_step100/layer_24-model_00-model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:40e9988a549b5d5ab65068cf501481315a128dc9fc06d1296e99b95527e56a06 +size 116407086 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..61ba3e99aaacc172809a29524b7afdefb5c88c94 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_dt_accessor.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cc24c20ace8554e47f9c4308d461fe5988f37837 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_str_accessor.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad2d2cdbab93b977f057647d8b95fd859b35c66a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/accessors/__pycache__/test_struct_accessor.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bcb0d30f405e2079a1ff21d838f52cd5f659fd93 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__init__.py @@ -0,0 +1,7 @@ +""" +Test files dedicated to individual (stand-alone) Series methods + +Ideally these files/tests should correspond 1-to-1 with tests.frame.methods + +These may also present opportunities for sharing/de-duplicating test code. +""" diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine_first.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine_first.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80f5ae5cf78c71f7e6ea0379930af9a6b838b75b Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine_first.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_head_tail.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_head_tail.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..467d75233474a7ff10bb997a1c5a21822ed79db4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_head_tail.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_round.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_round.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..335fab27297d60470b0394a2d8a06cff47c0450e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_round.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_size.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_size.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..891561d0b369d9ac18613200abb0da62c7a9a6b0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_size.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b7caaf4954188a376df99aa9b9e9109c434b70aa Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_values.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_view.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_view.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef89cb39b6ae2528584a77318e3c55f2cf84e387 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_view.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py new file mode 100644 index 0000000000000000000000000000000000000000..289a56b98b7e123fb1c1edf5cc9ff41369d51122 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_add_prefix_suffix.py @@ -0,0 +1,41 @@ +import pytest + +from pandas import Index +import pandas._testing as tm + + +def test_add_prefix_suffix(string_series): + with_prefix = string_series.add_prefix("foo#") + expected = Index([f"foo#{c}" for c in string_series.index]) + tm.assert_index_equal(with_prefix.index, expected) + + with_suffix = string_series.add_suffix("#foo") + expected = Index([f"{c}#foo" for c in string_series.index]) + tm.assert_index_equal(with_suffix.index, expected) + + with_pct_prefix = string_series.add_prefix("%") + expected = Index([f"%{c}" for c in string_series.index]) + tm.assert_index_equal(with_pct_prefix.index, expected) + + with_pct_suffix = string_series.add_suffix("%") + expected = Index([f"{c}%" for c in string_series.index]) + tm.assert_index_equal(with_pct_suffix.index, expected) + + +def test_add_prefix_suffix_axis(string_series): + # GH 47819 + with_prefix = string_series.add_prefix("foo#", axis=0) + expected = Index([f"foo#{c}" for c in string_series.index]) + tm.assert_index_equal(with_prefix.index, expected) + + with_pct_suffix = string_series.add_suffix("#foo", axis=0) + expected = Index([f"{c}#foo" for c in string_series.index]) + tm.assert_index_equal(with_pct_suffix.index, expected) + + +def test_add_prefix_suffix_invalid_axis(string_series): + with pytest.raises(ValueError, match="No axis named 1 for object type Series"): + string_series.add_prefix("foo#", axis=1) + + with pytest.raises(ValueError, match="No axis named 1 for object type Series"): + string_series.add_suffix("foo#", axis=1) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py new file mode 100644 index 0000000000000000000000000000000000000000..cb60cd2e5bcf33c259ed8c5f8506eb11384d2d79 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_align.py @@ -0,0 +1,249 @@ +from datetime import timezone + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, + period_range, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "first_slice,second_slice", + [ + [[2, None], [None, -5]], + [[None, 0], [None, -5]], + [[None, -5], [None, 0]], + [[None, 0], [None, 0]], + ], +) +@pytest.mark.parametrize("fill", [None, -1]) +def test_align(datetime_series, first_slice, second_slice, join_type, fill): + a = datetime_series[slice(*first_slice)] + b = datetime_series[slice(*second_slice)] + + aa, ab = a.align(b, join=join_type, fill_value=fill) + + join_index = a.index.join(b.index, how=join_type) + if fill is not None: + diff_a = aa.index.difference(join_index) + diff_b = ab.index.difference(join_index) + if len(diff_a) > 0: + assert (aa.reindex(diff_a) == fill).all() + if len(diff_b) > 0: + assert (ab.reindex(diff_b) == fill).all() + + ea = a.reindex(join_index) + eb = b.reindex(join_index) + + if fill is not None: + ea = ea.fillna(fill) + eb = eb.fillna(fill) + + tm.assert_series_equal(aa, ea) + tm.assert_series_equal(ab, eb) + assert aa.name == "ts" + assert ea.name == "ts" + assert ab.name == "ts" + assert eb.name == "ts" + + +@pytest.mark.parametrize( + "first_slice,second_slice", + [ + [[2, None], [None, -5]], + [[None, 0], [None, -5]], + [[None, -5], [None, 0]], + [[None, 0], [None, 0]], + ], +) +@pytest.mark.parametrize("method", ["pad", "bfill"]) +@pytest.mark.parametrize("limit", [None, 1]) +def test_align_fill_method( + datetime_series, first_slice, second_slice, join_type, method, limit +): + a = datetime_series[slice(*first_slice)] + b = datetime_series[slice(*second_slice)] + + msg = ( + "The 'method', 'limit', and 'fill_axis' keywords in Series.align " + "are deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + aa, ab = a.align(b, join=join_type, method=method, limit=limit) + + join_index = a.index.join(b.index, how=join_type) + ea = a.reindex(join_index) + eb = b.reindex(join_index) + + msg2 = "Series.fillna with 'method' is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg2): + ea = ea.fillna(method=method, limit=limit) + eb = eb.fillna(method=method, limit=limit) + + tm.assert_series_equal(aa, ea) + tm.assert_series_equal(ab, eb) + + +def test_align_nocopy(datetime_series, using_copy_on_write): + b = datetime_series[:5].copy() + + # do copy + a = datetime_series.copy() + ra, _ = a.align(b, join="left") + ra[:5] = 5 + assert not (a[:5] == 5).any() + + # do not copy + a = datetime_series.copy() + ra, _ = a.align(b, join="left", copy=False) + ra[:5] = 5 + if using_copy_on_write: + assert not (a[:5] == 5).any() + else: + assert (a[:5] == 5).all() + + # do copy + a = datetime_series.copy() + b = datetime_series[:5].copy() + _, rb = a.align(b, join="right") + rb[:3] = 5 + assert not (b[:3] == 5).any() + + # do not copy + a = datetime_series.copy() + b = datetime_series[:5].copy() + _, rb = a.align(b, join="right", copy=False) + rb[:2] = 5 + if using_copy_on_write: + assert not (b[:2] == 5).any() + else: + assert (b[:2] == 5).all() + + +def test_align_same_index(datetime_series, using_copy_on_write): + a, b = datetime_series.align(datetime_series, copy=False) + if not using_copy_on_write: + assert a.index is datetime_series.index + assert b.index is datetime_series.index + else: + assert a.index.is_(datetime_series.index) + assert b.index.is_(datetime_series.index) + + a, b = datetime_series.align(datetime_series, copy=True) + assert a.index is not datetime_series.index + assert b.index is not datetime_series.index + assert a.index.is_(datetime_series.index) + assert b.index.is_(datetime_series.index) + + +def test_align_multiindex(): + # GH 10665 + + midx = pd.MultiIndex.from_product( + [range(2), range(3), range(2)], names=("a", "b", "c") + ) + idx = pd.Index(range(2), name="b") + s1 = Series(np.arange(12, dtype="int64"), index=midx) + s2 = Series(np.arange(2, dtype="int64"), index=idx) + + # these must be the same results (but flipped) + res1l, res1r = s1.align(s2, join="left") + res2l, res2r = s2.align(s1, join="right") + + expl = s1 + tm.assert_series_equal(expl, res1l) + tm.assert_series_equal(expl, res2r) + expr = Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) + tm.assert_series_equal(expr, res1r) + tm.assert_series_equal(expr, res2l) + + res1l, res1r = s1.align(s2, join="right") + res2l, res2r = s2.align(s1, join="left") + + exp_idx = pd.MultiIndex.from_product( + [range(2), range(2), range(2)], names=("a", "b", "c") + ) + expl = Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) + tm.assert_series_equal(expl, res1l) + tm.assert_series_equal(expl, res2r) + expr = Series([0, 0, 1, 1] * 2, index=exp_idx) + tm.assert_series_equal(expr, res1r) + tm.assert_series_equal(expr, res2l) + + +@pytest.mark.parametrize("method", ["backfill", "bfill", "pad", "ffill", None]) +def test_align_with_dataframe_method(method): + # GH31788 + ser = Series(range(3), index=range(3)) + df = pd.DataFrame(0.0, index=range(3), columns=range(3)) + + msg = ( + "The 'method', 'limit', and 'fill_axis' keywords in Series.align " + "are deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result_ser, result_df = ser.align(df, method=method) + tm.assert_series_equal(result_ser, ser) + tm.assert_frame_equal(result_df, df) + + +def test_align_dt64tzindex_mismatched_tzs(): + idx1 = date_range("2001", periods=5, freq="h", tz="US/Eastern") + ser = Series(np.random.default_rng(2).standard_normal(len(idx1)), index=idx1) + ser_central = ser.tz_convert("US/Central") + # different timezones convert to UTC + + new1, new2 = ser.align(ser_central) + assert new1.index.tz is timezone.utc + assert new2.index.tz is timezone.utc + + +def test_align_periodindex(join_type): + rng = period_range("1/1/2000", "1/1/2010", freq="Y") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + # TODO: assert something? + ts.align(ts[::2], join=join_type) + + +def test_align_left_fewer_levels(): + # GH#45224 + left = Series([2], index=pd.MultiIndex.from_tuples([(1, 3)], names=["a", "c"])) + right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]) + ) + result_left, result_right = left.align(right) + + expected_right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"]) + ) + expected_left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 3, 2)], names=["a", "c", "b"]) + ) + tm.assert_series_equal(result_left, expected_left) + tm.assert_series_equal(result_right, expected_right) + + +def test_align_left_different_named_levels(): + # GH#45224 + left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 4, 3)], names=["a", "d", "c"]) + ) + right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]) + ) + result_left, result_right = left.align(right) + + expected_left = Series( + [2], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"]) + ) + expected_right = Series( + [1], index=pd.MultiIndex.from_tuples([(1, 4, 3, 2)], names=["a", "d", "c", "b"]) + ) + tm.assert_series_equal(result_left, expected_left) + tm.assert_series_equal(result_right, expected_right) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py new file mode 100644 index 0000000000000000000000000000000000000000..432c0eceee01107cdcd23056a39e0ef4bd55545b --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_argsort.py @@ -0,0 +1,84 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + Timestamp, + isna, +) +import pandas._testing as tm + + +class TestSeriesArgsort: + def test_argsort_axis(self): + # GH#54257 + ser = Series(range(3)) + + msg = "No axis named 2 for object type Series" + with pytest.raises(ValueError, match=msg): + ser.argsort(axis=2) + + def test_argsort_numpy(self, datetime_series): + ser = datetime_series + + res = np.argsort(ser).values + expected = np.argsort(np.array(ser)) + tm.assert_numpy_array_equal(res, expected) + + # with missing values + ts = ser.copy() + ts[::2] = np.nan + + msg = "The behavior of Series.argsort in the presence of NA values" + with tm.assert_produces_warning( + FutureWarning, match=msg, check_stacklevel=False + ): + result = np.argsort(ts)[1::2] + expected = np.argsort(np.array(ts.dropna())) + + tm.assert_numpy_array_equal(result.values, expected) + + def test_argsort(self, datetime_series): + argsorted = datetime_series.argsort() + assert issubclass(argsorted.dtype.type, np.integer) + + def test_argsort_dt64(self, unit): + # GH#2967 (introduced bug in 0.11-dev I think) + ser = Series( + [Timestamp(f"201301{i:02d}") for i in range(1, 6)], dtype=f"M8[{unit}]" + ) + assert ser.dtype == f"datetime64[{unit}]" + shifted = ser.shift(-1) + assert shifted.dtype == f"datetime64[{unit}]" + assert isna(shifted[4]) + + result = ser.argsort() + expected = Series(range(5), dtype=np.intp) + tm.assert_series_equal(result, expected) + + msg = "The behavior of Series.argsort in the presence of NA values" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = shifted.argsort() + expected = Series(list(range(4)) + [-1], dtype=np.intp) + tm.assert_series_equal(result, expected) + + def test_argsort_stable(self): + ser = Series(np.random.default_rng(2).integers(0, 100, size=10000)) + mindexer = ser.argsort(kind="mergesort") + qindexer = ser.argsort() + + mexpected = np.argsort(ser.values, kind="mergesort") + qexpected = np.argsort(ser.values, kind="quicksort") + + tm.assert_series_equal(mindexer.astype(np.intp), Series(mexpected)) + tm.assert_series_equal(qindexer.astype(np.intp), Series(qexpected)) + msg = ( + r"ndarray Expected type , " + r"found instead" + ) + with pytest.raises(AssertionError, match=msg): + tm.assert_numpy_array_equal(qindexer, mindexer) + + def test_argsort_preserve_name(self, datetime_series): + result = datetime_series.argsort() + assert result.name == datetime_series.name diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py new file mode 100644 index 0000000000000000000000000000000000000000..2acc2921e5efc089b1dd4ed7aa9a6cebc1a3d0fe --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_asof.py @@ -0,0 +1,205 @@ +import numpy as np +import pytest + +from pandas._libs.tslibs import IncompatibleFrequency + +from pandas import ( + DatetimeIndex, + PeriodIndex, + Series, + Timestamp, + date_range, + isna, + notna, + offsets, + period_range, +) +import pandas._testing as tm + + +class TestSeriesAsof: + def test_asof_nanosecond_index_access(self): + ts = Timestamp("20130101").as_unit("ns")._value + dti = DatetimeIndex([ts + 50 + i for i in range(100)]) + ser = Series(np.random.default_rng(2).standard_normal(100), index=dti) + + first_value = ser.asof(ser.index[0]) + + # GH#46903 previously incorrectly was "day" + assert dti.resolution == "nanosecond" + + # this used to not work bc parsing was done by dateutil that didn't + # handle nanoseconds + assert first_value == ser["2013-01-01 00:00:00.000000050"] + + expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns") + assert first_value == ser[Timestamp(expected_ts)] + + def test_basic(self): + # array or list or dates + N = 50 + rng = date_range("1/1/1990", periods=N, freq="53s") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + ts.iloc[15:30] = np.nan + dates = date_range("1/1/1990", periods=N * 3, freq="25s") + + result = ts.asof(dates) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + result = ts.asof(list(dates)) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + mask = (result.index >= lb) & (result.index < ub) + rs = result[mask] + assert (rs == ts[lb]).all() + + val = result[result.index[result.index >= ub][0]] + assert ts[ub] == val + + def test_scalar(self): + N = 30 + rng = date_range("1/1/1990", periods=N, freq="53s") + # Explicit cast to float avoid implicit cast when setting nan + ts = Series(np.arange(N), index=rng, dtype="float") + ts.iloc[5:10] = np.nan + ts.iloc[15:20] = np.nan + + val1 = ts.asof(ts.index[7]) + val2 = ts.asof(ts.index[19]) + + assert val1 == ts.iloc[4] + assert val2 == ts.iloc[14] + + # accepts strings + val1 = ts.asof(str(ts.index[7])) + assert val1 == ts.iloc[4] + + # in there + result = ts.asof(ts.index[3]) + assert result == ts.iloc[3] + + # no as of value + d = ts.index[0] - offsets.BDay() + assert np.isnan(ts.asof(d)) + + def test_with_nan(self): + # basic asof test + rng = date_range("1/1/2000", "1/2/2000", freq="4h") + s = Series(np.arange(len(rng)), index=rng) + r = s.resample("2h").mean() + + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + r.iloc[3:5] = np.nan + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + r.iloc[-3:] = np.nan + result = r.asof(r.index) + expected = Series( + [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0], + index=date_range("1/1/2000", "1/2/2000", freq="2h"), + ) + tm.assert_series_equal(result, expected) + + def test_periodindex(self): + # array or list or dates + N = 50 + rng = period_range("1/1/1990", periods=N, freq="h") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + ts.iloc[15:30] = np.nan + dates = date_range("1/1/1990", periods=N * 3, freq="37min") + + result = ts.asof(dates) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + result = ts.asof(list(dates)) + assert notna(result).all() + lb = ts.index[14] + ub = ts.index[30] + + pix = PeriodIndex(result.index.values, freq="h") + mask = (pix >= lb) & (pix < ub) + rs = result[mask] + assert (rs == ts[lb]).all() + + ts.iloc[5:10] = np.nan + ts.iloc[15:20] = np.nan + + val1 = ts.asof(ts.index[7]) + val2 = ts.asof(ts.index[19]) + + assert val1 == ts.iloc[4] + assert val2 == ts.iloc[14] + + # accepts strings + val1 = ts.asof(str(ts.index[7])) + assert val1 == ts.iloc[4] + + # in there + assert ts.asof(ts.index[3]) == ts.iloc[3] + + # no as of value + d = ts.index[0].to_timestamp() - offsets.BDay() + assert isna(ts.asof(d)) + + # Mismatched freq + msg = "Input has different freq" + with pytest.raises(IncompatibleFrequency, match=msg): + ts.asof(rng.asfreq("D")) + + def test_errors(self): + s = Series( + [1, 2, 3], + index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")], + ) + + # non-monotonic + assert not s.index.is_monotonic_increasing + with pytest.raises(ValueError, match="requires a sorted index"): + s.asof(s.index[0]) + + # subset with Series + N = 10 + rng = date_range("1/1/1990", periods=N, freq="53s") + s = Series(np.random.default_rng(2).standard_normal(N), index=rng) + with pytest.raises(ValueError, match="not valid for Series"): + s.asof(s.index[0], subset="foo") + + def test_all_nans(self): + # GH 15713 + # series is all nans + + # testing non-default indexes + N = 50 + rng = date_range("1/1/1990", periods=N, freq="53s") + + dates = date_range("1/1/1990", periods=N * 3, freq="25s") + result = Series(np.nan, index=rng).asof(dates) + expected = Series(np.nan, index=dates) + tm.assert_series_equal(result, expected) + + # testing scalar input + date = date_range("1/1/1990", periods=N * 3, freq="25s")[0] + result = Series(np.nan, index=rng).asof(date) + assert isna(result) + + # test name is propagated + result = Series(np.nan, index=[1, 2, 3, 4], name="test").asof([4, 5]) + expected = Series(np.nan, index=[4, 5], name="test") + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py new file mode 100644 index 0000000000000000000000000000000000000000..4c8028e74ee5518ec97c1e571c9cb04fa0045c85 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_astype.py @@ -0,0 +1,683 @@ +from datetime import ( + datetime, + timedelta, +) +from importlib import reload +import string +import sys + +import numpy as np +import pytest + +from pandas._libs.tslibs import iNaT +import pandas.util._test_decorators as td + +from pandas import ( + NA, + Categorical, + CategoricalDtype, + DatetimeTZDtype, + Index, + Interval, + NaT, + Series, + Timedelta, + Timestamp, + cut, + date_range, + to_datetime, +) +import pandas._testing as tm + + +def rand_str(nchars: int) -> str: + """ + Generate one random byte string. + """ + RANDS_CHARS = np.array( + list(string.ascii_letters + string.digits), dtype=(np.str_, 1) + ) + return "".join(np.random.default_rng(2).choice(RANDS_CHARS, nchars)) + + +class TestAstypeAPI: + def test_astype_unitless_dt64_raises(self): + # GH#47844 + ser = Series(["1970-01-01", "1970-01-01", "1970-01-01"], dtype="datetime64[ns]") + df = ser.to_frame() + + msg = "Casting to unit-less dtype 'datetime64' is not supported" + with pytest.raises(TypeError, match=msg): + ser.astype(np.datetime64) + with pytest.raises(TypeError, match=msg): + df.astype(np.datetime64) + with pytest.raises(TypeError, match=msg): + ser.astype("datetime64") + with pytest.raises(TypeError, match=msg): + df.astype("datetime64") + + def test_arg_for_errors_in_astype(self): + # see GH#14878 + ser = Series([1, 2, 3]) + + msg = ( + r"Expected value of kwarg 'errors' to be one of \['raise', " + r"'ignore'\]\. Supplied value is 'False'" + ) + with pytest.raises(ValueError, match=msg): + ser.astype(np.float64, errors=False) + + ser.astype(np.int8, errors="raise") + + @pytest.mark.parametrize("dtype_class", [dict, Series]) + def test_astype_dict_like(self, dtype_class): + # see GH#7271 + ser = Series(range(0, 10, 2), name="abc") + + dt1 = dtype_class({"abc": str}) + result = ser.astype(dt1) + expected = Series(["0", "2", "4", "6", "8"], name="abc", dtype=object) + tm.assert_series_equal(result, expected) + + dt2 = dtype_class({"abc": "float64"}) + result = ser.astype(dt2) + expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") + tm.assert_series_equal(result, expected) + + dt3 = dtype_class({"abc": str, "def": str}) + msg = ( + "Only the Series name can be used for the key in Series dtype " + r"mappings\." + ) + with pytest.raises(KeyError, match=msg): + ser.astype(dt3) + + dt4 = dtype_class({0: str}) + with pytest.raises(KeyError, match=msg): + ser.astype(dt4) + + # GH#16717 + # if dtypes provided is empty, it should error + if dtype_class is Series: + dt5 = dtype_class({}, dtype=object) + else: + dt5 = dtype_class({}) + + with pytest.raises(KeyError, match=msg): + ser.astype(dt5) + + +class TestAstype: + @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) + def test_astype_object_to_dt64_non_nano(self, tz): + # GH#55756, GH#54620 + ts = Timestamp("2999-01-01") + dtype = "M8[us]" + if tz is not None: + dtype = f"M8[us, {tz}]" + vals = [ts, "2999-01-02 03:04:05.678910", 2500] + ser = Series(vals, dtype=object) + result = ser.astype(dtype) + + # The 2500 is interpreted as microseconds, consistent with what + # we would get if we created DatetimeIndexes from vals[:2] and vals[2:] + # and concated the results. + pointwise = [ + vals[0].tz_localize(tz), + Timestamp(vals[1], tz=tz), + to_datetime(vals[2], unit="us", utc=True).tz_convert(tz), + ] + exp_vals = [x.as_unit("us").asm8 for x in pointwise] + exp_arr = np.array(exp_vals, dtype="M8[us]") + expected = Series(exp_arr, dtype="M8[us]") + if tz is not None: + expected = expected.dt.tz_localize("UTC").dt.tz_convert(tz) + tm.assert_series_equal(result, expected) + + def test_astype_mixed_object_to_dt64tz(self): + # pre-2.0 this raised ValueError bc of tz mismatch + # xref GH#32581 + ts = Timestamp("2016-01-04 05:06:07", tz="US/Pacific") + ts2 = ts.tz_convert("Asia/Tokyo") + + ser = Series([ts, ts2], dtype=object) + res = ser.astype("datetime64[ns, Europe/Brussels]") + expected = Series( + [ts.tz_convert("Europe/Brussels"), ts2.tz_convert("Europe/Brussels")], + dtype="datetime64[ns, Europe/Brussels]", + ) + tm.assert_series_equal(res, expected) + + @pytest.mark.parametrize("dtype", np.typecodes["All"]) + def test_astype_empty_constructor_equality(self, dtype): + # see GH#15524 + + if dtype not in ( + "S", + "V", # poor support (if any) currently + "M", + "m", # Generic timestamps raise a ValueError. Already tested. + ): + init_empty = Series([], dtype=dtype) + as_type_empty = Series([]).astype(dtype) + tm.assert_series_equal(init_empty, as_type_empty) + + @pytest.mark.parametrize("dtype", [str, np.str_]) + @pytest.mark.parametrize( + "series", + [ + Series([string.digits * 10, rand_str(63), rand_str(64), rand_str(1000)]), + Series([string.digits * 10, rand_str(63), rand_str(64), np.nan, 1.0]), + ], + ) + def test_astype_str_map(self, dtype, series, using_infer_string): + # see GH#4405 + result = series.astype(dtype) + expected = series.map(str) + if using_infer_string: + expected = expected.astype(object) + tm.assert_series_equal(result, expected) + + def test_astype_float_to_period(self): + result = Series([np.nan]).astype("period[D]") + expected = Series([NaT], dtype="period[D]") + tm.assert_series_equal(result, expected) + + def test_astype_no_pandas_dtype(self): + # https://github.com/pandas-dev/pandas/pull/24866 + ser = Series([1, 2], dtype="int64") + # Don't have NumpyEADtype in the public API, so we use `.array.dtype`, + # which is a NumpyEADtype. + result = ser.astype(ser.array.dtype) + tm.assert_series_equal(result, ser) + + @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) + def test_astype_generic_timestamp_no_frequency(self, dtype, request): + # see GH#15524, GH#15987 + data = [1] + ser = Series(data) + + if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: + mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") + request.applymarker(mark) + + msg = ( + rf"The '{dtype.__name__}' dtype has no unit\. " + rf"Please pass in '{dtype.__name__}\[ns\]' instead." + ) + with pytest.raises(ValueError, match=msg): + ser.astype(dtype) + + def test_astype_dt64_to_str(self): + # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex + dti = date_range("2012-01-01", periods=3) + result = Series(dti).astype(str) + expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) + tm.assert_series_equal(result, expected) + + def test_astype_dt64tz_to_str(self): + # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex + dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") + result = Series(dti_tz).astype(str) + expected = Series( + [ + "2012-01-01 00:00:00-05:00", + "2012-01-02 00:00:00-05:00", + "2012-01-03 00:00:00-05:00", + ], + dtype=object, + ) + tm.assert_series_equal(result, expected) + + def test_astype_datetime(self, unit): + ser = Series(iNaT, dtype=f"M8[{unit}]", index=range(5)) + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + ser = Series([datetime(2001, 1, 2, 0, 0)]) + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + ser = Series( + [datetime(2001, 1, 2, 0, 0) for i in range(3)], dtype=f"M8[{unit}]" + ) + + ser[1] = np.nan + assert ser.dtype == f"M8[{unit}]" + + ser = ser.astype("O") + assert ser.dtype == np.object_ + + def test_astype_datetime64tz(self): + ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) + + # astype + result = ser.astype(object) + expected = Series(ser.astype(object), dtype=object) + tm.assert_series_equal(result, expected) + + result = Series(ser.values).dt.tz_localize("UTC").dt.tz_convert(ser.dt.tz) + tm.assert_series_equal(result, ser) + + # astype - object, preserves on construction + result = Series(ser.astype(object)) + expected = ser.astype(object) + tm.assert_series_equal(result, expected) + + # astype - datetime64[ns, tz] + msg = "Cannot use .astype to convert from timezone-naive" + with pytest.raises(TypeError, match=msg): + # dt64->dt64tz astype deprecated + Series(ser.values).astype("datetime64[ns, US/Eastern]") + + with pytest.raises(TypeError, match=msg): + # dt64->dt64tz astype deprecated + Series(ser.values).astype(ser.dtype) + + result = ser.astype("datetime64[ns, CET]") + expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) + tm.assert_series_equal(result, expected) + + def test_astype_str_cast_dt64(self): + # see GH#9757 + ts = Series([Timestamp("2010-01-04 00:00:00")]) + res = ts.astype(str) + + expected = Series(["2010-01-04"], dtype=object) + tm.assert_series_equal(res, expected) + + ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) + res = ts.astype(str) + + expected = Series(["2010-01-04 00:00:00-05:00"], dtype=object) + tm.assert_series_equal(res, expected) + + def test_astype_str_cast_td64(self): + # see GH#9757 + + td = Series([Timedelta(1, unit="d")]) + ser = td.astype(str) + + expected = Series(["1 days"], dtype=object) + tm.assert_series_equal(ser, expected) + + def test_dt64_series_astype_object(self): + dt64ser = Series(date_range("20130101", periods=3)) + result = dt64ser.astype(object) + assert isinstance(result.iloc[0], datetime) + assert result.dtype == np.object_ + + def test_td64_series_astype_object(self): + tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") + result = tdser.astype(object) + assert isinstance(result.iloc[0], timedelta) + assert result.dtype == np.object_ + + @pytest.mark.parametrize( + "data, dtype", + [ + (["x", "y", "z"], "string[python]"), + pytest.param( + ["x", "y", "z"], + "string[pyarrow]", + marks=td.skip_if_no("pyarrow"), + ), + (["x", "y", "z"], "category"), + (3 * [Timestamp("2020-01-01", tz="UTC")], None), + (3 * [Interval(0, 1)], None), + ], + ) + @pytest.mark.parametrize("errors", ["raise", "ignore"]) + def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): + # https://github.com/pandas-dev/pandas/issues/35471 + ser = Series(data, dtype=dtype) + if errors == "ignore": + expected = ser + result = ser.astype(float, errors="ignore") + tm.assert_series_equal(result, expected) + else: + msg = "(Cannot cast)|(could not convert)" + with pytest.raises((ValueError, TypeError), match=msg): + ser.astype(float, errors=errors) + + @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) + def test_astype_from_float_to_str(self, dtype): + # https://github.com/pandas-dev/pandas/issues/36451 + ser = Series([0.1], dtype=dtype) + result = ser.astype(str) + expected = Series(["0.1"], dtype=object) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "value, string_value", + [ + (None, "None"), + (np.nan, "nan"), + (NA, ""), + ], + ) + def test_astype_to_str_preserves_na(self, value, string_value): + # https://github.com/pandas-dev/pandas/issues/36904 + ser = Series(["a", "b", value], dtype=object) + result = ser.astype(str) + expected = Series(["a", "b", string_value], dtype=object) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) + def test_astype(self, dtype): + ser = Series(np.random.default_rng(2).standard_normal(5), name="foo") + as_typed = ser.astype(dtype) + + assert as_typed.dtype == dtype + assert as_typed.name == ser.name + + @pytest.mark.parametrize("value", [np.nan, np.inf]) + @pytest.mark.parametrize("dtype", [np.int32, np.int64]) + def test_astype_cast_nan_inf_int(self, dtype, value): + # gh-14265: check NaN and inf raise error when converting to int + msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" + ser = Series([value]) + + with pytest.raises(ValueError, match=msg): + ser.astype(dtype) + + @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) + def test_astype_cast_object_int_fail(self, dtype): + arr = Series(["car", "house", "tree", "1"]) + msg = r"invalid literal for int\(\) with base 10: 'car'" + with pytest.raises(ValueError, match=msg): + arr.astype(dtype) + + def test_astype_float_to_uint_negatives_raise( + self, float_numpy_dtype, any_unsigned_int_numpy_dtype + ): + # GH#45151 We don't cast negative numbers to nonsense values + # TODO: same for EA float/uint dtypes, signed integers? + arr = np.arange(5).astype(float_numpy_dtype) - 3 # includes negatives + ser = Series(arr) + + msg = "Cannot losslessly cast from .* to .*" + with pytest.raises(ValueError, match=msg): + ser.astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + ser.to_frame().astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + # We currently catch and re-raise in Index.astype + Index(ser).astype(any_unsigned_int_numpy_dtype) + + with pytest.raises(ValueError, match=msg): + ser.array.astype(any_unsigned_int_numpy_dtype) + + def test_astype_cast_object_int(self): + arr = Series(["1", "2", "3", "4"], dtype=object) + result = arr.astype(int) + + tm.assert_series_equal(result, Series(np.arange(1, 5))) + + def test_astype_unicode(self, using_infer_string): + # see GH#7758: A bit of magic is required to set + # default encoding to utf-8 + digits = string.digits + test_series = [ + Series([digits * 10, rand_str(63), rand_str(64), rand_str(1000)]), + Series(["データーサイエンス、お前はもう死んでいる"]), + ] + + former_encoding = None + + if sys.getdefaultencoding() == "utf-8": + # GH#45326 as of 2.0 Series.astype matches Index.astype by handling + # bytes with obj.decode() instead of str(obj) + item = "野菜食べないとやばい" + ser = Series([item.encode()]) + result = ser.astype(np.str_) + expected = Series([item], dtype=object) + tm.assert_series_equal(result, expected) + + for ser in test_series: + res = ser.astype(np.str_) + expec = ser.map(str) + if using_infer_string: + expec = expec.astype(object) + tm.assert_series_equal(res, expec) + + # Restore the former encoding + if former_encoding is not None and former_encoding != "utf-8": + reload(sys) + sys.setdefaultencoding(former_encoding) + + def test_astype_bytes(self): + # GH#39474 + result = Series(["foo", "bar", "baz"]).astype(bytes) + assert result.dtypes == np.dtype("S3") + + def test_astype_nan_to_bool(self): + # GH#43018 + ser = Series(np.nan, dtype="object") + result = ser.astype("bool") + expected = Series(True, dtype="bool") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "dtype", + tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES, + ) + def test_astype_ea_to_datetimetzdtype(self, dtype): + # GH37553 + ser = Series([4, 0, 9], dtype=dtype) + result = ser.astype(DatetimeTZDtype(tz="US/Pacific")) + + expected = Series( + { + 0: Timestamp("1969-12-31 16:00:00.000000004-08:00", tz="US/Pacific"), + 1: Timestamp("1969-12-31 16:00:00.000000000-08:00", tz="US/Pacific"), + 2: Timestamp("1969-12-31 16:00:00.000000009-08:00", tz="US/Pacific"), + } + ) + + tm.assert_series_equal(result, expected) + + def test_astype_retain_attrs(self, any_numpy_dtype): + # GH#44414 + ser = Series([0, 1, 2, 3]) + ser.attrs["Location"] = "Michigan" + + result = ser.astype(any_numpy_dtype).attrs + expected = ser.attrs + + tm.assert_dict_equal(expected, result) + + +class TestAstypeString: + @pytest.mark.parametrize( + "data, dtype", + [ + ([True, NA], "boolean"), + (["A", NA], "category"), + (["2020-10-10", "2020-10-10"], "datetime64[ns]"), + (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), + ( + ["2012-01-01 00:00:00-05:00", NaT], + "datetime64[ns, US/Eastern]", + ), + ([1, None], "UInt16"), + (["1/1/2021", "2/1/2021"], "period[M]"), + (["1/1/2021", "2/1/2021", NaT], "period[M]"), + (["1 Day", "59 Days", NaT], "timedelta64[ns]"), + # currently no way to parse IntervalArray from a list of strings + ], + ) + def test_astype_string_to_extension_dtype_roundtrip( + self, data, dtype, request, nullable_string_dtype + ): + if dtype == "boolean": + mark = pytest.mark.xfail( + reason="TODO StringArray.astype() with missing values #GH40566" + ) + request.applymarker(mark) + # GH-40351 + ser = Series(data, dtype=dtype) + + # Note: just passing .astype(dtype) fails for dtype="category" + # with bc ser.dtype.categories will be object dtype whereas + # result.dtype.categories will have string dtype + result = ser.astype(nullable_string_dtype).astype(ser.dtype) + tm.assert_series_equal(result, ser) + + +class TestAstypeCategorical: + def test_astype_categorical_to_other(self): + cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) + ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values() + ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) + + expected = ser + tm.assert_series_equal(ser.astype("category"), expected) + tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) + msg = r"Cannot cast object|string dtype to float64" + with pytest.raises(ValueError, match=msg): + ser.astype("float64") + + cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) + exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"], dtype=object) + tm.assert_series_equal(cat.astype("str"), exp) + s2 = Series(Categorical(["1", "2", "3", "4"])) + exp2 = Series([1, 2, 3, 4]).astype("int") + tm.assert_series_equal(s2.astype("int"), exp2) + + # object don't sort correctly, so just compare that we have the same + # values + def cmp(a, b): + tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) + + expected = Series(np.array(ser.values), name="value_group") + cmp(ser.astype("object"), expected) + cmp(ser.astype(np.object_), expected) + + # array conversion + tm.assert_almost_equal(np.array(ser), np.array(ser.values)) + + tm.assert_series_equal(ser.astype("category"), ser) + tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) + + roundtrip_expected = ser.cat.set_categories( + ser.cat.categories.sort_values() + ).cat.remove_unused_categories() + result = ser.astype("object").astype("category") + tm.assert_series_equal(result, roundtrip_expected) + result = ser.astype("object").astype(CategoricalDtype()) + tm.assert_series_equal(result, roundtrip_expected) + + def test_astype_categorical_invalid_conversions(self): + # invalid conversion (these are NOT a dtype) + cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) + ser = Series(np.random.default_rng(2).integers(0, 10000, 100)).sort_values() + ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) + + msg = ( + "dtype '' " + "not understood" + ) + with pytest.raises(TypeError, match=msg): + ser.astype(Categorical) + with pytest.raises(TypeError, match=msg): + ser.astype("object").astype(Categorical) + + def test_astype_categoricaldtype(self): + ser = Series(["a", "b", "a"]) + result = ser.astype(CategoricalDtype(["a", "b"], ordered=True)) + expected = Series(Categorical(["a", "b", "a"], ordered=True)) + tm.assert_series_equal(result, expected) + + result = ser.astype(CategoricalDtype(["a", "b"], ordered=False)) + expected = Series(Categorical(["a", "b", "a"], ordered=False)) + tm.assert_series_equal(result, expected) + + result = ser.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) + expected = Series( + Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) + ) + tm.assert_series_equal(result, expected) + tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) + + @pytest.mark.parametrize("name", [None, "foo"]) + @pytest.mark.parametrize("dtype_ordered", [True, False]) + @pytest.mark.parametrize("series_ordered", [True, False]) + def test_astype_categorical_to_categorical( + self, name, dtype_ordered, series_ordered + ): + # GH#10696, GH#18593 + s_data = list("abcaacbab") + s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) + ser = Series(s_data, dtype=s_dtype, name=name) + + # unspecified categories + dtype = CategoricalDtype(ordered=dtype_ordered) + result = ser.astype(dtype) + exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) + expected = Series(s_data, name=name, dtype=exp_dtype) + tm.assert_series_equal(result, expected) + + # different categories + dtype = CategoricalDtype(list("adc"), dtype_ordered) + result = ser.astype(dtype) + expected = Series(s_data, name=name, dtype=dtype) + tm.assert_series_equal(result, expected) + + if dtype_ordered is False: + # not specifying ordered, so only test once + expected = ser + result = ser.astype("category") + tm.assert_series_equal(result, expected) + + def test_astype_bool_missing_to_categorical(self): + # GH-19182 + ser = Series([True, False, np.nan]) + assert ser.dtypes == np.object_ + + result = ser.astype(CategoricalDtype(categories=[True, False])) + expected = Series(Categorical([True, False, np.nan], categories=[True, False])) + tm.assert_series_equal(result, expected) + + def test_astype_categories_raises(self): + # deprecated GH#17636, removed in GH#27141 + ser = Series(["a", "b", "a"]) + with pytest.raises(TypeError, match="got an unexpected"): + ser.astype("category", categories=["a", "b"], ordered=True) + + @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) + def test_astype_from_categorical(self, items): + ser = Series(items) + exp = Series(Categorical(items)) + res = ser.astype("category") + tm.assert_series_equal(res, exp) + + def test_astype_from_categorical_with_keywords(self): + # with keywords + lst = ["a", "b", "c", "a"] + ser = Series(lst) + exp = Series(Categorical(lst, ordered=True)) + res = ser.astype(CategoricalDtype(None, ordered=True)) + tm.assert_series_equal(res, exp) + + exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) + res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True)) + tm.assert_series_equal(res, exp) + + def test_astype_timedelta64_with_np_nan(self): + # GH45798 + result = Series([Timedelta(1), np.nan], dtype="timedelta64[ns]") + expected = Series([Timedelta(1), NaT], dtype="timedelta64[ns]") + tm.assert_series_equal(result, expected) + + @td.skip_if_no("pyarrow") + def test_astype_int_na_string(self): + # GH#57418 + ser = Series([12, NA], dtype="Int64[pyarrow]") + result = ser.astype("string[pyarrow]") + expected = Series(["12", NA], dtype="string[pyarrow]") + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py new file mode 100644 index 0000000000000000000000000000000000000000..7cb60a11644a357811136c991143554c4477d485 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_case_when.py @@ -0,0 +1,148 @@ +import numpy as np +import pytest + +from pandas import ( + DataFrame, + Series, + array as pd_array, + date_range, +) +import pandas._testing as tm + + +@pytest.fixture +def df(): + """ + base dataframe for testing + """ + return DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) + + +def test_case_when_caselist_is_not_a_list(df): + """ + Raise ValueError if caselist is not a list. + """ + msg = "The caselist argument should be a list; " + msg += "instead got.+" + with pytest.raises(TypeError, match=msg): # GH39154 + df["a"].case_when(caselist=()) + + +def test_case_when_no_caselist(df): + """ + Raise ValueError if no caselist is provided. + """ + msg = "provide at least one boolean condition, " + msg += "with a corresponding replacement." + with pytest.raises(ValueError, match=msg): # GH39154 + df["a"].case_when([]) + + +def test_case_when_odd_caselist(df): + """ + Raise ValueError if no of caselist is odd. + """ + msg = "Argument 0 must have length 2; " + msg += "a condition and replacement; instead got length 3." + + with pytest.raises(ValueError, match=msg): + df["a"].case_when([(df["a"].eq(1), 1, df.a.gt(1))]) + + +def test_case_when_raise_error_from_mask(df): + """ + Raise Error from within Series.mask + """ + msg = "Failed to apply condition0 and replacement0." + with pytest.raises(ValueError, match=msg): + df["a"].case_when([(df["a"].eq(1), [1, 2])]) + + +def test_case_when_single_condition(df): + """ + Test output on a single condition. + """ + result = Series([np.nan, np.nan, np.nan]).case_when([(df.a.eq(1), 1)]) + expected = Series([1, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions(df): + """ + Test output when booleans are derived from a computation + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [(df.a.eq(1), 1), (Series([False, True, False]), 2)] + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_list(df): + """ + Test output when replacement is a list + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [([True, False, False], 1), (df["a"].gt(1) & df["b"].eq(5), [1, 2, 3])] + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_extension_dtype(df): + """ + Test output when replacement has an extension dtype + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [ + ([True, False, False], 1), + (df["a"].gt(1) & df["b"].eq(5), pd_array([1, 2, 3], dtype="Int64")), + ], + ) + expected = Series([1, 2, np.nan], dtype="Float64") + tm.assert_series_equal(result, expected) + + +def test_case_when_multiple_conditions_replacement_series(df): + """ + Test output when replacement is a Series + """ + result = Series([np.nan, np.nan, np.nan]).case_when( + [ + (np.array([True, False, False]), 1), + (df["a"].gt(1) & df["b"].eq(5), Series([1, 2, 3])), + ], + ) + expected = Series([1, 2, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_case_when_non_range_index(): + """ + Test output if index is not RangeIndex + """ + rng = np.random.default_rng(seed=123) + dates = date_range("1/1/2000", periods=8) + df = DataFrame( + rng.standard_normal(size=(8, 4)), index=dates, columns=["A", "B", "C", "D"] + ) + result = Series(5, index=df.index, name="A").case_when([(df.A.gt(0), df.B)]) + expected = df.A.mask(df.A.gt(0), df.B).where(df.A.gt(0), 5) + tm.assert_series_equal(result, expected) + + +def test_case_when_callable(): + """ + Test output on a callable + """ + # https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html + x = np.linspace(-2.5, 2.5, 6) + ser = Series(x) + result = ser.case_when( + caselist=[ + (lambda df: df < 0, lambda df: -df), + (lambda df: df >= 0, lambda df: df), + ] + ) + expected = np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) + tm.assert_series_equal(result, Series(expected)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_clip.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_clip.py new file mode 100644 index 0000000000000000000000000000000000000000..5bbf35f6e39bb237ef1a3853403d47f1fed5b3de --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_clip.py @@ -0,0 +1,146 @@ +from datetime import datetime + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + Timestamp, + isna, + notna, +) +import pandas._testing as tm + + +class TestSeriesClip: + def test_clip(self, datetime_series): + val = datetime_series.median() + + assert datetime_series.clip(lower=val).min() == val + assert datetime_series.clip(upper=val).max() == val + + result = datetime_series.clip(-0.5, 0.5) + expected = np.clip(datetime_series, -0.5, 0.5) + tm.assert_series_equal(result, expected) + assert isinstance(expected, Series) + + def test_clip_types_and_nulls(self): + sers = [ + Series([np.nan, 1.0, 2.0, 3.0]), + Series([None, "a", "b", "c"]), + Series(pd.to_datetime([np.nan, 1, 2, 3], unit="D")), + ] + + for s in sers: + thresh = s[2] + lower = s.clip(lower=thresh) + upper = s.clip(upper=thresh) + assert lower[notna(lower)].min() == thresh + assert upper[notna(upper)].max() == thresh + assert list(isna(s)) == list(isna(lower)) + assert list(isna(s)) == list(isna(upper)) + + def test_series_clipping_with_na_values(self, any_numeric_ea_dtype, nulls_fixture): + # Ensure that clipping method can handle NA values with out failing + # GH#40581 + + if nulls_fixture is pd.NaT: + # constructor will raise, see + # test_constructor_mismatched_null_nullable_dtype + pytest.skip("See test_constructor_mismatched_null_nullable_dtype") + + ser = Series([nulls_fixture, 1.0, 3.0], dtype=any_numeric_ea_dtype) + s_clipped_upper = ser.clip(upper=2.0) + s_clipped_lower = ser.clip(lower=2.0) + + expected_upper = Series([nulls_fixture, 1.0, 2.0], dtype=any_numeric_ea_dtype) + expected_lower = Series([nulls_fixture, 2.0, 3.0], dtype=any_numeric_ea_dtype) + + tm.assert_series_equal(s_clipped_upper, expected_upper) + tm.assert_series_equal(s_clipped_lower, expected_lower) + + def test_clip_with_na_args(self): + """Should process np.nan argument as None""" + # GH#17276 + s = Series([1, 2, 3]) + + tm.assert_series_equal(s.clip(np.nan), Series([1, 2, 3])) + tm.assert_series_equal(s.clip(upper=np.nan, lower=np.nan), Series([1, 2, 3])) + + # GH#19992 + msg = "Downcasting behavior in Series and DataFrame methods 'where'" + # TODO: avoid this warning here? seems like we should never be upcasting + # in the first place? + with tm.assert_produces_warning(FutureWarning, match=msg): + res = s.clip(lower=[0, 4, np.nan]) + tm.assert_series_equal(res, Series([1, 4, 3])) + with tm.assert_produces_warning(FutureWarning, match=msg): + res = s.clip(upper=[1, np.nan, 1]) + tm.assert_series_equal(res, Series([1, 2, 1])) + + # GH#40420 + s = Series([1, 2, 3]) + result = s.clip(0, [np.nan, np.nan, np.nan]) + tm.assert_series_equal(s, result) + + def test_clip_against_series(self): + # GH#6966 + + s = Series([1.0, 1.0, 4.0]) + + lower = Series([1.0, 2.0, 3.0]) + upper = Series([1.5, 2.5, 3.5]) + + tm.assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5])) + tm.assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5])) + + @pytest.mark.parametrize("inplace", [True, False]) + @pytest.mark.parametrize("upper", [[1, 2, 3], np.asarray([1, 2, 3])]) + def test_clip_against_list_like(self, inplace, upper): + # GH#15390 + original = Series([5, 6, 7]) + result = original.clip(upper=upper, inplace=inplace) + expected = Series([1, 2, 3]) + + if inplace: + result = original + tm.assert_series_equal(result, expected, check_exact=True) + + def test_clip_with_datetimes(self): + # GH#11838 + # naive and tz-aware datetimes + + t = Timestamp("2015-12-01 09:30:30") + s = Series([Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:31:00")]) + result = s.clip(upper=t) + expected = Series( + [Timestamp("2015-12-01 09:30:00"), Timestamp("2015-12-01 09:30:30")] + ) + tm.assert_series_equal(result, expected) + + t = Timestamp("2015-12-01 09:30:30", tz="US/Eastern") + s = Series( + [ + Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), + Timestamp("2015-12-01 09:31:00", tz="US/Eastern"), + ] + ) + result = s.clip(upper=t) + expected = Series( + [ + Timestamp("2015-12-01 09:30:00", tz="US/Eastern"), + Timestamp("2015-12-01 09:30:30", tz="US/Eastern"), + ] + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", [object, "M8[us]"]) + def test_clip_with_timestamps_and_oob_datetimes(self, dtype): + # GH-42794 + ser = Series([datetime(1, 1, 1), datetime(9999, 9, 9)], dtype=dtype) + + result = ser.clip(lower=Timestamp.min, upper=Timestamp.max) + expected = Series([Timestamp.min, Timestamp.max], dtype=dtype) + + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py new file mode 100644 index 0000000000000000000000000000000000000000..75d47e3daa10339f4c4cc7b35c52f24bbb20277a --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine.py @@ -0,0 +1,17 @@ +from pandas import Series +import pandas._testing as tm + + +class TestCombine: + def test_combine_scalar(self): + # GH#21248 + # Note - combine() with another Series is tested elsewhere because + # it is used when testing operators + ser = Series([i * 10 for i in range(5)]) + result = ser.combine(3, lambda x, y: x + y) + expected = Series([i * 10 + 3 for i in range(5)]) + tm.assert_series_equal(result, expected) + + result = ser.combine(22, lambda x, y: min(x, y)) + expected = Series([min(i * 10, 22) for i in range(5)]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine_first.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine_first.py new file mode 100644 index 0000000000000000000000000000000000000000..e1ec8afda33a9740806cc993474780aaf37d435e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_combine_first.py @@ -0,0 +1,149 @@ +from datetime import datetime + +import numpy as np + +import pandas as pd +from pandas import ( + Period, + Series, + date_range, + period_range, + to_datetime, +) +import pandas._testing as tm + + +class TestCombineFirst: + def test_combine_first_period_datetime(self): + # GH#3367 + didx = date_range(start="1950-01-31", end="1950-07-31", freq="ME") + pidx = period_range(start=Period("1950-1"), end=Period("1950-7"), freq="M") + # check to be consistent with DatetimeIndex + for idx in [didx, pidx]: + a = Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx) + b = Series([9, 9, 9, 9, 9, 9, 9], index=idx) + + result = a.combine_first(b) + expected = Series([1, 9, 9, 4, 5, 9, 7], index=idx, dtype=np.float64) + tm.assert_series_equal(result, expected) + + def test_combine_first_name(self, datetime_series): + result = datetime_series.combine_first(datetime_series[:5]) + assert result.name == datetime_series.name + + def test_combine_first(self): + values = np.arange(20, dtype=np.float64) + series = Series(values, index=np.arange(20, dtype=np.int64)) + + series_copy = series * 2 + series_copy[::2] = np.nan + + # nothing used from the input + combined = series.combine_first(series_copy) + + tm.assert_series_equal(combined, series) + + # Holes filled from input + combined = series_copy.combine_first(series) + assert np.isfinite(combined).all() + + tm.assert_series_equal(combined[::2], series[::2]) + tm.assert_series_equal(combined[1::2], series_copy[1::2]) + + # mixed types + index = pd.Index([str(i) for i in range(20)]) + floats = Series(np.random.default_rng(2).standard_normal(20), index=index) + strings = Series([str(i) for i in range(10)], index=index[::2], dtype=object) + + combined = strings.combine_first(floats) + + tm.assert_series_equal(strings, combined.loc[index[::2]]) + tm.assert_series_equal(floats[1::2].astype(object), combined.loc[index[1::2]]) + + # corner case + ser = Series([1.0, 2, 3], index=[0, 1, 2]) + empty = Series([], index=[], dtype=object) + msg = "The behavior of array concatenation with empty entries is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.combine_first(empty) + ser.index = ser.index.astype("O") + tm.assert_series_equal(ser, result) + + def test_combine_first_dt64(self, unit): + s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit) + s1 = to_datetime(Series([np.nan, "2011"])).dt.as_unit(unit) + rs = s0.combine_first(s1) + xp = to_datetime(Series(["2010", "2011"])).dt.as_unit(unit) + tm.assert_series_equal(rs, xp) + + s0 = to_datetime(Series(["2010", np.nan])).dt.as_unit(unit) + s1 = Series([np.nan, "2011"]) + rs = s0.combine_first(s1) + + xp = Series([datetime(2010, 1, 1), "2011"], dtype="datetime64[ns]") + + tm.assert_series_equal(rs, xp) + + def test_combine_first_dt_tz_values(self, tz_naive_fixture): + ser1 = Series( + pd.DatetimeIndex(["20150101", "20150102", "20150103"], tz=tz_naive_fixture), + name="ser1", + ) + ser2 = Series( + pd.DatetimeIndex(["20160514", "20160515", "20160516"], tz=tz_naive_fixture), + index=[2, 3, 4], + name="ser2", + ) + result = ser1.combine_first(ser2) + exp_vals = pd.DatetimeIndex( + ["20150101", "20150102", "20150103", "20160515", "20160516"], + tz=tz_naive_fixture, + ) + exp = Series(exp_vals, name="ser1") + tm.assert_series_equal(exp, result) + + def test_combine_first_timezone_series_with_empty_series(self): + # GH 41800 + time_index = date_range( + datetime(2021, 1, 1, 1), + datetime(2021, 1, 1, 10), + freq="h", + tz="Europe/Rome", + ) + s1 = Series(range(10), index=time_index) + s2 = Series(index=time_index) + msg = "The behavior of array concatenation with empty entries is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s1.combine_first(s2) + tm.assert_series_equal(result, s1) + + def test_combine_first_preserves_dtype(self): + # GH51764 + s1 = Series([1666880195890293744, 1666880195890293837]) + s2 = Series([1, 2, 3]) + result = s1.combine_first(s2) + expected = Series([1666880195890293744, 1666880195890293837, 3]) + tm.assert_series_equal(result, expected) + + def test_combine_mixed_timezone(self): + # GH 26283 + uniform_tz = Series({pd.Timestamp("2019-05-01", tz="UTC"): 1.0}) + multi_tz = Series( + { + pd.Timestamp("2019-05-01 01:00:00+0100", tz="Europe/London"): 2.0, + pd.Timestamp("2019-05-02", tz="UTC"): 3.0, + } + ) + + result = uniform_tz.combine_first(multi_tz) + expected = Series( + [1.0, 3.0], + index=pd.Index( + [ + pd.Timestamp("2019-05-01 00:00:00+00:00", tz="UTC"), + pd.Timestamp("2019-05-02 00:00:00+00:00", tz="UTC"), + ], + dtype="object", + ), + ) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py new file mode 100644 index 0000000000000000000000000000000000000000..fe2016a245ec7c1373c72f40c7b6e7d899cf4f96 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_compare.py @@ -0,0 +1,141 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + + +@pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"]) +def test_compare_axis(align_axis): + # GH#30429 + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", "z"]) + + result = s1.compare(s2, align_axis=align_axis) + + if align_axis in (1, "columns"): + indices = pd.Index([0, 2]) + columns = pd.Index(["self", "other"]) + expected = pd.DataFrame( + [["a", "x"], ["c", "z"]], index=indices, columns=columns + ) + tm.assert_frame_equal(result, expected) + else: + indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) + expected = pd.Series(["a", "x", "c", "z"], index=indices) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "keep_shape, keep_equal", + [ + (True, False), + (False, True), + (True, True), + # False, False case is already covered in test_compare_axis + ], +) +def test_compare_various_formats(keep_shape, keep_equal): + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", "z"]) + + result = s1.compare(s2, keep_shape=keep_shape, keep_equal=keep_equal) + + if keep_shape: + indices = pd.Index([0, 1, 2]) + columns = pd.Index(["self", "other"]) + if keep_equal: + expected = pd.DataFrame( + [["a", "x"], ["b", "b"], ["c", "z"]], index=indices, columns=columns + ) + else: + expected = pd.DataFrame( + [["a", "x"], [np.nan, np.nan], ["c", "z"]], + index=indices, + columns=columns, + ) + else: + indices = pd.Index([0, 2]) + columns = pd.Index(["self", "other"]) + expected = pd.DataFrame( + [["a", "x"], ["c", "z"]], index=indices, columns=columns + ) + tm.assert_frame_equal(result, expected) + + +def test_compare_with_equal_nulls(): + # We want to make sure two NaNs are considered the same + # and dropped where applicable + s1 = pd.Series(["a", "b", np.nan]) + s2 = pd.Series(["x", "b", np.nan]) + + result = s1.compare(s2) + expected = pd.DataFrame([["a", "x"]], columns=["self", "other"]) + tm.assert_frame_equal(result, expected) + + +def test_compare_with_non_equal_nulls(): + # We want to make sure the relevant NaNs do not get dropped + s1 = pd.Series(["a", "b", "c"]) + s2 = pd.Series(["x", "b", np.nan]) + + result = s1.compare(s2, align_axis=0) + + indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]]) + expected = pd.Series(["a", "x", "c", np.nan], index=indices) + tm.assert_series_equal(result, expected) + + +def test_compare_multi_index(): + index = pd.MultiIndex.from_arrays([[0, 0, 1], [0, 1, 2]]) + s1 = pd.Series(["a", "b", "c"], index=index) + s2 = pd.Series(["x", "b", "z"], index=index) + + result = s1.compare(s2, align_axis=0) + + indices = pd.MultiIndex.from_arrays( + [[0, 0, 1, 1], [0, 0, 2, 2], ["self", "other", "self", "other"]] + ) + expected = pd.Series(["a", "x", "c", "z"], index=indices) + tm.assert_series_equal(result, expected) + + +def test_compare_unaligned_objects(): + # test Series with different indices + msg = "Can only compare identically-labeled Series objects" + with pytest.raises(ValueError, match=msg): + ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"]) + ser2 = pd.Series([1, 2, 3], index=["a", "b", "d"]) + ser1.compare(ser2) + + # test Series with different lengths + msg = "Can only compare identically-labeled Series objects" + with pytest.raises(ValueError, match=msg): + ser1 = pd.Series([1, 2, 3]) + ser2 = pd.Series([1, 2, 3, 4]) + ser1.compare(ser2) + + +def test_compare_datetime64_and_string(): + # Issue https://github.com/pandas-dev/pandas/issues/45506 + # Catch OverflowError when comparing datetime64 and string + data = [ + {"a": "2015-07-01", "b": "08335394550"}, + {"a": "2015-07-02", "b": "+49 (0) 0345 300033"}, + {"a": "2015-07-03", "b": "+49(0)2598 04457"}, + {"a": "2015-07-04", "b": "0741470003"}, + {"a": "2015-07-05", "b": "04181 83668"}, + ] + dtypes = {"a": "datetime64[ns]", "b": "string"} + df = pd.DataFrame(data=data).astype(dtypes) + + result_eq1 = df["a"].eq(df["b"]) + result_eq2 = df["a"] == df["b"] + result_neq = df["a"] != df["b"] + + expected_eq = pd.Series([False] * 5) # For .eq and == + expected_neq = pd.Series([True] * 5) # For != + + tm.assert_series_equal(result_eq1, expected_eq) + tm.assert_series_equal(result_eq2, expected_eq) + tm.assert_series_equal(result_neq, expected_neq) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py new file mode 100644 index 0000000000000000000000000000000000000000..b0a920ba02cadeb21a7c0cc93f615cb1bc49dcbb --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_convert_dtypes.py @@ -0,0 +1,306 @@ +from itertools import product + +import numpy as np +import pytest + +from pandas._libs import lib + +import pandas as pd +import pandas._testing as tm + +# Each test case consists of a tuple with the data and dtype to create the +# test Series, the default dtype for the expected result (which is valid +# for most cases), and the specific cases where the result deviates from +# this default. Those overrides are defined as a dict with (keyword, val) as +# dictionary key. In case of multiple items, the last override takes precedence. + + +@pytest.fixture( + params=[ + ( + # data + [1, 2, 3], + # original dtype + np.dtype("int32"), + # default expected dtype + "Int32", + # exceptions on expected dtype + {("convert_integer", False): np.dtype("int32")}, + ), + ( + [1, 2, 3], + np.dtype("int64"), + "Int64", + {("convert_integer", False): np.dtype("int64")}, + ), + ( + ["x", "y", "z"], + np.dtype("O"), + pd.StringDtype(), + {("convert_string", False): np.dtype("O")}, + ), + ( + [True, False, np.nan], + np.dtype("O"), + pd.BooleanDtype(), + {("convert_boolean", False): np.dtype("O")}, + ), + ( + ["h", "i", np.nan], + np.dtype("O"), + pd.StringDtype(), + {("convert_string", False): np.dtype("O")}, + ), + ( # GH32117 + ["h", "i", 1], + np.dtype("O"), + np.dtype("O"), + {}, + ), + ( + [10, np.nan, 20], + np.dtype("float"), + "Int64", + { + ("convert_integer", False, "convert_floating", True): "Float64", + ("convert_integer", False, "convert_floating", False): np.dtype( + "float" + ), + }, + ), + ( + [np.nan, 100.5, 200], + np.dtype("float"), + "Float64", + {("convert_floating", False): np.dtype("float")}, + ), + ( + [3, 4, 5], + "Int8", + "Int8", + {}, + ), + ( + [[1, 2], [3, 4], [5]], + None, + np.dtype("O"), + {}, + ), + ( + [4, 5, 6], + np.dtype("uint32"), + "UInt32", + {("convert_integer", False): np.dtype("uint32")}, + ), + ( + [-10, 12, 13], + np.dtype("i1"), + "Int8", + {("convert_integer", False): np.dtype("i1")}, + ), + ( + [1.2, 1.3], + np.dtype("float32"), + "Float32", + {("convert_floating", False): np.dtype("float32")}, + ), + ( + [1, 2.0], + object, + "Int64", + { + ("convert_integer", False): "Float64", + ("convert_integer", False, "convert_floating", False): np.dtype( + "float" + ), + ("infer_objects", False): np.dtype("object"), + }, + ), + ( + [1, 2.5], + object, + "Float64", + { + ("convert_floating", False): np.dtype("float"), + ("infer_objects", False): np.dtype("object"), + }, + ), + (["a", "b"], pd.CategoricalDtype(), pd.CategoricalDtype(), {}), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("s"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ms"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("us"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + pd.DatetimeTZDtype(tz="UTC"), + pd.DatetimeTZDtype(tz="UTC"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + "datetime64[ns]", + np.dtype("datetime64[ns]"), + {}, + ), + ( + pd.to_datetime(["2020-01-14 10:00", "2020-01-15 11:11"]).as_unit("ns"), + object, + np.dtype("datetime64[ns]"), + {("infer_objects", False): np.dtype("object")}, + ), + ( + pd.period_range("1/1/2011", freq="M", periods=3), + None, + pd.PeriodDtype("M"), + {}, + ), + ( + pd.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]), + None, + pd.IntervalDtype("int64", "right"), + {}, + ), + ] +) +def test_cases(request): + return request.param + + +class TestSeriesConvertDtypes: + @pytest.mark.parametrize("params", product(*[(True, False)] * 5)) + def test_convert_dtypes( + self, + test_cases, + params, + using_infer_string, + ): + data, maindtype, expected_default, expected_other = test_cases + if ( + hasattr(data, "dtype") + and lib.is_np_dtype(data.dtype, "M") + and isinstance(maindtype, pd.DatetimeTZDtype) + ): + # this astype is deprecated in favor of tz_localize + msg = "Cannot use .astype to convert from timezone-naive dtype" + with pytest.raises(TypeError, match=msg): + pd.Series(data, dtype=maindtype) + return + + if maindtype is not None: + series = pd.Series(data, dtype=maindtype) + else: + series = pd.Series(data) + + result = series.convert_dtypes(*params) + + param_names = [ + "infer_objects", + "convert_string", + "convert_integer", + "convert_boolean", + "convert_floating", + ] + params_dict = dict(zip(param_names, params)) + + expected_dtype = expected_default + for spec, dtype in expected_other.items(): + if all(params_dict[key] is val for key, val in zip(spec[::2], spec[1::2])): + expected_dtype = dtype + if ( + using_infer_string + and expected_default == "string" + and expected_dtype == object + and params[0] + and not params[1] + ): + # If we would convert with convert strings then infer_objects converts + # with the option + expected_dtype = "string[pyarrow_numpy]" + + expected = pd.Series(data, dtype=expected_dtype) + tm.assert_series_equal(result, expected) + + # Test that it is a copy + copy = series.copy(deep=True) + + if result.notna().sum() > 0 and result.dtype in ["interval[int64, right]"]: + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + result[result.notna()] = np.nan + else: + result[result.notna()] = np.nan + + # Make sure original not changed + tm.assert_series_equal(series, copy) + + def test_convert_string_dtype(self, nullable_string_dtype): + # https://github.com/pandas-dev/pandas/issues/31731 -> converting columns + # that are already string dtype + df = pd.DataFrame( + {"A": ["a", "b", pd.NA], "B": ["ä", "ö", "ü"]}, dtype=nullable_string_dtype + ) + result = df.convert_dtypes() + tm.assert_frame_equal(df, result) + + def test_convert_bool_dtype(self): + # GH32287 + df = pd.DataFrame({"A": pd.array([True])}) + tm.assert_frame_equal(df, df.convert_dtypes()) + + def test_convert_byte_string_dtype(self): + # GH-43183 + byte_str = b"binary-string" + + df = pd.DataFrame(data={"A": byte_str}, index=[0]) + result = df.convert_dtypes() + expected = df + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "infer_objects, dtype", [(True, "Int64"), (False, "object")] + ) + def test_convert_dtype_object_with_na(self, infer_objects, dtype): + # GH#48791 + ser = pd.Series([1, pd.NA]) + result = ser.convert_dtypes(infer_objects=infer_objects) + expected = pd.Series([1, pd.NA], dtype=dtype) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "infer_objects, dtype", [(True, "Float64"), (False, "object")] + ) + def test_convert_dtype_object_with_na_float(self, infer_objects, dtype): + # GH#48791 + ser = pd.Series([1.5, pd.NA]) + result = ser.convert_dtypes(infer_objects=infer_objects) + expected = pd.Series([1.5, pd.NA], dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_convert_dtypes_pyarrow_to_np_nullable(self): + # GH 53648 + pytest.importorskip("pyarrow") + ser = pd.Series(range(2), dtype="int32[pyarrow]") + result = ser.convert_dtypes(dtype_backend="numpy_nullable") + expected = pd.Series(range(2), dtype="Int32") + tm.assert_series_equal(result, expected) + + def test_convert_dtypes_pyarrow_null(self): + # GH#55346 + pa = pytest.importorskip("pyarrow") + ser = pd.Series([None, None]) + result = ser.convert_dtypes(dtype_backend="pyarrow") + expected = pd.Series([None, None], dtype=pd.ArrowDtype(pa.null())) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py new file mode 100644 index 0000000000000000000000000000000000000000..23dbe85075916dbb901afdcf8267c8877db3b3f8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_copy.py @@ -0,0 +1,91 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + Timestamp, +) +import pandas._testing as tm + + +class TestCopy: + @pytest.mark.parametrize("deep", ["default", None, False, True]) + def test_copy(self, deep, using_copy_on_write, warn_copy_on_write): + ser = Series(np.arange(10), dtype="float64") + + # default deep is True + if deep == "default": + ser2 = ser.copy() + else: + ser2 = ser.copy(deep=deep) + + if using_copy_on_write: + # INFO(CoW) a shallow copy doesn't yet copy the data + # but parent will not be modified (CoW) + if deep is None or deep is False: + assert np.may_share_memory(ser.values, ser2.values) + else: + assert not np.may_share_memory(ser.values, ser2.values) + + with tm.assert_cow_warning(warn_copy_on_write and deep is False): + ser2[::2] = np.nan + + if deep is not False or using_copy_on_write: + # Did not modify original Series + assert np.isnan(ser2[0]) + assert not np.isnan(ser[0]) + else: + # we DID modify the original Series + assert np.isnan(ser2[0]) + assert np.isnan(ser[0]) + + @pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning") + @pytest.mark.parametrize("deep", ["default", None, False, True]) + def test_copy_tzaware(self, deep, using_copy_on_write): + # GH#11794 + # copy of tz-aware + expected = Series([Timestamp("2012/01/01", tz="UTC")]) + expected2 = Series([Timestamp("1999/01/01", tz="UTC")]) + + ser = Series([Timestamp("2012/01/01", tz="UTC")]) + + if deep == "default": + ser2 = ser.copy() + else: + ser2 = ser.copy(deep=deep) + + if using_copy_on_write: + # INFO(CoW) a shallow copy doesn't yet copy the data + # but parent will not be modified (CoW) + if deep is None or deep is False: + assert np.may_share_memory(ser.values, ser2.values) + else: + assert not np.may_share_memory(ser.values, ser2.values) + + ser2[0] = Timestamp("1999/01/01", tz="UTC") + + # default deep is True + if deep is not False or using_copy_on_write: + # Did not modify original Series + tm.assert_series_equal(ser2, expected2) + tm.assert_series_equal(ser, expected) + else: + # we DID modify the original Series + tm.assert_series_equal(ser2, expected2) + tm.assert_series_equal(ser, expected2) + + def test_copy_name(self, datetime_series): + result = datetime_series.copy() + assert result.name == datetime_series.name + + def test_copy_index_name_checking(self, datetime_series): + # don't want to be able to modify the index stored elsewhere after + # making a copy + + datetime_series.index.name = None + assert datetime_series.index.name is None + assert datetime_series is datetime_series + + cp = datetime_series.copy() + cp.index.name = "foo" + assert datetime_series.index.name is None diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py new file mode 100644 index 0000000000000000000000000000000000000000..9ba163f347198a5533c67fdeffeb4012a804066f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_count.py @@ -0,0 +1,34 @@ +import numpy as np + +import pandas as pd +from pandas import ( + Categorical, + Series, +) +import pandas._testing as tm + + +class TestSeriesCount: + def test_count(self, datetime_series): + assert datetime_series.count() == len(datetime_series) + + datetime_series[::2] = np.nan + + assert datetime_series.count() == np.isfinite(datetime_series).sum() + + def test_count_inf_as_na(self): + # GH#29478 + ser = Series([pd.Timestamp("1990/1/1")]) + msg = "use_inf_as_na option is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + with pd.option_context("use_inf_as_na", True): + assert ser.count() == 1 + + def test_count_categorical(self): + ser = Series( + Categorical( + [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True + ) + ) + result = ser.count() + assert result == 2 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_cov_corr.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_cov_corr.py new file mode 100644 index 0000000000000000000000000000000000000000..a369145b4e884d740af39b236edbf2ce6e088cd0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_cov_corr.py @@ -0,0 +1,185 @@ +import math + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, + isna, +) +import pandas._testing as tm + + +class TestSeriesCov: + def test_cov(self, datetime_series): + # full overlap + tm.assert_almost_equal( + datetime_series.cov(datetime_series), datetime_series.std() ** 2 + ) + + # partial overlap + tm.assert_almost_equal( + datetime_series[:15].cov(datetime_series[5:]), + datetime_series[5:15].std() ** 2, + ) + + # No overlap + assert np.isnan(datetime_series[::2].cov(datetime_series[1::2])) + + # all NA + cp = datetime_series[:10].copy() + cp[:] = np.nan + assert isna(cp.cov(cp)) + + # min_periods + assert isna(datetime_series[:15].cov(datetime_series[5:], min_periods=12)) + + ts1 = datetime_series[:15].reindex(datetime_series.index) + ts2 = datetime_series[5:].reindex(datetime_series.index) + assert isna(ts1.cov(ts2, min_periods=12)) + + @pytest.mark.parametrize("test_ddof", [None, 0, 1, 2, 3]) + @pytest.mark.parametrize("dtype", ["float64", "Float64"]) + def test_cov_ddof(self, test_ddof, dtype): + # GH#34611 + np_array1 = np.random.default_rng(2).random(10) + np_array2 = np.random.default_rng(2).random(10) + + s1 = Series(np_array1, dtype=dtype) + s2 = Series(np_array2, dtype=dtype) + + result = s1.cov(s2, ddof=test_ddof) + expected = np.cov(np_array1, np_array2, ddof=test_ddof)[0][1] + assert math.isclose(expected, result) + + +class TestSeriesCorr: + @pytest.mark.parametrize("dtype", ["float64", "Float64"]) + def test_corr(self, datetime_series, dtype): + stats = pytest.importorskip("scipy.stats") + + datetime_series = datetime_series.astype(dtype) + + # full overlap + tm.assert_almost_equal(datetime_series.corr(datetime_series), 1) + + # partial overlap + tm.assert_almost_equal(datetime_series[:15].corr(datetime_series[5:]), 1) + + assert isna(datetime_series[:15].corr(datetime_series[5:], min_periods=12)) + + ts1 = datetime_series[:15].reindex(datetime_series.index) + ts2 = datetime_series[5:].reindex(datetime_series.index) + assert isna(ts1.corr(ts2, min_periods=12)) + + # No overlap + assert np.isnan(datetime_series[::2].corr(datetime_series[1::2])) + + # all NA + cp = datetime_series[:10].copy() + cp[:] = np.nan + assert isna(cp.corr(cp)) + + A = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10), + name="ts", + ) + B = A.copy() + result = A.corr(B) + expected, _ = stats.pearsonr(A, B) + tm.assert_almost_equal(result, expected) + + def test_corr_rank(self): + stats = pytest.importorskip("scipy.stats") + + # kendall and spearman + A = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10), + name="ts", + ) + B = A.copy() + A[-5:] = A[:5].copy() + result = A.corr(B, method="kendall") + expected = stats.kendalltau(A, B)[0] + tm.assert_almost_equal(result, expected) + + result = A.corr(B, method="spearman") + expected = stats.spearmanr(A, B)[0] + tm.assert_almost_equal(result, expected) + + # results from R + A = Series( + [ + -0.89926396, + 0.94209606, + -1.03289164, + -0.95445587, + 0.76910310, + -0.06430576, + -2.09704447, + 0.40660407, + -0.89926396, + 0.94209606, + ] + ) + B = Series( + [ + -1.01270225, + -0.62210117, + -1.56895827, + 0.59592943, + -0.01680292, + 1.17258718, + -1.06009347, + -0.10222060, + -0.89076239, + 0.89372375, + ] + ) + kexp = 0.4319297 + sexp = 0.5853767 + tm.assert_almost_equal(A.corr(B, method="kendall"), kexp) + tm.assert_almost_equal(A.corr(B, method="spearman"), sexp) + + def test_corr_invalid_method(self): + # GH PR #22298 + s1 = Series(np.random.default_rng(2).standard_normal(10)) + s2 = Series(np.random.default_rng(2).standard_normal(10)) + msg = "method must be either 'pearson', 'spearman', 'kendall', or a callable, " + with pytest.raises(ValueError, match=msg): + s1.corr(s2, method="____") + + def test_corr_callable_method(self, datetime_series): + # simple correlation example + # returns 1 if exact equality, 0 otherwise + my_corr = lambda a, b: 1.0 if (a == b).all() else 0.0 + + # simple example + s1 = Series([1, 2, 3, 4, 5]) + s2 = Series([5, 4, 3, 2, 1]) + expected = 0 + tm.assert_almost_equal(s1.corr(s2, method=my_corr), expected) + + # full overlap + tm.assert_almost_equal( + datetime_series.corr(datetime_series, method=my_corr), 1.0 + ) + + # partial overlap + tm.assert_almost_equal( + datetime_series[:15].corr(datetime_series[5:], method=my_corr), 1.0 + ) + + # No overlap + assert np.isnan( + datetime_series[::2].corr(datetime_series[1::2], method=my_corr) + ) + + # dataframe example + df = pd.DataFrame([s1, s2]) + expected = pd.DataFrame([{0: 1.0, 1: 0}, {0: 0, 1: 1.0}]) + tm.assert_almost_equal(df.transpose().corr(method=my_corr), expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py new file mode 100644 index 0000000000000000000000000000000000000000..79ec11feb530817e735cf1d45cd7985839cd4d05 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_describe.py @@ -0,0 +1,203 @@ +import numpy as np +import pytest + +from pandas.compat.numpy import np_version_gte1p25 + +from pandas.core.dtypes.common import ( + is_complex_dtype, + is_extension_array_dtype, +) + +from pandas import ( + NA, + Period, + Series, + Timedelta, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestSeriesDescribe: + def test_describe_ints(self): + ser = Series([0, 1, 2, 3, 4], name="int_data") + result = ser.describe() + expected = Series( + [5, 2, ser.std(), 0, 1, 2, 3, 4], + name="int_data", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_bools(self): + ser = Series([True, True, False, False, False], name="bool_data") + result = ser.describe() + expected = Series( + [5, 2, False, 3], name="bool_data", index=["count", "unique", "top", "freq"] + ) + tm.assert_series_equal(result, expected) + + def test_describe_strs(self): + ser = Series(["a", "a", "b", "c", "d"], name="str_data") + result = ser.describe() + expected = Series( + [5, 4, "a", 2], name="str_data", index=["count", "unique", "top", "freq"] + ) + tm.assert_series_equal(result, expected) + + def test_describe_timedelta64(self): + ser = Series( + [ + Timedelta("1 days"), + Timedelta("2 days"), + Timedelta("3 days"), + Timedelta("4 days"), + Timedelta("5 days"), + ], + name="timedelta_data", + ) + result = ser.describe() + expected = Series( + [5, ser[2], ser.std(), ser[0], ser[1], ser[2], ser[3], ser[4]], + name="timedelta_data", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_period(self): + ser = Series( + [Period("2020-01", "M"), Period("2020-01", "M"), Period("2019-12", "M")], + name="period_data", + ) + result = ser.describe() + expected = Series( + [3, 2, ser[0], 2], + name="period_data", + index=["count", "unique", "top", "freq"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_empty_object(self): + # https://github.com/pandas-dev/pandas/issues/27183 + s = Series([None, None], dtype=object) + result = s.describe() + expected = Series( + [0, 0, np.nan, np.nan], + dtype=object, + index=["count", "unique", "top", "freq"], + ) + tm.assert_series_equal(result, expected) + + result = s[:0].describe() + tm.assert_series_equal(result, expected) + # ensure NaN, not None + assert np.isnan(result.iloc[2]) + assert np.isnan(result.iloc[3]) + + def test_describe_with_tz(self, tz_naive_fixture): + # GH 21332 + tz = tz_naive_fixture + name = str(tz_naive_fixture) + start = Timestamp(2018, 1, 1) + end = Timestamp(2018, 1, 5) + s = Series(date_range(start, end, tz=tz), name=name) + result = s.describe() + expected = Series( + [ + 5, + Timestamp(2018, 1, 3).tz_localize(tz), + start.tz_localize(tz), + s[1], + s[2], + s[3], + end.tz_localize(tz), + ], + name=name, + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_describe_with_tz_numeric(self): + name = tz = "CET" + start = Timestamp(2018, 1, 1) + end = Timestamp(2018, 1, 5) + s = Series(date_range(start, end, tz=tz), name=name) + + result = s.describe() + + expected = Series( + [ + 5, + Timestamp("2018-01-03 00:00:00", tz=tz), + Timestamp("2018-01-01 00:00:00", tz=tz), + Timestamp("2018-01-02 00:00:00", tz=tz), + Timestamp("2018-01-03 00:00:00", tz=tz), + Timestamp("2018-01-04 00:00:00", tz=tz), + Timestamp("2018-01-05 00:00:00", tz=tz), + ], + name=name, + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + def test_datetime_is_numeric_includes_datetime(self): + s = Series(date_range("2012", periods=3)) + result = s.describe() + expected = Series( + [ + 3, + Timestamp("2012-01-02"), + Timestamp("2012-01-01"), + Timestamp("2012-01-01T12:00:00"), + Timestamp("2012-01-02"), + Timestamp("2012-01-02T12:00:00"), + Timestamp("2012-01-03"), + ], + index=["count", "mean", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.filterwarnings("ignore:Casting complex values to real discards") + def test_numeric_result_dtype(self, any_numeric_dtype): + # GH#48340 - describe should always return float on non-complex numeric input + if is_extension_array_dtype(any_numeric_dtype): + dtype = "Float64" + else: + dtype = "complex128" if is_complex_dtype(any_numeric_dtype) else None + + ser = Series([0, 1], dtype=any_numeric_dtype) + if dtype == "complex128" and np_version_gte1p25: + with pytest.raises( + TypeError, match=r"^a must be an array of real numbers$" + ): + ser.describe() + return + result = ser.describe() + expected = Series( + [ + 2.0, + 0.5, + ser.std(), + 0, + 0.25, + 0.5, + 0.75, + 1.0, + ], + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + dtype=dtype, + ) + tm.assert_series_equal(result, expected) + + def test_describe_one_element_ea(self): + # GH#52515 + ser = Series([0.0], dtype="Float64") + with tm.assert_produces_warning(None): + result = ser.describe() + expected = Series( + [1, 0, NA, 0, 0, 0, 0, 0], + dtype="Float64", + index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], + ) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py new file mode 100644 index 0000000000000000000000000000000000000000..18de81a927c3a7697ee67290c8a6c73336de5643 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_diff.py @@ -0,0 +1,88 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + TimedeltaIndex, + date_range, +) +import pandas._testing as tm + + +class TestSeriesDiff: + def test_diff_np(self): + # TODO(__array_function__): could make np.diff return a Series + # matching ser.diff() + + ser = Series(np.arange(5)) + + res = np.diff(ser) + expected = np.array([1, 1, 1, 1]) + tm.assert_numpy_array_equal(res, expected) + + def test_diff_int(self): + # int dtype + a = 10000000000000000 + b = a + 1 + ser = Series([a, b]) + + result = ser.diff() + assert result[1] == 1 + + def test_diff_tz(self): + # Combined datetime diff, normal diff and boolean diff test + ts = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10), + name="ts", + ) + ts.diff() + + # neg n + result = ts.diff(-1) + expected = ts - ts.shift(-1) + tm.assert_series_equal(result, expected) + + # 0 + result = ts.diff(0) + expected = ts - ts + tm.assert_series_equal(result, expected) + + def test_diff_dt64(self): + # datetime diff (GH#3100) + ser = Series(date_range("20130102", periods=5)) + result = ser.diff() + expected = ser - ser.shift(1) + tm.assert_series_equal(result, expected) + + # timedelta diff + result = result - result.shift(1) # previous result + expected = expected.diff() # previously expected + tm.assert_series_equal(result, expected) + + def test_diff_dt64tz(self): + # with tz + ser = Series( + date_range("2000-01-01 09:00:00", periods=5, tz="US/Eastern"), name="foo" + ) + result = ser.diff() + expected = Series(TimedeltaIndex(["NaT"] + ["1 days"] * 4), name="foo") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "input,output,diff", + [([False, True, True, False, False], [np.nan, True, False, True, False], 1)], + ) + def test_diff_bool(self, input, output, diff): + # boolean series (test for fixing #17294) + ser = Series(input) + result = ser.diff() + expected = Series(output) + tm.assert_series_equal(result, expected) + + def test_diff_object_dtype(self): + # object series + ser = Series([False, True, 5.0, np.nan, True, False]) + result = ser.diff() + expected = ser - ser.shift(1) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop.py new file mode 100644 index 0000000000000000000000000000000000000000..5d9a469915cfb718aba9020b82105c66d93b429f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop.py @@ -0,0 +1,99 @@ +import pytest + +from pandas import ( + Index, + Series, +) +import pandas._testing as tm +from pandas.api.types import is_bool_dtype + + +@pytest.mark.parametrize( + "data, index, drop_labels, axis, expected_data, expected_index", + [ + # Unique Index + ([1, 2], ["one", "two"], ["two"], 0, [1], ["one"]), + ([1, 2], ["one", "two"], ["two"], "rows", [1], ["one"]), + ([1, 1, 2], ["one", "two", "one"], ["two"], 0, [1, 2], ["one", "one"]), + # GH 5248 Non-Unique Index + ([1, 1, 2], ["one", "two", "one"], "two", 0, [1, 2], ["one", "one"]), + ([1, 1, 2], ["one", "two", "one"], ["one"], 0, [1], ["two"]), + ([1, 1, 2], ["one", "two", "one"], "one", 0, [1], ["two"]), + ], +) +def test_drop_unique_and_non_unique_index( + data, index, axis, drop_labels, expected_data, expected_index +): + ser = Series(data=data, index=index) + result = ser.drop(drop_labels, axis=axis) + expected = Series(data=expected_data, index=expected_index) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "data, index, drop_labels, axis, error_type, error_desc", + [ + # single string/tuple-like + (range(3), list("abc"), "bc", 0, KeyError, "not found in axis"), + # bad axis + (range(3), list("abc"), ("a",), 0, KeyError, "not found in axis"), + (range(3), list("abc"), "one", "columns", ValueError, "No axis named columns"), + ], +) +def test_drop_exception_raised(data, index, drop_labels, axis, error_type, error_desc): + ser = Series(data, index=index) + with pytest.raises(error_type, match=error_desc): + ser.drop(drop_labels, axis=axis) + + +def test_drop_with_ignore_errors(): + # errors='ignore' + ser = Series(range(3), index=list("abc")) + result = ser.drop("bc", errors="ignore") + tm.assert_series_equal(result, ser) + result = ser.drop(["a", "d"], errors="ignore") + expected = ser.iloc[1:] + tm.assert_series_equal(result, expected) + + # GH 8522 + ser = Series([2, 3], index=[True, False]) + assert is_bool_dtype(ser.index) + assert ser.index.dtype == bool + result = ser.drop(True) + expected = Series([3], index=[False]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("index", [[1, 2, 3], [1, 1, 3]]) +@pytest.mark.parametrize("drop_labels", [[], [1], [3]]) +def test_drop_empty_list(index, drop_labels): + # GH 21494 + expected_index = [i for i in index if i not in drop_labels] + series = Series(index=index, dtype=object).drop(drop_labels) + expected = Series(index=expected_index, dtype=object) + tm.assert_series_equal(series, expected) + + +@pytest.mark.parametrize( + "data, index, drop_labels", + [ + (None, [1, 2, 3], [1, 4]), + (None, [1, 2, 2], [1, 4]), + ([2, 3], [0, 1], [False, True]), + ], +) +def test_drop_non_empty_list(data, index, drop_labels): + # GH 21494 and GH 16877 + dtype = object if data is None else None + ser = Series(data=data, index=index, dtype=dtype) + with pytest.raises(KeyError, match="not found in axis"): + ser.drop(drop_labels) + + +def test_drop_index_ea_dtype(any_numeric_ea_dtype): + # GH#45860 + df = Series(100, index=Index([1, 2, 2], dtype=any_numeric_ea_dtype)) + idx = Index([df.index[1]]) + result = df.drop(idx) + expected = Series(100, index=Index([1], dtype=any_numeric_ea_dtype)) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py new file mode 100644 index 0000000000000000000000000000000000000000..10b2e98586365929e4ff05df0d93660d55cf8850 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_drop_duplicates.py @@ -0,0 +1,267 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Categorical, + Series, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, False, False, True, True, False])), + ("last", Series([False, True, True, False, False, False, False])), + (False, Series([False, True, True, False, True, True, False])), + ], +) +def test_drop_duplicates(any_numpy_dtype, keep, expected): + tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) + + if tc.dtype == "bool": + pytest.skip("tested separately in test_drop_duplicates_bool") + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=keep, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, True, True])), + ("last", Series([True, True, False, False])), + (False, Series([True, True, True, True])), + ], +) +def test_drop_duplicates_bool(keep, expected): + tc = Series([True, False, True, False]) + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=keep, inplace=True) + tm.assert_series_equal(sc, tc[~expected]) + assert return_value is None + + +@pytest.mark.parametrize("values", [[], list(range(5))]) +def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values): + tc = Series(values, dtype=np.dtype(any_numpy_dtype)) + expected = Series([False] * len(tc), dtype="bool") + + if tc.dtype == "bool": + # 0 -> False and 1-> True + # any other value would be duplicated + tc = tc[:2] + expected = expected[:2] + + tm.assert_series_equal(tc.duplicated(keep=keep), expected) + + result_dropped = tc.drop_duplicates(keep=keep) + tm.assert_series_equal(result_dropped, tc) + + # validate shallow copy + assert result_dropped is not tc + + +class TestSeriesDropDuplicates: + @pytest.fixture( + params=["int_", "uint", "float64", "str_", "timedelta64[h]", "datetime64[D]"] + ) + def dtype(self, request): + return request.param + + @pytest.fixture + def cat_series_unused_category(self, dtype, ordered): + # Test case 1 + cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) + + input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) + cat = Categorical(input1, categories=cat_array, ordered=ordered) + tc1 = Series(cat) + return tc1 + + def test_drop_duplicates_categorical_non_bool(self, cat_series_unused_category): + tc1 = cat_series_unused_category + + expected = Series([False, False, False, True]) + + result = tc1.duplicated() + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates() + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + def test_drop_duplicates_categorical_non_bool_keeplast( + self, cat_series_unused_category + ): + tc1 = cat_series_unused_category + + expected = Series([False, False, True, False]) + + result = tc1.duplicated(keep="last") + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates(keep="last") + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + def test_drop_duplicates_categorical_non_bool_keepfalse( + self, cat_series_unused_category + ): + tc1 = cat_series_unused_category + + expected = Series([False, False, True, True]) + + result = tc1.duplicated(keep=False) + tm.assert_series_equal(result, expected) + + result = tc1.drop_duplicates(keep=False) + tm.assert_series_equal(result, tc1[~expected]) + + sc = tc1.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc1[~expected]) + + @pytest.fixture + def cat_series(self, dtype, ordered): + # no unused categories, unlike cat_series_unused_category + cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) + + input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype)) + cat = Categorical(input2, categories=cat_array, ordered=ordered) + tc2 = Series(cat) + return tc2 + + def test_drop_duplicates_categorical_non_bool2(self, cat_series): + tc2 = cat_series + + expected = Series([False, False, False, False, True, True, False]) + + result = tc2.duplicated() + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates() + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_non_bool2_keeplast(self, cat_series): + tc2 = cat_series + + expected = Series([False, True, True, False, False, False, False]) + + result = tc2.duplicated(keep="last") + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates(keep="last") + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_non_bool2_keepfalse(self, cat_series): + tc2 = cat_series + + expected = Series([False, True, True, False, True, True, False]) + + result = tc2.duplicated(keep=False) + tm.assert_series_equal(result, expected) + + result = tc2.drop_duplicates(keep=False) + tm.assert_series_equal(result, tc2[~expected]) + + sc = tc2.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc2[~expected]) + + def test_drop_duplicates_categorical_bool(self, ordered): + tc = Series( + Categorical( + [True, False, True, False], categories=[True, False], ordered=ordered + ) + ) + + expected = Series([False, False, True, True]) + tm.assert_series_equal(tc.duplicated(), expected) + tm.assert_series_equal(tc.drop_duplicates(), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + expected = Series([True, True, False, False]) + tm.assert_series_equal(tc.duplicated(keep="last"), expected) + tm.assert_series_equal(tc.drop_duplicates(keep="last"), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep="last", inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + expected = Series([True, True, True, True]) + tm.assert_series_equal(tc.duplicated(keep=False), expected) + tm.assert_series_equal(tc.drop_duplicates(keep=False), tc[~expected]) + sc = tc.copy() + return_value = sc.drop_duplicates(keep=False, inplace=True) + assert return_value is None + tm.assert_series_equal(sc, tc[~expected]) + + def test_drop_duplicates_categorical_bool_na(self, nulls_fixture): + # GH#44351 + ser = Series( + Categorical( + [True, False, True, False, nulls_fixture], + categories=[True, False], + ordered=True, + ) + ) + result = ser.drop_duplicates() + expected = Series( + Categorical([True, False, np.nan], categories=[True, False], ordered=True), + index=[0, 1, 4], + ) + tm.assert_series_equal(result, expected) + + def test_drop_duplicates_ignore_index(self): + # GH#48304 + ser = Series([1, 2, 2, 3]) + result = ser.drop_duplicates(ignore_index=True) + expected = Series([1, 2, 3]) + tm.assert_series_equal(result, expected) + + def test_duplicated_arrow_dtype(self): + pytest.importorskip("pyarrow") + ser = Series([True, False, None, False], dtype="bool[pyarrow]") + result = ser.drop_duplicates() + expected = Series([True, False, None], dtype="bool[pyarrow]") + tm.assert_series_equal(result, expected) + + def test_drop_duplicates_arrow_strings(self): + # GH#54904 + pa = pytest.importorskip("pyarrow") + ser = Series(["a", "a"], dtype=pd.ArrowDtype(pa.string())) + result = ser.drop_duplicates() + expecetd = Series(["a"], dtype=pd.ArrowDtype(pa.string())) + tm.assert_series_equal(result, expecetd) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py new file mode 100644 index 0000000000000000000000000000000000000000..d03fcac24003e99b724a2e7ac43b66d3d9b51bcf --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dropna.py @@ -0,0 +1,117 @@ +import numpy as np +import pytest + +from pandas import ( + DatetimeIndex, + IntervalIndex, + NaT, + Period, + Series, + Timestamp, +) +import pandas._testing as tm + + +class TestDropna: + def test_dropna_empty(self): + ser = Series([], dtype=object) + + assert len(ser.dropna()) == 0 + return_value = ser.dropna(inplace=True) + assert return_value is None + assert len(ser) == 0 + + # invalid axis + msg = "No axis named 1 for object type Series" + with pytest.raises(ValueError, match=msg): + ser.dropna(axis=1) + + def test_dropna_preserve_name(self, datetime_series): + datetime_series[:5] = np.nan + result = datetime_series.dropna() + assert result.name == datetime_series.name + name = datetime_series.name + ts = datetime_series.copy() + return_value = ts.dropna(inplace=True) + assert return_value is None + assert ts.name == name + + def test_dropna_no_nan(self): + for ser in [ + Series([1, 2, 3], name="x"), + Series([False, True, False], name="x"), + ]: + result = ser.dropna() + tm.assert_series_equal(result, ser) + assert result is not ser + + s2 = ser.copy() + return_value = s2.dropna(inplace=True) + assert return_value is None + tm.assert_series_equal(s2, ser) + + def test_dropna_intervals(self): + ser = Series( + [np.nan, 1, 2, 3], + IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]), + ) + + result = ser.dropna() + expected = ser.iloc[1:] + tm.assert_series_equal(result, expected) + + def test_dropna_period_dtype(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + result = ser.dropna() + expected = Series([Period("2011-01", freq="M")]) + + tm.assert_series_equal(result, expected) + + def test_datetime64_tz_dropna(self, unit): + # DatetimeLikeBlock + ser = Series( + [ + Timestamp("2011-01-01 10:00"), + NaT, + Timestamp("2011-01-03 10:00"), + NaT, + ], + dtype=f"M8[{unit}]", + ) + result = ser.dropna() + expected = Series( + [Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")], + index=[0, 2], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(result, expected) + + # DatetimeTZBlock + idx = DatetimeIndex( + ["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz="Asia/Tokyo" + ).as_unit(unit) + ser = Series(idx) + assert ser.dtype == f"datetime64[{unit}, Asia/Tokyo]" + result = ser.dropna() + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"), + Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"), + ], + index=[0, 2], + dtype=f"datetime64[{unit}, Asia/Tokyo]", + ) + assert result.dtype == f"datetime64[{unit}, Asia/Tokyo]" + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val", [1, 1.5]) + def test_dropna_ignore_index(self, val): + # GH#31725 + ser = Series([1, 2, val], index=[3, 2, 1]) + result = ser.dropna(ignore_index=True) + expected = Series([1, 2, val]) + tm.assert_series_equal(result, expected) + + ser.dropna(ignore_index=True, inplace=True) + tm.assert_series_equal(ser, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py new file mode 100644 index 0000000000000000000000000000000000000000..82260bc2a65b9f7e387532b380b9ce013d29cbb7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_dtypes.py @@ -0,0 +1,7 @@ +import numpy as np + + +class TestSeriesDtypes: + def test_dtype(self, datetime_series): + assert datetime_series.dtype == np.dtype("float64") + assert datetime_series.dtypes == np.dtype("float64") diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_equals.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_equals.py new file mode 100644 index 0000000000000000000000000000000000000000..875ffdd3fe8514edb4c313c8f558330c787cef08 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_equals.py @@ -0,0 +1,145 @@ +from contextlib import nullcontext +import copy + +import numpy as np +import pytest + +from pandas._libs.missing import is_matching_na +from pandas.compat.numpy import np_version_gte1p25 + +from pandas.core.dtypes.common import is_float + +from pandas import ( + Index, + MultiIndex, + Series, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "arr, idx", + [ + ([1, 2, 3, 4], [0, 2, 1, 3]), + ([1, np.nan, 3, np.nan], [0, 2, 1, 3]), + ( + [1, np.nan, 3, np.nan], + MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]), + ), + ], +) +def test_equals(arr, idx): + s1 = Series(arr, index=idx) + s2 = s1.copy() + assert s1.equals(s2) + + s1[1] = 9 + assert not s1.equals(s2) + + +@pytest.mark.parametrize( + "val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None] +) +def test_equals_list_array(val): + # GH20676 Verify equals operator for list of Numpy arrays + arr = np.array([1, 2]) + s1 = Series([arr, arr]) + s2 = s1.copy() + assert s1.equals(s2) + + s1[1] = val + + cm = ( + tm.assert_produces_warning(FutureWarning, check_stacklevel=False) + if isinstance(val, str) and not np_version_gte1p25 + else nullcontext() + ) + with cm: + assert not s1.equals(s2) + + +def test_equals_false_negative(): + # GH8437 Verify false negative behavior of equals function for dtype object + arr = [False, np.nan] + s1 = Series(arr) + s2 = s1.copy() + s3 = Series(index=range(2), dtype=object) + s4 = s3.copy() + s5 = s3.copy() + s6 = s3.copy() + + s3[:-1] = s4[:-1] = s5[0] = s6[0] = False + assert s1.equals(s1) + assert s1.equals(s2) + assert s1.equals(s3) + assert s1.equals(s4) + assert s1.equals(s5) + assert s5.equals(s6) + + +def test_equals_matching_nas(): + # matching but not identical NAs + left = Series([np.datetime64("NaT")], dtype=object) + right = Series([np.datetime64("NaT")], dtype=object) + assert left.equals(right) + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + assert Index(left).equals(Index(right)) + assert left.array.equals(right.array) + + left = Series([np.timedelta64("NaT")], dtype=object) + right = Series([np.timedelta64("NaT")], dtype=object) + assert left.equals(right) + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + assert Index(left).equals(Index(right)) + assert left.array.equals(right.array) + + left = Series([np.float64("NaN")], dtype=object) + right = Series([np.float64("NaN")], dtype=object) + assert left.equals(right) + assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype)) + assert left.array.equals(right.array) + + +def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2): + # GH#39650 + left = nulls_fixture + right = nulls_fixture2 + if hasattr(right, "copy"): + right = right.copy() + else: + right = copy.copy(right) + + ser = Series([left], dtype=object) + ser2 = Series([right], dtype=object) + + if is_matching_na(left, right): + assert ser.equals(ser2) + elif (left is None and is_float(right)) or (right is None and is_float(left)): + assert ser.equals(ser2) + else: + assert not ser.equals(ser2) + + +def test_equals_none_vs_nan(): + # GH#39650 + ser = Series([1, None], dtype=object) + ser2 = Series([1, np.nan], dtype=object) + + assert ser.equals(ser2) + assert Index(ser, dtype=ser.dtype).equals(Index(ser2, dtype=ser2.dtype)) + assert ser.array.equals(ser2.array) + + +def test_equals_None_vs_float(): + # GH#44190 + left = Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object) + right = Series([None] * len(left)) + + # these series were found to be equal due to a bug, check that they are correctly + # found to not equal + assert not left.equals(right) + assert not right.equals(left) + assert not left.to_frame().equals(right.to_frame()) + assert not right.to_frame().equals(left.to_frame()) + assert not Index(left, dtype="object").equals(Index(right, dtype="object")) + assert not Index(right, dtype="object").equals(Index(left, dtype="object")) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py new file mode 100644 index 0000000000000000000000000000000000000000..5a0188585ef30c12f7222a054714957df4ed2ff2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_explode.py @@ -0,0 +1,175 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + + +def test_basic(): + s = pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd"), name="foo") + result = s.explode() + expected = pd.Series( + [0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object, name="foo" + ) + tm.assert_series_equal(result, expected) + + +def test_mixed_type(): + s = pd.Series( + [[0, 1, 2], np.nan, None, np.array([]), pd.Series(["a", "b"])], name="foo" + ) + result = s.explode() + expected = pd.Series( + [0, 1, 2, np.nan, None, np.nan, "a", "b"], + index=[0, 0, 0, 1, 2, 3, 4, 4], + dtype=object, + name="foo", + ) + tm.assert_series_equal(result, expected) + + +def test_empty(): + s = pd.Series(dtype=object) + result = s.explode() + expected = s.copy() + tm.assert_series_equal(result, expected) + + +def test_nested_lists(): + s = pd.Series([[[1, 2, 3]], [1, 2], 1]) + result = s.explode() + expected = pd.Series([[1, 2, 3], 1, 2, 1], index=[0, 1, 1, 2]) + tm.assert_series_equal(result, expected) + + +def test_multi_index(): + s = pd.Series( + [[0, 1, 2], np.nan, [], (3, 4)], + name="foo", + index=pd.MultiIndex.from_product([list("ab"), range(2)], names=["foo", "bar"]), + ) + result = s.explode() + index = pd.MultiIndex.from_tuples( + [("a", 0), ("a", 0), ("a", 0), ("a", 1), ("b", 0), ("b", 1), ("b", 1)], + names=["foo", "bar"], + ) + expected = pd.Series( + [0, 1, 2, np.nan, np.nan, 3, 4], index=index, dtype=object, name="foo" + ) + tm.assert_series_equal(result, expected) + + +def test_large(): + s = pd.Series([range(256)]).explode() + result = s.explode() + tm.assert_series_equal(result, s) + + +def test_invert_array(): + df = pd.DataFrame({"a": pd.date_range("20190101", periods=3, tz="UTC")}) + + listify = df.apply(lambda x: x.array, axis=1) + result = listify.explode() + tm.assert_series_equal(result, df["a"].rename()) + + +@pytest.mark.parametrize( + "s", [pd.Series([1, 2, 3]), pd.Series(pd.date_range("2019", periods=3, tz="UTC"))] +) +def test_non_object_dtype(s): + result = s.explode() + tm.assert_series_equal(result, s) + + +def test_typical_usecase(): + df = pd.DataFrame( + [{"var1": "a,b,c", "var2": 1}, {"var1": "d,e,f", "var2": 2}], + columns=["var1", "var2"], + ) + exploded = df.var1.str.split(",").explode() + result = df[["var2"]].join(exploded) + expected = pd.DataFrame( + {"var2": [1, 1, 1, 2, 2, 2], "var1": list("abcdef")}, + columns=["var2", "var1"], + index=[0, 0, 0, 1, 1, 1], + ) + tm.assert_frame_equal(result, expected) + + +def test_nested_EA(): + # a nested EA array + s = pd.Series( + [ + pd.date_range("20170101", periods=3, tz="UTC"), + pd.date_range("20170104", periods=3, tz="UTC"), + ] + ) + result = s.explode() + expected = pd.Series( + pd.date_range("20170101", periods=6, tz="UTC"), index=[0, 0, 0, 1, 1, 1] + ) + tm.assert_series_equal(result, expected) + + +def test_duplicate_index(): + # GH 28005 + s = pd.Series([[1, 2], [3, 4]], index=[0, 0]) + result = s.explode() + expected = pd.Series([1, 2, 3, 4], index=[0, 0, 0, 0], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_ignore_index(): + # GH 34932 + s = pd.Series([[1, 2], [3, 4]]) + result = s.explode(ignore_index=True) + expected = pd.Series([1, 2, 3, 4], index=[0, 1, 2, 3], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_explode_sets(): + # https://github.com/pandas-dev/pandas/issues/35614 + s = pd.Series([{"a", "b", "c"}], index=[1]) + result = s.explode().sort_values() + expected = pd.Series(["a", "b", "c"], index=[1, 1, 1]) + tm.assert_series_equal(result, expected) + + +def test_explode_scalars_can_ignore_index(): + # https://github.com/pandas-dev/pandas/issues/40487 + s = pd.Series([1, 2, 3], index=["a", "b", "c"]) + result = s.explode(ignore_index=True) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("ignore_index", [True, False]) +def test_explode_pyarrow_list_type(ignore_index): + # GH 53602 + pa = pytest.importorskip("pyarrow") + + data = [ + [None, None], + [1], + [], + [2, 3], + None, + ] + ser = pd.Series(data, dtype=pd.ArrowDtype(pa.list_(pa.int64()))) + result = ser.explode(ignore_index=ignore_index) + expected = pd.Series( + data=[None, None, 1, None, 2, 3, None], + index=None if ignore_index else [0, 0, 1, 2, 3, 3, 4], + dtype=pd.ArrowDtype(pa.int64()), + ) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("ignore_index", [True, False]) +def test_explode_pyarrow_non_list_type(ignore_index): + pa = pytest.importorskip("pyarrow") + data = [1, 2, 3] + ser = pd.Series(data, dtype=pd.ArrowDtype(pa.int64())) + result = ser.explode(ignore_index=ignore_index) + expected = pd.Series([1, 2, 3], dtype="int64[pyarrow]", index=[0, 1, 2]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py new file mode 100644 index 0000000000000000000000000000000000000000..293259661cd9a107eb4ad8e33c0b73dfb4010a14 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_fillna.py @@ -0,0 +1,1155 @@ +from datetime import ( + datetime, + timedelta, + timezone, +) + +import numpy as np +import pytest +import pytz + +from pandas import ( + Categorical, + DataFrame, + DatetimeIndex, + NaT, + Period, + Series, + Timedelta, + Timestamp, + date_range, + isna, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.arrays import period_array + + +@pytest.mark.filterwarnings( + "ignore:(Series|DataFrame).fillna with 'method' is deprecated:FutureWarning" +) +class TestSeriesFillNA: + def test_fillna_nat(self): + series = Series([0, 1, 2, NaT._value], dtype="M8[ns]") + + filled = series.fillna(method="pad") + filled2 = series.fillna(value=series.values[2]) + + expected = series.copy() + expected.iloc[3] = expected.iloc[2] + + tm.assert_series_equal(filled, expected) + tm.assert_series_equal(filled2, expected) + + df = DataFrame({"A": series}) + filled = df.fillna(method="pad") + filled2 = df.fillna(value=series.values[2]) + expected = DataFrame({"A": expected}) + tm.assert_frame_equal(filled, expected) + tm.assert_frame_equal(filled2, expected) + + series = Series([NaT._value, 0, 1, 2], dtype="M8[ns]") + + filled = series.fillna(method="bfill") + filled2 = series.fillna(value=series[1]) + + expected = series.copy() + expected[0] = expected[1] + + tm.assert_series_equal(filled, expected) + tm.assert_series_equal(filled2, expected) + + df = DataFrame({"A": series}) + filled = df.fillna(method="bfill") + filled2 = df.fillna(value=series[1]) + expected = DataFrame({"A": expected}) + tm.assert_frame_equal(filled, expected) + tm.assert_frame_equal(filled2, expected) + + def test_fillna_value_or_method(self, datetime_series): + msg = "Cannot specify both 'value' and 'method'" + with pytest.raises(ValueError, match=msg): + datetime_series.fillna(value=0, method="ffill") + + def test_fillna(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + + tm.assert_series_equal(ts, ts.fillna(method="ffill")) + + ts.iloc[2] = np.nan + + exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(method="ffill"), exp) + + exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(method="backfill"), exp) + + exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) + tm.assert_series_equal(ts.fillna(value=5), exp) + + msg = "Must specify a fill 'value' or 'method'" + with pytest.raises(ValueError, match=msg): + ts.fillna() + + def test_fillna_nonscalar(self): + # GH#5703 + s1 = Series([np.nan]) + s2 = Series([1]) + result = s1.fillna(s2) + expected = Series([1.0]) + tm.assert_series_equal(result, expected) + result = s1.fillna({}) + tm.assert_series_equal(result, s1) + result = s1.fillna(Series((), dtype=object)) + tm.assert_series_equal(result, s1) + result = s2.fillna(s1) + tm.assert_series_equal(result, s2) + result = s1.fillna({0: 1}) + tm.assert_series_equal(result, expected) + result = s1.fillna({1: 1}) + tm.assert_series_equal(result, Series([np.nan])) + result = s1.fillna({0: 1, 1: 1}) + tm.assert_series_equal(result, expected) + result = s1.fillna(Series({0: 1, 1: 1})) + tm.assert_series_equal(result, expected) + result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) + tm.assert_series_equal(result, s1) + + def test_fillna_aligns(self): + s1 = Series([0, 1, 2], list("abc")) + s2 = Series([0, np.nan, 2], list("bac")) + result = s2.fillna(s1) + expected = Series([0, 0, 2.0], list("bac")) + tm.assert_series_equal(result, expected) + + def test_fillna_limit(self): + ser = Series(np.nan, index=[0, 1, 2]) + result = ser.fillna(999, limit=1) + expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) + tm.assert_series_equal(result, expected) + + result = ser.fillna(999, limit=2) + expected = Series([999, 999, np.nan], index=[0, 1, 2]) + tm.assert_series_equal(result, expected) + + def test_fillna_dont_cast_strings(self): + # GH#9043 + # make sure a string representation of int/float values can be filled + # correctly without raising errors or being converted + vals = ["0", "1.5", "-0.3"] + for val in vals: + ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") + result = ser.fillna(val) + expected = Series([0, 1, val, val, 4], dtype="object") + tm.assert_series_equal(result, expected) + + def test_fillna_consistency(self): + # GH#16402 + # fillna with a tz aware to a tz-naive, should result in object + + ser = Series([Timestamp("20130101"), NaT]) + + result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) + expected = Series( + [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], + dtype="object", + ) + tm.assert_series_equal(result, expected) + + result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern")) + tm.assert_series_equal(result, expected) + + result = ser.where([True, False], Timestamp("20130101", tz="US/Eastern")) + tm.assert_series_equal(result, expected) + + # with a non-datetime + result = ser.fillna("foo") + expected = Series([Timestamp("20130101"), "foo"]) + tm.assert_series_equal(result, expected) + + # assignment + ser2 = ser.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser2[1] = "foo" + tm.assert_series_equal(ser2, expected) + + def test_fillna_downcast(self): + # GH#15277 + # infer int64 from float64 + ser = Series([1.0, np.nan]) + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.fillna(0, downcast="infer") + expected = Series([1, 0]) + tm.assert_series_equal(result, expected) + + # infer int64 from float64 when fillna value is a dict + ser = Series([1.0, np.nan]) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.fillna({1: 0}, downcast="infer") + expected = Series([1, 0]) + tm.assert_series_equal(result, expected) + + def test_fillna_downcast_infer_objects_to_numeric(self): + # GH#44241 if we have object-dtype, 'downcast="infer"' should + # _actually_ infer + + arr = np.arange(5).astype(object) + arr[3] = np.nan + + ser = Series(arr) + + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.fillna(3, downcast="infer") + expected = Series(np.arange(5), dtype=np.int64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in ffill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.ffill(downcast="infer") + expected = Series([0, 1, 2, 2, 4], dtype=np.int64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in bfill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.bfill(downcast="infer") + expected = Series([0, 1, 2, 4, 4], dtype=np.int64) + tm.assert_series_equal(res, expected) + + # with a non-round float present, we will downcast to float64 + ser[2] = 2.5 + + expected = Series([0, 1, 2.5, 3, 4], dtype=np.float64) + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.fillna(3, downcast="infer") + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in ffill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.ffill(downcast="infer") + expected = Series([0, 1, 2.5, 2.5, 4], dtype=np.float64) + tm.assert_series_equal(res, expected) + + msg = "The 'downcast' keyword in bfill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = ser.bfill(downcast="infer") + expected = Series([0, 1, 2.5, 4, 4], dtype=np.float64) + tm.assert_series_equal(res, expected) + + def test_timedelta_fillna(self, frame_or_series, unit): + # GH#3371 + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ], + dtype=f"M8[{unit}]", + ) + td = ser.diff() + obj = frame_or_series(td).copy() + + # reg fillna + result = obj.fillna(Timedelta(seconds=0)) + expected = Series( + [ + timedelta(0), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + # GH#45746 pre-1.? ints were interpreted as seconds. then that was + # deprecated and changed to raise. In 2.0 it casts to common dtype, + # consistent with every other dtype's behavior + res = obj.fillna(1) + expected = obj.astype(object).fillna(1) + tm.assert_equal(res, expected) + + result = obj.fillna(Timedelta(seconds=1)) + expected = Series( + [ + timedelta(seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(timedelta(days=1, seconds=1)) + expected = Series( + [ + timedelta(days=1, seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(np.timedelta64(10**9)) + expected = Series( + [ + timedelta(seconds=1), + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(NaT) + expected = Series( + [ + NaT, + timedelta(0), + timedelta(1), + timedelta(days=1, seconds=9 * 3600 + 60 + 1), + ], + dtype=f"m8[{unit}]", + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + # ffill + td[2] = np.nan + obj = frame_or_series(td).copy() + result = obj.ffill() + expected = td.fillna(Timedelta(seconds=0)) + expected[0] = np.nan + expected = frame_or_series(expected) + + tm.assert_equal(result, expected) + + # bfill + td[2] = np.nan + obj = frame_or_series(td) + result = obj.bfill() + expected = td.fillna(Timedelta(seconds=0)) + expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + def test_datetime64_fillna(self): + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ] + ) + ser[2] = np.nan + + # ffill + result = ser.ffill() + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130103 9:01:01"), + ] + ) + tm.assert_series_equal(result, expected) + + # bfill + result = ser.bfill() + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130103 9:01:01"), + Timestamp("20130103 9:01:01"), + ] + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "scalar", + [ + False, + pytest.param( + True, + marks=pytest.mark.xfail( + reason="GH#56410 scalar case not yet addressed" + ), + ), + ], + ) + @pytest.mark.parametrize("tz", [None, "UTC"]) + def test_datetime64_fillna_mismatched_reso_no_rounding(self, tz, scalar): + # GH#56410 + dti = date_range("2016-01-01", periods=3, unit="s", tz=tz) + item = Timestamp("2016-02-03 04:05:06.789", tz=tz) + vec = date_range(item, periods=3, unit="ms") + + exp_dtype = "M8[ms]" if tz is None else "M8[ms, UTC]" + expected = Series([item, dti[1], dti[2]], dtype=exp_dtype) + + ser = Series(dti) + ser[0] = NaT + ser2 = ser.copy() + + res = ser.fillna(item) + res2 = ser2.fillna(Series(vec)) + + if scalar: + tm.assert_series_equal(res, expected) + else: + tm.assert_series_equal(res2, expected) + + @pytest.mark.parametrize( + "scalar", + [ + False, + pytest.param( + True, + marks=pytest.mark.xfail( + reason="GH#56410 scalar case not yet addressed" + ), + ), + ], + ) + def test_timedelta64_fillna_mismatched_reso_no_rounding(self, scalar): + # GH#56410 + tdi = date_range("2016-01-01", periods=3, unit="s") - Timestamp("1970-01-01") + item = Timestamp("2016-02-03 04:05:06.789") - Timestamp("1970-01-01") + vec = timedelta_range(item, periods=3, unit="ms") + + expected = Series([item, tdi[1], tdi[2]], dtype="m8[ms]") + + ser = Series(tdi) + ser[0] = NaT + ser2 = ser.copy() + + res = ser.fillna(item) + res2 = ser2.fillna(Series(vec)) + + if scalar: + tm.assert_series_equal(res, expected) + else: + tm.assert_series_equal(res2, expected) + + def test_datetime64_fillna_backfill(self): + # GH#6587 + # make sure that we are treating as integer when filling + ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"], dtype="M8[ns]") + + expected = Series( + [ + "2013-08-05 15:30:00.000001", + "2013-08-05 15:30:00.000001", + "2013-08-05 15:30:00.000001", + ], + dtype="M8[ns]", + ) + result = ser.fillna(method="backfill") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) + def test_datetime64_tz_fillna(self, tz, unit): + # DatetimeLikeBlock + ser = Series( + [ + Timestamp("2011-01-01 10:00"), + NaT, + Timestamp("2011-01-03 10:00"), + NaT, + ], + dtype=f"M8[{unit}]", + ) + null_loc = Series([False, True, False, True]) + + result = ser.fillna(Timestamp("2011-01-02 10:00")) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-02 10:00"), + ], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(expected, result) + # check s is not changed + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna("AAA") + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + "AAA", + Timestamp("2011-01-03 10:00"), + "AAA", + ], + dtype=object, + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00"), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-04 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00"), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00"), + Timestamp("2011-01-04 10:00"), + ], + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # DatetimeTZBlock + idx = DatetimeIndex( + ["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz + ).as_unit(unit) + ser = Series(idx) + assert ser.dtype == f"datetime64[{unit}, {tz}]" + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00"), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-02 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) + idx = DatetimeIndex( + [ + "2011-01-01 10:00", + "2011-01-02 10:00", + "2011-01-03 10:00", + "2011-01-02 10:00", + ], + tz=tz, + ).as_unit(unit) + expected = Series(idx) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) + idx = DatetimeIndex( + [ + "2011-01-01 10:00", + "2011-01-02 10:00", + "2011-01-03 10:00", + "2011-01-02 10:00", + ], + tz=tz, + ).as_unit(unit) + expected = Series(idx) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna("AAA") + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + "AAA", + Timestamp("2011-01-03 10:00", tz=tz), + "AAA", + ], + dtype=object, + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00"), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-04 10:00"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + result = ser.fillna( + { + 1: Timestamp("2011-01-02 10:00", tz=tz), + 3: Timestamp("2011-01-04 10:00", tz=tz), + } + ) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2011-01-02 10:00", tz=tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2011-01-04 10:00", tz=tz), + ] + ).dt.as_unit(unit) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # filling with a naive/other zone, coerce to object + result = ser.fillna(Timestamp("20130101")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2013-01-01"), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2013-01-01"), + ] + ) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + # pre-2.0 fillna with mixed tzs would cast to object, in 2.0 + # it retains dtype. + result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) + expected = Series( + [ + Timestamp("2011-01-01 10:00", tz=tz), + Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz), + Timestamp("2011-01-03 10:00", tz=tz), + Timestamp("2013-01-01", tz="US/Pacific").tz_convert(tz), + ] + ).dt.as_unit(unit) + tm.assert_series_equal(expected, result) + tm.assert_series_equal(isna(ser), null_loc) + + def test_fillna_dt64tz_with_method(self): + # with timezone + # GH#15855 + ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT]) + exp = Series( + [ + Timestamp("2012-11-11 00:00:00+01:00"), + Timestamp("2012-11-11 00:00:00+01:00"), + ] + ) + tm.assert_series_equal(ser.fillna(method="pad"), exp) + + ser = Series([NaT, Timestamp("2012-11-11 00:00:00+01:00")]) + exp = Series( + [ + Timestamp("2012-11-11 00:00:00+01:00"), + Timestamp("2012-11-11 00:00:00+01:00"), + ] + ) + tm.assert_series_equal(ser.fillna(method="bfill"), exp) + + def test_fillna_pytimedelta(self): + # GH#8209 + ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"]) + + result = ser.fillna(timedelta(1)) + expected = Series(Timedelta("1 days"), index=["A", "B"]) + tm.assert_series_equal(result, expected) + + def test_fillna_period(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + + res = ser.fillna(Period("2012-01", freq="M")) + exp = Series([Period("2011-01", freq="M"), Period("2012-01", freq="M")]) + tm.assert_series_equal(res, exp) + assert res.dtype == "Period[M]" + + def test_fillna_dt64_timestamp(self, frame_or_series): + ser = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130102"), + Timestamp("20130103 9:01:01"), + ] + ) + ser[2] = np.nan + obj = frame_or_series(ser) + + # reg fillna + result = obj.fillna(Timestamp("20130104")) + expected = Series( + [ + Timestamp("20130101"), + Timestamp("20130101"), + Timestamp("20130104"), + Timestamp("20130103 9:01:01"), + ] + ) + expected = frame_or_series(expected) + tm.assert_equal(result, expected) + + result = obj.fillna(NaT) + expected = obj + tm.assert_equal(result, expected) + + def test_fillna_dt64_non_nao(self): + # GH#27419 + ser = Series([Timestamp("2010-01-01"), NaT, Timestamp("2000-01-01")]) + val = np.datetime64("1975-04-05", "ms") + + result = ser.fillna(val) + expected = Series( + [Timestamp("2010-01-01"), Timestamp("1975-04-05"), Timestamp("2000-01-01")] + ) + tm.assert_series_equal(result, expected) + + def test_fillna_numeric_inplace(self): + x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) + y = x.copy() + + return_value = y.fillna(value=0, inplace=True) + assert return_value is None + + expected = x.fillna(value=0) + tm.assert_series_equal(y, expected) + + # --------------------------------------------------------------- + # CategoricalDtype + + @pytest.mark.parametrize( + "fill_value, expected_output", + [ + ("a", ["a", "a", "b", "a", "a"]), + ({1: "a", 3: "b", 4: "b"}, ["a", "a", "b", "b", "b"]), + ({1: "a"}, ["a", "a", "b", np.nan, np.nan]), + ({1: "a", 3: "b"}, ["a", "a", "b", "b", np.nan]), + (Series("a"), ["a", np.nan, "b", np.nan, np.nan]), + (Series("a", index=[1]), ["a", "a", "b", np.nan, np.nan]), + (Series({1: "a", 3: "b"}), ["a", "a", "b", "b", np.nan]), + (Series(["a", "b"], index=[3, 4]), ["a", np.nan, "b", "a", "b"]), + ], + ) + def test_fillna_categorical(self, fill_value, expected_output): + # GH#17033 + # Test fillna for a Categorical series + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b"])) + exp = Series(Categorical(expected_output, categories=["a", "b"])) + result = ser.fillna(fill_value) + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize( + "fill_value, expected_output", + [ + (Series(["a", "b", "c", "d", "e"]), ["a", "b", "b", "d", "e"]), + (Series(["b", "d", "a", "d", "a"]), ["a", "d", "b", "d", "a"]), + ( + Series( + Categorical( + ["b", "d", "a", "d", "a"], categories=["b", "c", "d", "e", "a"] + ) + ), + ["a", "d", "b", "d", "a"], + ), + ], + ) + def test_fillna_categorical_with_new_categories(self, fill_value, expected_output): + # GH#26215 + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b", "c", "d", "e"])) + exp = Series(Categorical(expected_output, categories=["a", "b", "c", "d", "e"])) + result = ser.fillna(fill_value) + tm.assert_series_equal(result, exp) + + def test_fillna_categorical_raises(self): + data = ["a", np.nan, "b", np.nan, np.nan] + ser = Series(Categorical(data, categories=["a", "b"])) + cat = ser._values + + msg = "Cannot setitem on a Categorical with a new category" + with pytest.raises(TypeError, match=msg): + ser.fillna("d") + + msg2 = "Length of 'value' does not match." + with pytest.raises(ValueError, match=msg2): + cat.fillna(Series("d")) + + with pytest.raises(TypeError, match=msg): + ser.fillna({1: "d", 3: "a"}) + + msg = '"value" parameter must be a scalar or dict, but you passed a "list"' + with pytest.raises(TypeError, match=msg): + ser.fillna(["a", "b"]) + + msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' + with pytest.raises(TypeError, match=msg): + ser.fillna(("a", "b")) + + msg = ( + '"value" parameter must be a scalar, dict ' + 'or Series, but you passed a "DataFrame"' + ) + with pytest.raises(TypeError, match=msg): + ser.fillna(DataFrame({1: ["a"], 3: ["b"]})) + + @pytest.mark.parametrize("dtype", [float, "float32", "float64"]) + @pytest.mark.parametrize("fill_type", tm.ALL_REAL_NUMPY_DTYPES) + @pytest.mark.parametrize("scalar", [True, False]) + def test_fillna_float_casting(self, dtype, fill_type, scalar): + # GH-43424 + ser = Series([np.nan, 1.2], dtype=dtype) + fill_values = Series([2, 2], dtype=fill_type) + if scalar: + fill_values = fill_values.dtype.type(2) + + result = ser.fillna(fill_values) + expected = Series([2.0, 1.2], dtype=dtype) + tm.assert_series_equal(result, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + mask = ser.isna().to_numpy() + ser[mask] = fill_values + tm.assert_series_equal(ser, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + ser.mask(mask, fill_values, inplace=True) + tm.assert_series_equal(ser, expected) + + ser = Series([np.nan, 1.2], dtype=dtype) + res = ser.where(~mask, fill_values) + tm.assert_series_equal(res, expected) + + def test_fillna_f32_upcast_with_dict(self): + # GH-43424 + ser = Series([np.nan, 1.2], dtype=np.float32) + result = ser.fillna({0: 1}) + expected = Series([1.0, 1.2], dtype=np.float32) + tm.assert_series_equal(result, expected) + + # --------------------------------------------------------------- + # Invalid Usages + + def test_fillna_invalid_method(self, datetime_series): + try: + datetime_series.fillna(method="ffil") + except ValueError as inst: + assert "ffil" in str(inst) + + def test_fillna_listlike_invalid(self): + ser = Series(np.random.default_rng(2).integers(-100, 100, 50)) + msg = '"value" parameter must be a scalar or dict, but you passed a "list"' + with pytest.raises(TypeError, match=msg): + ser.fillna([1, 2]) + + msg = '"value" parameter must be a scalar or dict, but you passed a "tuple"' + with pytest.raises(TypeError, match=msg): + ser.fillna((1, 2)) + + def test_fillna_method_and_limit_invalid(self): + # related GH#9217, make sure limit is an int and greater than 0 + ser = Series([1, 2, 3, None]) + msg = "|".join( + [ + r"Cannot specify both 'value' and 'method'\.", + "Limit must be greater than 0", + "Limit must be an integer", + ] + ) + for limit in [-1, 0, 1.0, 2.0]: + for method in ["backfill", "bfill", "pad", "ffill", None]: + with pytest.raises(ValueError, match=msg): + ser.fillna(1, limit=limit, method=method) + + def test_fillna_datetime64_with_timezone_tzinfo(self): + # https://github.com/pandas-dev/pandas/issues/38851 + # different tzinfos representing UTC treated as equal + ser = Series(date_range("2020", periods=3, tz="UTC")) + expected = ser.copy() + ser[1] = NaT + result = ser.fillna(datetime(2020, 1, 2, tzinfo=timezone.utc)) + tm.assert_series_equal(result, expected) + + # pre-2.0 we cast to object with mixed tzs, in 2.0 we retain dtype + ts = Timestamp("2000-01-01", tz="US/Pacific") + ser2 = Series(ser._values.tz_convert("dateutil/US/Pacific")) + assert ser2.dtype.kind == "M" + result = ser2.fillna(ts) + expected = Series( + [ser2[0], ts.tz_convert(ser2.dtype.tz), ser2[2]], + dtype=ser2.dtype, + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "input, input_fillna, expected_data, expected_categories", + [ + (["A", "B", None, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), + (["A", "B", np.nan, "A"], "B", ["A", "B", "B", "A"], ["A", "B"]), + ], + ) + def test_fillna_categorical_accept_same_type( + self, input, input_fillna, expected_data, expected_categories + ): + # GH32414 + cat = Categorical(input) + ser = Series(cat).fillna(input_fillna) + filled = cat.fillna(ser) + result = cat.fillna(filled) + expected = Categorical(expected_data, categories=expected_categories) + tm.assert_categorical_equal(result, expected) + + +@pytest.mark.filterwarnings( + "ignore:Series.fillna with 'method' is deprecated:FutureWarning" +) +class TestFillnaPad: + def test_fillna_bug(self): + ser = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"]) + filled = ser.fillna(method="ffill") + expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ser.index) + tm.assert_series_equal(filled, expected) + + filled = ser.fillna(method="bfill") + expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], ser.index) + tm.assert_series_equal(filled, expected) + + def test_ffill(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + ts.iloc[2] = np.nan + tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill")) + + def test_ffill_mixed_dtypes_without_missing_data(self): + # GH#14956 + series = Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1]) + result = series.ffill() + tm.assert_series_equal(series, result) + + def test_bfill(self): + ts = Series( + [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("2020-01-01", periods=5) + ) + ts.iloc[2] = np.nan + tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill")) + + def test_pad_nan(self): + x = Series( + [np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float + ) + + return_value = x.fillna(method="pad", inplace=True) + assert return_value is None + + expected = Series( + [np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float + ) + tm.assert_series_equal(x[1:], expected[1:]) + assert np.isnan(x.iloc[0]), np.isnan(expected.iloc[0]) + + def test_series_fillna_limit(self): + index = np.arange(10) + s = Series(np.random.default_rng(2).standard_normal(10), index=index) + + result = s[:2].reindex(index) + result = result.fillna(method="pad", limit=5) + + expected = s[:2].reindex(index).fillna(method="pad") + expected[-3:] = np.nan + tm.assert_series_equal(result, expected) + + result = s[-2:].reindex(index) + result = result.fillna(method="bfill", limit=5) + + expected = s[-2:].reindex(index).fillna(method="backfill") + expected[:3] = np.nan + tm.assert_series_equal(result, expected) + + def test_series_pad_backfill_limit(self): + index = np.arange(10) + s = Series(np.random.default_rng(2).standard_normal(10), index=index) + + result = s[:2].reindex(index, method="pad", limit=5) + + expected = s[:2].reindex(index).fillna(method="pad") + expected[-3:] = np.nan + tm.assert_series_equal(result, expected) + + result = s[-2:].reindex(index, method="backfill", limit=5) + + expected = s[-2:].reindex(index).fillna(method="backfill") + expected[:3] = np.nan + tm.assert_series_equal(result, expected) + + def test_fillna_int(self): + ser = Series(np.random.default_rng(2).integers(-100, 100, 50)) + return_value = ser.fillna(method="ffill", inplace=True) + assert return_value is None + tm.assert_series_equal(ser.fillna(method="ffill", inplace=False), ser) + + def test_datetime64tz_fillna_round_issue(self): + # GH#14872 + + data = Series( + [NaT, NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)] + ) + + filled = data.bfill() + + expected = Series( + [ + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc), + ] + ) + + tm.assert_series_equal(filled, expected) + + def test_fillna_parr(self): + # GH-24537 + dti = date_range( + Timestamp.max - Timedelta(nanoseconds=10), periods=5, freq="ns" + ) + ser = Series(dti.to_period("ns")) + ser[2] = NaT + arr = period_array( + [ + Timestamp("2262-04-11 23:47:16.854775797"), + Timestamp("2262-04-11 23:47:16.854775798"), + Timestamp("2262-04-11 23:47:16.854775798"), + Timestamp("2262-04-11 23:47:16.854775800"), + Timestamp("2262-04-11 23:47:16.854775801"), + ], + freq="ns", + ) + expected = Series(arr) + + filled = ser.ffill() + + tm.assert_series_equal(filled, expected) + + @pytest.mark.parametrize("func", ["pad", "backfill"]) + def test_pad_backfill_deprecated(self, func): + # GH#33396 + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning): + getattr(ser, func)() + + +@pytest.mark.parametrize( + "data, expected_data, method, kwargs", + ( + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan], + "ffill", + {"limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan], + "ffill", + {"limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0], + "ffill", + {"limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan], + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + range(5), + range(5), + "ffill", + {"limit_area": "outside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + "bfill", + {"limit_area": "outside", "limit": 1}, + ), + ), +) +def test_ffill_bfill_limit_area(data, expected_data, method, kwargs): + # GH#56492 + s = Series(data) + expected = Series(expected_data) + result = getattr(s, method)(**kwargs) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_get_numeric_data.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_get_numeric_data.py new file mode 100644 index 0000000000000000000000000000000000000000..8325cc884ebcba069c18f457371cfa061893cf81 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_get_numeric_data.py @@ -0,0 +1,38 @@ +from pandas import ( + Index, + Series, + date_range, +) +import pandas._testing as tm + + +class TestGetNumericData: + def test_get_numeric_data_preserve_dtype( + self, using_copy_on_write, warn_copy_on_write + ): + # get the numeric data + obj = Series([1, 2, 3]) + result = obj._get_numeric_data() + tm.assert_series_equal(result, obj) + + # returned object is a shallow copy + with tm.assert_cow_warning(warn_copy_on_write): + result.iloc[0] = 0 + if using_copy_on_write: + assert obj.iloc[0] == 1 + else: + assert obj.iloc[0] == 0 + + obj = Series([1, "2", 3.0]) + result = obj._get_numeric_data() + expected = Series([], dtype=object, index=Index([], dtype=object)) + tm.assert_series_equal(result, expected) + + obj = Series([True, False, True]) + result = obj._get_numeric_data() + tm.assert_series_equal(result, obj) + + obj = Series(date_range("20130101", periods=3)) + result = obj._get_numeric_data() + expected = Series([], dtype="M8[ns]", index=Index([], dtype=object)) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py new file mode 100644 index 0000000000000000000000000000000000000000..29abac6b3780ec500ef0c635785c9624e4264934 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_infer_objects.py @@ -0,0 +1,56 @@ +import numpy as np + +from pandas import ( + Series, + interval_range, +) +import pandas._testing as tm + + +class TestInferObjects: + def test_copy(self, index_or_series): + # GH#50096 + # case where we don't need to do inference because it is already non-object + obj = index_or_series(np.array([1, 2, 3], dtype="int64")) + + result = obj.infer_objects(copy=False) + assert tm.shares_memory(result, obj) + + # case where we try to do inference but can't do better than object + obj2 = index_or_series(np.array(["foo", 2], dtype=object)) + result2 = obj2.infer_objects(copy=False) + assert tm.shares_memory(result2, obj2) + + def test_infer_objects_series(self, index_or_series): + # GH#11221 + actual = index_or_series(np.array([1, 2, 3], dtype="O")).infer_objects() + expected = index_or_series([1, 2, 3]) + tm.assert_equal(actual, expected) + + actual = index_or_series(np.array([1, 2, 3, None], dtype="O")).infer_objects() + expected = index_or_series([1.0, 2.0, 3.0, np.nan]) + tm.assert_equal(actual, expected) + + # only soft conversions, unconvertible pass thru unchanged + + obj = index_or_series(np.array([1, 2, 3, None, "a"], dtype="O")) + actual = obj.infer_objects() + expected = index_or_series([1, 2, 3, None, "a"], dtype=object) + + assert actual.dtype == "object" + tm.assert_equal(actual, expected) + + def test_infer_objects_interval(self, index_or_series): + # GH#50090 + ii = interval_range(1, 10) + obj = index_or_series(ii) + + result = obj.astype(object).infer_objects() + tm.assert_equal(result, obj) + + def test_infer_objects_bytes(self): + # GH#49650 + ser = Series([b"a"], dtype="bytes") + expected = ser.copy() + result = ser.infer_objects() + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py new file mode 100644 index 0000000000000000000000000000000000000000..29dd704f6efa97804d4d18ceceb0e160fde6948c --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_info.py @@ -0,0 +1,181 @@ +from io import StringIO +from string import ascii_uppercase +import textwrap + +import numpy as np +import pytest + +from pandas.compat import PYPY + +from pandas import ( + CategoricalIndex, + MultiIndex, + Series, + date_range, +) + + +def test_info_categorical_column_just_works(): + n = 2500 + data = np.array(list("abcdefghij")).take( + np.random.default_rng(2).integers(0, 10, size=n, dtype=int) + ) + s = Series(data).astype("category") + s.isna() + buf = StringIO() + s.info(buf=buf) + + s2 = s[s == "d"] + buf = StringIO() + s2.info(buf=buf) + + +def test_info_categorical(): + # GH14298 + idx = CategoricalIndex(["a", "b"]) + s = Series(np.zeros(2), index=idx) + buf = StringIO() + s.info(buf=buf) + + +@pytest.mark.parametrize("verbose", [True, False]) +def test_info_series(lexsorted_two_level_string_multiindex, verbose): + index = lexsorted_two_level_string_multiindex + ser = Series(range(len(index)), index=index, name="sth") + buf = StringIO() + ser.info(verbose=verbose, buf=buf) + result = buf.getvalue() + + expected = textwrap.dedent( + """\ + + MultiIndex: 10 entries, ('foo', 'one') to ('qux', 'three') + """ + ) + if verbose: + expected += textwrap.dedent( + """\ + Series name: sth + Non-Null Count Dtype + -------------- ----- + 10 non-null int64 + """ + ) + expected += textwrap.dedent( + f"""\ + dtypes: int64(1) + memory usage: {ser.memory_usage()}.0+ bytes + """ + ) + assert result == expected + + +def test_info_memory(): + s = Series([1, 2], dtype="i8") + buf = StringIO() + s.info(buf=buf) + result = buf.getvalue() + memory_bytes = float(s.memory_usage()) + expected = textwrap.dedent( + f"""\ + + RangeIndex: 2 entries, 0 to 1 + Series name: None + Non-Null Count Dtype + -------------- ----- + 2 non-null int64 + dtypes: int64(1) + memory usage: {memory_bytes} bytes + """ + ) + assert result == expected + + +def test_info_wide(): + s = Series(np.random.default_rng(2).standard_normal(101)) + msg = "Argument `max_cols` can only be passed in DataFrame.info, not Series.info" + with pytest.raises(ValueError, match=msg): + s.info(max_cols=1) + + +def test_info_shows_dtypes(): + dtypes = [ + "int64", + "float64", + "datetime64[ns]", + "timedelta64[ns]", + "complex128", + "object", + "bool", + ] + n = 10 + for dtype in dtypes: + s = Series(np.random.default_rng(2).integers(2, size=n).astype(dtype)) + buf = StringIO() + s.info(buf=buf) + res = buf.getvalue() + name = f"{n:d} non-null {dtype}" + assert name in res + + +@pytest.mark.xfail(PYPY, reason="on PyPy deep=True doesn't change result") +def test_info_memory_usage_deep_not_pypy(): + s_with_object_index = Series({"a": [1]}, index=["foo"]) + assert s_with_object_index.memory_usage( + index=True, deep=True + ) > s_with_object_index.memory_usage(index=True) + + s_object = Series({"a": ["a"]}) + assert s_object.memory_usage(deep=True) > s_object.memory_usage() + + +@pytest.mark.xfail(not PYPY, reason="on PyPy deep=True does not change result") +def test_info_memory_usage_deep_pypy(): + s_with_object_index = Series({"a": [1]}, index=["foo"]) + assert s_with_object_index.memory_usage( + index=True, deep=True + ) == s_with_object_index.memory_usage(index=True) + + s_object = Series({"a": ["a"]}) + assert s_object.memory_usage(deep=True) == s_object.memory_usage() + + +@pytest.mark.parametrize( + "series, plus", + [ + (Series(1, index=[1, 2, 3]), False), + (Series(1, index=list("ABC")), True), + (Series(1, index=MultiIndex.from_product([range(3), range(3)])), False), + ( + Series(1, index=MultiIndex.from_product([range(3), ["foo", "bar"]])), + True, + ), + ], +) +def test_info_memory_usage_qualified(series, plus): + buf = StringIO() + series.info(buf=buf) + if plus: + assert "+" in buf.getvalue() + else: + assert "+" not in buf.getvalue() + + +def test_info_memory_usage_bug_on_multiindex(): + # GH 14308 + # memory usage introspection should not materialize .values + N = 100 + M = len(ascii_uppercase) + index = MultiIndex.from_product( + [list(ascii_uppercase), date_range("20160101", periods=N)], + names=["id", "date"], + ) + s = Series(np.random.default_rng(2).standard_normal(N * M), index=index) + + unstacked = s.unstack("id") + assert s.values.nbytes == unstacked.values.nbytes + assert s.memory_usage(deep=True) > unstacked.memory_usage(deep=True).sum() + + # high upper bound + diff = unstacked.memory_usage(deep=True).sum() - s.memory_usage(deep=True) + assert diff < 2000 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_interpolate.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_interpolate.py new file mode 100644 index 0000000000000000000000000000000000000000..d854f0b7877595fba5ac0050a281aa3708240b0e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_interpolate.py @@ -0,0 +1,868 @@ +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +import pandas as pd +from pandas import ( + Index, + MultiIndex, + Series, + date_range, + isna, +) +import pandas._testing as tm + + +@pytest.fixture( + params=[ + "linear", + "index", + "values", + "nearest", + "slinear", + "zero", + "quadratic", + "cubic", + "barycentric", + "krogh", + "polynomial", + "spline", + "piecewise_polynomial", + "from_derivatives", + "pchip", + "akima", + "cubicspline", + ] +) +def nontemporal_method(request): + """Fixture that returns an (method name, required kwargs) pair. + + This fixture does not include method 'time' as a parameterization; that + method requires a Series with a DatetimeIndex, and is generally tested + separately from these non-temporal methods. + """ + method = request.param + kwargs = {"order": 1} if method in ("spline", "polynomial") else {} + return method, kwargs + + +@pytest.fixture( + params=[ + "linear", + "slinear", + "zero", + "quadratic", + "cubic", + "barycentric", + "krogh", + "polynomial", + "spline", + "piecewise_polynomial", + "from_derivatives", + "pchip", + "akima", + "cubicspline", + ] +) +def interp_methods_ind(request): + """Fixture that returns a (method name, required kwargs) pair to + be tested for various Index types. + + This fixture does not include methods - 'time', 'index', 'nearest', + 'values' as a parameterization + """ + method = request.param + kwargs = {"order": 1} if method in ("spline", "polynomial") else {} + return method, kwargs + + +class TestSeriesInterpolateData: + @pytest.mark.xfail(reason="EA.fillna does not handle 'linear' method") + def test_interpolate_period_values(self): + orig = Series(date_range("2012-01-01", periods=5)) + ser = orig.copy() + ser[2] = pd.NaT + + # period cast + ser_per = ser.dt.to_period("D") + res_per = ser_per.interpolate() + expected_per = orig.dt.to_period("D") + tm.assert_series_equal(res_per, expected_per) + + def test_interpolate(self, datetime_series): + ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index) + + ts_copy = ts.copy() + ts_copy[5:10] = np.nan + + linear_interp = ts_copy.interpolate(method="linear") + tm.assert_series_equal(linear_interp, ts) + + ord_ts = Series( + [d.toordinal() for d in datetime_series.index], index=datetime_series.index + ).astype(float) + + ord_ts_copy = ord_ts.copy() + ord_ts_copy[5:10] = np.nan + + time_interp = ord_ts_copy.interpolate(method="time") + tm.assert_series_equal(time_interp, ord_ts) + + def test_interpolate_time_raises_for_non_timeseries(self): + # When method='time' is used on a non-TimeSeries that contains a null + # value, a ValueError should be raised. + non_ts = Series([0, 1, 2, np.nan]) + msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex" + with pytest.raises(ValueError, match=msg): + non_ts.interpolate(method="time") + + def test_interpolate_cubicspline(self): + pytest.importorskip("scipy") + ser = Series([10, 11, 12, 13]) + + expected = Series( + [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], + index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), + ) + # interpolate at new_index + new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( + float + ) + result = ser.reindex(new_index).interpolate(method="cubicspline").loc[1:3] + tm.assert_series_equal(result, expected) + + def test_interpolate_pchip(self): + pytest.importorskip("scipy") + ser = Series(np.sort(np.random.default_rng(2).uniform(size=100))) + + # interpolate at new_index + new_index = ser.index.union( + Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) + ).astype(float) + interp_s = ser.reindex(new_index).interpolate(method="pchip") + # does not blow up, GH5977 + interp_s.loc[49:51] + + def test_interpolate_akima(self): + pytest.importorskip("scipy") + ser = Series([10, 11, 12, 13]) + + # interpolate at new_index where `der` is zero + expected = Series( + [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], + index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), + ) + new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( + float + ) + interp_s = ser.reindex(new_index).interpolate(method="akima") + tm.assert_series_equal(interp_s.loc[1:3], expected) + + # interpolate at new_index where `der` is a non-zero int + expected = Series( + [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0], + index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), + ) + new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( + float + ) + interp_s = ser.reindex(new_index).interpolate(method="akima", der=1) + tm.assert_series_equal(interp_s.loc[1:3], expected) + + def test_interpolate_piecewise_polynomial(self): + pytest.importorskip("scipy") + ser = Series([10, 11, 12, 13]) + + expected = Series( + [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], + index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), + ) + # interpolate at new_index + new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( + float + ) + interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial") + tm.assert_series_equal(interp_s.loc[1:3], expected) + + def test_interpolate_from_derivatives(self): + pytest.importorskip("scipy") + ser = Series([10, 11, 12, 13]) + + expected = Series( + [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], + index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), + ) + # interpolate at new_index + new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( + float + ) + interp_s = ser.reindex(new_index).interpolate(method="from_derivatives") + tm.assert_series_equal(interp_s.loc[1:3], expected) + + @pytest.mark.parametrize( + "kwargs", + [ + {}, + pytest.param( + {"method": "polynomial", "order": 1}, marks=td.skip_if_no("scipy") + ), + ], + ) + def test_interpolate_corners(self, kwargs): + s = Series([np.nan, np.nan]) + tm.assert_series_equal(s.interpolate(**kwargs), s) + + s = Series([], dtype=object).interpolate() + tm.assert_series_equal(s.interpolate(**kwargs), s) + + def test_interpolate_index_values(self): + s = Series(np.nan, index=np.sort(np.random.default_rng(2).random(30))) + s.loc[::3] = np.random.default_rng(2).standard_normal(10) + + vals = s.index.values.astype(float) + + result = s.interpolate(method="index") + + expected = s.copy() + bad = isna(expected.values) + good = ~bad + expected = Series( + np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad] + ) + + tm.assert_series_equal(result[bad], expected) + + # 'values' is synonymous with 'index' for the method kwarg + other_result = s.interpolate(method="values") + + tm.assert_series_equal(other_result, result) + tm.assert_series_equal(other_result[bad], expected) + + def test_interpolate_non_ts(self): + s = Series([1, 3, np.nan, np.nan, np.nan, 11]) + msg = ( + "time-weighted interpolation only works on Series or DataFrames " + "with a DatetimeIndex" + ) + with pytest.raises(ValueError, match=msg): + s.interpolate(method="time") + + @pytest.mark.parametrize( + "kwargs", + [ + {}, + pytest.param( + {"method": "polynomial", "order": 1}, marks=td.skip_if_no("scipy") + ), + ], + ) + def test_nan_interpolate(self, kwargs): + s = Series([0, 1, np.nan, 3]) + result = s.interpolate(**kwargs) + expected = Series([0.0, 1.0, 2.0, 3.0]) + tm.assert_series_equal(result, expected) + + def test_nan_irregular_index(self): + s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) + result = s.interpolate() + expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9]) + tm.assert_series_equal(result, expected) + + def test_nan_str_index(self): + s = Series([0, 1, 2, np.nan], index=list("abcd")) + result = s.interpolate() + expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd")) + tm.assert_series_equal(result, expected) + + def test_interp_quad(self): + pytest.importorskip("scipy") + sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) + result = sq.interpolate(method="quadratic") + expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4]) + tm.assert_series_equal(result, expected) + + def test_interp_scipy_basic(self): + pytest.importorskip("scipy") + s = Series([1, 3, np.nan, 12, np.nan, 25]) + # slinear + expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0]) + result = s.interpolate(method="slinear") + tm.assert_series_equal(result, expected) + + msg = "The 'downcast' keyword in Series.interpolate is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(method="slinear", downcast="infer") + tm.assert_series_equal(result, expected) + # nearest + expected = Series([1, 3, 3, 12, 12, 25]) + result = s.interpolate(method="nearest") + tm.assert_series_equal(result, expected.astype("float")) + + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(method="nearest", downcast="infer") + tm.assert_series_equal(result, expected) + # zero + expected = Series([1, 3, 3, 12, 12, 25]) + result = s.interpolate(method="zero") + tm.assert_series_equal(result, expected.astype("float")) + + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(method="zero", downcast="infer") + tm.assert_series_equal(result, expected) + # quadratic + # GH #15662. + expected = Series([1, 3.0, 6.823529, 12.0, 18.058824, 25.0]) + result = s.interpolate(method="quadratic") + tm.assert_series_equal(result, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(method="quadratic", downcast="infer") + tm.assert_series_equal(result, expected) + # cubic + expected = Series([1.0, 3.0, 6.8, 12.0, 18.2, 25.0]) + result = s.interpolate(method="cubic") + tm.assert_series_equal(result, expected) + + def test_interp_limit(self): + s = Series([1, 3, np.nan, np.nan, np.nan, 11]) + + expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0]) + result = s.interpolate(method="linear", limit=2) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("limit", [-1, 0]) + def test_interpolate_invalid_nonpositive_limit(self, nontemporal_method, limit): + # GH 9217: make sure limit is greater than zero. + s = Series([1, 2, np.nan, 4]) + method, kwargs = nontemporal_method + with pytest.raises(ValueError, match="Limit must be greater than 0"): + s.interpolate(limit=limit, method=method, **kwargs) + + def test_interpolate_invalid_float_limit(self, nontemporal_method): + # GH 9217: make sure limit is an integer. + s = Series([1, 2, np.nan, 4]) + method, kwargs = nontemporal_method + limit = 2.0 + with pytest.raises(ValueError, match="Limit must be an integer"): + s.interpolate(limit=limit, method=method, **kwargs) + + @pytest.mark.parametrize("invalid_method", [None, "nonexistent_method"]) + def test_interp_invalid_method(self, invalid_method): + s = Series([1, 3, np.nan, 12, np.nan, 25]) + + msg = f"method must be one of.* Got '{invalid_method}' instead" + if invalid_method is None: + msg = "'method' should be a string, not None" + with pytest.raises(ValueError, match=msg): + s.interpolate(method=invalid_method) + + # When an invalid method and invalid limit (such as -1) are + # provided, the error message reflects the invalid method. + with pytest.raises(ValueError, match=msg): + s.interpolate(method=invalid_method, limit=-1) + + def test_interp_invalid_method_and_value(self): + # GH#36624 + ser = Series([1, 3, np.nan, 12, np.nan, 25]) + + msg = "'fill_value' is not a valid keyword for Series.interpolate" + msg2 = "Series.interpolate with method=pad" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg2): + ser.interpolate(fill_value=3, method="pad") + + def test_interp_limit_forward(self): + s = Series([1, 3, np.nan, np.nan, np.nan, 11]) + + # Provide 'forward' (the default) explicitly here. + expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0]) + + result = s.interpolate(method="linear", limit=2, limit_direction="forward") + tm.assert_series_equal(result, expected) + + result = s.interpolate(method="linear", limit=2, limit_direction="FORWARD") + tm.assert_series_equal(result, expected) + + def test_interp_unlimited(self): + # these test are for issue #16282 default Limit=None is unlimited + s = Series([np.nan, 1.0, 3.0, np.nan, np.nan, np.nan, 11.0, np.nan]) + expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0]) + result = s.interpolate(method="linear", limit_direction="both") + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0]) + result = s.interpolate(method="linear", limit_direction="forward") + tm.assert_series_equal(result, expected) + + expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, np.nan]) + result = s.interpolate(method="linear", limit_direction="backward") + tm.assert_series_equal(result, expected) + + def test_interp_limit_bad_direction(self): + s = Series([1, 3, np.nan, np.nan, np.nan, 11]) + + msg = ( + r"Invalid limit_direction: expecting one of \['forward', " + r"'backward', 'both'\], got 'abc'" + ) + with pytest.raises(ValueError, match=msg): + s.interpolate(method="linear", limit=2, limit_direction="abc") + + # raises an error even if no limit is specified. + with pytest.raises(ValueError, match=msg): + s.interpolate(method="linear", limit_direction="abc") + + # limit_area introduced GH #16284 + def test_interp_limit_area(self): + # These tests are for issue #9218 -- fill NaNs in both directions. + s = Series([np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan]) + + expected = Series([np.nan, np.nan, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan, np.nan]) + result = s.interpolate(method="linear", limit_area="inside") + tm.assert_series_equal(result, expected) + + expected = Series( + [np.nan, np.nan, 3.0, 4.0, np.nan, np.nan, 7.0, np.nan, np.nan] + ) + result = s.interpolate(method="linear", limit_area="inside", limit=1) + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, np.nan, 3.0, 4.0, np.nan, 6.0, 7.0, np.nan, np.nan]) + result = s.interpolate( + method="linear", limit_area="inside", limit_direction="both", limit=1 + ) + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0]) + result = s.interpolate(method="linear", limit_area="outside") + tm.assert_series_equal(result, expected) + + expected = Series( + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan] + ) + result = s.interpolate(method="linear", limit_area="outside", limit=1) + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan]) + result = s.interpolate( + method="linear", limit_area="outside", limit_direction="both", limit=1 + ) + tm.assert_series_equal(result, expected) + + expected = Series([3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan]) + result = s.interpolate( + method="linear", limit_area="outside", limit_direction="backward" + ) + tm.assert_series_equal(result, expected) + + # raises an error even if limit type is wrong. + msg = r"Invalid limit_area: expecting one of \['inside', 'outside'\], got abc" + with pytest.raises(ValueError, match=msg): + s.interpolate(method="linear", limit_area="abc") + + @pytest.mark.parametrize( + "method, limit_direction, expected", + [ + ("pad", "backward", "forward"), + ("ffill", "backward", "forward"), + ("backfill", "forward", "backward"), + ("bfill", "forward", "backward"), + ("pad", "both", "forward"), + ("ffill", "both", "forward"), + ("backfill", "both", "backward"), + ("bfill", "both", "backward"), + ], + ) + def test_interp_limit_direction_raises(self, method, limit_direction, expected): + # https://github.com/pandas-dev/pandas/pull/34746 + s = Series([1, 2, 3]) + + msg = f"`limit_direction` must be '{expected}' for method `{method}`" + msg2 = "Series.interpolate with method=" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg2): + s.interpolate(method=method, limit_direction=limit_direction) + + @pytest.mark.parametrize( + "data, expected_data, kwargs", + ( + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, 3.0, 3.0, 7.0, np.nan, np.nan], + {"method": "pad", "limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 3.0, np.nan, np.nan, 7.0, np.nan, np.nan], + {"method": "pad", "limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0], + {"method": "pad", "limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan], + {"method": "pad", "limit_area": "outside", "limit": 1}, + ), + ( + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + {"method": "pad", "limit_area": "outside", "limit": 1}, + ), + ( + range(5), + range(5), + {"method": "pad", "limit_area": "outside", "limit": 1}, + ), + ), + ) + def test_interp_limit_area_with_pad(self, data, expected_data, kwargs): + # GH26796 + + s = Series(data) + expected = Series(expected_data) + msg = "Series.interpolate with method=pad" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(**kwargs) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "data, expected_data, kwargs", + ( + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, 7.0, 7.0, 7.0, 7.0, np.nan, np.nan], + {"method": "bfill", "limit_area": "inside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, np.nan, 3.0, np.nan, np.nan, 7.0, 7.0, np.nan, np.nan], + {"method": "bfill", "limit_area": "inside", "limit": 1}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + {"method": "bfill", "limit_area": "outside"}, + ), + ( + [np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan], + [np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan], + {"method": "bfill", "limit_area": "outside", "limit": 1}, + ), + ), + ) + def test_interp_limit_area_with_backfill(self, data, expected_data, kwargs): + # GH26796 + + s = Series(data) + expected = Series(expected_data) + msg = "Series.interpolate with method=bfill" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.interpolate(**kwargs) + tm.assert_series_equal(result, expected) + + def test_interp_limit_direction(self): + # These tests are for issue #9218 -- fill NaNs in both directions. + s = Series([1, 3, np.nan, np.nan, np.nan, 11]) + + expected = Series([1.0, 3.0, np.nan, 7.0, 9.0, 11.0]) + result = s.interpolate(method="linear", limit=2, limit_direction="backward") + tm.assert_series_equal(result, expected) + + expected = Series([1.0, 3.0, 5.0, np.nan, 9.0, 11.0]) + result = s.interpolate(method="linear", limit=1, limit_direction="both") + tm.assert_series_equal(result, expected) + + # Check that this works on a longer series of nans. + s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan]) + + expected = Series([1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0]) + result = s.interpolate(method="linear", limit=2, limit_direction="both") + tm.assert_series_equal(result, expected) + + expected = Series( + [1.0, 3.0, 4.0, np.nan, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0] + ) + result = s.interpolate(method="linear", limit=1, limit_direction="both") + tm.assert_series_equal(result, expected) + + def test_interp_limit_to_ends(self): + # These test are for issue #10420 -- flow back to beginning. + s = Series([np.nan, np.nan, 5, 7, 9, np.nan]) + + expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, np.nan]) + result = s.interpolate(method="linear", limit=2, limit_direction="backward") + tm.assert_series_equal(result, expected) + + expected = Series([5.0, 5.0, 5.0, 7.0, 9.0, 9.0]) + result = s.interpolate(method="linear", limit=2, limit_direction="both") + tm.assert_series_equal(result, expected) + + def test_interp_limit_before_ends(self): + # These test are for issue #11115 -- limit ends properly. + s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan]) + + expected = Series([np.nan, np.nan, 5.0, 7.0, 7.0, np.nan]) + result = s.interpolate(method="linear", limit=1, limit_direction="forward") + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, 5.0, 5.0, 7.0, np.nan, np.nan]) + result = s.interpolate(method="linear", limit=1, limit_direction="backward") + tm.assert_series_equal(result, expected) + + expected = Series([np.nan, 5.0, 5.0, 7.0, 7.0, np.nan]) + result = s.interpolate(method="linear", limit=1, limit_direction="both") + tm.assert_series_equal(result, expected) + + def test_interp_all_good(self): + pytest.importorskip("scipy") + s = Series([1, 2, 3]) + result = s.interpolate(method="polynomial", order=1) + tm.assert_series_equal(result, s) + + # non-scipy + result = s.interpolate() + tm.assert_series_equal(result, s) + + @pytest.mark.parametrize( + "check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))] + ) + def test_interp_multiIndex(self, check_scipy): + idx = MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c")]) + s = Series([1, 2, np.nan], index=idx) + + expected = s.copy() + expected.loc[2] = 2 + result = s.interpolate() + tm.assert_series_equal(result, expected) + + msg = "Only `method=linear` interpolation is supported on MultiIndexes" + if check_scipy: + with pytest.raises(ValueError, match=msg): + s.interpolate(method="polynomial", order=1) + + def test_interp_nonmono_raise(self): + pytest.importorskip("scipy") + s = Series([1, np.nan, 3], index=[0, 2, 1]) + msg = "krogh interpolation requires that the index be monotonic" + with pytest.raises(ValueError, match=msg): + s.interpolate(method="krogh") + + @pytest.mark.parametrize("method", ["nearest", "pad"]) + def test_interp_datetime64(self, method, tz_naive_fixture): + pytest.importorskip("scipy") + df = Series( + [1, np.nan, 3], index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture) + ) + warn = None if method == "nearest" else FutureWarning + msg = "Series.interpolate with method=pad is deprecated" + with tm.assert_produces_warning(warn, match=msg): + result = df.interpolate(method=method) + if warn is not None: + # check the "use ffill instead" is equivalent + alt = df.ffill() + tm.assert_series_equal(result, alt) + + expected = Series( + [1.0, 1.0, 3.0], + index=date_range("1/1/2000", periods=3, tz=tz_naive_fixture), + ) + tm.assert_series_equal(result, expected) + + def test_interp_pad_datetime64tz_values(self): + # GH#27628 missing.interpolate_2d should handle datetimetz values + dti = date_range("2015-04-05", periods=3, tz="US/Central") + ser = Series(dti) + ser[1] = pd.NaT + + msg = "Series.interpolate with method=pad is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.interpolate(method="pad") + # check the "use ffill instead" is equivalent + alt = ser.ffill() + tm.assert_series_equal(result, alt) + + expected = Series(dti) + expected[1] = expected[0] + tm.assert_series_equal(result, expected) + + def test_interp_limit_no_nans(self): + # GH 7173 + s = Series([1.0, 2.0, 3.0]) + result = s.interpolate(limit=1) + expected = s + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("method", ["polynomial", "spline"]) + def test_no_order(self, method): + # see GH-10633, GH-24014 + pytest.importorskip("scipy") + s = Series([0, 1, np.nan, 3]) + msg = "You must specify the order of the spline or polynomial" + with pytest.raises(ValueError, match=msg): + s.interpolate(method=method) + + @pytest.mark.parametrize("order", [-1, -1.0, 0, 0.0, np.nan]) + def test_interpolate_spline_invalid_order(self, order): + pytest.importorskip("scipy") + s = Series([0, 1, np.nan, 3]) + msg = "order needs to be specified and greater than 0" + with pytest.raises(ValueError, match=msg): + s.interpolate(method="spline", order=order) + + def test_spline(self): + pytest.importorskip("scipy") + s = Series([1, 2, np.nan, 4, 5, np.nan, 7]) + result = s.interpolate(method="spline", order=1) + expected = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) + tm.assert_series_equal(result, expected) + + def test_spline_extrapolate(self): + pytest.importorskip("scipy") + s = Series([1, 2, 3, 4, np.nan, 6, np.nan]) + result3 = s.interpolate(method="spline", order=1, ext=3) + expected3 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 6.0]) + tm.assert_series_equal(result3, expected3) + + result1 = s.interpolate(method="spline", order=1, ext=0) + expected1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) + tm.assert_series_equal(result1, expected1) + + def test_spline_smooth(self): + pytest.importorskip("scipy") + s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7]) + assert ( + s.interpolate(method="spline", order=3, s=0)[5] + != s.interpolate(method="spline", order=3)[5] + ) + + def test_spline_interpolation(self): + # Explicit cast to float to avoid implicit cast when setting np.nan + pytest.importorskip("scipy") + s = Series(np.arange(10) ** 2, dtype="float") + s[np.random.default_rng(2).integers(0, 9, 3)] = np.nan + result1 = s.interpolate(method="spline", order=1) + expected1 = s.interpolate(method="spline", order=1) + tm.assert_series_equal(result1, expected1) + + def test_interp_timedelta64(self): + # GH 6424 + df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 3])) + result = df.interpolate(method="time") + expected = Series([1.0, 2.0, 3.0], index=pd.to_timedelta([1, 2, 3])) + tm.assert_series_equal(result, expected) + + # test for non uniform spacing + df = Series([1, np.nan, 3], index=pd.to_timedelta([1, 2, 4])) + result = df.interpolate(method="time") + expected = Series([1.0, 1.666667, 3.0], index=pd.to_timedelta([1, 2, 4])) + tm.assert_series_equal(result, expected) + + def test_series_interpolate_method_values(self): + # GH#1646 + rng = date_range("1/1/2000", "1/20/2000", freq="D") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + ts[::2] = np.nan + + result = ts.interpolate(method="values") + exp = ts.interpolate() + tm.assert_series_equal(result, exp) + + def test_series_interpolate_intraday(self): + # #1698 + index = date_range("1/1/2012", periods=4, freq="12D") + ts = Series([0, 12, 24, 36], index) + new_index = index.append(index + pd.DateOffset(days=1)).sort_values() + + exp = ts.reindex(new_index).interpolate(method="time") + + index = date_range("1/1/2012", periods=4, freq="12h") + ts = Series([0, 12, 24, 36], index) + new_index = index.append(index + pd.DateOffset(hours=1)).sort_values() + result = ts.reindex(new_index).interpolate(method="time") + + tm.assert_numpy_array_equal(result.values, exp.values) + + @pytest.mark.parametrize( + "ind", + [ + ["a", "b", "c", "d"], + pd.period_range(start="2019-01-01", periods=4), + pd.interval_range(start=0, end=4), + ], + ) + def test_interp_non_timedelta_index(self, interp_methods_ind, ind): + # gh 21662 + df = pd.DataFrame([0, 1, np.nan, 3], index=ind) + + method, kwargs = interp_methods_ind + if method == "pchip": + pytest.importorskip("scipy") + + if method == "linear": + result = df[0].interpolate(**kwargs) + expected = Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind) + tm.assert_series_equal(result, expected) + else: + expected_error = ( + "Index column must be numeric or datetime type when " + f"using {method} method other than linear. " + "Try setting a numeric or datetime index column before " + "interpolating." + ) + with pytest.raises(ValueError, match=expected_error): + df[0].interpolate(method=method, **kwargs) + + def test_interpolate_timedelta_index(self, request, interp_methods_ind): + """ + Tests for non numerical index types - object, period, timedelta + Note that all methods except time, index, nearest and values + are tested here. + """ + # gh 21662 + pytest.importorskip("scipy") + ind = pd.timedelta_range(start=1, periods=4) + df = pd.DataFrame([0, 1, np.nan, 3], index=ind) + + method, kwargs = interp_methods_ind + + if method in {"cubic", "zero"}: + request.applymarker( + pytest.mark.xfail( + reason=f"{method} interpolation is not supported for TimedeltaIndex" + ) + ) + result = df[0].interpolate(method=method, **kwargs) + expected = Series([0.0, 1.0, 2.0, 3.0], name=0, index=ind) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ascending, expected_values", + [(True, [1, 2, 3, 9, 10]), (False, [10, 9, 3, 2, 1])], + ) + def test_interpolate_unsorted_index(self, ascending, expected_values): + # GH 21037 + ts = Series(data=[10, 9, np.nan, 2, 1], index=[10, 9, 3, 2, 1]) + result = ts.sort_index(ascending=ascending).interpolate(method="index") + expected = Series(data=expected_values, index=expected_values, dtype=float) + tm.assert_series_equal(result, expected) + + def test_interpolate_asfreq_raises(self): + ser = Series(["a", None, "b"], dtype=object) + msg2 = "Series.interpolate with object dtype" + msg = "Invalid fill method" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg2): + ser.interpolate(method="asfreq") + + def test_interpolate_fill_value(self): + # GH#54920 + pytest.importorskip("scipy") + ser = Series([np.nan, 0, 1, np.nan, 3, np.nan]) + result = ser.interpolate(method="nearest", fill_value=0) + expected = Series([np.nan, 0, 1, 1, 3, 0]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py new file mode 100644 index 0000000000000000000000000000000000000000..073ec4172aff6b041d29011bc3151f84f3cbeb19 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_monotonic.py @@ -0,0 +1,26 @@ +import numpy as np + +from pandas import ( + Series, + date_range, +) + + +class TestIsMonotonic: + def test_is_monotonic_numeric(self): + ser = Series(np.random.default_rng(2).integers(0, 10, size=1000)) + assert not ser.is_monotonic_increasing + ser = Series(np.arange(1000)) + assert ser.is_monotonic_increasing is True + assert ser.is_monotonic_increasing is True + ser = Series(np.arange(1000, 0, -1)) + assert ser.is_monotonic_decreasing is True + + def test_is_monotonic_dt64(self): + ser = Series(date_range("20130101", periods=10)) + assert ser.is_monotonic_increasing is True + assert ser.is_monotonic_increasing is True + + ser = Series(list(reversed(ser))) + assert ser.is_monotonic_increasing is False + assert ser.is_monotonic_decreasing is True diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_unique.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_unique.py new file mode 100644 index 0000000000000000000000000000000000000000..edf3839c2cebb6f51d0bb21b06ea8a1c47dec0fe --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_is_unique.py @@ -0,0 +1,40 @@ +import numpy as np +import pytest + +from pandas import Series + + +@pytest.mark.parametrize( + "data, expected", + [ + (np.random.default_rng(2).integers(0, 10, size=1000), False), + (np.arange(1000), True), + ([], True), + ([np.nan], True), + (["foo", "bar", np.nan], True), + (["foo", "foo", np.nan], False), + (["foo", "bar", np.nan, np.nan], False), + ], +) +def test_is_unique(data, expected): + # GH#11946 / GH#25180 + ser = Series(data) + assert ser.is_unique is expected + + +def test_is_unique_class_ne(capsys): + # GH#20661 + class Foo: + def __init__(self, val) -> None: + self._value = val + + def __ne__(self, other): + raise Exception("NEQ not supported") + + with capsys.disabled(): + li = [Foo(i) for i in range(5)] + ser = Series(li, index=list(range(5))) + + ser.is_unique + captured = capsys.readouterr() + assert len(captured.err) == 0 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isin.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isin.py new file mode 100644 index 0000000000000000000000000000000000000000..f94f67b8cc40a2031cab0791ccaf2fbc207b5023 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isin.py @@ -0,0 +1,252 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, +) +import pandas._testing as tm +from pandas.core import algorithms +from pandas.core.arrays import PeriodArray + + +class TestSeriesIsIn: + def test_isin(self): + s = Series(["A", "B", "C", "a", "B", "B", "A", "C"]) + + result = s.isin(["A", "C"]) + expected = Series([True, False, True, False, False, False, True, True]) + tm.assert_series_equal(result, expected) + + # GH#16012 + # This specific issue has to have a series over 1e6 in len, but the + # comparison array (in_list) must be large enough so that numpy doesn't + # do a manual masking trick that will avoid this issue altogether + s = Series(list("abcdefghijk" * 10**5)) + # If numpy doesn't do the manual comparison/mask, these + # unorderable mixed types are what cause the exception in numpy + in_list = [-1, "a", "b", "G", "Y", "Z", "E", "K", "E", "S", "I", "R", "R"] * 6 + + assert s.isin(in_list).sum() == 200000 + + def test_isin_with_string_scalar(self): + # GH#4763 + s = Series(["A", "B", "C", "a", "B", "B", "A", "C"]) + msg = ( + r"only list-like objects are allowed to be passed to isin\(\), " + r"you passed a `str`" + ) + with pytest.raises(TypeError, match=msg): + s.isin("a") + + s = Series(["aaa", "b", "c"]) + with pytest.raises(TypeError, match=msg): + s.isin("aaa") + + def test_isin_datetimelike_mismatched_reso(self): + expected = Series([True, True, False, False, False]) + + ser = Series(date_range("jan-01-2013", "jan-05-2013")) + + # fails on dtype conversion in the first place + day_values = np.asarray(ser[0:2].values).astype("datetime64[D]") + result = ser.isin(day_values) + tm.assert_series_equal(result, expected) + + dta = ser[:2]._values.astype("M8[s]") + result = ser.isin(dta) + tm.assert_series_equal(result, expected) + + def test_isin_datetimelike_mismatched_reso_list(self): + expected = Series([True, True, False, False, False]) + + ser = Series(date_range("jan-01-2013", "jan-05-2013")) + + dta = ser[:2]._values.astype("M8[s]") + result = ser.isin(list(dta)) + tm.assert_series_equal(result, expected) + + def test_isin_with_i8(self): + # GH#5021 + + expected = Series([True, True, False, False, False]) + expected2 = Series([False, True, False, False, False]) + + # datetime64[ns] + s = Series(date_range("jan-01-2013", "jan-05-2013")) + + result = s.isin(s[0:2]) + tm.assert_series_equal(result, expected) + + result = s.isin(s[0:2].values) + tm.assert_series_equal(result, expected) + + result = s.isin([s[1]]) + tm.assert_series_equal(result, expected2) + + result = s.isin([np.datetime64(s[1])]) + tm.assert_series_equal(result, expected2) + + result = s.isin(set(s[0:2])) + tm.assert_series_equal(result, expected) + + # timedelta64[ns] + s = Series(pd.to_timedelta(range(5), unit="d")) + result = s.isin(s[0:2]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])]) + def test_isin_empty(self, empty): + # see GH#16991 + s = Series(["a", "b"]) + expected = Series([False, False]) + + result = s.isin(empty) + tm.assert_series_equal(expected, result) + + def test_isin_read_only(self): + # https://github.com/pandas-dev/pandas/issues/37174 + arr = np.array([1, 2, 3]) + arr.setflags(write=False) + s = Series([1, 2, 3]) + result = s.isin(arr) + expected = Series([True, True, True]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", [object, None]) + def test_isin_dt64_values_vs_ints(self, dtype): + # GH#36621 dont cast integers to datetimes for isin + dti = date_range("2013-01-01", "2013-01-05") + ser = Series(dti) + + comps = np.asarray([1356998400000000000], dtype=dtype) + + res = dti.isin(comps) + expected = np.array([False] * len(dti), dtype=bool) + tm.assert_numpy_array_equal(res, expected) + + res = ser.isin(comps) + tm.assert_series_equal(res, Series(expected)) + + res = pd.core.algorithms.isin(ser, comps) + tm.assert_numpy_array_equal(res, expected) + + def test_isin_tzawareness_mismatch(self): + dti = date_range("2013-01-01", "2013-01-05") + ser = Series(dti) + + other = dti.tz_localize("UTC") + + res = dti.isin(other) + expected = np.array([False] * len(dti), dtype=bool) + tm.assert_numpy_array_equal(res, expected) + + res = ser.isin(other) + tm.assert_series_equal(res, Series(expected)) + + res = pd.core.algorithms.isin(ser, other) + tm.assert_numpy_array_equal(res, expected) + + def test_isin_period_freq_mismatch(self): + dti = date_range("2013-01-01", "2013-01-05") + pi = dti.to_period("M") + ser = Series(pi) + + # We construct another PeriodIndex with the same i8 values + # but different dtype + dtype = dti.to_period("Y").dtype + other = PeriodArray._simple_new(pi.asi8, dtype=dtype) + + res = pi.isin(other) + expected = np.array([False] * len(pi), dtype=bool) + tm.assert_numpy_array_equal(res, expected) + + res = ser.isin(other) + tm.assert_series_equal(res, Series(expected)) + + res = pd.core.algorithms.isin(ser, other) + tm.assert_numpy_array_equal(res, expected) + + @pytest.mark.parametrize("values", [[-9.0, 0.0], [-9, 0]]) + def test_isin_float_in_int_series(self, values): + # GH#19356 GH#21804 + ser = Series(values) + result = ser.isin([-9, -0.5]) + expected = Series([True, False]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", ["boolean", "Int64", "Float64"]) + @pytest.mark.parametrize( + "data,values,expected", + [ + ([0, 1, 0], [1], [False, True, False]), + ([0, 1, 0], [1, pd.NA], [False, True, False]), + ([0, pd.NA, 0], [1, 0], [True, False, True]), + ([0, 1, pd.NA], [1, pd.NA], [False, True, True]), + ([0, 1, pd.NA], [1, np.nan], [False, True, False]), + ([0, pd.NA, pd.NA], [np.nan, pd.NaT, None], [False, False, False]), + ], + ) + def test_isin_masked_types(self, dtype, data, values, expected): + # GH#42405 + ser = Series(data, dtype=dtype) + + result = ser.isin(values) + expected = Series(expected, dtype="boolean") + + tm.assert_series_equal(result, expected) + + +def test_isin_large_series_mixed_dtypes_and_nan(monkeypatch): + # https://github.com/pandas-dev/pandas/issues/37094 + # combination of object dtype for the values + # and > _MINIMUM_COMP_ARR_LEN elements + min_isin_comp = 5 + ser = Series([1, 2, np.nan] * min_isin_comp) + with monkeypatch.context() as m: + m.setattr(algorithms, "_MINIMUM_COMP_ARR_LEN", min_isin_comp) + result = ser.isin({"foo", "bar"}) + expected = Series([False] * 3 * min_isin_comp) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "array,expected", + [ + ( + [0, 1j, 1j, 1, 1 + 1j, 1 + 2j, 1 + 1j], + Series([False, True, True, False, True, True, True], dtype=bool), + ) + ], +) +def test_isin_complex_numbers(array, expected): + # GH 17927 + result = Series(array).isin([1j, 1 + 1j, 1 + 2j]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "data,is_in", + [([1, [2]], [1]), (["simple str", [{"values": 3}]], ["simple str"])], +) +def test_isin_filtering_with_mixed_object_types(data, is_in): + # GH 20883 + + ser = Series(data) + result = ser.isin(is_in) + expected = Series([True, False]) + + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("data", [[1, 2, 3], [1.0, 2.0, 3.0]]) +@pytest.mark.parametrize("isin", [[1, 2], [1.0, 2.0]]) +def test_isin_filtering_on_iterable(data, isin): + # GH 50234 + + ser = Series(data) + result = ser.isin(i for i in isin) + expected_result = Series([True, True, False]) + + tm.assert_series_equal(result, expected_result) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py new file mode 100644 index 0000000000000000000000000000000000000000..7e324aa86a052246a074950082e272fee7e505e3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_isna.py @@ -0,0 +1,35 @@ +""" +We also test Series.notna in this file. +""" +import numpy as np + +from pandas import ( + Period, + Series, +) +import pandas._testing as tm + + +class TestIsna: + def test_isna_period_dtype(self): + # GH#13737 + ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) + + expected = Series([False, True]) + + result = ser.isna() + tm.assert_series_equal(result, expected) + + result = ser.notna() + tm.assert_series_equal(result, ~expected) + + def test_isna(self): + ser = Series([0, 5.4, 3, np.nan, -0.001]) + expected = Series([False, False, False, True, False]) + tm.assert_series_equal(ser.isna(), expected) + tm.assert_series_equal(ser.notna(), ~expected) + + ser = Series(["hi", "", np.nan]) + expected = Series([False, False, True]) + tm.assert_series_equal(ser.isna(), expected) + tm.assert_series_equal(ser.notna(), ~expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py new file mode 100644 index 0000000000000000000000000000000000000000..8e8c33619d564ef87d51416748b8fdc9058e5a41 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_item.py @@ -0,0 +1,59 @@ +""" +Series.item method, mainly testing that we get python scalars as opposed to +numpy scalars. +""" +import pytest + +from pandas import ( + Series, + Timedelta, + Timestamp, + date_range, +) + + +class TestItem: + def test_item(self): + # We are testing that we get python scalars as opposed to numpy scalars + ser = Series([1]) + result = ser.item() + assert result == 1 + assert result == ser.iloc[0] + assert isinstance(result, int) # i.e. not np.int64 + + ser = Series([0.5], index=[3]) + result = ser.item() + assert isinstance(result, float) + assert result == 0.5 + + ser = Series([1, 2]) + msg = "can only convert an array of size 1" + with pytest.raises(ValueError, match=msg): + ser.item() + + dti = date_range("2016-01-01", periods=2) + with pytest.raises(ValueError, match=msg): + dti.item() + with pytest.raises(ValueError, match=msg): + Series(dti).item() + + val = dti[:1].item() + assert isinstance(val, Timestamp) + val = Series(dti)[:1].item() + assert isinstance(val, Timestamp) + + tdi = dti - dti + with pytest.raises(ValueError, match=msg): + tdi.item() + with pytest.raises(ValueError, match=msg): + Series(tdi).item() + + val = tdi[:1].item() + assert isinstance(val, Timedelta) + val = Series(tdi)[:1].item() + assert isinstance(val, Timedelta) + + # Case where ser[0] would not work + ser = Series(dti, index=[5, 6]) + val = ser.iloc[:1].item() + assert val == dti[0] diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_map.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_map.py new file mode 100644 index 0000000000000000000000000000000000000000..251d4063008b9636a315a7c8b35de6cf45d1dee4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_map.py @@ -0,0 +1,609 @@ +from collections import ( + Counter, + defaultdict, +) +from decimal import Decimal +import math + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + Series, + bdate_range, + date_range, + isna, + timedelta_range, +) +import pandas._testing as tm + + +def test_series_map_box_timedelta(): + # GH#11349 + ser = Series(timedelta_range("1 day 1 s", periods=5, freq="h")) + + def f(x): + return x.total_seconds() + + ser.map(f) + + +def test_map_callable(datetime_series): + with np.errstate(all="ignore"): + tm.assert_series_equal(datetime_series.map(np.sqrt), np.sqrt(datetime_series)) + + # map function element-wise + tm.assert_series_equal(datetime_series.map(math.exp), np.exp(datetime_series)) + + # empty series + s = Series(dtype=object, name="foo", index=Index([], name="bar")) + rs = s.map(lambda x: x) + tm.assert_series_equal(s, rs) + + # check all metadata (GH 9322) + assert s is not rs + assert s.index is rs.index + assert s.dtype == rs.dtype + assert s.name == rs.name + + # index but no data + s = Series(index=[1, 2, 3], dtype=np.float64) + rs = s.map(lambda x: x) + tm.assert_series_equal(s, rs) + + +def test_map_same_length_inference_bug(): + s = Series([1, 2]) + + def f(x): + return (x, x + 1) + + s = Series([1, 2, 3]) + result = s.map(f) + expected = Series([(1, 2), (2, 3), (3, 4)]) + tm.assert_series_equal(result, expected) + + s = Series(["foo,bar"]) + result = s.map(lambda x: x.split(",")) + expected = Series([("foo", "bar")]) + tm.assert_series_equal(result, expected) + + +def test_series_map_box_timestamps(): + # GH#2689, GH#2627 + ser = Series(date_range("1/1/2000", periods=3)) + + def func(x): + return (x.hour, x.day, x.month) + + result = ser.map(func) + expected = Series([(0, 1, 1), (0, 2, 1), (0, 3, 1)]) + tm.assert_series_equal(result, expected) + + +def test_map_series_stringdtype(any_string_dtype, using_infer_string): + # map test on StringDType, GH#40823 + ser1 = Series( + data=["cat", "dog", "rabbit"], + index=["id1", "id2", "id3"], + dtype=any_string_dtype, + ) + ser2 = Series(["id3", "id2", "id1", "id7000"], dtype=any_string_dtype) + result = ser2.map(ser1) + + item = pd.NA + if ser2.dtype == object: + item = np.nan + + expected = Series(data=["rabbit", "dog", "cat", item], dtype=any_string_dtype) + if using_infer_string and any_string_dtype == "object": + expected = expected.astype("string[pyarrow_numpy]") + + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "data, expected_dtype", + [(["1-1", "1-1", np.nan], "category"), (["1-1", "1-2", np.nan], object)], +) +def test_map_categorical_with_nan_values(data, expected_dtype, using_infer_string): + # GH 20714 bug fixed in: GH 24275 + def func(val): + return val.split("-")[0] + + s = Series(data, dtype="category") + + result = s.map(func, na_action="ignore") + if using_infer_string and expected_dtype == object: + expected_dtype = "string[pyarrow_numpy]" + expected = Series(["1", "1", np.nan], dtype=expected_dtype) + tm.assert_series_equal(result, expected) + + +def test_map_empty_integer_series(): + # GH52384 + s = Series([], dtype=int) + result = s.map(lambda x: x) + tm.assert_series_equal(result, s) + + +def test_map_empty_integer_series_with_datetime_index(): + # GH 21245 + s = Series([], index=date_range(start="2018-01-01", periods=0), dtype=int) + result = s.map(lambda x: x) + tm.assert_series_equal(result, s) + + +@pytest.mark.parametrize("func", [str, lambda x: str(x)]) +def test_map_simple_str_callables_same_as_astype( + string_series, func, using_infer_string +): + # test that we are evaluating row-by-row first + # before vectorized evaluation + result = string_series.map(func) + expected = string_series.astype( + str if not using_infer_string else "string[pyarrow_numpy]" + ) + tm.assert_series_equal(result, expected) + + +def test_list_raises(string_series): + with pytest.raises(TypeError, match="'list' object is not callable"): + string_series.map([lambda x: x]) + + +def test_map(): + data = { + "A": [0.0, 1.0, 2.0, 3.0, 4.0], + "B": [0.0, 1.0, 0.0, 1.0, 0.0], + "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], + "D": bdate_range("1/1/2009", periods=5), + } + + source = Series(data["B"], index=data["C"]) + target = Series(data["C"][:4], index=data["D"][:4]) + + merged = target.map(source) + + for k, v in merged.items(): + assert v == source[target[k]] + + # input could be a dict + merged = target.map(source.to_dict()) + + for k, v in merged.items(): + assert v == source[target[k]] + + +def test_map_datetime(datetime_series): + # function + result = datetime_series.map(lambda x: x * 2) + tm.assert_series_equal(result, datetime_series * 2) + + +def test_map_category(): + # GH 10324 + a = Series([1, 2, 3, 4]) + b = Series(["even", "odd", "even", "odd"], dtype="category") + c = Series(["even", "odd", "even", "odd"]) + + exp = Series(["odd", "even", "odd", np.nan], dtype="category") + tm.assert_series_equal(a.map(b), exp) + exp = Series(["odd", "even", "odd", np.nan]) + tm.assert_series_equal(a.map(c), exp) + + +def test_map_category_numeric(): + a = Series(["a", "b", "c", "d"]) + b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(["b", "c", "d", "e"])) + c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"])) + + exp = Series([np.nan, 1, 2, 3]) + tm.assert_series_equal(a.map(b), exp) + exp = Series([np.nan, 1, 2, 3]) + tm.assert_series_equal(a.map(c), exp) + + +def test_map_category_string(): + a = Series(["a", "b", "c", "d"]) + b = Series( + ["B", "C", "D", "E"], + dtype="category", + index=pd.CategoricalIndex(["b", "c", "d", "e"]), + ) + c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"])) + + exp = Series( + pd.Categorical([np.nan, "B", "C", "D"], categories=["B", "C", "D", "E"]) + ) + tm.assert_series_equal(a.map(b), exp) + exp = Series([np.nan, "B", "C", "D"]) + tm.assert_series_equal(a.map(c), exp) + + +def test_map_empty(request, index): + if isinstance(index, MultiIndex): + request.applymarker( + pytest.mark.xfail( + reason="Initializing a Series from a MultiIndex is not supported" + ) + ) + + s = Series(index) + result = s.map({}) + + expected = Series(np.nan, index=s.index) + tm.assert_series_equal(result, expected) + + +def test_map_compat(): + # related GH 8024 + s = Series([True, True, False], index=[1, 2, 3]) + result = s.map({True: "foo", False: "bar"}) + expected = Series(["foo", "foo", "bar"], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + +def test_map_int(): + left = Series({"a": 1.0, "b": 2.0, "c": 3.0, "d": 4}) + right = Series({1: 11, 2: 22, 3: 33}) + + assert left.dtype == np.float64 + assert issubclass(right.dtype.type, np.integer) + + merged = left.map(right) + assert merged.dtype == np.float64 + assert isna(merged["d"]) + assert not isna(merged["c"]) + + +def test_map_type_inference(): + s = Series(range(3)) + s2 = s.map(lambda x: np.where(x == 0, 0, 1)) + assert issubclass(s2.dtype.type, np.integer) + + +def test_map_decimal(string_series): + result = string_series.map(lambda x: Decimal(str(x))) + assert result.dtype == np.object_ + assert isinstance(result.iloc[0], Decimal) + + +def test_map_na_exclusion(): + s = Series([1.5, np.nan, 3, np.nan, 5]) + + result = s.map(lambda x: x * 2, na_action="ignore") + exp = s * 2 + tm.assert_series_equal(result, exp) + + +def test_map_dict_with_tuple_keys(): + """ + Due to new MultiIndex-ing behaviour in v0.14.0, + dicts with tuple keys passed to map were being + converted to a multi-index, preventing tuple values + from being mapped properly. + """ + # GH 18496 + df = DataFrame({"a": [(1,), (2,), (3, 4), (5, 6)]}) + label_mappings = {(1,): "A", (2,): "B", (3, 4): "A", (5, 6): "B"} + + df["labels"] = df["a"].map(label_mappings) + df["expected_labels"] = Series(["A", "B", "A", "B"], index=df.index) + # All labels should be filled now + tm.assert_series_equal(df["labels"], df["expected_labels"], check_names=False) + + +def test_map_counter(): + s = Series(["a", "b", "c"], index=[1, 2, 3]) + counter = Counter() + counter["b"] = 5 + counter["c"] += 1 + result = s.map(counter) + expected = Series([0, 5, 1], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + +def test_map_defaultdict(): + s = Series([1, 2, 3], index=["a", "b", "c"]) + default_dict = defaultdict(lambda: "blank") + default_dict[1] = "stuff" + result = s.map(default_dict) + expected = Series(["stuff", "blank", "blank"], index=["a", "b", "c"]) + tm.assert_series_equal(result, expected) + + +def test_map_dict_na_key(): + # https://github.com/pandas-dev/pandas/issues/17648 + # Checks that np.nan key is appropriately mapped + s = Series([1, 2, np.nan]) + expected = Series(["a", "b", "c"]) + result = s.map({1: "a", 2: "b", np.nan: "c"}) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("na_action", [None, "ignore"]) +def test_map_defaultdict_na_key(na_action): + # GH 48813 + s = Series([1, 2, np.nan]) + default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"}) + result = s.map(default_map, na_action=na_action) + expected = Series({0: "a", 1: "b", 2: "c" if na_action is None else np.nan}) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("na_action", [None, "ignore"]) +def test_map_defaultdict_missing_key(na_action): + # GH 48813 + s = Series([1, 2, np.nan]) + default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", 3: "c"}) + result = s.map(default_map, na_action=na_action) + expected = Series({0: "a", 1: "b", 2: "missing" if na_action is None else np.nan}) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("na_action", [None, "ignore"]) +def test_map_defaultdict_unmutated(na_action): + # GH 48813 + s = Series([1, 2, np.nan]) + default_map = defaultdict(lambda: "missing", {1: "a", 2: "b", np.nan: "c"}) + expected_default_map = default_map.copy() + s.map(default_map, na_action=na_action) + assert default_map == expected_default_map + + +@pytest.mark.parametrize("arg_func", [dict, Series]) +def test_map_dict_ignore_na(arg_func): + # GH#47527 + mapping = arg_func({1: 10, np.nan: 42}) + ser = Series([1, np.nan, 2]) + result = ser.map(mapping, na_action="ignore") + expected = Series([10, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_map_defaultdict_ignore_na(): + # GH#47527 + mapping = defaultdict(int, {1: 10, np.nan: 42}) + ser = Series([1, np.nan, 2]) + result = ser.map(mapping) + expected = Series([10, 42, 0]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "na_action, expected", + [(None, Series([10.0, 42.0, np.nan])), ("ignore", Series([10, np.nan, np.nan]))], +) +def test_map_categorical_na_ignore(na_action, expected): + # GH#47527 + values = pd.Categorical([1, np.nan, 2], categories=[10, 1, 2]) + ser = Series(values) + result = ser.map({1: 10, np.nan: 42}, na_action=na_action) + tm.assert_series_equal(result, expected) + + +def test_map_dict_subclass_with_missing(): + """ + Test Series.map with a dictionary subclass that defines __missing__, + i.e. sets a default value (GH #15999). + """ + + class DictWithMissing(dict): + def __missing__(self, key): + return "missing" + + s = Series([1, 2, 3]) + dictionary = DictWithMissing({3: "three"}) + result = s.map(dictionary) + expected = Series(["missing", "missing", "three"]) + tm.assert_series_equal(result, expected) + + +def test_map_dict_subclass_without_missing(): + class DictWithoutMissing(dict): + pass + + s = Series([1, 2, 3]) + dictionary = DictWithoutMissing({3: "three"}) + result = s.map(dictionary) + expected = Series([np.nan, np.nan, "three"]) + tm.assert_series_equal(result, expected) + + +def test_map_abc_mapping(non_dict_mapping_subclass): + # https://github.com/pandas-dev/pandas/issues/29733 + # Check collections.abc.Mapping support as mapper for Series.map + s = Series([1, 2, 3]) + not_a_dictionary = non_dict_mapping_subclass({3: "three"}) + result = s.map(not_a_dictionary) + expected = Series([np.nan, np.nan, "three"]) + tm.assert_series_equal(result, expected) + + +def test_map_abc_mapping_with_missing(non_dict_mapping_subclass): + # https://github.com/pandas-dev/pandas/issues/29733 + # Check collections.abc.Mapping support as mapper for Series.map + class NonDictMappingWithMissing(non_dict_mapping_subclass): + def __missing__(self, key): + return "missing" + + s = Series([1, 2, 3]) + not_a_dictionary = NonDictMappingWithMissing({3: "three"}) + result = s.map(not_a_dictionary) + # __missing__ is a dict concept, not a Mapping concept, + # so it should not change the result! + expected = Series([np.nan, np.nan, "three"]) + tm.assert_series_equal(result, expected) + + +def test_map_box_dt64(unit): + vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")] + ser = Series(vals).dt.as_unit(unit) + assert ser.dtype == f"datetime64[{unit}]" + # boxed value must be Timestamp instance + res = ser.map(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") + exp = Series(["Timestamp_1_None", "Timestamp_2_None"]) + tm.assert_series_equal(res, exp) + + +def test_map_box_dt64tz(unit): + vals = [ + pd.Timestamp("2011-01-01", tz="US/Eastern"), + pd.Timestamp("2011-01-02", tz="US/Eastern"), + ] + ser = Series(vals).dt.as_unit(unit) + assert ser.dtype == f"datetime64[{unit}, US/Eastern]" + res = ser.map(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}") + exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"]) + tm.assert_series_equal(res, exp) + + +def test_map_box_td64(unit): + # timedelta + vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")] + ser = Series(vals).dt.as_unit(unit) + assert ser.dtype == f"timedelta64[{unit}]" + res = ser.map(lambda x: f"{type(x).__name__}_{x.days}") + exp = Series(["Timedelta_1", "Timedelta_2"]) + tm.assert_series_equal(res, exp) + + +def test_map_box_period(): + # period + vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] + ser = Series(vals) + assert ser.dtype == "Period[M]" + res = ser.map(lambda x: f"{type(x).__name__}_{x.freqstr}") + exp = Series(["Period_M", "Period_M"]) + tm.assert_series_equal(res, exp) + + +@pytest.mark.parametrize("na_action", [None, "ignore"]) +def test_map_categorical(na_action, using_infer_string): + values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True) + s = Series(values, name="XX", index=list("abcdefg")) + + result = s.map(lambda x: x.lower(), na_action=na_action) + exp_values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True) + exp = Series(exp_values, name="XX", index=list("abcdefg")) + tm.assert_series_equal(result, exp) + tm.assert_categorical_equal(result.values, exp_values) + + result = s.map(lambda x: "A", na_action=na_action) + exp = Series(["A"] * 7, name="XX", index=list("abcdefg")) + tm.assert_series_equal(result, exp) + assert result.dtype == object if not using_infer_string else "string" + + +@pytest.mark.parametrize( + "na_action, expected", + ( + [None, Series(["A", "B", "nan"], name="XX")], + [ + "ignore", + Series( + ["A", "B", np.nan], + name="XX", + dtype=pd.CategoricalDtype(list("DCBA"), True), + ), + ], + ), +) +def test_map_categorical_na_action(na_action, expected): + dtype = pd.CategoricalDtype(list("DCBA"), ordered=True) + values = pd.Categorical(list("AB") + [np.nan], dtype=dtype) + s = Series(values, name="XX") + result = s.map(str, na_action=na_action) + tm.assert_series_equal(result, expected) + + +def test_map_datetimetz(): + values = date_range("2011-01-01", "2011-01-02", freq="h").tz_localize("Asia/Tokyo") + s = Series(values, name="XX") + + # keep tz + result = s.map(lambda x: x + pd.offsets.Day()) + exp_values = date_range("2011-01-02", "2011-01-03", freq="h").tz_localize( + "Asia/Tokyo" + ) + exp = Series(exp_values, name="XX") + tm.assert_series_equal(result, exp) + + result = s.map(lambda x: x.hour) + exp = Series(list(range(24)) + [0], name="XX", dtype=np.int64) + tm.assert_series_equal(result, exp) + + # not vectorized + def f(x): + if not isinstance(x, pd.Timestamp): + raise ValueError + return str(x.tz) + + result = s.map(f) + exp = Series(["Asia/Tokyo"] * 25, name="XX") + tm.assert_series_equal(result, exp) + + +@pytest.mark.parametrize( + "vals,mapping,exp", + [ + (list("abc"), {np.nan: "not NaN"}, [np.nan] * 3 + ["not NaN"]), + (list("abc"), {"a": "a letter"}, ["a letter"] + [np.nan] * 3), + (list(range(3)), {0: 42}, [42] + [np.nan] * 3), + ], +) +def test_map_missing_mixed(vals, mapping, exp, using_infer_string): + # GH20495 + s = Series(vals + [np.nan]) + result = s.map(mapping) + exp = Series(exp) + if using_infer_string and mapping == {np.nan: "not NaN"}: + exp.iloc[-1] = np.nan + tm.assert_series_equal(result, exp) + + +def test_map_scalar_on_date_time_index_aware_series(): + # GH 25959 + # Calling map on a localized time series should not cause an error + series = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10, tz="UTC"), + name="ts", + ) + result = Series(series.index).map(lambda x: 1) + tm.assert_series_equal(result, Series(np.ones(len(series)), dtype="int64")) + + +def test_map_float_to_string_precision(): + # GH 13228 + ser = Series(1 / 3) + result = ser.map(lambda val: str(val)).to_dict() + expected = {0: "0.3333333333333333"} + assert result == expected + + +def test_map_to_timedelta(): + list_of_valid_strings = ["00:00:01", "00:00:02"] + a = pd.to_timedelta(list_of_valid_strings) + b = Series(list_of_valid_strings).map(pd.to_timedelta) + tm.assert_series_equal(Series(a), b) + + list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT] + + a = pd.to_timedelta(list_of_strings) + ser = Series(list_of_strings) + b = ser.map(pd.to_timedelta) + tm.assert_series_equal(Series(a), b) + + +def test_map_type(): + # GH 46719 + s = Series([3, "string", float], index=["a", "b", "c"]) + result = s.map(type) + expected = Series([int, str, type], index=["a", "b", "c"]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_matmul.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_matmul.py new file mode 100644 index 0000000000000000000000000000000000000000..4ca3ad3f7031e20b8d6cec36caadbcefef8c4196 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_matmul.py @@ -0,0 +1,82 @@ +import operator + +import numpy as np +import pytest + +from pandas import ( + DataFrame, + Series, +) +import pandas._testing as tm + + +class TestMatmul: + def test_matmul(self): + # matmul test is for GH#10259 + a = Series( + np.random.default_rng(2).standard_normal(4), index=["p", "q", "r", "s"] + ) + b = DataFrame( + np.random.default_rng(2).standard_normal((3, 4)), + index=["1", "2", "3"], + columns=["p", "q", "r", "s"], + ).T + + # Series @ DataFrame -> Series + result = operator.matmul(a, b) + expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"]) + tm.assert_series_equal(result, expected) + + # DataFrame @ Series -> Series + result = operator.matmul(b.T, a) + expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) + tm.assert_series_equal(result, expected) + + # Series @ Series -> scalar + result = operator.matmul(a, a) + expected = np.dot(a.values, a.values) + tm.assert_almost_equal(result, expected) + + # GH#21530 + # vector (1D np.array) @ Series (__rmatmul__) + result = operator.matmul(a.values, a) + expected = np.dot(a.values, a.values) + tm.assert_almost_equal(result, expected) + + # GH#21530 + # vector (1D list) @ Series (__rmatmul__) + result = operator.matmul(a.values.tolist(), a) + expected = np.dot(a.values, a.values) + tm.assert_almost_equal(result, expected) + + # GH#21530 + # matrix (2D np.array) @ Series (__rmatmul__) + result = operator.matmul(b.T.values, a) + expected = np.dot(b.T.values, a.values) + tm.assert_almost_equal(result, expected) + + # GH#21530 + # matrix (2D nested lists) @ Series (__rmatmul__) + result = operator.matmul(b.T.values.tolist(), a) + expected = np.dot(b.T.values, a.values) + tm.assert_almost_equal(result, expected) + + # mixed dtype DataFrame @ Series + a["p"] = int(a.p) + result = operator.matmul(b.T, a) + expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) + tm.assert_series_equal(result, expected) + + # different dtypes DataFrame @ Series + a = a.astype(int) + result = operator.matmul(b.T, a) + expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"]) + tm.assert_series_equal(result, expected) + + msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)" + # exception raised is of type Exception + with pytest.raises(Exception, match=msg): + a.dot(a.values[:3]) + msg = "matrices are not aligned" + with pytest.raises(ValueError, match=msg): + a.dot(b.T) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py new file mode 100644 index 0000000000000000000000000000000000000000..826132eb28162603d03635add59c3ea3da569256 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nunique.py @@ -0,0 +1,24 @@ +import numpy as np + +from pandas import ( + Categorical, + Series, +) + + +def test_nunique(): + # basics.rst doc example + series = Series(np.random.default_rng(2).standard_normal(500)) + series[20:500] = np.nan + series[10:20] = 5000 + result = series.nunique() + assert result == 11 + + +def test_nunique_categorical(): + # GH#18051 + ser = Series(Categorical([])) + assert ser.nunique() == 0 + + ser = Series(Categorical([np.nan])) + assert ser.nunique() == 0 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py new file mode 100644 index 0000000000000000000000000000000000000000..6c80e711c36846e565014c1d1c001ae2ba3cf929 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pct_change.py @@ -0,0 +1,128 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + date_range, +) +import pandas._testing as tm + + +class TestSeriesPctChange: + def test_pct_change(self, datetime_series): + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + + rs = datetime_series.pct_change(fill_method=None) + tm.assert_series_equal(rs, datetime_series / datetime_series.shift(1) - 1) + + rs = datetime_series.pct_change(2) + filled = datetime_series.ffill() + tm.assert_series_equal(rs, filled / filled.shift(2) - 1) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = datetime_series.pct_change(fill_method="bfill", limit=1) + filled = datetime_series.bfill(limit=1) + tm.assert_series_equal(rs, filled / filled.shift(1) - 1) + + rs = datetime_series.pct_change(freq="5D") + filled = datetime_series.ffill() + tm.assert_series_equal( + rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled) + ) + + def test_pct_change_with_duplicate_axis(self): + # GH#28664 + common_idx = date_range("2019-11-14", periods=5, freq="D") + result = Series(range(5), common_idx).pct_change(freq="B") + + # the reason that the expected should be like this is documented at PR 28681 + expected = Series([np.nan, np.inf, np.nan, np.nan, 3.0], common_idx) + + tm.assert_series_equal(result, expected) + + def test_pct_change_shift_over_nas(self): + s = Series([1.0, 1.5, np.nan, 2.5, 3.0]) + + msg = "The default fill_method='pad' in Series.pct_change is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + chg = s.pct_change() + + expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2]) + tm.assert_series_equal(chg, expected) + + @pytest.mark.parametrize( + "freq, periods, fill_method, limit", + [ + ("5B", 5, None, None), + ("3B", 3, None, None), + ("3B", 3, "bfill", None), + ("7B", 7, "pad", 1), + ("7B", 7, "bfill", 3), + ("14B", 14, None, None), + ], + ) + def test_pct_change_periods_freq( + self, freq, periods, fill_method, limit, datetime_series + ): + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + + # GH#7292 + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_freq = datetime_series.pct_change( + freq=freq, fill_method=fill_method, limit=limit + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_periods = datetime_series.pct_change( + periods, fill_method=fill_method, limit=limit + ) + tm.assert_series_equal(rs_freq, rs_periods) + + empty_ts = Series(index=datetime_series.index, dtype=object) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_freq = empty_ts.pct_change( + freq=freq, fill_method=fill_method, limit=limit + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + rs_periods = empty_ts.pct_change( + periods, fill_method=fill_method, limit=limit + ) + tm.assert_series_equal(rs_freq, rs_periods) + + +@pytest.mark.parametrize("fill_method", ["pad", "ffill", None]) +def test_pct_change_with_duplicated_indices(fill_method): + # GH30463 + s = Series([np.nan, 1, 2, 3, 9, 18], index=["a", "b"] * 3) + + warn = None if fill_method is None else FutureWarning + msg = ( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + "Series.pct_change are deprecated" + ) + with tm.assert_produces_warning(warn, match=msg): + result = s.pct_change(fill_method=fill_method) + + expected = Series([np.nan, np.nan, 1.0, 0.5, 2.0, 1.0], index=["a", "b"] * 3) + tm.assert_series_equal(result, expected) + + +def test_pct_change_no_warning_na_beginning(): + # GH#54981 + ser = Series([None, None, 1, 2, 3]) + result = ser.pct_change() + expected = Series([np.nan, np.nan, np.nan, 1, 0.5]) + tm.assert_series_equal(result, expected) + + +def test_pct_change_empty(): + # GH 57056 + ser = Series([], dtype="float64") + expected = ser.copy() + result = ser.pct_change(periods=0) + tm.assert_series_equal(expected, result) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py new file mode 100644 index 0000000000000000000000000000000000000000..7453f98ab3735e924dd7601622d23b4bafdd2176 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_pop.py @@ -0,0 +1,13 @@ +from pandas import Series +import pandas._testing as tm + + +def test_pop(): + # GH#6600 + ser = Series([0, 4, 0], index=["A", "B", "C"], name=4) + + result = ser.pop("B") + assert result == 4 + + expected = Series([0, 0], index=["A", "C"], name=4) + tm.assert_series_equal(ser, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py new file mode 100644 index 0000000000000000000000000000000000000000..fa0563271d7df7cb6fdb3f2f7ad807057313f4c2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_quantile.py @@ -0,0 +1,247 @@ +import numpy as np +import pytest + +from pandas.core.dtypes.common import is_integer + +import pandas as pd +from pandas import ( + Index, + Series, +) +import pandas._testing as tm +from pandas.core.indexes.datetimes import Timestamp + + +class TestSeriesQuantile: + def test_quantile(self, datetime_series): + q = datetime_series.quantile(0.1) + assert q == np.percentile(datetime_series.dropna(), 10) + + q = datetime_series.quantile(0.9) + assert q == np.percentile(datetime_series.dropna(), 90) + + # object dtype + q = Series(datetime_series, dtype=object).quantile(0.9) + assert q == np.percentile(datetime_series.dropna(), 90) + + # datetime64[ns] dtype + dts = datetime_series.index.to_series() + q = dts.quantile(0.2) + assert q == Timestamp("2000-01-10 19:12:00") + + # timedelta64[ns] dtype + tds = dts.diff() + q = tds.quantile(0.25) + assert q == pd.to_timedelta("24:00:00") + + # GH7661 + result = Series([np.timedelta64("NaT")]).sum() + assert result == pd.Timedelta(0) + + msg = "percentiles should all be in the interval \\[0, 1\\]" + for invalid in [-1, 2, [0.5, -1], [0.5, 2]]: + with pytest.raises(ValueError, match=msg): + datetime_series.quantile(invalid) + + s = Series(np.random.default_rng(2).standard_normal(100)) + percentile_array = [-0.5, 0.25, 1.5] + with pytest.raises(ValueError, match=msg): + s.quantile(percentile_array) + + def test_quantile_multi(self, datetime_series, unit): + datetime_series.index = datetime_series.index.as_unit(unit) + qs = [0.1, 0.9] + result = datetime_series.quantile(qs) + expected = Series( + [ + np.percentile(datetime_series.dropna(), 10), + np.percentile(datetime_series.dropna(), 90), + ], + index=qs, + name=datetime_series.name, + ) + tm.assert_series_equal(result, expected) + + dts = datetime_series.index.to_series() + dts.name = "xxx" + result = dts.quantile((0.2, 0.2)) + expected = Series( + [Timestamp("2000-01-10 19:12:00"), Timestamp("2000-01-10 19:12:00")], + index=[0.2, 0.2], + name="xxx", + dtype=f"M8[{unit}]", + ) + tm.assert_series_equal(result, expected) + + result = datetime_series.quantile([]) + expected = Series( + [], name=datetime_series.name, index=Index([], dtype=float), dtype="float64" + ) + tm.assert_series_equal(result, expected) + + def test_quantile_interpolation(self, datetime_series): + # see gh-10174 + + # interpolation = linear (default case) + q = datetime_series.quantile(0.1, interpolation="linear") + assert q == np.percentile(datetime_series.dropna(), 10) + q1 = datetime_series.quantile(0.1) + assert q1 == np.percentile(datetime_series.dropna(), 10) + + # test with and without interpolation keyword + assert q == q1 + + def test_quantile_interpolation_dtype(self): + # GH #10174 + + # interpolation = linear (default case) + q = Series([1, 3, 4]).quantile(0.5, interpolation="lower") + assert q == np.percentile(np.array([1, 3, 4]), 50) + assert is_integer(q) + + q = Series([1, 3, 4]).quantile(0.5, interpolation="higher") + assert q == np.percentile(np.array([1, 3, 4]), 50) + assert is_integer(q) + + def test_quantile_nan(self): + # GH 13098 + ser = Series([1, 2, 3, 4, np.nan]) + result = ser.quantile(0.5) + expected = 2.5 + assert result == expected + + # all nan/empty + s1 = Series([], dtype=object) + cases = [s1, Series([np.nan, np.nan])] + + for ser in cases: + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + tm.assert_series_equal(res, Series([np.nan], index=[0.5])) + + res = ser.quantile([0.2, 0.3]) + tm.assert_series_equal(res, Series([np.nan, np.nan], index=[0.2, 0.3])) + + @pytest.mark.parametrize( + "case", + [ + [ + Timestamp("2011-01-01"), + Timestamp("2011-01-02"), + Timestamp("2011-01-03"), + ], + [ + Timestamp("2011-01-01", tz="US/Eastern"), + Timestamp("2011-01-02", tz="US/Eastern"), + Timestamp("2011-01-03", tz="US/Eastern"), + ], + [pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days")], + # NaT + [ + Timestamp("2011-01-01"), + Timestamp("2011-01-02"), + Timestamp("2011-01-03"), + pd.NaT, + ], + [ + Timestamp("2011-01-01", tz="US/Eastern"), + Timestamp("2011-01-02", tz="US/Eastern"), + Timestamp("2011-01-03", tz="US/Eastern"), + pd.NaT, + ], + [ + pd.Timedelta("1 days"), + pd.Timedelta("2 days"), + pd.Timedelta("3 days"), + pd.NaT, + ], + ], + ) + def test_quantile_box(self, case): + ser = Series(case, name="XXX") + res = ser.quantile(0.5) + assert res == case[1] + + res = ser.quantile([0.5]) + exp = Series([case[1]], index=[0.5], name="XXX") + tm.assert_series_equal(res, exp) + + def test_datetime_timedelta_quantiles(self): + # covers #9694 + assert pd.isna(Series([], dtype="M8[ns]").quantile(0.5)) + assert pd.isna(Series([], dtype="m8[ns]").quantile(0.5)) + + def test_quantile_nat(self): + res = Series([pd.NaT, pd.NaT]).quantile(0.5) + assert res is pd.NaT + + res = Series([pd.NaT, pd.NaT]).quantile([0.5]) + tm.assert_series_equal(res, Series([pd.NaT], index=[0.5])) + + @pytest.mark.parametrize( + "values, dtype", + [([0, 0, 0, 1, 2, 3], "Sparse[int]"), ([0.0, None, 1.0, 2.0], "Sparse[float]")], + ) + def test_quantile_sparse(self, values, dtype): + ser = Series(values, dtype=dtype) + result = ser.quantile([0.5]) + expected = Series(np.asarray(ser)).quantile([0.5]).astype("Sparse[float]") + tm.assert_series_equal(result, expected) + + def test_quantile_empty_float64(self): + # floats + ser = Series([], dtype="float64") + + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + exp = Series([np.nan], index=[0.5]) + tm.assert_series_equal(res, exp) + + def test_quantile_empty_int64(self): + # int + ser = Series([], dtype="int64") + + res = ser.quantile(0.5) + assert np.isnan(res) + + res = ser.quantile([0.5]) + exp = Series([np.nan], index=[0.5]) + tm.assert_series_equal(res, exp) + + def test_quantile_empty_dt64(self): + # datetime + ser = Series([], dtype="datetime64[ns]") + + res = ser.quantile(0.5) + assert res is pd.NaT + + res = ser.quantile([0.5]) + exp = Series([pd.NaT], index=[0.5], dtype=ser.dtype) + tm.assert_series_equal(res, exp) + + @pytest.mark.parametrize("dtype", [int, float, "Int64"]) + def test_quantile_dtypes(self, dtype): + result = Series([1, 2, 3], dtype=dtype).quantile(np.arange(0, 1, 0.25)) + expected = Series(np.arange(1, 3, 0.5), index=np.arange(0, 1, 0.25)) + if dtype == "Int64": + expected = expected.astype("Float64") + tm.assert_series_equal(result, expected) + + def test_quantile_all_na(self, any_int_ea_dtype): + # GH#50681 + ser = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) + with tm.assert_produces_warning(None): + result = ser.quantile([0.1, 0.5]) + expected = Series([pd.NA, pd.NA], dtype=any_int_ea_dtype, index=[0.1, 0.5]) + tm.assert_series_equal(result, expected) + + def test_quantile_dtype_size(self, any_int_ea_dtype): + # GH#50681 + ser = Series([pd.NA, pd.NA, 1], dtype=any_int_ea_dtype) + result = ser.quantile([0.1, 0.5]) + expected = Series([1, 1], dtype=any_int_ea_dtype, index=[0.1, 0.5]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py new file mode 100644 index 0000000000000000000000000000000000000000..24cf97c05c0a810bac00a8843b21d0ee88a1c00d --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rank.py @@ -0,0 +1,519 @@ +from itertools import chain +import operator + +import numpy as np +import pytest + +from pandas._libs.algos import ( + Infinity, + NegInfinity, +) +import pandas.util._test_decorators as td + +from pandas import ( + NA, + NaT, + Series, + Timestamp, + date_range, +) +import pandas._testing as tm +from pandas.api.types import CategoricalDtype + + +@pytest.fixture +def ser(): + return Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]) + + +@pytest.fixture( + params=[ + ["average", np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5])], + ["min", np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5])], + ["max", np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6])], + ["first", np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6])], + ["dense", np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])], + ] +) +def results(request): + return request.param + + +@pytest.fixture( + params=[ + "object", + "float64", + "int64", + "Float64", + "Int64", + pytest.param("float64[pyarrow]", marks=td.skip_if_no("pyarrow")), + pytest.param("int64[pyarrow]", marks=td.skip_if_no("pyarrow")), + ] +) +def dtype(request): + return request.param + + +class TestSeriesRank: + def test_rank(self, datetime_series): + sp_stats = pytest.importorskip("scipy.stats") + + datetime_series[::2] = np.nan + datetime_series[:10:3] = 4.0 + + ranks = datetime_series.rank() + oranks = datetime_series.astype("O").rank() + + tm.assert_series_equal(ranks, oranks) + + mask = np.isnan(datetime_series) + filled = datetime_series.fillna(np.inf) + + # rankdata returns a ndarray + exp = Series(sp_stats.rankdata(filled), index=filled.index, name="ts") + exp[mask] = np.nan + + tm.assert_series_equal(ranks, exp) + + iseries = Series(np.arange(5).repeat(2)) + + iranks = iseries.rank() + exp = iseries.astype(float).rank() + tm.assert_series_equal(iranks, exp) + iseries = Series(np.arange(5)) + 1.0 + exp = iseries / 5.0 + iranks = iseries.rank(pct=True) + + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.repeat(1, 100)) + exp = Series(np.repeat(0.505, 100)) + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + # Explicit cast to float to avoid implicit cast when setting nan + iseries = iseries.astype("float") + iseries[1] = np.nan + exp = Series(np.repeat(50.0 / 99.0, 100)) + exp[1] = np.nan + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.arange(5)) + 1.0 + iseries[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series(np.repeat(np.nan, 100)) + exp = iseries.copy() + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + # Explicit cast to float to avoid implicit cast when setting nan + iseries = Series(np.arange(5), dtype="float") + 1 + iseries[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + rng = date_range("1/1/1990", periods=5) + # Explicit cast to float to avoid implicit cast when setting nan + iseries = Series(np.arange(5), rng, dtype="float") + 1 + iseries.iloc[4] = np.nan + exp = iseries / 4.0 + iranks = iseries.rank(pct=True) + tm.assert_series_equal(iranks, exp) + + iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1]) + exp = Series([2, 1, 3, 5, 4, 6.0]) + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + # GH 5968 + iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]") + exp = Series([3, 2, 1, np.nan]) + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + values = np.array( + [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40], + dtype="float64", + ) + random_order = np.random.default_rng(2).permutation(len(values)) + iseries = Series(values[random_order]) + exp = Series(random_order + 1.0, dtype="float64") + iranks = iseries.rank() + tm.assert_series_equal(iranks, exp) + + def test_rank_categorical(self): + # GH issue #15420 rank incorrectly orders ordered categories + + # Test ascending/descending ranking for ordered categoricals + exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) + exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) + ordered = Series( + ["first", "second", "third", "fourth", "fifth", "sixth"] + ).astype( + CategoricalDtype( + categories=["first", "second", "third", "fourth", "fifth", "sixth"], + ordered=True, + ) + ) + tm.assert_series_equal(ordered.rank(), exp) + tm.assert_series_equal(ordered.rank(ascending=False), exp_desc) + + # Unordered categoricals should be ranked as objects + unordered = Series( + ["first", "second", "third", "fourth", "fifth", "sixth"] + ).astype( + CategoricalDtype( + categories=["first", "second", "third", "fourth", "fifth", "sixth"], + ordered=False, + ) + ) + exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0]) + res = unordered.rank() + tm.assert_series_equal(res, exp_unordered) + + unordered1 = Series([1, 2, 3, 4, 5, 6]).astype( + CategoricalDtype([1, 2, 3, 4, 5, 6], False) + ) + exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) + res1 = unordered1.rank() + tm.assert_series_equal(res1, exp_unordered1) + + # Test na_option for rank data + na_ser = Series( + ["first", "second", "third", "fourth", "fifth", "sixth", np.nan] + ).astype( + CategoricalDtype( + ["first", "second", "third", "fourth", "fifth", "sixth", "seventh"], + True, + ) + ) + + exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0]) + exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) + exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top) + tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot) + tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep) + + # Test na_option for rank data with ascending False + exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) + exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0]) + exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top) + tm.assert_series_equal( + na_ser.rank(na_option="bottom", ascending=False), exp_bot + ) + tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep) + + # Test invalid values for na_option + msg = "na_option must be one of 'keep', 'top', or 'bottom'" + + with pytest.raises(ValueError, match=msg): + na_ser.rank(na_option="bad", ascending=False) + + # invalid type + with pytest.raises(ValueError, match=msg): + na_ser.rank(na_option=True, ascending=False) + + # Test with pct=True + na_ser = Series(["first", "second", "third", "fourth", np.nan]).astype( + CategoricalDtype(["first", "second", "third", "fourth"], True) + ) + exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2]) + exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0]) + exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.nan]) + + tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top) + tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot) + tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep) + + def test_rank_signature(self): + s = Series([0, 1]) + s.rank(method="average") + msg = "No axis named average for object type Series" + with pytest.raises(ValueError, match=msg): + s.rank("average") + + @pytest.mark.parametrize("dtype", [None, object]) + def test_rank_tie_methods(self, ser, results, dtype): + method, exp = results + ser = ser if dtype is None else ser.astype(dtype) + result = ser.rank(method=method) + tm.assert_series_equal(result, Series(exp)) + + @pytest.mark.parametrize("ascending", [True, False]) + @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) + @pytest.mark.parametrize("na_option", ["top", "bottom", "keep"]) + @pytest.mark.parametrize( + "dtype, na_value, pos_inf, neg_inf", + [ + ("object", None, Infinity(), NegInfinity()), + ("float64", np.nan, np.inf, -np.inf), + ("Float64", NA, np.inf, -np.inf), + pytest.param( + "float64[pyarrow]", + NA, + np.inf, + -np.inf, + marks=td.skip_if_no("pyarrow"), + ), + ], + ) + def test_rank_tie_methods_on_infs_nans( + self, method, na_option, ascending, dtype, na_value, pos_inf, neg_inf + ): + pytest.importorskip("scipy") + if dtype == "float64[pyarrow]": + if method == "average": + exp_dtype = "float64[pyarrow]" + else: + exp_dtype = "uint64[pyarrow]" + else: + exp_dtype = "float64" + + chunk = 3 + in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk + iseries = Series(in_arr, dtype=dtype) + exp_ranks = { + "average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]), + "min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]), + "max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]), + "first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]), + "dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]), + } + ranks = exp_ranks[method] + if na_option == "top": + order = [ranks[1], ranks[0], ranks[2]] + elif na_option == "bottom": + order = [ranks[0], ranks[2], ranks[1]] + else: + order = [ranks[0], [np.nan] * chunk, ranks[1]] + expected = order if ascending else order[::-1] + expected = list(chain.from_iterable(expected)) + result = iseries.rank(method=method, na_option=na_option, ascending=ascending) + tm.assert_series_equal(result, Series(expected, dtype=exp_dtype)) + + def test_rank_desc_mix_nans_infs(self): + # GH 19538 + # check descending ranking when mix nans and infs + iseries = Series([1, np.nan, np.inf, -np.inf, 25]) + result = iseries.rank(ascending=False) + exp = Series([3, np.nan, 1, 4, 2], dtype="float64") + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) + @pytest.mark.parametrize( + "op, value", + [ + [operator.add, 0], + [operator.add, 1e6], + [operator.mul, 1e-6], + ], + ) + def test_rank_methods_series(self, method, op, value): + sp_stats = pytest.importorskip("scipy.stats") + + xs = np.random.default_rng(2).standard_normal(9) + xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates + np.random.default_rng(2).shuffle(xs) + + index = [chr(ord("a") + i) for i in range(len(xs))] + vals = op(xs, value) + ts = Series(vals, index=index) + result = ts.rank(method=method) + sprank = sp_stats.rankdata(vals, method if method != "first" else "ordinal") + expected = Series(sprank, index=index).astype("float64") + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1]), + ([2], [1]), + ([0], [1]), + ([2, 2], [1, 1]), + ([1, 2, 3], [1, 2, 3]), + ([4, 2, 1], [3, 2, 1]), + ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]), + ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]), + ], + ) + def test_rank_dense_method(self, dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="dense") + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + def test_rank_descending(self, ser, results, dtype): + method, _ = results + if "i" in dtype: + s = ser.dropna() + else: + s = ser.astype(dtype) + + res = s.rank(ascending=False) + expected = (s.max() - s).rank() + tm.assert_series_equal(res, expected) + + expected = (s.max() - s).rank(method=method) + res2 = s.rank(method=method, ascending=False) + tm.assert_series_equal(res2, expected) + + def test_rank_int(self, ser, results): + method, exp = results + s = ser.dropna().astype("i8") + + result = s.rank(method=method) + expected = Series(exp).dropna() + expected.index = result.index + tm.assert_series_equal(result, expected) + + def test_rank_object_bug(self): + # GH 13445 + + # smoke tests + Series([np.nan] * 32).astype(object).rank(ascending=True) + Series([np.nan] * 32).astype(object).rank(ascending=False) + + def test_rank_modify_inplace(self): + # GH 18521 + # Check rank does not mutate series + s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT]) + expected = s.copy() + + s.rank() + result = s + tm.assert_series_equal(result, expected) + + def test_rank_ea_small_values(self): + # GH#52471 + ser = Series( + [5.4954145e29, -9.791984e-21, 9.3715776e-26, NA, 1.8790257e-28], + dtype="Float64", + ) + result = ser.rank(method="min") + expected = Series([4, 1, 3, np.nan, 2]) + tm.assert_series_equal(result, expected) + + +# GH15630, pct should be on 100% basis when method='dense' + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0, 1.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]), + ([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_dense_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="dense", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0 / 2, 1.0 / 2]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_min_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="min", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0, 1.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_max_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="max", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.5 / 2, 1.5 / 2]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_average_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="average", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "ser, exp", + [ + ([1], [1.0]), + ([1, 2], [1.0 / 2, 2.0 / 2]), + ([2, 2], [1.0 / 2, 2.0 / 2.0]), + ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]), + ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), + ([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]), + ([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]), + ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), + ], +) +def test_rank_first_pct(dtype, ser, exp): + s = Series(ser).astype(dtype) + result = s.rank(method="first", pct=True) + expected = Series(exp).astype(result.dtype) + tm.assert_series_equal(result, expected) + + +@pytest.mark.single_cpu +def test_pct_max_many_rows(): + # GH 18271 + s = Series(np.arange(2**24 + 1)) + result = s.rank(pct=True).max() + assert result == 1 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex.py new file mode 100644 index 0000000000000000000000000000000000000000..6f0c8d751a92ae1e0683ef8d5a96ed9c172d6f0f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex.py @@ -0,0 +1,448 @@ +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +import pandas.util._test_decorators as td + +from pandas import ( + NA, + Categorical, + Float64Dtype, + Index, + MultiIndex, + NaT, + Period, + PeriodIndex, + RangeIndex, + Series, + Timedelta, + Timestamp, + date_range, + isna, +) +import pandas._testing as tm + + +@pytest.mark.xfail( + using_pyarrow_string_dtype(), reason="share memory doesn't work for arrow" +) +def test_reindex(datetime_series, string_series): + identity = string_series.reindex(string_series.index) + + assert np.may_share_memory(string_series.index, identity.index) + + assert identity.index.is_(string_series.index) + assert identity.index.identical(string_series.index) + + subIndex = string_series.index[10:20] + subSeries = string_series.reindex(subIndex) + + for idx, val in subSeries.items(): + assert val == string_series[idx] + + subIndex2 = datetime_series.index[10:20] + subTS = datetime_series.reindex(subIndex2) + + for idx, val in subTS.items(): + assert val == datetime_series[idx] + stuffSeries = datetime_series.reindex(subIndex) + + assert np.isnan(stuffSeries).all() + + # This is extremely important for the Cython code to not screw up + nonContigIndex = datetime_series.index[::2] + subNonContig = datetime_series.reindex(nonContigIndex) + for idx, val in subNonContig.items(): + assert val == datetime_series[idx] + + # return a copy the same index here + result = datetime_series.reindex() + assert result is not datetime_series + + +def test_reindex_nan(): + ts = Series([2, 3, 5, 7], index=[1, 4, np.nan, 8]) + + i, j = [np.nan, 1, np.nan, 8, 4, np.nan], [2, 0, 2, 3, 1, 2] + tm.assert_series_equal(ts.reindex(i), ts.iloc[j]) + + ts.index = ts.index.astype("object") + + # reindex coerces index.dtype to float, loc/iloc doesn't + tm.assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) + + +def test_reindex_series_add_nat(): + rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s") + series = Series(rng) + + result = series.reindex(range(15)) + assert np.issubdtype(result.dtype, np.dtype("M8[ns]")) + + mask = result.isna() + assert mask[-5:].all() + assert not mask[:-5].any() + + +def test_reindex_with_datetimes(): + rng = date_range("1/1/2000", periods=20) + ts = Series(np.random.default_rng(2).standard_normal(20), index=rng) + + result = ts.reindex(list(ts.index[5:10])) + expected = ts[5:10] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + result = ts[list(ts.index[5:10])] + tm.assert_series_equal(result, expected) + + +def test_reindex_corner(datetime_series): + # (don't forget to fix this) I think it's fixed + empty = Series(index=[]) + empty.reindex(datetime_series.index, method="pad") # it works + + # corner case: pad empty series + reindexed = empty.reindex(datetime_series.index, method="pad") + + # pass non-Index + reindexed = datetime_series.reindex(list(datetime_series.index)) + datetime_series.index = datetime_series.index._with_freq(None) + tm.assert_series_equal(datetime_series, reindexed) + + # bad fill method + ts = datetime_series[::2] + msg = ( + r"Invalid fill method\. Expecting pad \(ffill\), backfill " + r"\(bfill\) or nearest\. Got foo" + ) + with pytest.raises(ValueError, match=msg): + ts.reindex(datetime_series.index, method="foo") + + +def test_reindex_pad(): + s = Series(np.arange(10), dtype="int64") + s2 = s[::2] + + reindexed = s2.reindex(s.index, method="pad") + reindexed2 = s2.reindex(s.index, method="ffill") + tm.assert_series_equal(reindexed, reindexed2) + + expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8]) + tm.assert_series_equal(reindexed, expected) + + +def test_reindex_pad2(): + # GH4604 + s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"]) + new_index = ["a", "g", "c", "f"] + expected = Series([1, 1, 3, 3], index=new_index) + + # this changes dtype because the ffill happens after + result = s.reindex(new_index).ffill() + tm.assert_series_equal(result, expected.astype("float64")) + + msg = "The 'downcast' keyword in ffill is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.reindex(new_index).ffill(downcast="infer") + tm.assert_series_equal(result, expected) + + expected = Series([1, 5, 3, 5], index=new_index) + result = s.reindex(new_index, method="ffill") + tm.assert_series_equal(result, expected) + + +def test_reindex_inference(): + # inference of new dtype + s = Series([True, False, False, True], index=list("abcd")) + new_index = "agc" + msg = "Downcasting object dtype arrays on" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.reindex(list(new_index)).ffill() + expected = Series([True, True, False], index=list(new_index)) + tm.assert_series_equal(result, expected) + + +def test_reindex_downcasting(): + # GH4618 shifted series downcasting + s = Series(False, index=range(5)) + msg = "Downcasting object dtype arrays on" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.shift(1).bfill() + expected = Series(False, index=range(5)) + tm.assert_series_equal(result, expected) + + +def test_reindex_nearest(): + s = Series(np.arange(10, dtype="int64")) + target = [0.1, 0.9, 1.5, 2.0] + result = s.reindex(target, method="nearest") + expected = Series(np.around(target).astype("int64"), target) + tm.assert_series_equal(expected, result) + + result = s.reindex(target, method="nearest", tolerance=0.2) + expected = Series([0, 1, np.nan, 2], target) + tm.assert_series_equal(expected, result) + + result = s.reindex(target, method="nearest", tolerance=[0.3, 0.01, 0.4, 3]) + expected = Series([0, np.nan, np.nan, 2], target) + tm.assert_series_equal(expected, result) + + +def test_reindex_int(datetime_series): + ts = datetime_series[::2] + int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) + + # this should work fine + reindexed_int = int_ts.reindex(datetime_series.index) + + # if NaNs introduced + assert reindexed_int.dtype == np.float64 + + # NO NaNs introduced + reindexed_int = int_ts.reindex(int_ts.index[::2]) + assert reindexed_int.dtype == np.dtype(int) + + +def test_reindex_bool(datetime_series): + # A series other than float, int, string, or object + ts = datetime_series[::2] + bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) + + # this should work fine + reindexed_bool = bool_ts.reindex(datetime_series.index) + + # if NaNs introduced + assert reindexed_bool.dtype == np.object_ + + # NO NaNs introduced + reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) + assert reindexed_bool.dtype == np.bool_ + + +def test_reindex_bool_pad(datetime_series): + # fail + ts = datetime_series[5:] + bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) + filled_bool = bool_ts.reindex(datetime_series.index, method="pad") + assert isna(filled_bool[:5]).all() + + +def test_reindex_categorical(): + index = date_range("20000101", periods=3) + + # reindexing to an invalid Categorical + s = Series(["a", "b", "c"], dtype="category") + result = s.reindex(index) + expected = Series( + Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"]) + ) + expected.index = index + tm.assert_series_equal(result, expected) + + # partial reindexing + expected = Series(Categorical(values=["b", "c"], categories=["a", "b", "c"])) + expected.index = [1, 2] + result = s.reindex([1, 2]) + tm.assert_series_equal(result, expected) + + expected = Series(Categorical(values=["c", np.nan], categories=["a", "b", "c"])) + expected.index = [2, 3] + result = s.reindex([2, 3]) + tm.assert_series_equal(result, expected) + + +def test_reindex_astype_order_consistency(): + # GH#17444 + ser = Series([1, 2, 3], index=[2, 0, 1]) + new_index = [0, 1, 2] + temp_dtype = "category" + new_dtype = str + result = ser.reindex(new_index).astype(temp_dtype).astype(new_dtype) + expected = ser.astype(temp_dtype).reindex(new_index).astype(new_dtype) + tm.assert_series_equal(result, expected) + + +def test_reindex_fill_value(): + # ----------------------------------------------------------- + # floats + floats = Series([1.0, 2.0, 3.0]) + result = floats.reindex([1, 2, 3]) + expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + result = floats.reindex([1, 2, 3], fill_value=0) + expected = Series([2.0, 3.0, 0], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + # ----------------------------------------------------------- + # ints + ints = Series([1, 2, 3]) + + result = ints.reindex([1, 2, 3]) + expected = Series([2.0, 3.0, np.nan], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + # don't upcast + result = ints.reindex([1, 2, 3], fill_value=0) + expected = Series([2, 3, 0], index=[1, 2, 3]) + assert issubclass(result.dtype.type, np.integer) + tm.assert_series_equal(result, expected) + + # ----------------------------------------------------------- + # objects + objects = Series([1, 2, 3], dtype=object) + + result = objects.reindex([1, 2, 3]) + expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) + tm.assert_series_equal(result, expected) + + result = objects.reindex([1, 2, 3], fill_value="foo") + expected = Series([2, 3, "foo"], index=[1, 2, 3], dtype=object) + tm.assert_series_equal(result, expected) + + # ------------------------------------------------------------ + # bools + bools = Series([True, False, True]) + + result = bools.reindex([1, 2, 3]) + expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) + tm.assert_series_equal(result, expected) + + result = bools.reindex([1, 2, 3], fill_value=False) + expected = Series([False, True, False], index=[1, 2, 3]) + tm.assert_series_equal(result, expected) + + +@td.skip_array_manager_not_yet_implemented +@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"]) +@pytest.mark.parametrize("fill_value", ["string", 0, Timedelta(0)]) +def test_reindex_fill_value_datetimelike_upcast(dtype, fill_value, using_array_manager): + # https://github.com/pandas-dev/pandas/issues/42921 + if dtype == "timedelta64[ns]" and fill_value == Timedelta(0): + # use the scalar that is not compatible with the dtype for this test + fill_value = Timestamp(0) + + ser = Series([NaT], dtype=dtype) + + result = ser.reindex([0, 1], fill_value=fill_value) + expected = Series([NaT, fill_value], index=[0, 1], dtype=object) + tm.assert_series_equal(result, expected) + + +def test_reindex_datetimeindexes_tz_naive_and_aware(): + # GH 8306 + idx = date_range("20131101", tz="America/Chicago", periods=7) + newidx = date_range("20131103", periods=10, freq="h") + s = Series(range(7), index=idx) + msg = ( + r"Cannot compare dtypes datetime64\[ns, America/Chicago\] " + r"and datetime64\[ns\]" + ) + with pytest.raises(TypeError, match=msg): + s.reindex(newidx, method="ffill") + + +def test_reindex_empty_series_tz_dtype(): + # GH 20869 + result = Series(dtype="datetime64[ns, UTC]").reindex([0, 1]) + expected = Series([NaT] * 2, dtype="datetime64[ns, UTC]") + tm.assert_equal(result, expected) + + +@pytest.mark.parametrize( + "p_values, o_values, values, expected_values", + [ + ( + [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")], + [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC"), "All"], + [1.0, 1.0], + [1.0, 1.0, np.nan], + ), + ( + [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")], + [Period("2019Q1", "Q-DEC"), Period("2019Q2", "Q-DEC")], + [1.0, 1.0], + [1.0, 1.0], + ), + ], +) +def test_reindex_periodindex_with_object(p_values, o_values, values, expected_values): + # GH#28337 + period_index = PeriodIndex(p_values) + object_index = Index(o_values) + + ser = Series(values, index=period_index) + result = ser.reindex(object_index) + expected = Series(expected_values, index=object_index) + tm.assert_series_equal(result, expected) + + +def test_reindex_too_many_args(): + # GH 40980 + ser = Series([1, 2]) + msg = r"reindex\(\) takes from 1 to 2 positional arguments but 3 were given" + with pytest.raises(TypeError, match=msg): + ser.reindex([2, 3], False) + + +def test_reindex_double_index(): + # GH 40980 + ser = Series([1, 2]) + msg = r"reindex\(\) got multiple values for argument 'index'" + with pytest.raises(TypeError, match=msg): + ser.reindex([2, 3], index=[3, 4]) + + +def test_reindex_no_posargs(): + # GH 40980 + ser = Series([1, 2]) + result = ser.reindex(index=[1, 0]) + expected = Series([2, 1], index=[1, 0]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]]) +def test_reindex_empty_with_level(values): + # GH41170 + ser = Series( + range(len(values[0])), index=MultiIndex.from_arrays(values), dtype="object" + ) + result = ser.reindex(np.array(["b"]), level=0) + expected = Series( + index=MultiIndex(levels=[["b"], values[1]], codes=[[], []]), dtype="object" + ) + tm.assert_series_equal(result, expected) + + +def test_reindex_missing_category(): + # GH#18185 + ser = Series([1, 2, 3, 1], dtype="category") + msg = r"Cannot setitem on a Categorical with a new category \(-1\)" + with pytest.raises(TypeError, match=msg): + ser.reindex([1, 2, 3, 4, 5], fill_value=-1) + + +def test_reindexing_with_float64_NA_log(): + # GH 47055 + s = Series([1.0, NA], dtype=Float64Dtype()) + s_reindex = s.reindex(range(3)) + result = s_reindex.values._data + expected = np.array([1, np.nan, np.nan]) + tm.assert_numpy_array_equal(result, expected) + with tm.assert_produces_warning(None): + result_log = np.log(s_reindex) + expected_log = Series([0, np.nan, np.nan], dtype=Float64Dtype()) + tm.assert_series_equal(result_log, expected_log) + + +@pytest.mark.parametrize("dtype", ["timedelta64", "datetime64"]) +def test_reindex_expand_nonnano_nat(dtype): + # GH 53497 + ser = Series(np.array([1], dtype=f"{dtype}[s]")) + result = ser.reindex(RangeIndex(2)) + expected = Series( + np.array([1, getattr(np, dtype)("nat", "s")], dtype=f"{dtype}[s]") + ) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py new file mode 100644 index 0000000000000000000000000000000000000000..7f24c778feb1b4556587773f711e21521efc537c --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reindex_like.py @@ -0,0 +1,41 @@ +from datetime import datetime + +import numpy as np + +from pandas import Series +import pandas._testing as tm + + +def test_reindex_like(datetime_series): + other = datetime_series[::2] + tm.assert_series_equal( + datetime_series.reindex(other.index), datetime_series.reindex_like(other) + ) + + # GH#7179 + day1 = datetime(2013, 3, 5) + day2 = datetime(2013, 5, 5) + day3 = datetime(2014, 3, 5) + + series1 = Series([5, None, None], [day1, day2, day3]) + series2 = Series([None, None], [day1, day3]) + + result = series1.reindex_like(series2, method="pad") + expected = Series([5, np.nan], index=[day1, day3]) + tm.assert_series_equal(result, expected) + + +def test_reindex_like_nearest(): + ser = Series(np.arange(10, dtype="int64")) + + target = [0.1, 0.9, 1.5, 2.0] + other = ser.reindex(target, method="nearest") + expected = Series(np.around(target).astype("int64"), target) + + result = ser.reindex_like(other, method="nearest") + tm.assert_series_equal(expected, result) + + result = ser.reindex_like(other, method="nearest", tolerance=1) + tm.assert_series_equal(expected, result) + result = ser.reindex_like(other, method="nearest", tolerance=[1, 2, 3, 4]) + tm.assert_series_equal(expected, result) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename.py new file mode 100644 index 0000000000000000000000000000000000000000..119654bd19b3fa1611499b9f5bbd4676cc372bc8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename.py @@ -0,0 +1,184 @@ +from datetime import datetime +import re + +import numpy as np +import pytest + +from pandas import ( + Index, + MultiIndex, + Series, + array, +) +import pandas._testing as tm + + +class TestRename: + def test_rename(self, datetime_series): + ts = datetime_series + renamer = lambda x: x.strftime("%Y%m%d") + renamed = ts.rename(renamer) + assert renamed.index[0] == renamer(ts.index[0]) + + # dict + rename_dict = dict(zip(ts.index, renamed.index)) + renamed2 = ts.rename(rename_dict) + tm.assert_series_equal(renamed, renamed2) + + def test_rename_partial_dict(self): + # partial dict + ser = Series(np.arange(4), index=["a", "b", "c", "d"], dtype="int64") + renamed = ser.rename({"b": "foo", "d": "bar"}) + tm.assert_index_equal(renamed.index, Index(["a", "foo", "c", "bar"])) + + def test_rename_retain_index_name(self): + # index with name + renamer = Series( + np.arange(4), index=Index(["a", "b", "c", "d"], name="name"), dtype="int64" + ) + renamed = renamer.rename({}) + assert renamed.index.name == renamer.index.name + + def test_rename_by_series(self): + ser = Series(range(5), name="foo") + renamer = Series({1: 10, 2: 20}) + result = ser.rename(renamer) + expected = Series(range(5), index=[0, 10, 20, 3, 4], name="foo") + tm.assert_series_equal(result, expected) + + def test_rename_set_name(self, using_infer_string): + ser = Series(range(4), index=list("abcd")) + for name in ["foo", 123, 123.0, datetime(2001, 11, 11), ("foo",)]: + result = ser.rename(name) + assert result.name == name + if using_infer_string: + tm.assert_extension_array_equal(result.index.values, ser.index.values) + else: + tm.assert_numpy_array_equal(result.index.values, ser.index.values) + assert ser.name is None + + def test_rename_set_name_inplace(self, using_infer_string): + ser = Series(range(3), index=list("abc")) + for name in ["foo", 123, 123.0, datetime(2001, 11, 11), ("foo",)]: + ser.rename(name, inplace=True) + assert ser.name == name + exp = np.array(["a", "b", "c"], dtype=np.object_) + if using_infer_string: + exp = array(exp, dtype="string[pyarrow_numpy]") + tm.assert_extension_array_equal(ser.index.values, exp) + else: + tm.assert_numpy_array_equal(ser.index.values, exp) + + def test_rename_axis_supported(self): + # Supporting axis for compatibility, detailed in GH-18589 + ser = Series(range(5)) + ser.rename({}, axis=0) + ser.rename({}, axis="index") + + with pytest.raises(ValueError, match="No axis named 5"): + ser.rename({}, axis=5) + + def test_rename_inplace(self, datetime_series): + renamer = lambda x: x.strftime("%Y%m%d") + expected = renamer(datetime_series.index[0]) + + datetime_series.rename(renamer, inplace=True) + assert datetime_series.index[0] == expected + + def test_rename_with_custom_indexer(self): + # GH 27814 + class MyIndexer: + pass + + ix = MyIndexer() + ser = Series([1, 2, 3]).rename(ix) + assert ser.name is ix + + def test_rename_with_custom_indexer_inplace(self): + # GH 27814 + class MyIndexer: + pass + + ix = MyIndexer() + ser = Series([1, 2, 3]) + ser.rename(ix, inplace=True) + assert ser.name is ix + + def test_rename_callable(self): + # GH 17407 + ser = Series(range(1, 6), index=Index(range(2, 7), name="IntIndex")) + result = ser.rename(str) + expected = ser.rename(lambda i: str(i)) + tm.assert_series_equal(result, expected) + + assert result.name == expected.name + + def test_rename_none(self): + # GH 40977 + ser = Series([1, 2], name="foo") + result = ser.rename(None) + expected = Series([1, 2]) + tm.assert_series_equal(result, expected) + + def test_rename_series_with_multiindex(self): + # issue #43659 + arrays = [ + ["bar", "baz", "baz", "foo", "qux"], + ["one", "one", "two", "two", "one"], + ] + + index = MultiIndex.from_arrays(arrays, names=["first", "second"]) + ser = Series(np.ones(5), index=index) + result = ser.rename(index={"one": "yes"}, level="second", errors="raise") + + arrays_expected = [ + ["bar", "baz", "baz", "foo", "qux"], + ["yes", "yes", "two", "two", "yes"], + ] + + index_expected = MultiIndex.from_arrays( + arrays_expected, names=["first", "second"] + ) + series_expected = Series(np.ones(5), index=index_expected) + + tm.assert_series_equal(result, series_expected) + + def test_rename_series_with_multiindex_keeps_ea_dtypes(self): + # GH21055 + arrays = [ + Index([1, 2, 3], dtype="Int64").astype("category"), + Index([1, 2, 3], dtype="Int64"), + ] + mi = MultiIndex.from_arrays(arrays, names=["A", "B"]) + ser = Series(1, index=mi) + result = ser.rename({1: 4}, level=1) + + arrays_expected = [ + Index([1, 2, 3], dtype="Int64").astype("category"), + Index([4, 2, 3], dtype="Int64"), + ] + mi_expected = MultiIndex.from_arrays(arrays_expected, names=["A", "B"]) + expected = Series(1, index=mi_expected) + + tm.assert_series_equal(result, expected) + + def test_rename_error_arg(self): + # GH 46889 + ser = Series(["foo", "bar"]) + match = re.escape("[2] not found in axis") + with pytest.raises(KeyError, match=match): + ser.rename({2: 9}, errors="raise") + + def test_rename_copy_false(self, using_copy_on_write, warn_copy_on_write): + # GH 46889 + ser = Series(["foo", "bar"]) + ser_orig = ser.copy() + shallow_copy = ser.rename({1: 9}, copy=False) + with tm.assert_cow_warning(warn_copy_on_write): + ser[0] = "foobar" + if using_copy_on_write: + assert ser_orig[0] == shallow_copy[0] + assert ser_orig[1] == shallow_copy[9] + else: + assert ser[0] == shallow_copy[0] + assert ser[1] == shallow_copy[9] diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py new file mode 100644 index 0000000000000000000000000000000000000000..58c095d697ede213be5c730e305bf1789810ac4a --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_rename_axis.py @@ -0,0 +1,47 @@ +import pytest + +from pandas import ( + Index, + MultiIndex, + Series, +) +import pandas._testing as tm + + +class TestSeriesRenameAxis: + def test_rename_axis_mapper(self): + # GH 19978 + mi = MultiIndex.from_product([["a", "b", "c"], [1, 2]], names=["ll", "nn"]) + ser = Series(list(range(len(mi))), index=mi) + + result = ser.rename_axis(index={"ll": "foo"}) + assert result.index.names == ["foo", "nn"] + + result = ser.rename_axis(index=str.upper, axis=0) + assert result.index.names == ["LL", "NN"] + + result = ser.rename_axis(index=["foo", "goo"]) + assert result.index.names == ["foo", "goo"] + + with pytest.raises(TypeError, match="unexpected"): + ser.rename_axis(columns="wrong") + + def test_rename_axis_inplace(self, datetime_series): + # GH 15704 + expected = datetime_series.rename_axis("foo") + result = datetime_series + no_return = result.rename_axis("foo", inplace=True) + + assert no_return is None + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("kwargs", [{"mapper": None}, {"index": None}, {}]) + def test_rename_axis_none(self, kwargs): + # GH 25034 + index = Index(list("abc"), name="foo") + ser = Series([1, 2, 3], index=index) + + result = ser.rename_axis(**kwargs) + expected_index = index.rename(None) if kwargs else index + expected = Series([1, 2, 3], index=expected_index) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_repeat.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_repeat.py new file mode 100644 index 0000000000000000000000000000000000000000..8ecc8052ff49c150444cf395b68e6163fb761775 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_repeat.py @@ -0,0 +1,40 @@ +import numpy as np +import pytest + +from pandas import ( + MultiIndex, + Series, +) +import pandas._testing as tm + + +class TestRepeat: + def test_repeat(self): + ser = Series(np.random.default_rng(2).standard_normal(3), index=["a", "b", "c"]) + + reps = ser.repeat(5) + exp = Series(ser.values.repeat(5), index=ser.index.values.repeat(5)) + tm.assert_series_equal(reps, exp) + + to_rep = [2, 3, 4] + reps = ser.repeat(to_rep) + exp = Series(ser.values.repeat(to_rep), index=ser.index.values.repeat(to_rep)) + tm.assert_series_equal(reps, exp) + + def test_numpy_repeat(self): + ser = Series(np.arange(3), name="x") + expected = Series( + ser.values.repeat(2), name="x", index=ser.index.values.repeat(2) + ) + tm.assert_series_equal(np.repeat(ser, 2), expected) + + msg = "the 'axis' parameter is not supported" + with pytest.raises(ValueError, match=msg): + np.repeat(ser, 2, axis=0) + + def test_repeat_with_multiindex(self): + # GH#9361, fixed by GH#7891 + m_idx = MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)]) + data = ["a", "b", "c", "d"] + m_df = Series(data, index=m_idx) + assert m_df.repeat(3).shape == (3 * len(data),) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py new file mode 100644 index 0000000000000000000000000000000000000000..b0f4e233ba5eba4de29b320bb7592c6b2671ebcd --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_replace.py @@ -0,0 +1,813 @@ +import re + +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +import pandas as pd +import pandas._testing as tm +from pandas.core.arrays import IntervalArray + + +class TestSeriesReplace: + def test_replace_explicit_none(self): + # GH#36984 if the user explicitly passes value=None, give it to them + ser = pd.Series([0, 0, ""], dtype=object) + result = ser.replace("", None) + expected = pd.Series([0, 0, None], dtype=object) + tm.assert_series_equal(result, expected) + + # Cast column 2 to object to avoid implicit cast when setting entry to "" + df = pd.DataFrame(np.zeros((3, 3))).astype({2: object}) + df.iloc[2, 2] = "" + result = df.replace("", None) + expected = pd.DataFrame( + { + 0: np.zeros(3), + 1: np.zeros(3), + 2: np.array([0.0, 0.0, None], dtype=object), + } + ) + assert expected.iloc[2, 2] is None + tm.assert_frame_equal(result, expected) + + # GH#19998 same thing with object dtype + ser = pd.Series([10, 20, 30, "a", "a", "b", "a"]) + result = ser.replace("a", None) + expected = pd.Series([10, 20, 30, None, None, "b", None]) + assert expected.iloc[-1] is None + tm.assert_series_equal(result, expected) + + def test_replace_noop_doesnt_downcast(self): + # GH#44498 + ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object) + res = ser.replace({np.nan: None}) # should be a no-op + tm.assert_series_equal(res, ser) + assert res.dtype == object + + # same thing but different calling convention + res = ser.replace(np.nan, None) + tm.assert_series_equal(res, ser) + assert res.dtype == object + + def test_replace(self): + N = 50 + ser = pd.Series(np.random.default_rng(2).standard_normal(N)) + ser[0:4] = np.nan + ser[6:10] = 0 + + # replace list with a single value + return_value = ser.replace([np.nan], -1, inplace=True) + assert return_value is None + + exp = ser.fillna(-1) + tm.assert_series_equal(ser, exp) + + rs = ser.replace(0.0, np.nan) + ser[ser == 0.0] = np.nan + tm.assert_series_equal(rs, ser) + + ser = pd.Series( + np.fabs(np.random.default_rng(2).standard_normal(N)), + pd.date_range("2020-01-01", periods=N), + dtype=object, + ) + ser[:5] = np.nan + ser[6:10] = "foo" + ser[20:30] = "bar" + + # replace list with a single value + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace([np.nan, "foo", "bar"], -1) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -1).all() + assert (rs[20:30] == -1).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -2).all() + assert (rs[20:30] == -3).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values with 2 lists + with tm.assert_produces_warning(FutureWarning, match=msg): + rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) + tm.assert_series_equal(rs, rs2) + + # replace inplace + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) + assert return_value is None + + assert (ser[:5] == -1).all() + assert (ser[6:10] == -1).all() + assert (ser[20:30] == -1).all() + + def test_replace_nan_with_inf(self): + ser = pd.Series([np.nan, 0, np.inf]) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + + ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT]) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + filled = ser.copy() + filled[4] = 0 + tm.assert_series_equal(ser.replace(np.inf, 0), filled) + + def test_replace_listlike_value_listlike_target(self, datetime_series): + ser = pd.Series(datetime_series.index) + tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) + + # malformed + msg = r"Replacement lists must match in length\. Expecting 3 got 2" + with pytest.raises(ValueError, match=msg): + ser.replace([1, 2, 3], [np.nan, 0]) + + # ser is dt64 so can't hold 1 or 2, so this replace is a no-op + result = ser.replace([1, 2], [np.nan, 0]) + tm.assert_series_equal(result, ser) + + ser = pd.Series([0, 1, 2, 3, 4]) + result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) + tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0])) + + def test_replace_gh5319(self): + # API change from 0.12? + # GH 5319 + ser = pd.Series([0, np.nan, 2, 3, 4]) + expected = ser.ffill() + msg = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace([np.nan]) + tm.assert_series_equal(result, expected) + + ser = pd.Series([0, np.nan, 2, 3, 4]) + expected = ser.ffill() + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace(np.nan) + tm.assert_series_equal(result, expected) + + def test_replace_datetime64(self): + # GH 5797 + ser = pd.Series(pd.date_range("20130101", periods=5)) + expected = ser.copy() + expected.loc[2] = pd.Timestamp("20120101") + result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")}) + tm.assert_series_equal(result, expected) + result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101")) + tm.assert_series_equal(result, expected) + + def test_replace_nat_with_tz(self): + # GH 11792: Test with replacing NaT in a list with tz data + ts = pd.Timestamp("2015/01/01", tz="UTC") + s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")]) + result = s.replace([np.nan, pd.NaT], pd.Timestamp.min) + expected = pd.Series([pd.Timestamp.min, ts], dtype=object) + tm.assert_series_equal(expected, result) + + def test_replace_timedelta_td64(self): + tdi = pd.timedelta_range(0, periods=5) + ser = pd.Series(tdi) + + # Using a single dict argument means we go through replace_list + result = ser.replace({ser[1]: ser[3]}) + + expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]]) + tm.assert_series_equal(result, expected) + + def test_replace_with_single_list(self): + ser = pd.Series([0, 1, 2, 3, 4]) + msg2 = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with tm.assert_produces_warning(FutureWarning, match=msg2): + result = ser.replace([1, 2, 3]) + tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4])) + + s = ser.copy() + with tm.assert_produces_warning(FutureWarning, match=msg2): + return_value = s.replace([1, 2, 3], inplace=True) + assert return_value is None + tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4])) + + # make sure things don't get corrupted when fillna call fails + s = ser.copy() + msg = ( + r"Invalid fill method\. Expecting pad \(ffill\) or backfill " + r"\(bfill\)\. Got crash_cymbal" + ) + msg3 = "The 'method' keyword in Series.replace is deprecated" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg3): + return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal") + assert return_value is None + tm.assert_series_equal(s, ser) + + def test_replace_mixed_types(self): + ser = pd.Series(np.arange(5), dtype="int64") + + def check_replace(to_rep, val, expected): + sc = ser.copy() + result = ser.replace(to_rep, val) + return_value = sc.replace(to_rep, val, inplace=True) + assert return_value is None + tm.assert_series_equal(expected, result) + tm.assert_series_equal(expected, sc) + + # 3.0 can still be held in our int64 series, so we do not upcast GH#44940 + tr, v = [3], [3.0] + check_replace(tr, v, ser) + # Note this matches what we get with the scalars 3 and 3.0 + check_replace(tr[0], v[0], ser) + + # MUST upcast to float + e = pd.Series([0, 1, 2, 3.5, 4]) + tr, v = [3], [3.5] + check_replace(tr, v, e) + + # casts to object + e = pd.Series([0, 1, 2, 3.5, "a"]) + tr, v = [3, 4], [3.5, "a"] + check_replace(tr, v, e) + + # again casts to object + e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")]) + tr, v = [3, 4], [3.5, pd.Timestamp("20130101")] + check_replace(tr, v, e) + + # casts to object + e = pd.Series([0, 1, 2, 3.5, True], dtype="object") + tr, v = [3, 4], [3.5, True] + check_replace(tr, v, e) + + # test an object with dates + floats + integers + strings + dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D")) + result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"]) + expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object) + tm.assert_series_equal(result, expected) + + def test_replace_bool_with_string_no_op(self): + s = pd.Series([True, False, True]) + result = s.replace("fun", "in-the-sun") + tm.assert_series_equal(s, result) + + def test_replace_bool_with_string(self): + # nonexistent elements + s = pd.Series([True, False, True]) + result = s.replace(True, "2u") + expected = pd.Series(["2u", False, "2u"]) + tm.assert_series_equal(expected, result) + + def test_replace_bool_with_bool(self): + s = pd.Series([True, False, True]) + result = s.replace(True, False) + expected = pd.Series([False] * len(s)) + tm.assert_series_equal(expected, result) + + def test_replace_with_dict_with_bool_keys(self): + s = pd.Series([True, False, True]) + result = s.replace({"asdf": "asdb", True: "yes"}) + expected = pd.Series(["yes", False, "yes"]) + tm.assert_series_equal(result, expected) + + def test_replace_Int_with_na(self, any_int_ea_dtype): + # GH 38267 + result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA) + expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) + tm.assert_series_equal(result, expected) + result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA) + result.replace(1, pd.NA, inplace=True) + tm.assert_series_equal(result, expected) + + def test_replace2(self): + N = 50 + ser = pd.Series( + np.fabs(np.random.default_rng(2).standard_normal(N)), + pd.date_range("2020-01-01", periods=N), + dtype=object, + ) + ser[:5] = np.nan + ser[6:10] = "foo" + ser[20:30] = "bar" + + # replace list with a single value + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace([np.nan, "foo", "bar"], -1) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -1).all() + assert (rs[20:30] == -1).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) + + assert (rs[:5] == -1).all() + assert (rs[6:10] == -2).all() + assert (rs[20:30] == -3).all() + assert (pd.isna(ser[:5])).all() + + # replace with different values with 2 lists + with tm.assert_produces_warning(FutureWarning, match=msg): + rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) + tm.assert_series_equal(rs, rs2) + + # replace inplace + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) + assert return_value is None + assert (ser[:5] == -1).all() + assert (ser[6:10] == -1).all() + assert (ser[20:30] == -1).all() + + @pytest.mark.parametrize("inplace", [True, False]) + def test_replace_cascade(self, inplace): + # Test that replaced values are not replaced again + # GH #50778 + ser = pd.Series([1, 2, 3]) + expected = pd.Series([2, 3, 4]) + + res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace) + if inplace: + tm.assert_series_equal(ser, expected) + else: + tm.assert_series_equal(res, expected) + + def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype): + # GH 32621, GH#44940 + ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype) + expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype) + result = ser.replace({"one": "1", "two": "2"}) + tm.assert_series_equal(expected, result) + + def test_replace_with_empty_dictlike(self): + # GH 15289 + s = pd.Series(list("abcd")) + tm.assert_series_equal(s, s.replace({})) + + empty_series = pd.Series([]) + tm.assert_series_equal(s, s.replace(empty_series)) + + def test_replace_string_with_number(self): + # GH 15743 + s = pd.Series([1, 2, 3]) + result = s.replace("2", np.nan) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(expected, result) + + def test_replace_replacer_equals_replacement(self): + # GH 20656 + # make sure all replacers are matching against original values + s = pd.Series(["a", "b"]) + expected = pd.Series(["b", "a"]) + result = s.replace({"a": "b", "b": "a"}) + tm.assert_series_equal(expected, result) + + def test_replace_unicode_with_number(self): + # GH 15743 + s = pd.Series([1, 2, 3]) + result = s.replace("2", np.nan) + expected = pd.Series([1, 2, 3]) + tm.assert_series_equal(expected, result) + + def test_replace_mixed_types_with_string(self): + # Testing mixed + s = pd.Series([1, 2, 3, "4", 4, 5]) + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s.replace([2, "4"], np.nan) + expected = pd.Series([1, np.nan, 3, np.nan, 4, 5]) + tm.assert_series_equal(expected, result) + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string") + @pytest.mark.parametrize( + "categorical, numeric", + [ + (pd.Categorical(["A"], categories=["A", "B"]), [1]), + (pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]), + ], + ) + def test_replace_categorical(self, categorical, numeric): + # GH 24971, GH#23305 + ser = pd.Series(categorical) + msg = "Downcasting behavior in `replace`" + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser.replace({"A": 1, "B": 2}) + expected = pd.Series(numeric).astype("category") + if 2 not in expected.cat.categories: + # i.e. categories should be [1, 2] even if there are no "B"s present + # GH#44940 + expected = expected.cat.add_categories(2) + tm.assert_series_equal(expected, result) + + @pytest.mark.parametrize( + "data, data_exp", [(["a", "b", "c"], ["b", "b", "c"]), (["a"], ["b"])] + ) + def test_replace_categorical_inplace(self, data, data_exp): + # GH 53358 + result = pd.Series(data, dtype="category") + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result.replace(to_replace="a", value="b", inplace=True) + expected = pd.Series(data_exp, dtype="category") + tm.assert_series_equal(result, expected) + + def test_replace_categorical_single(self): + # GH 26988 + dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific") + s = pd.Series(dti) + c = s.astype("category") + + expected = c.copy() + expected = expected.cat.add_categories("foo") + expected[2] = "foo" + expected = expected.cat.remove_unused_categories() + assert c[2] != "foo" + + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = c.replace(c[2], "foo") + tm.assert_series_equal(expected, result) + assert c[2] != "foo" # ensure non-inplace call does not alter original + + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = c.replace(c[2], "foo", inplace=True) + assert return_value is None + tm.assert_series_equal(expected, c) + + first_value = c[0] + msg = "with CategoricalDtype is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + return_value = c.replace(c[1], c[0], inplace=True) + assert return_value is None + assert c[0] == c[1] == first_value # test replacing with existing value + + def test_replace_with_no_overflowerror(self): + # GH 25616 + # casts to object without Exception from OverflowError + s = pd.Series([0, 1, 2, 3, 4]) + result = s.replace([3], ["100000000000000000000"]) + expected = pd.Series([0, 1, 2, "100000000000000000000", 4]) + tm.assert_series_equal(result, expected) + + s = pd.Series([0, "100000000000000000000", "100000000000000000001"]) + result = s.replace(["100000000000000000000"], [1]) + expected = pd.Series([0, 1, "100000000000000000001"]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, to_replace, exp", + [ + ([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]), + (["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]), + ], + ) + def test_replace_commutative(self, ser, to_replace, exp): + # GH 16051 + # DataFrame.replace() overwrites when values are non-numeric + + series = pd.Series(ser) + + expected = pd.Series(exp) + result = series.replace(to_replace) + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])] + ) + def test_replace_no_cast(self, ser, exp): + # GH 9113 + # BUG: replace int64 dtype with bool coerces to int64 + + series = pd.Series(ser) + result = series.replace(2, True) + expected = pd.Series(exp) + + tm.assert_series_equal(result, expected) + + def test_replace_invalid_to_replace(self): + # GH 18634 + # API: replace() should raise an exception if invalid argument is given + series = pd.Series(["a", "b", "c "]) + msg = ( + r"Expecting 'to_replace' to be either a scalar, array-like, " + r"dict or None, got invalid type.*" + ) + msg2 = ( + "Series.replace without 'value' and with non-dict-like " + "'to_replace' is deprecated" + ) + with pytest.raises(TypeError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=msg2): + series.replace(lambda x: x.strip()) + + @pytest.mark.parametrize("frame", [False, True]) + def test_replace_nonbool_regex(self, frame): + obj = pd.Series(["a", "b", "c "]) + if frame: + obj = obj.to_frame() + + msg = "'to_replace' must be 'None' if 'regex' is not a bool" + with pytest.raises(ValueError, match=msg): + obj.replace(to_replace=["a"], regex="foo") + + @pytest.mark.parametrize("frame", [False, True]) + def test_replace_empty_copy(self, frame): + obj = pd.Series([], dtype=np.float64) + if frame: + obj = obj.to_frame() + + res = obj.replace(4, 5, inplace=True) + assert res is None + + res = obj.replace(4, 5, inplace=False) + tm.assert_equal(res, obj) + assert res is not obj + + def test_replace_only_one_dictlike_arg(self, fixed_now_ts): + # GH#33340 + + ser = pd.Series([1, 2, "A", fixed_now_ts, True]) + to_replace = {0: 1, 2: "A"} + value = "foo" + msg = "Series.replace cannot use dict-like to_replace and non-None value" + with pytest.raises(ValueError, match=msg): + ser.replace(to_replace, value) + + to_replace = 1 + value = {0: "foo", 2: "bar"} + msg = "Series.replace cannot use dict-value and non-None to_replace" + with pytest.raises(ValueError, match=msg): + ser.replace(to_replace, value) + + def test_replace_extension_other(self, frame_or_series): + # https://github.com/pandas-dev/pandas/issues/34530 + obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64")) + result = obj.replace("", "") # no exception + # should not have changed dtype + tm.assert_equal(obj, result) + + def _check_replace_with_method(self, ser: pd.Series): + df = ser.to_frame() + + msg1 = "The 'method' keyword in Series.replace is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg1): + res = ser.replace(ser[1], method="pad") + expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype) + tm.assert_series_equal(res, expected) + + msg2 = "The 'method' keyword in DataFrame.replace is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg2): + res_df = df.replace(ser[1], method="pad") + tm.assert_frame_equal(res_df, expected.to_frame()) + + ser2 = ser.copy() + with tm.assert_produces_warning(FutureWarning, match=msg1): + res2 = ser2.replace(ser[1], method="pad", inplace=True) + assert res2 is None + tm.assert_series_equal(ser2, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg2): + res_df2 = df.replace(ser[1], method="pad", inplace=True) + assert res_df2 is None + tm.assert_frame_equal(df, expected.to_frame()) + + def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype): + arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype) + ser = pd.Series(arr) + + self._check_replace_with_method(ser) + + @pytest.mark.parametrize("as_categorical", [True, False]) + def test_replace_interval_with_method(self, as_categorical): + # in particular interval that can't hold NA + + idx = pd.IntervalIndex.from_breaks(range(4)) + ser = pd.Series(idx) + if as_categorical: + ser = ser.astype("category") + + self._check_replace_with_method(ser) + + @pytest.mark.parametrize("as_period", [True, False]) + @pytest.mark.parametrize("as_categorical", [True, False]) + def test_replace_datetimelike_with_method(self, as_period, as_categorical): + idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific") + if as_period: + idx = idx.tz_localize(None).to_period("D") + + ser = pd.Series(idx) + ser.iloc[-2] = pd.NaT + if as_categorical: + ser = ser.astype("category") + + self._check_replace_with_method(ser) + + def test_replace_with_compiled_regex(self): + # https://github.com/pandas-dev/pandas/issues/35680 + s = pd.Series(["a", "b", "c"]) + regex = re.compile("^a$") + result = s.replace({regex: "z"}, regex=True) + expected = pd.Series(["z", "b", "c"]) + tm.assert_series_equal(result, expected) + + def test_pandas_replace_na(self): + # GH#43344 + ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string") + regex_mapping = { + "AA": "CC", + "BB": "CC", + "EE": "CC", + "CC": "CC-REPL", + } + result = ser.replace(regex_mapping, regex=True) + exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string") + tm.assert_series_equal(result, exp) + + @pytest.mark.parametrize( + "dtype, input_data, to_replace, expected_data", + [ + ("bool", [True, False], {True: False}, [False, False]), + ("int64", [1, 2], {1: 10, 2: 20}, [10, 20]), + ("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]), + ("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]), + ("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]), + ("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]), + ( + pd.IntervalDtype("int64"), + IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]), + {pd.Interval(1, 2): pd.Interval(10, 20)}, + IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]), + ), + ( + pd.IntervalDtype("float64"), + IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]), + {pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)}, + IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]), + ), + ( + pd.PeriodDtype("M"), + [pd.Period("2020-05", freq="M")], + {pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")}, + [pd.Period("2020-06", freq="M")], + ), + ], + ) + def test_replace_dtype(self, dtype, input_data, to_replace, expected_data): + # GH#33484 + ser = pd.Series(input_data, dtype=dtype) + result = ser.replace(to_replace) + expected = pd.Series(expected_data, dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_replace_string_dtype(self): + # GH#40732, GH#44940 + ser = pd.Series(["one", "two", np.nan], dtype="string") + res = ser.replace({"one": "1", "two": "2"}) + expected = pd.Series(["1", "2", np.nan], dtype="string") + tm.assert_series_equal(res, expected) + + # GH#31644 + ser2 = pd.Series(["A", np.nan], dtype="string") + res2 = ser2.replace("A", "B") + expected2 = pd.Series(["B", np.nan], dtype="string") + tm.assert_series_equal(res2, expected2) + + ser3 = pd.Series(["A", "B"], dtype="string") + res3 = ser3.replace("A", pd.NA) + expected3 = pd.Series([pd.NA, "B"], dtype="string") + tm.assert_series_equal(res3, expected3) + + def test_replace_string_dtype_list_to_replace(self): + # GH#41215, GH#44940 + ser = pd.Series(["abc", "def"], dtype="string") + res = ser.replace(["abc", "any other string"], "xyz") + expected = pd.Series(["xyz", "def"], dtype="string") + tm.assert_series_equal(res, expected) + + def test_replace_string_dtype_regex(self): + # GH#31644 + ser = pd.Series(["A", "B"], dtype="string") + res = ser.replace(r".", "C", regex=True) + expected = pd.Series(["C", "C"], dtype="string") + tm.assert_series_equal(res, expected) + + def test_replace_nullable_numeric(self): + # GH#40732, GH#44940 + + floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype()) + assert floats.replace({1.0: 9}).dtype == floats.dtype + assert floats.replace(1.0, 9).dtype == floats.dtype + assert floats.replace({1.0: 9.0}).dtype == floats.dtype + assert floats.replace(1.0, 9.0).dtype == floats.dtype + + res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0]) + assert res.dtype == floats.dtype + + ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype()) + assert ints.replace({1: 9}).dtype == ints.dtype + assert ints.replace(1, 9).dtype == ints.dtype + assert ints.replace({1: 9.0}).dtype == ints.dtype + assert ints.replace(1, 9.0).dtype == ints.dtype + + # nullable (for now) raises instead of casting + with pytest.raises(TypeError, match="Invalid value"): + ints.replace({1: 9.5}) + with pytest.raises(TypeError, match="Invalid value"): + ints.replace(1, 9.5) + + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 1 in string") + @pytest.mark.parametrize("regex", [False, True]) + def test_replace_regex_dtype_series(self, regex): + # GH-48644 + series = pd.Series(["0"]) + expected = pd.Series([1]) + msg = "Downcasting behavior in `replace`" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = series.replace(to_replace="0", value=1, regex=regex) + tm.assert_series_equal(result, expected) + + def test_replace_different_int_types(self, any_int_numpy_dtype): + # GH#45311 + labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype) + + maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype) + map_dict = dict(zip(maps.values, maps.index)) + + result = labs.replace(map_dict) + expected = labs.replace({0: 0, 2: 1, 1: 2}) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("val", [2, np.nan, 2.0]) + def test_replace_value_none_dtype_numeric(self, val): + # GH#48231 + ser = pd.Series([1, val]) + result = ser.replace(val, None) + expected = pd.Series([1, None], dtype=object) + tm.assert_series_equal(result, expected) + + def test_replace_change_dtype_series(self, using_infer_string): + # GH#25797 + df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]}) + warn = FutureWarning if using_infer_string else None + with tm.assert_produces_warning(warn, match="Downcasting"): + df["Test"] = df["Test"].replace([True], [np.nan]) + expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]}) + tm.assert_frame_equal(df, expected) + + df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]}) + df["Test"] = df["Test"].replace([None], [np.nan]) + tm.assert_frame_equal(df, expected) + + df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]}) + df["Test"] = df["Test"].fillna(np.nan) + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize("dtype", ["object", "Int64"]) + def test_replace_na_in_obj_column(self, dtype): + # GH#47480 + ser = pd.Series([0, 1, pd.NA], dtype=dtype) + expected = pd.Series([0, 2, pd.NA], dtype=dtype) + result = ser.replace(to_replace=1, value=2) + tm.assert_series_equal(result, expected) + + ser.replace(to_replace=1, value=2, inplace=True) + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize("val", [0, 0.5]) + def test_replace_numeric_column_with_na(self, val): + # GH#50758 + ser = pd.Series([val, 1]) + expected = pd.Series([val, pd.NA]) + result = ser.replace(to_replace=1, value=pd.NA) + tm.assert_series_equal(result, expected) + + ser.replace(to_replace=1, value=pd.NA, inplace=True) + tm.assert_series_equal(ser, expected) + + def test_replace_ea_float_with_bool(self): + # GH#55398 + ser = pd.Series([0.0], dtype="Float64") + expected = ser.copy() + result = ser.replace(False, 1.0) + tm.assert_series_equal(result, expected) + + ser = pd.Series([False], dtype="boolean") + expected = ser.copy() + result = ser.replace(0.0, True) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py new file mode 100644 index 0000000000000000000000000000000000000000..48e2608a1032a0664f7b6b3cb2c354e7f7c531f6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_reset_index.py @@ -0,0 +1,225 @@ +from datetime import datetime + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + RangeIndex, + Series, + date_range, + option_context, +) +import pandas._testing as tm + + +class TestResetIndex: + def test_reset_index_dti_round_trip(self): + dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) + d1 = DataFrame({"v": np.random.default_rng(2).random(len(dti))}, index=dti) + d2 = d1.reset_index() + assert d2.dtypes.iloc[0] == np.dtype("M8[ns]") + d3 = d2.set_index("index") + tm.assert_frame_equal(d1, d3, check_names=False) + + # GH#2329 + stamp = datetime(2012, 11, 22) + df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) + df = df.set_index("Date") + + assert df.index[0] == stamp + assert df.reset_index()["Date"].iloc[0] == stamp + + def test_reset_index(self): + df = DataFrame( + 1.1 * np.arange(120).reshape((30, 4)), + columns=Index(list("ABCD"), dtype=object), + index=Index([f"i-{i}" for i in range(30)], dtype=object), + )[:5] + ser = df.stack(future_stack=True) + ser.index.names = ["hash", "category"] + + ser.name = "value" + df = ser.reset_index() + assert "value" in df + + df = ser.reset_index(name="value2") + assert "value2" in df + + # check inplace + s = ser.reset_index(drop=True) + s2 = ser + return_value = s2.reset_index(drop=True, inplace=True) + assert return_value is None + tm.assert_series_equal(s, s2) + + # level + index = MultiIndex( + levels=[["bar"], ["one", "two", "three"], [0, 1]], + codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + s = Series(np.random.default_rng(2).standard_normal(6), index=index) + rs = s.reset_index(level=1) + assert len(rs.columns) == 2 + + rs = s.reset_index(level=[0, 2], drop=True) + tm.assert_index_equal(rs.index, Index(index.get_level_values(1))) + assert isinstance(rs, Series) + + def test_reset_index_name(self): + s = Series([1, 2, 3], index=Index(range(3), name="x")) + assert s.reset_index().index.name is None + assert s.reset_index(drop=True).index.name is None + + def test_reset_index_level(self): + df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) + + for levels in ["A", "B"], [0, 1]: + # With MultiIndex + s = df.set_index(["A", "B"])["C"] + + result = s.reset_index(level=levels[0]) + tm.assert_frame_equal(result, df.set_index("B")) + + result = s.reset_index(level=levels[:1]) + tm.assert_frame_equal(result, df.set_index("B")) + + result = s.reset_index(level=levels) + tm.assert_frame_equal(result, df) + + result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) + tm.assert_frame_equal(result, df[["C"]]) + + with pytest.raises(KeyError, match="Level E "): + s.reset_index(level=["A", "E"]) + + # With single-level Index + s = df.set_index("A")["B"] + + result = s.reset_index(level=levels[0]) + tm.assert_frame_equal(result, df[["A", "B"]]) + + result = s.reset_index(level=levels[:1]) + tm.assert_frame_equal(result, df[["A", "B"]]) + + result = s.reset_index(level=levels[0], drop=True) + tm.assert_series_equal(result, df["B"]) + + with pytest.raises(IndexError, match="Too many levels"): + s.reset_index(level=[0, 1, 2]) + + # Check that .reset_index([],drop=True) doesn't fail + result = Series(range(4)).reset_index([], drop=True) + expected = Series(range(4)) + tm.assert_series_equal(result, expected) + + def test_reset_index_range(self): + # GH 12071 + s = Series(range(2), name="A", dtype="int64") + series_result = s.reset_index() + assert isinstance(series_result.index, RangeIndex) + series_expected = DataFrame( + [[0, 0], [1, 1]], columns=["index", "A"], index=RangeIndex(stop=2) + ) + tm.assert_frame_equal(series_result, series_expected) + + def test_reset_index_drop_errors(self): + # GH 20925 + + # KeyError raised for series index when passed level name is missing + s = Series(range(4)) + with pytest.raises(KeyError, match="does not match index name"): + s.reset_index("wrong", drop=True) + with pytest.raises(KeyError, match="does not match index name"): + s.reset_index("wrong") + + # KeyError raised for series when level to be dropped is missing + s = Series(range(4), index=MultiIndex.from_product([[1, 2]] * 2)) + with pytest.raises(KeyError, match="not found"): + s.reset_index("wrong", drop=True) + + def test_reset_index_with_drop(self): + arrays = [ + ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + tuples = zip(*arrays) + index = MultiIndex.from_tuples(tuples) + data = np.random.default_rng(2).standard_normal(8) + ser = Series(data, index=index) + ser.iloc[3] = np.nan + + deleveled = ser.reset_index() + assert isinstance(deleveled, DataFrame) + assert len(deleveled.columns) == len(ser.index.levels) + 1 + assert deleveled.index.name == ser.index.name + + deleveled = ser.reset_index(drop=True) + assert isinstance(deleveled, Series) + assert deleveled.index.name == ser.index.name + + def test_reset_index_inplace_and_drop_ignore_name(self): + # GH#44575 + ser = Series(range(2), name="old") + ser.reset_index(name="new", drop=True, inplace=True) + expected = Series(range(2), name="old") + tm.assert_series_equal(ser, expected) + + def test_reset_index_drop_infer_string(self): + # GH#56160 + pytest.importorskip("pyarrow") + ser = Series(["a", "b", "c"], dtype=object) + with option_context("future.infer_string", True): + result = ser.reset_index(drop=True) + tm.assert_series_equal(result, ser) + + +@pytest.mark.parametrize( + "array, dtype", + [ + (["a", "b"], object), + ( + pd.period_range("12-1-2000", periods=2, freq="Q-DEC"), + pd.PeriodDtype(freq="Q-DEC"), + ), + ], +) +def test_reset_index_dtypes_on_empty_series_with_multiindex( + array, dtype, using_infer_string +): + # GH 19602 - Preserve dtype on empty Series with MultiIndex + idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array]) + result = Series(dtype=object, index=idx)[:0].reset_index().dtypes + exp = "string" if using_infer_string else object + expected = Series( + { + "level_0": np.int64, + "level_1": np.float64, + "level_2": exp if dtype == object else dtype, + 0: object, + } + ) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "names, expected_names", + [ + (["A", "A"], ["A", "A"]), + (["level_1", None], ["level_1", "level_1"]), + ], +) +@pytest.mark.parametrize("allow_duplicates", [False, True]) +def test_column_name_duplicates(names, expected_names, allow_duplicates): + # GH#44755 reset_index with duplicate column labels + s = Series([1], index=MultiIndex.from_arrays([[1], [1]], names=names)) + if allow_duplicates: + result = s.reset_index(allow_duplicates=True) + expected = DataFrame([[1, 1, 1]], columns=expected_names + [0]) + tm.assert_frame_equal(result, expected) + else: + with pytest.raises(ValueError, match="cannot insert"): + s.reset_index() diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py new file mode 100644 index 0000000000000000000000000000000000000000..c330b7a7dfbbba7f68d5da6d038e6f85f9eedcb4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_round.py @@ -0,0 +1,74 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + + +class TestSeriesRound: + def test_round(self, datetime_series): + datetime_series.index.name = "index_name" + result = datetime_series.round(2) + expected = Series( + np.round(datetime_series.values, 2), index=datetime_series.index, name="ts" + ) + tm.assert_series_equal(result, expected) + assert result.name == datetime_series.name + + def test_round_numpy(self, any_float_dtype): + # See GH#12600 + ser = Series([1.53, 1.36, 0.06], dtype=any_float_dtype) + out = np.round(ser, decimals=0) + expected = Series([2.0, 1.0, 0.0], dtype=any_float_dtype) + tm.assert_series_equal(out, expected) + + msg = "the 'out' parameter is not supported" + with pytest.raises(ValueError, match=msg): + np.round(ser, decimals=0, out=ser) + + def test_round_numpy_with_nan(self, any_float_dtype): + # See GH#14197 + ser = Series([1.53, np.nan, 0.06], dtype=any_float_dtype) + with tm.assert_produces_warning(None): + result = ser.round() + expected = Series([2.0, np.nan, 0.0], dtype=any_float_dtype) + tm.assert_series_equal(result, expected) + + def test_round_builtin(self, any_float_dtype): + ser = Series( + [1.123, 2.123, 3.123], + index=range(3), + dtype=any_float_dtype, + ) + result = round(ser) + expected_rounded0 = Series( + [1.0, 2.0, 3.0], index=range(3), dtype=any_float_dtype + ) + tm.assert_series_equal(result, expected_rounded0) + + decimals = 2 + expected_rounded = Series( + [1.12, 2.12, 3.12], index=range(3), dtype=any_float_dtype + ) + result = round(ser, decimals) + tm.assert_series_equal(result, expected_rounded) + + @pytest.mark.parametrize("method", ["round", "floor", "ceil"]) + @pytest.mark.parametrize("freq", ["s", "5s", "min", "5min", "h", "5h"]) + def test_round_nat(self, method, freq, unit): + # GH14940, GH#56158 + ser = Series([pd.NaT], dtype=f"M8[{unit}]") + expected = Series(pd.NaT, dtype=f"M8[{unit}]") + round_method = getattr(ser.dt, method) + result = round_method(freq) + tm.assert_series_equal(result, expected) + + def test_round_ea_boolean(self): + # GH#55936 + ser = Series([True, False], dtype="boolean") + expected = ser.copy() + result = ser.round(2) + tm.assert_series_equal(result, expected) + result.iloc[0] = False + tm.assert_series_equal(ser, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py new file mode 100644 index 0000000000000000000000000000000000000000..239496052b99b42df262262a9ac89b71c93e0a26 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_searchsorted.py @@ -0,0 +1,77 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Series, + Timestamp, + date_range, +) +import pandas._testing as tm +from pandas.api.types import is_scalar + + +class TestSeriesSearchSorted: + def test_searchsorted(self): + ser = Series([1, 2, 3]) + + result = ser.searchsorted(1, side="left") + assert is_scalar(result) + assert result == 0 + + result = ser.searchsorted(1, side="right") + assert is_scalar(result) + assert result == 1 + + def test_searchsorted_numeric_dtypes_scalar(self): + ser = Series([1, 2, 90, 1000, 3e9]) + res = ser.searchsorted(30) + assert is_scalar(res) + assert res == 2 + + res = ser.searchsorted([30]) + exp = np.array([2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_numeric_dtypes_vector(self): + ser = Series([1, 2, 90, 1000, 3e9]) + res = ser.searchsorted([91, 2e6]) + exp = np.array([3, 4], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_datetime64_scalar(self): + ser = Series(date_range("20120101", periods=10, freq="2D")) + val = Timestamp("20120102") + res = ser.searchsorted(val) + assert is_scalar(res) + assert res == 1 + + def test_searchsorted_datetime64_scalar_mixed_timezones(self): + # GH 30086 + ser = Series(date_range("20120101", periods=10, freq="2D", tz="UTC")) + val = Timestamp("20120102", tz="America/New_York") + res = ser.searchsorted(val) + assert is_scalar(res) + assert res == 1 + + def test_searchsorted_datetime64_list(self): + ser = Series(date_range("20120101", periods=10, freq="2D")) + vals = [Timestamp("20120102"), Timestamp("20120104")] + res = ser.searchsorted(vals) + exp = np.array([1, 2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_sorter(self): + # GH8490 + ser = Series([3, 1, 2]) + res = ser.searchsorted([0, 3], sorter=np.argsort(ser)) + exp = np.array([0, 2], dtype=np.intp) + tm.assert_numpy_array_equal(res, exp) + + def test_searchsorted_dataframe_fail(self): + # GH#49620 + ser = Series([1, 2, 3, 4, 5]) + vals = pd.DataFrame([[1, 2], [3, 4]]) + msg = "Value must be 1-D array-like or scalar, DataFrame is not supported" + with pytest.raises(ValueError, match=msg): + ser.searchsorted(vals) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py new file mode 100644 index 0000000000000000000000000000000000000000..cbc8ebde7a8ab79fabe94781123844c856c9c78b --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_set_name.py @@ -0,0 +1,21 @@ +from datetime import datetime + +from pandas import Series + + +class TestSetName: + def test_set_name(self): + ser = Series([1, 2, 3]) + ser2 = ser._set_name("foo") + assert ser2.name == "foo" + assert ser.name is None + assert ser is not ser2 + + def test_set_name_attribute(self): + ser = Series([1, 2, 3]) + ser2 = Series([1, 2, 3], name="bar") + for name in [7, 7.0, "name", datetime(2001, 1, 1), (1,), "\u05D0"]: + ser.name = name + assert ser.name == name + ser2.name = name + assert ser2.name == name diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py new file mode 100644 index 0000000000000000000000000000000000000000..20a454996fa4488501d6f623ad3afc6fa38e5634 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_size.py @@ -0,0 +1,22 @@ +import pytest + +from pandas import Series + + +@pytest.mark.parametrize( + "data, index, expected", + [ + ([1, 2, 3], None, 3), + ({"a": 1, "b": 2, "c": 3}, None, 3), + ([1, 2, 3], ["x", "y", "z"], 3), + ([1, 2, 3, 4, 5], ["x", "y", "z", "w", "n"], 5), + ([1, 2, 3], None, 3), + ([1, 2, 3], ["x", "y", "z"], 3), + ([1, 2, 3, 4], ["x", "y", "z", "w"], 4), + ], +) +def test_series(data, index, expected): + # GH#52897 + ser = Series(data, index=index) + assert ser.size == expected + assert isinstance(ser.size, int) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_index.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_index.py new file mode 100644 index 0000000000000000000000000000000000000000..d6817aa179b7bd040e89468c960b2eb3f0259003 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_index.py @@ -0,0 +1,337 @@ +import numpy as np +import pytest + +from pandas import ( + DatetimeIndex, + IntervalIndex, + MultiIndex, + Series, +) +import pandas._testing as tm + + +@pytest.fixture(params=["quicksort", "mergesort", "heapsort", "stable"]) +def sort_kind(request): + return request.param + + +class TestSeriesSortIndex: + def test_sort_index_name(self, datetime_series): + result = datetime_series.sort_index(ascending=False) + assert result.name == datetime_series.name + + def test_sort_index(self, datetime_series): + datetime_series.index = datetime_series.index._with_freq(None) + + rindex = list(datetime_series.index) + np.random.default_rng(2).shuffle(rindex) + + random_order = datetime_series.reindex(rindex) + sorted_series = random_order.sort_index() + tm.assert_series_equal(sorted_series, datetime_series) + + # descending + sorted_series = random_order.sort_index(ascending=False) + tm.assert_series_equal( + sorted_series, datetime_series.reindex(datetime_series.index[::-1]) + ) + + # compat on level + sorted_series = random_order.sort_index(level=0) + tm.assert_series_equal(sorted_series, datetime_series) + + # compat on axis + sorted_series = random_order.sort_index(axis=0) + tm.assert_series_equal(sorted_series, datetime_series) + + msg = "No axis named 1 for object type Series" + with pytest.raises(ValueError, match=msg): + random_order.sort_values(axis=1) + + sorted_series = random_order.sort_index(level=0, axis=0) + tm.assert_series_equal(sorted_series, datetime_series) + + with pytest.raises(ValueError, match=msg): + random_order.sort_index(level=0, axis=1) + + def test_sort_index_inplace(self, datetime_series): + datetime_series.index = datetime_series.index._with_freq(None) + + # For GH#11402 + rindex = list(datetime_series.index) + np.random.default_rng(2).shuffle(rindex) + + # descending + random_order = datetime_series.reindex(rindex) + result = random_order.sort_index(ascending=False, inplace=True) + + assert result is None + expected = datetime_series.reindex(datetime_series.index[::-1]) + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(random_order, expected) + + # ascending + random_order = datetime_series.reindex(rindex) + result = random_order.sort_index(ascending=True, inplace=True) + + assert result is None + expected = datetime_series.copy() + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(random_order, expected) + + def test_sort_index_level(self): + mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) + s = Series([1, 2], mi) + backwards = s.iloc[[1, 0]] + + res = s.sort_index(level="A") + tm.assert_series_equal(backwards, res) + + res = s.sort_index(level=["A", "B"]) + tm.assert_series_equal(backwards, res) + + res = s.sort_index(level="A", sort_remaining=False) + tm.assert_series_equal(s, res) + + res = s.sort_index(level=["A", "B"], sort_remaining=False) + tm.assert_series_equal(s, res) + + @pytest.mark.parametrize("level", ["A", 0]) # GH#21052 + def test_sort_index_multiindex(self, level): + mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) + s = Series([1, 2], mi) + backwards = s.iloc[[1, 0]] + + # implicit sort_remaining=True + res = s.sort_index(level=level) + tm.assert_series_equal(backwards, res) + + # GH#13496 + # sort has no effect without remaining lvls + res = s.sort_index(level=level, sort_remaining=False) + tm.assert_series_equal(s, res) + + def test_sort_index_kind(self, sort_kind): + # GH#14444 & GH#13589: Add support for sort algo choosing + series = Series(index=[3, 2, 1, 4, 3], dtype=object) + expected_series = Series(index=[1, 2, 3, 3, 4], dtype=object) + + index_sorted_series = series.sort_index(kind=sort_kind) + tm.assert_series_equal(expected_series, index_sorted_series) + + def test_sort_index_na_position(self): + series = Series(index=[3, 2, 1, 4, 3, np.nan], dtype=object) + expected_series_first = Series(index=[np.nan, 1, 2, 3, 3, 4], dtype=object) + + index_sorted_series = series.sort_index(na_position="first") + tm.assert_series_equal(expected_series_first, index_sorted_series) + + expected_series_last = Series(index=[1, 2, 3, 3, 4, np.nan], dtype=object) + + index_sorted_series = series.sort_index(na_position="last") + tm.assert_series_equal(expected_series_last, index_sorted_series) + + def test_sort_index_intervals(self): + s = Series( + [np.nan, 1, 2, 3], IntervalIndex.from_arrays([0, 1, 2, 3], [1, 2, 3, 4]) + ) + + result = s.sort_index() + expected = s + tm.assert_series_equal(result, expected) + + result = s.sort_index(ascending=False) + expected = Series( + [3, 2, 1, np.nan], IntervalIndex.from_arrays([3, 2, 1, 0], [4, 3, 2, 1]) + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("inplace", [True, False]) + @pytest.mark.parametrize( + "original_list, sorted_list, ascending, ignore_index, output_index", + [ + ([2, 3, 6, 1], [2, 3, 6, 1], True, True, [0, 1, 2, 3]), + ([2, 3, 6, 1], [2, 3, 6, 1], True, False, [0, 1, 2, 3]), + ([2, 3, 6, 1], [1, 6, 3, 2], False, True, [0, 1, 2, 3]), + ([2, 3, 6, 1], [1, 6, 3, 2], False, False, [3, 2, 1, 0]), + ], + ) + def test_sort_index_ignore_index( + self, inplace, original_list, sorted_list, ascending, ignore_index, output_index + ): + # GH 30114 + ser = Series(original_list) + expected = Series(sorted_list, index=output_index) + kwargs = { + "ascending": ascending, + "ignore_index": ignore_index, + "inplace": inplace, + } + + if inplace: + result_ser = ser.copy() + result_ser.sort_index(**kwargs) + else: + result_ser = ser.sort_index(**kwargs) + + tm.assert_series_equal(result_ser, expected) + tm.assert_series_equal(ser, Series(original_list)) + + def test_sort_index_ascending_list(self): + # GH#16934 + + # Set up a Series with a three level MultiIndex + arrays = [ + ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + [4, 3, 2, 1, 4, 3, 2, 1], + ] + tuples = zip(*arrays) + mi = MultiIndex.from_tuples(tuples, names=["first", "second", "third"]) + ser = Series(range(8), index=mi) + + # Sort with boolean ascending + result = ser.sort_index(level=["third", "first"], ascending=False) + expected = ser.iloc[[4, 0, 5, 1, 6, 2, 7, 3]] + tm.assert_series_equal(result, expected) + + # Sort with list of boolean ascending + result = ser.sort_index(level=["third", "first"], ascending=[False, True]) + expected = ser.iloc[[0, 4, 1, 5, 2, 6, 3, 7]] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ascending", + [ + None, + (True, None), + (False, "True"), + ], + ) + def test_sort_index_ascending_bad_value_raises(self, ascending): + ser = Series(range(10), index=[0, 3, 2, 1, 4, 5, 7, 6, 8, 9]) + match = 'For argument "ascending" expected type bool' + with pytest.raises(ValueError, match=match): + ser.sort_index(ascending=ascending) + + +class TestSeriesSortIndexKey: + def test_sort_index_multiindex_key(self): + mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) + s = Series([1, 2], mi) + backwards = s.iloc[[1, 0]] + + result = s.sort_index(level="C", key=lambda x: -x) + tm.assert_series_equal(s, result) + + result = s.sort_index(level="C", key=lambda x: x) # nothing happens + tm.assert_series_equal(backwards, result) + + def test_sort_index_multiindex_key_multi_level(self): + mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC")) + s = Series([1, 2], mi) + backwards = s.iloc[[1, 0]] + + result = s.sort_index(level=["A", "C"], key=lambda x: -x) + tm.assert_series_equal(s, result) + + result = s.sort_index(level=["A", "C"], key=lambda x: x) # nothing happens + tm.assert_series_equal(backwards, result) + + def test_sort_index_key(self): + series = Series(np.arange(6, dtype="int64"), index=list("aaBBca")) + + result = series.sort_index() + expected = series.iloc[[2, 3, 0, 1, 5, 4]] + tm.assert_series_equal(result, expected) + + result = series.sort_index(key=lambda x: x.str.lower()) + expected = series.iloc[[0, 1, 5, 2, 3, 4]] + tm.assert_series_equal(result, expected) + + result = series.sort_index(key=lambda x: x.str.lower(), ascending=False) + expected = series.iloc[[4, 2, 3, 0, 1, 5]] + tm.assert_series_equal(result, expected) + + def test_sort_index_key_int(self): + series = Series(np.arange(6, dtype="int64"), index=np.arange(6, dtype="int64")) + + result = series.sort_index() + tm.assert_series_equal(result, series) + + result = series.sort_index(key=lambda x: -x) + expected = series.sort_index(ascending=False) + tm.assert_series_equal(result, expected) + + result = series.sort_index(key=lambda x: 2 * x) + tm.assert_series_equal(result, series) + + def test_sort_index_kind_key(self, sort_kind, sort_by_key): + # GH #14444 & #13589: Add support for sort algo choosing + series = Series(index=[3, 2, 1, 4, 3], dtype=object) + expected_series = Series(index=[1, 2, 3, 3, 4], dtype=object) + + index_sorted_series = series.sort_index(kind=sort_kind, key=sort_by_key) + tm.assert_series_equal(expected_series, index_sorted_series) + + def test_sort_index_kind_neg_key(self, sort_kind): + # GH #14444 & #13589: Add support for sort algo choosing + series = Series(index=[3, 2, 1, 4, 3], dtype=object) + expected_series = Series(index=[4, 3, 3, 2, 1], dtype=object) + + index_sorted_series = series.sort_index(kind=sort_kind, key=lambda x: -x) + tm.assert_series_equal(expected_series, index_sorted_series) + + def test_sort_index_na_position_key(self, sort_by_key): + series = Series(index=[3, 2, 1, 4, 3, np.nan], dtype=object) + expected_series_first = Series(index=[np.nan, 1, 2, 3, 3, 4], dtype=object) + + index_sorted_series = series.sort_index(na_position="first", key=sort_by_key) + tm.assert_series_equal(expected_series_first, index_sorted_series) + + expected_series_last = Series(index=[1, 2, 3, 3, 4, np.nan], dtype=object) + + index_sorted_series = series.sort_index(na_position="last", key=sort_by_key) + tm.assert_series_equal(expected_series_last, index_sorted_series) + + def test_changes_length_raises(self): + s = Series([1, 2, 3]) + with pytest.raises(ValueError, match="change the shape"): + s.sort_index(key=lambda x: x[:1]) + + def test_sort_values_key_type(self): + s = Series([1, 2, 3], DatetimeIndex(["2008-10-24", "2008-11-23", "2007-12-22"])) + + result = s.sort_index(key=lambda x: x.month) + expected = s.iloc[[0, 1, 2]] + tm.assert_series_equal(result, expected) + + result = s.sort_index(key=lambda x: x.day) + expected = s.iloc[[2, 1, 0]] + tm.assert_series_equal(result, expected) + + result = s.sort_index(key=lambda x: x.year) + expected = s.iloc[[2, 0, 1]] + tm.assert_series_equal(result, expected) + + result = s.sort_index(key=lambda x: x.month_name()) + expected = s.iloc[[2, 1, 0]] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "ascending", + [ + [True, False], + [False, True], + ], + ) + def test_sort_index_multi_already_monotonic(self, ascending): + # GH 56049 + mi = MultiIndex.from_product([[1, 2], [3, 4]]) + ser = Series(range(len(mi)), index=mi) + result = ser.sort_index(ascending=ascending) + if ascending == [True, False]: + expected = ser.take([1, 0, 3, 2]) + elif ascending == [False, True]: + expected = ser.take([2, 3, 0, 1]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_values.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_values.py new file mode 100644 index 0000000000000000000000000000000000000000..4808272879071e8530c000daddbe7e9518deaefc --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_sort_values.py @@ -0,0 +1,246 @@ +import numpy as np +import pytest + +from pandas import ( + Categorical, + DataFrame, + Series, +) +import pandas._testing as tm + + +class TestSeriesSortValues: + def test_sort_values(self, datetime_series, using_copy_on_write): + # check indexes are reordered corresponding with the values + ser = Series([3, 2, 4, 1], ["A", "B", "C", "D"]) + expected = Series([1, 2, 3, 4], ["D", "B", "A", "C"]) + result = ser.sort_values() + tm.assert_series_equal(expected, result) + + ts = datetime_series.copy() + ts[:5] = np.nan + vals = ts.values + + result = ts.sort_values() + assert np.isnan(result[-5:]).all() + tm.assert_numpy_array_equal(result[:-5].values, np.sort(vals[5:])) + + # na_position + result = ts.sort_values(na_position="first") + assert np.isnan(result[:5]).all() + tm.assert_numpy_array_equal(result[5:].values, np.sort(vals[5:])) + + # something object-type + ser = Series(["A", "B"], [1, 2]) + # no failure + ser.sort_values() + + # ascending=False + ordered = ts.sort_values(ascending=False) + expected = np.sort(ts.dropna().values)[::-1] + tm.assert_almost_equal(expected, ordered.dropna().values) + ordered = ts.sort_values(ascending=False, na_position="first") + tm.assert_almost_equal(expected, ordered.dropna().values) + + # ascending=[False] should behave the same as ascending=False + ordered = ts.sort_values(ascending=[False]) + expected = ts.sort_values(ascending=False) + tm.assert_series_equal(expected, ordered) + ordered = ts.sort_values(ascending=[False], na_position="first") + expected = ts.sort_values(ascending=False, na_position="first") + tm.assert_series_equal(expected, ordered) + + msg = 'For argument "ascending" expected type bool, received type NoneType.' + with pytest.raises(ValueError, match=msg): + ts.sort_values(ascending=None) + msg = r"Length of ascending \(0\) must be 1 for Series" + with pytest.raises(ValueError, match=msg): + ts.sort_values(ascending=[]) + msg = r"Length of ascending \(3\) must be 1 for Series" + with pytest.raises(ValueError, match=msg): + ts.sort_values(ascending=[1, 2, 3]) + msg = r"Length of ascending \(2\) must be 1 for Series" + with pytest.raises(ValueError, match=msg): + ts.sort_values(ascending=[False, False]) + msg = 'For argument "ascending" expected type bool, received type str.' + with pytest.raises(ValueError, match=msg): + ts.sort_values(ascending="foobar") + + # inplace=True + ts = datetime_series.copy() + return_value = ts.sort_values(ascending=False, inplace=True) + assert return_value is None + tm.assert_series_equal(ts, datetime_series.sort_values(ascending=False)) + tm.assert_index_equal( + ts.index, datetime_series.sort_values(ascending=False).index + ) + + # GH#5856/5853 + # Series.sort_values operating on a view + df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))) + s = df.iloc[:, 0] + + msg = ( + "This Series is a view of some other array, to sort in-place " + "you must create a copy" + ) + if using_copy_on_write: + s.sort_values(inplace=True) + tm.assert_series_equal(s, df.iloc[:, 0].sort_values()) + else: + with pytest.raises(ValueError, match=msg): + s.sort_values(inplace=True) + + def test_sort_values_categorical(self): + c = Categorical(["a", "b", "b", "a"], ordered=False) + cat = Series(c.copy()) + + # sort in the categories order + expected = Series( + Categorical(["a", "a", "b", "b"], ordered=False), index=[0, 3, 1, 2] + ) + result = cat.sort_values() + tm.assert_series_equal(result, expected) + + cat = Series(Categorical(["a", "c", "b", "d"], ordered=True)) + res = cat.sort_values() + exp = np.array(["a", "b", "c", "d"], dtype=np.object_) + tm.assert_numpy_array_equal(res.__array__(), exp) + + cat = Series( + Categorical( + ["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True + ) + ) + res = cat.sort_values() + exp = np.array(["a", "b", "c", "d"], dtype=np.object_) + tm.assert_numpy_array_equal(res.__array__(), exp) + + res = cat.sort_values(ascending=False) + exp = np.array(["d", "c", "b", "a"], dtype=np.object_) + tm.assert_numpy_array_equal(res.__array__(), exp) + + raw_cat1 = Categorical( + ["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False + ) + raw_cat2 = Categorical( + ["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True + ) + s = ["a", "b", "c", "d"] + df = DataFrame( + {"unsort": raw_cat1, "sort": raw_cat2, "string": s, "values": [1, 2, 3, 4]} + ) + + # Cats must be sorted in a dataframe + res = df.sort_values(by=["string"], ascending=False) + exp = np.array(["d", "c", "b", "a"], dtype=np.object_) + tm.assert_numpy_array_equal(res["sort"].values.__array__(), exp) + assert res["sort"].dtype == "category" + + res = df.sort_values(by=["sort"], ascending=False) + exp = df.sort_values(by=["string"], ascending=True) + tm.assert_series_equal(res["values"], exp["values"]) + assert res["sort"].dtype == "category" + assert res["unsort"].dtype == "category" + + # unordered cat, but we allow this + df.sort_values(by=["unsort"], ascending=False) + + # multi-columns sort + # GH#7848 + df = DataFrame( + {"id": [6, 5, 4, 3, 2, 1], "raw_grade": ["a", "b", "b", "a", "a", "e"]} + ) + df["grade"] = Categorical(df["raw_grade"], ordered=True) + df["grade"] = df["grade"].cat.set_categories(["b", "e", "a"]) + + # sorts 'grade' according to the order of the categories + result = df.sort_values(by=["grade"]) + expected = df.iloc[[1, 2, 5, 0, 3, 4]] + tm.assert_frame_equal(result, expected) + + # multi + result = df.sort_values(by=["grade", "id"]) + expected = df.iloc[[2, 1, 5, 4, 3, 0]] + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("inplace", [True, False]) + @pytest.mark.parametrize( + "original_list, sorted_list, ignore_index, output_index", + [ + ([2, 3, 6, 1], [6, 3, 2, 1], True, [0, 1, 2, 3]), + ([2, 3, 6, 1], [6, 3, 2, 1], False, [2, 1, 0, 3]), + ], + ) + def test_sort_values_ignore_index( + self, inplace, original_list, sorted_list, ignore_index, output_index + ): + # GH 30114 + ser = Series(original_list) + expected = Series(sorted_list, index=output_index) + kwargs = {"ignore_index": ignore_index, "inplace": inplace} + + if inplace: + result_ser = ser.copy() + result_ser.sort_values(ascending=False, **kwargs) + else: + result_ser = ser.sort_values(ascending=False, **kwargs) + + tm.assert_series_equal(result_ser, expected) + tm.assert_series_equal(ser, Series(original_list)) + + def test_mergesort_descending_stability(self): + # GH 28697 + s = Series([1, 2, 1, 3], ["first", "b", "second", "c"]) + result = s.sort_values(ascending=False, kind="mergesort") + expected = Series([3, 2, 1, 1], ["c", "b", "first", "second"]) + tm.assert_series_equal(result, expected) + + def test_sort_values_validate_ascending_for_value_error(self): + # GH41634 + ser = Series([23, 7, 21]) + + msg = 'For argument "ascending" expected type bool, received type str.' + with pytest.raises(ValueError, match=msg): + ser.sort_values(ascending="False") + + @pytest.mark.parametrize("ascending", [False, 0, 1, True]) + def test_sort_values_validate_ascending_functional(self, ascending): + # GH41634 + ser = Series([23, 7, 21]) + expected = np.sort(ser.values) + + sorted_ser = ser.sort_values(ascending=ascending) + if not ascending: + expected = expected[::-1] + + result = sorted_ser.values + tm.assert_numpy_array_equal(result, expected) + + +class TestSeriesSortingKey: + def test_sort_values_key(self): + series = Series(np.array(["Hello", "goodbye"])) + + result = series.sort_values(axis=0) + expected = series + tm.assert_series_equal(result, expected) + + result = series.sort_values(axis=0, key=lambda x: x.str.lower()) + expected = series[::-1] + tm.assert_series_equal(result, expected) + + def test_sort_values_key_nan(self): + series = Series(np.array([0, 5, np.nan, 3, 2, np.nan])) + + result = series.sort_values(axis=0) + expected = series.iloc[[0, 4, 3, 1, 2, 5]] + tm.assert_series_equal(result, expected) + + result = series.sort_values(axis=0, key=lambda x: x + 5) + expected = series.iloc[[0, 4, 3, 1, 2, 5]] + tm.assert_series_equal(result, expected) + + result = series.sort_values(axis=0, key=lambda x: -x, ascending=False) + expected = series.iloc[[0, 4, 3, 1, 2, 5]] + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py new file mode 100644 index 0000000000000000000000000000000000000000..1c17013d621c7f78c1e8ae7e1346660aebe79b1e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_csv.py @@ -0,0 +1,182 @@ +from datetime import datetime +from io import StringIO + +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + +from pandas.io.common import get_handle + + +class TestSeriesToCSV: + def read_csv(self, path, **kwargs): + params = {"index_col": 0, "header": None} + params.update(**kwargs) + + header = params.get("header") + out = pd.read_csv(path, **params).squeeze("columns") + + if header is None: + out.name = out.index.name = None + + return out + + def test_from_csv(self, datetime_series, string_series): + # freq doesn't round-trip + datetime_series.index = datetime_series.index._with_freq(None) + + with tm.ensure_clean() as path: + datetime_series.to_csv(path, header=False) + ts = self.read_csv(path, parse_dates=True) + tm.assert_series_equal(datetime_series, ts, check_names=False) + + assert ts.name is None + assert ts.index.name is None + + # see gh-10483 + datetime_series.to_csv(path, header=True) + ts_h = self.read_csv(path, header=0) + assert ts_h.name == "ts" + + string_series.to_csv(path, header=False) + series = self.read_csv(path) + tm.assert_series_equal(string_series, series, check_names=False) + + assert series.name is None + assert series.index.name is None + + string_series.to_csv(path, header=True) + series_h = self.read_csv(path, header=0) + assert series_h.name == "series" + + with open(path, "w", encoding="utf-8") as outfile: + outfile.write("1998-01-01|1.0\n1999-01-01|2.0") + + series = self.read_csv(path, sep="|", parse_dates=True) + check_series = Series( + {datetime(1998, 1, 1): 1.0, datetime(1999, 1, 1): 2.0} + ) + tm.assert_series_equal(check_series, series) + + series = self.read_csv(path, sep="|", parse_dates=False) + check_series = Series({"1998-01-01": 1.0, "1999-01-01": 2.0}) + tm.assert_series_equal(check_series, series) + + def test_to_csv(self, datetime_series): + with tm.ensure_clean() as path: + datetime_series.to_csv(path, header=False) + + with open(path, newline=None, encoding="utf-8") as f: + lines = f.readlines() + assert lines[1] != "\n" + + datetime_series.to_csv(path, index=False, header=False) + arr = np.loadtxt(path) + tm.assert_almost_equal(arr, datetime_series.values) + + def test_to_csv_unicode_index(self): + buf = StringIO() + s = Series(["\u05d0", "d2"], index=["\u05d0", "\u05d1"]) + + s.to_csv(buf, encoding="UTF-8", header=False) + buf.seek(0) + + s2 = self.read_csv(buf, index_col=0, encoding="UTF-8") + tm.assert_series_equal(s, s2) + + def test_to_csv_float_format(self): + with tm.ensure_clean() as filename: + ser = Series([0.123456, 0.234567, 0.567567]) + ser.to_csv(filename, float_format="%.2f", header=False) + + rs = self.read_csv(filename) + xp = Series([0.12, 0.23, 0.57]) + tm.assert_series_equal(rs, xp) + + def test_to_csv_list_entries(self): + s = Series(["jack and jill", "jesse and frank"]) + + split = s.str.split(r"\s+and\s+") + + buf = StringIO() + split.to_csv(buf, header=False) + + def test_to_csv_path_is_none(self): + # GH 8215 + # Series.to_csv() was returning None, inconsistent with + # DataFrame.to_csv() which returned string + s = Series([1, 2, 3]) + csv_str = s.to_csv(path_or_buf=None, header=False) + assert isinstance(csv_str, str) + + @pytest.mark.parametrize( + "s,encoding", + [ + ( + Series([0.123456, 0.234567, 0.567567], index=["A", "B", "C"], name="X"), + None, + ), + # GH 21241, 21118 + (Series(["abc", "def", "ghi"], name="X"), "ascii"), + (Series(["123", "你好", "世界"], name="中文"), "gb2312"), + ( + Series(["123", "Γειά σου", "Κόσμε"], name="Ελληνικά"), # noqa: RUF001 + "cp737", + ), + ], + ) + def test_to_csv_compression(self, s, encoding, compression): + with tm.ensure_clean() as filename: + s.to_csv(filename, compression=compression, encoding=encoding, header=True) + # test the round trip - to_csv -> read_csv + result = pd.read_csv( + filename, + compression=compression, + encoding=encoding, + index_col=0, + ).squeeze("columns") + tm.assert_series_equal(s, result) + + # test the round trip using file handle - to_csv -> read_csv + with get_handle( + filename, "w", compression=compression, encoding=encoding + ) as handles: + s.to_csv(handles.handle, encoding=encoding, header=True) + + result = pd.read_csv( + filename, + compression=compression, + encoding=encoding, + index_col=0, + ).squeeze("columns") + tm.assert_series_equal(s, result) + + # explicitly ensure file was compressed + with tm.decompress_file(filename, compression) as fh: + text = fh.read().decode(encoding or "utf8") + assert s.name in text + + with tm.decompress_file(filename, compression) as fh: + tm.assert_series_equal( + s, + pd.read_csv(fh, index_col=0, encoding=encoding).squeeze("columns"), + ) + + def test_to_csv_interval_index(self, using_infer_string): + # GH 28210 + s = Series(["foo", "bar", "baz"], index=pd.interval_range(0, 3)) + + with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: + s.to_csv(path, header=False) + result = self.read_csv(path, index_col=0) + + # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) + expected = s.copy() + if using_infer_string: + expected.index = expected.index.astype("string[pyarrow_numpy]") + else: + expected.index = expected.index.astype(str) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py new file mode 100644 index 0000000000000000000000000000000000000000..41c01f4537f23fdb90110685d2e774427916aee1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_dict.py @@ -0,0 +1,38 @@ +import collections + +import numpy as np +import pytest + +from pandas import Series +import pandas._testing as tm + + +class TestSeriesToDict: + @pytest.mark.parametrize( + "mapping", (dict, collections.defaultdict(list), collections.OrderedDict) + ) + def test_to_dict(self, mapping, datetime_series): + # GH#16122 + result = Series(datetime_series.to_dict(into=mapping), name="ts") + expected = datetime_series.copy() + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + from_method = Series(datetime_series.to_dict(into=collections.Counter)) + from_constructor = Series(collections.Counter(datetime_series.items())) + tm.assert_series_equal(from_method, from_constructor) + + @pytest.mark.parametrize( + "input", + ( + {"a": np.int64(64), "b": 10}, + {"a": np.int64(64), "b": 10, "c": "ABC"}, + {"a": np.uint64(64), "b": 10, "c": "ABC"}, + ), + ) + def test_to_dict_return_types(self, input): + # GH25969 + + d = Series(input).to_dict() + assert isinstance(d["a"], int) + assert isinstance(d["b"], int) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py new file mode 100644 index 0000000000000000000000000000000000000000..0eadf696b34cc034d2be76ce5daba2cff679da74 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_frame.py @@ -0,0 +1,63 @@ +import pytest + +from pandas import ( + DataFrame, + Index, + Series, +) +import pandas._testing as tm + + +class TestToFrame: + def test_to_frame_respects_name_none(self): + # GH#44212 if we explicitly pass name=None, then that should be respected, + # not changed to 0 + # GH-45448 this is first deprecated & enforced in 2.0 + ser = Series(range(3)) + result = ser.to_frame(None) + + exp_index = Index([None], dtype=object) + tm.assert_index_equal(result.columns, exp_index) + + result = ser.rename("foo").to_frame(None) + exp_index = Index([None], dtype=object) + tm.assert_index_equal(result.columns, exp_index) + + def test_to_frame(self, datetime_series): + datetime_series.name = None + rs = datetime_series.to_frame() + xp = DataFrame(datetime_series.values, index=datetime_series.index) + tm.assert_frame_equal(rs, xp) + + datetime_series.name = "testname" + rs = datetime_series.to_frame() + xp = DataFrame( + {"testname": datetime_series.values}, index=datetime_series.index + ) + tm.assert_frame_equal(rs, xp) + + rs = datetime_series.to_frame(name="testdifferent") + xp = DataFrame( + {"testdifferent": datetime_series.values}, index=datetime_series.index + ) + tm.assert_frame_equal(rs, xp) + + @pytest.mark.filterwarnings( + "ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning" + ) + def test_to_frame_expanddim(self): + # GH#9762 + + class SubclassedSeries(Series): + @property + def _constructor_expanddim(self): + return SubclassedFrame + + class SubclassedFrame(DataFrame): + pass + + ser = SubclassedSeries([1, 2, 3], name="X") + result = ser.to_frame() + assert isinstance(result, SubclassedFrame) + expected = SubclassedFrame({"X": [1, 2, 3]}) + tm.assert_frame_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..4bc7631090761e720c61049f9b8fd2a7fadd89af --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_to_numpy.py @@ -0,0 +1,49 @@ +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + NA, + Series, + Timedelta, +) +import pandas._testing as tm + + +@pytest.mark.parametrize("dtype", ["int64", "float64"]) +def test_to_numpy_na_value(dtype): + # GH#48951 + ser = Series([1, 2, NA, 4]) + result = ser.to_numpy(dtype=dtype, na_value=0) + expected = np.array([1, 2, 0, 4], dtype=dtype) + tm.assert_numpy_array_equal(result, expected) + + +def test_to_numpy_cast_before_setting_na(): + # GH#50600 + ser = Series([1]) + result = ser.to_numpy(dtype=np.float64, na_value=np.nan) + expected = np.array([1.0]) + tm.assert_numpy_array_equal(result, expected) + + +@td.skip_if_no("pyarrow") +def test_to_numpy_arrow_dtype_given(): + # GH#57121 + ser = Series([1, NA], dtype="int64[pyarrow]") + result = ser.to_numpy(dtype="float64") + expected = np.array([1.0, np.nan]) + tm.assert_numpy_array_equal(result, expected) + + +def test_astype_ea_int_to_td_ts(): + # GH#57093 + ser = Series([1, None], dtype="Int64") + result = ser.astype("m8[ns]") + expected = Series([1, Timedelta("nat")], dtype="m8[ns]") + tm.assert_series_equal(result, expected) + + result = ser.astype("M8[ns]") + expected = Series([1, Timedelta("nat")], dtype="M8[ns]") + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py new file mode 100644 index 0000000000000000000000000000000000000000..4af473528e23850794139ac563cc04c6d3c54617 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tolist.py @@ -0,0 +1,36 @@ +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + Interval, + Period, + Series, + Timedelta, + Timestamp, +) + + +@pytest.mark.parametrize( + "values, dtype, expected_dtype", + ( + ([1], "int64", int), + ([1], "Int64", int), + ([1.0], "float64", float), + ([1.0], "Float64", float), + (["abc"], "object", str), + (["abc"], "string", str), + ([Interval(1, 3)], "interval", Interval), + ([Period("2000-01-01", "D")], "period[D]", Period), + ([Timedelta(days=1)], "timedelta64[ns]", Timedelta), + ([Timestamp("2000-01-01")], "datetime64[ns]", Timestamp), + pytest.param([1], "int64[pyarrow]", int, marks=td.skip_if_no("pyarrow")), + pytest.param([1.0], "float64[pyarrow]", float, marks=td.skip_if_no("pyarrow")), + pytest.param(["abc"], "string[pyarrow]", str, marks=td.skip_if_no("pyarrow")), + ), +) +def test_tolist_scalar_dtype(values, dtype, expected_dtype): + # GH49890 + ser = Series(values, dtype=dtype) + result_dtype = type(ser.tolist()[0]) + assert result_dtype == expected_dtype diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py new file mode 100644 index 0000000000000000000000000000000000000000..33eb5c10ae163862e342b1871669d64d74602e4e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_truncate.py @@ -0,0 +1,67 @@ +from datetime import datetime + +import pytest + +import pandas as pd +from pandas import ( + Series, + date_range, +) +import pandas._testing as tm + + +class TestTruncate: + def test_truncate_datetimeindex_tz(self): + # GH 9243 + idx = date_range("4/1/2005", "4/30/2005", freq="D", tz="US/Pacific") + s = Series(range(len(idx)), index=idx) + with pytest.raises(TypeError, match="Cannot compare tz-naive"): + # GH#36148 as of 2.0 we require tzawareness compat + s.truncate(datetime(2005, 4, 2), datetime(2005, 4, 4)) + + lb = idx[1] + ub = idx[3] + result = s.truncate(lb.to_pydatetime(), ub.to_pydatetime()) + expected = Series([1, 2, 3], index=idx[1:4]) + tm.assert_series_equal(result, expected) + + def test_truncate_periodindex(self): + # GH 17717 + idx1 = pd.PeriodIndex( + [pd.Period("2017-09-02"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] + ) + series1 = Series([1, 2, 3], index=idx1) + result1 = series1.truncate(after="2017-09-02") + + expected_idx1 = pd.PeriodIndex( + [pd.Period("2017-09-02"), pd.Period("2017-09-02")] + ) + tm.assert_series_equal(result1, Series([1, 2], index=expected_idx1)) + + idx2 = pd.PeriodIndex( + [pd.Period("2017-09-03"), pd.Period("2017-09-02"), pd.Period("2017-09-03")] + ) + series2 = Series([1, 2, 3], index=idx2) + result2 = series2.sort_index().truncate(after="2017-09-02") + + expected_idx2 = pd.PeriodIndex([pd.Period("2017-09-02")]) + tm.assert_series_equal(result2, Series([2], index=expected_idx2)) + + def test_truncate_one_element_series(self): + # GH 35544 + series = Series([0.1], index=pd.DatetimeIndex(["2020-08-04"])) + before = pd.Timestamp("2020-08-02") + after = pd.Timestamp("2020-08-04") + + result = series.truncate(before=before, after=after) + + # the input Series and the expected Series are the same + tm.assert_series_equal(result, series) + + def test_truncate_index_only_one_unique_value(self): + # GH 42365 + obj = Series(0, index=date_range("2021-06-30", "2021-06-30")).repeat(5) + + truncated = obj.truncate("2021-06-28", "2021-07-01") + + tm.assert_series_equal(truncated, obj) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py new file mode 100644 index 0000000000000000000000000000000000000000..45620a721f442ee038569cdd69c1341ac56fd858 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_tz_localize.py @@ -0,0 +1,123 @@ +from datetime import timezone + +import pytest +import pytz + +from pandas._libs.tslibs import timezones + +from pandas import ( + DatetimeIndex, + NaT, + Series, + Timestamp, + date_range, +) +import pandas._testing as tm + + +class TestTZLocalize: + def test_series_tz_localize_ambiguous_bool(self): + # make sure that we are correctly accepting bool values as ambiguous + + # GH#14402 + ts = Timestamp("2015-11-01 01:00:03") + expected0 = Timestamp("2015-11-01 01:00:03-0500", tz="US/Central") + expected1 = Timestamp("2015-11-01 01:00:03-0600", tz="US/Central") + + ser = Series([ts]) + expected0 = Series([expected0]) + expected1 = Series([expected1]) + + with tm.external_error_raised(pytz.AmbiguousTimeError): + ser.dt.tz_localize("US/Central") + + result = ser.dt.tz_localize("US/Central", ambiguous=True) + tm.assert_series_equal(result, expected0) + + result = ser.dt.tz_localize("US/Central", ambiguous=[True]) + tm.assert_series_equal(result, expected0) + + result = ser.dt.tz_localize("US/Central", ambiguous=False) + tm.assert_series_equal(result, expected1) + + result = ser.dt.tz_localize("US/Central", ambiguous=[False]) + tm.assert_series_equal(result, expected1) + + def test_series_tz_localize_matching_index(self): + # Matching the index of the result with that of the original series + # GH 43080 + dt_series = Series( + date_range(start="2021-01-01T02:00:00", periods=5, freq="1D"), + index=[2, 6, 7, 8, 11], + dtype="category", + ) + result = dt_series.dt.tz_localize("Europe/Berlin") + expected = Series( + date_range( + start="2021-01-01T02:00:00", periods=5, freq="1D", tz="Europe/Berlin" + ), + index=[2, 6, 7, 8, 11], + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "method, exp", + [ + ["shift_forward", "2015-03-29 03:00:00"], + ["shift_backward", "2015-03-29 01:59:59.999999999"], + ["NaT", NaT], + ["raise", None], + ["foo", "invalid"], + ], + ) + def test_tz_localize_nonexistent(self, warsaw, method, exp, unit): + # GH 8917 + tz = warsaw + n = 60 + dti = date_range(start="2015-03-29 02:00:00", periods=n, freq="min", unit=unit) + ser = Series(1, index=dti) + df = ser.to_frame() + + if method == "raise": + with tm.external_error_raised(pytz.NonExistentTimeError): + dti.tz_localize(tz, nonexistent=method) + with tm.external_error_raised(pytz.NonExistentTimeError): + ser.tz_localize(tz, nonexistent=method) + with tm.external_error_raised(pytz.NonExistentTimeError): + df.tz_localize(tz, nonexistent=method) + + elif exp == "invalid": + msg = ( + "The nonexistent argument must be one of " + "'raise', 'NaT', 'shift_forward', 'shift_backward' " + "or a timedelta object" + ) + with pytest.raises(ValueError, match=msg): + dti.tz_localize(tz, nonexistent=method) + with pytest.raises(ValueError, match=msg): + ser.tz_localize(tz, nonexistent=method) + with pytest.raises(ValueError, match=msg): + df.tz_localize(tz, nonexistent=method) + + else: + result = ser.tz_localize(tz, nonexistent=method) + expected = Series(1, index=DatetimeIndex([exp] * n, tz=tz).as_unit(unit)) + tm.assert_series_equal(result, expected) + + result = df.tz_localize(tz, nonexistent=method) + expected = expected.to_frame() + tm.assert_frame_equal(result, expected) + + res_index = dti.tz_localize(tz, nonexistent=method) + tm.assert_index_equal(res_index, expected.index) + + @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) + def test_series_tz_localize_empty(self, tzstr): + # GH#2248 + ser = Series(dtype=object) + + ser2 = ser.tz_localize("utc") + assert ser2.index.tz == timezone.utc + + ser2 = ser.tz_localize(tzstr) + timezones.tz_compare(ser2.index.tz, timezones.maybe_get_tz(tzstr)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py new file mode 100644 index 0000000000000000000000000000000000000000..14e247332503253ede23e94fe1335e712a2675e7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unique.py @@ -0,0 +1,76 @@ +import numpy as np + +from pandas import ( + Categorical, + IntervalIndex, + Series, + date_range, +) +import pandas._testing as tm + + +class TestUnique: + def test_unique_uint64(self): + ser = Series([1, 2, 2**63, 2**63], dtype=np.uint64) + res = ser.unique() + exp = np.array([1, 2, 2**63], dtype=np.uint64) + tm.assert_numpy_array_equal(res, exp) + + def test_unique_data_ownership(self): + # it works! GH#1807 + Series(Series(["a", "c", "b"]).unique()).sort_values() + + def test_unique(self): + # GH#714 also, dtype=float + ser = Series([1.2345] * 100) + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + # explicit f4 dtype + ser = Series([1.2345] * 100, dtype="f4") + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + def test_unique_nan_object_dtype(self): + # NAs in object arrays GH#714 + ser = Series(["foo"] * 100, dtype="O") + ser[::2] = np.nan + result = ser.unique() + assert len(result) == 2 + + def test_unique_none(self): + # decision about None + ser = Series([1, 2, 3, None, None, None], dtype=object) + result = ser.unique() + expected = np.array([1, 2, 3, None], dtype=object) + tm.assert_numpy_array_equal(result, expected) + + def test_unique_categorical(self): + # GH#18051 + cat = Categorical([]) + ser = Series(cat) + result = ser.unique() + tm.assert_categorical_equal(result, cat) + + cat = Categorical([np.nan]) + ser = Series(cat) + result = ser.unique() + tm.assert_categorical_equal(result, cat) + + def test_tz_unique(self): + # GH 46128 + dti1 = date_range("2016-01-01", periods=3) + ii1 = IntervalIndex.from_breaks(dti1) + ser1 = Series(ii1) + uni1 = ser1.unique() + tm.assert_interval_array_equal(ser1.array, uni1) + + dti2 = date_range("2016-01-01", periods=3, tz="US/Eastern") + ii2 = IntervalIndex.from_breaks(dti2) + ser2 = Series(ii2) + uni2 = ser2.unique() + tm.assert_interval_array_equal(ser2.array, uni2) + + assert uni1.dtype != uni2.dtype diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py new file mode 100644 index 0000000000000000000000000000000000000000..3c70e839c8e206c0b0e07a1046132666643329aa --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_unstack.py @@ -0,0 +1,169 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + Series, + date_range, +) +import pandas._testing as tm + + +def test_unstack_preserves_object(): + mi = MultiIndex.from_product([["bar", "foo"], ["one", "two"]]) + + ser = Series(np.arange(4.0), index=mi, dtype=object) + + res1 = ser.unstack() + assert (res1.dtypes == object).all() + + res2 = ser.unstack(level=0) + assert (res2.dtypes == object).all() + + +def test_unstack(): + index = MultiIndex( + levels=[["bar", "foo"], ["one", "three", "two"]], + codes=[[1, 1, 0, 0], [0, 1, 0, 2]], + ) + + s = Series(np.arange(4.0), index=index) + unstacked = s.unstack() + + expected = DataFrame( + [[2.0, np.nan, 3.0], [0.0, 1.0, np.nan]], + index=["bar", "foo"], + columns=["one", "three", "two"], + ) + + tm.assert_frame_equal(unstacked, expected) + + unstacked = s.unstack(level=0) + tm.assert_frame_equal(unstacked, expected.T) + + index = MultiIndex( + levels=[["bar"], ["one", "two", "three"], [0, 1]], + codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + s = Series(np.random.default_rng(2).standard_normal(6), index=index) + exp_index = MultiIndex( + levels=[["one", "two", "three"], [0, 1]], + codes=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], + ) + expected = DataFrame({"bar": s.values}, index=exp_index).sort_index(level=0) + unstacked = s.unstack(0).sort_index() + tm.assert_frame_equal(unstacked, expected) + + # GH5873 + idx = MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) + ts = Series([1, 2], index=idx) + left = ts.unstack() + right = DataFrame( + [[np.nan, 1], [2, np.nan]], index=[101, 102], columns=[np.nan, 3.5] + ) + tm.assert_frame_equal(left, right) + + idx = MultiIndex.from_arrays( + [ + ["cat", "cat", "cat", "dog", "dog"], + ["a", "a", "b", "a", "b"], + [1, 2, 1, 1, np.nan], + ] + ) + ts = Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) + right = DataFrame( + [[1.0, 1.3], [1.1, np.nan], [np.nan, 1.4], [1.2, np.nan]], + columns=["cat", "dog"], + ) + tpls = [("a", 1), ("a", 2), ("b", np.nan), ("b", 1)] + right.index = MultiIndex.from_tuples(tpls) + tm.assert_frame_equal(ts.unstack(level=0), right) + + +def test_unstack_tuplename_in_multiindex(): + # GH 19966 + idx = MultiIndex.from_product( + [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] + ) + ser = Series(1, index=idx) + result = ser.unstack(("A", "a")) + + expected = DataFrame( + [[1, 1, 1], [1, 1, 1], [1, 1, 1]], + columns=MultiIndex.from_tuples([("a",), ("b",), ("c",)], names=[("A", "a")]), + index=Index([1, 2, 3], name=("B", "b")), + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "unstack_idx, expected_values, expected_index, expected_columns", + [ + ( + ("A", "a"), + [[1, 1], [1, 1], [1, 1], [1, 1]], + MultiIndex.from_tuples([(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"]), + MultiIndex.from_tuples([("a",), ("b",)], names=[("A", "a")]), + ), + ( + (("A", "a"), "B"), + [[1, 1, 1, 1], [1, 1, 1, 1]], + Index([3, 4], name="C"), + MultiIndex.from_tuples( + [("a", 1), ("a", 2), ("b", 1), ("b", 2)], names=[("A", "a"), "B"] + ), + ), + ], +) +def test_unstack_mixed_type_name_in_multiindex( + unstack_idx, expected_values, expected_index, expected_columns +): + # GH 19966 + idx = MultiIndex.from_product( + [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] + ) + ser = Series(1, index=idx) + result = ser.unstack(unstack_idx) + + expected = DataFrame( + expected_values, columns=expected_columns, index=expected_index + ) + tm.assert_frame_equal(result, expected) + + +def test_unstack_multi_index_categorical_values(): + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + mi = df.stack(future_stack=True).index.rename(["major", "minor"]) + ser = Series(["foo"] * len(mi), index=mi, name="category", dtype="category") + + result = ser.unstack() + + dti = ser.index.levels[0] + c = pd.Categorical(["foo"] * len(dti)) + expected = DataFrame( + {"A": c.copy(), "B": c.copy(), "C": c.copy(), "D": c.copy()}, + columns=Index(list("ABCD"), name="minor"), + index=dti.rename("major"), + ) + tm.assert_frame_equal(result, expected) + + +def test_unstack_mixed_level_names(): + # GH#48763 + arrays = [["a", "a"], [1, 2], ["red", "blue"]] + idx = MultiIndex.from_arrays(arrays, names=("x", 0, "y")) + ser = Series([1, 2], index=idx) + result = ser.unstack("x") + expected = DataFrame( + [[1], [2]], + columns=Index(["a"], name="x"), + index=MultiIndex.from_tuples([(1, "red"), (2, "blue")], names=[0, "y"]), + ) + tm.assert_frame_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_update.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_update.py new file mode 100644 index 0000000000000000000000000000000000000000..3f18ae6c138807f7bd84f4bd88125508703d86e8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_update.py @@ -0,0 +1,139 @@ +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + CategoricalDtype, + DataFrame, + NaT, + Series, + Timestamp, +) +import pandas._testing as tm + + +class TestUpdate: + def test_update(self, using_copy_on_write): + s = Series([1.5, np.nan, 3.0, 4.0, np.nan]) + s2 = Series([np.nan, 3.5, np.nan, 5.0]) + s.update(s2) + + expected = Series([1.5, 3.5, 3.0, 5.0, np.nan]) + tm.assert_series_equal(s, expected) + + # GH 3217 + df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) + df["c"] = np.nan + # Cast to object to avoid upcast when setting "foo" + df["c"] = df["c"].astype(object) + df_orig = df.copy() + + if using_copy_on_write: + with tm.raises_chained_assignment_error(): + df["c"].update(Series(["foo"], index=[0])) + expected = df_orig + else: + with tm.assert_produces_warning(FutureWarning, match="inplace method"): + df["c"].update(Series(["foo"], index=[0])) + expected = DataFrame( + [[1, np.nan, "foo"], [3, 2.0, np.nan]], columns=["a", "b", "c"] + ) + expected["c"] = expected["c"].astype(object) + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize( + "other, dtype, expected, warn", + [ + # other is int + ([61, 63], "int32", Series([10, 61, 12], dtype="int32"), None), + ([61, 63], "int64", Series([10, 61, 12]), None), + ([61, 63], float, Series([10.0, 61.0, 12.0]), None), + ([61, 63], object, Series([10, 61, 12], dtype=object), None), + # other is float, but can be cast to int + ([61.0, 63.0], "int32", Series([10, 61, 12], dtype="int32"), None), + ([61.0, 63.0], "int64", Series([10, 61, 12]), None), + ([61.0, 63.0], float, Series([10.0, 61.0, 12.0]), None), + ([61.0, 63.0], object, Series([10, 61.0, 12], dtype=object), None), + # others is float, cannot be cast to int + ([61.1, 63.1], "int32", Series([10.0, 61.1, 12.0]), FutureWarning), + ([61.1, 63.1], "int64", Series([10.0, 61.1, 12.0]), FutureWarning), + ([61.1, 63.1], float, Series([10.0, 61.1, 12.0]), None), + ([61.1, 63.1], object, Series([10, 61.1, 12], dtype=object), None), + # other is object, cannot be cast + ([(61,), (63,)], "int32", Series([10, (61,), 12]), FutureWarning), + ([(61,), (63,)], "int64", Series([10, (61,), 12]), FutureWarning), + ([(61,), (63,)], float, Series([10.0, (61,), 12.0]), FutureWarning), + ([(61,), (63,)], object, Series([10, (61,), 12]), None), + ], + ) + def test_update_dtypes(self, other, dtype, expected, warn): + ser = Series([10, 11, 12], dtype=dtype) + other = Series(other, index=[1, 3]) + with tm.assert_produces_warning(warn, match="item of incompatible dtype"): + ser.update(other) + + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize( + "series, other, expected", + [ + # update by key + ( + Series({"a": 1, "b": 2, "c": 3, "d": 4}), + {"b": 5, "c": np.nan}, + Series({"a": 1, "b": 5, "c": 3, "d": 4}), + ), + # update by position + (Series([1, 2, 3, 4]), [np.nan, 5, 1], Series([1, 5, 1, 4])), + ], + ) + def test_update_from_non_series(self, series, other, expected): + # GH 33215 + series.update(other) + tm.assert_series_equal(series, expected) + + @pytest.mark.parametrize( + "data, other, expected, dtype", + [ + (["a", None], [None, "b"], ["a", "b"], "string[python]"), + pytest.param( + ["a", None], + [None, "b"], + ["a", "b"], + "string[pyarrow]", + marks=td.skip_if_no("pyarrow"), + ), + ([1, None], [None, 2], [1, 2], "Int64"), + ([True, None], [None, False], [True, False], "boolean"), + ( + ["a", None], + [None, "b"], + ["a", "b"], + CategoricalDtype(categories=["a", "b"]), + ), + ( + [Timestamp(year=2020, month=1, day=1, tz="Europe/London"), NaT], + [NaT, Timestamp(year=2020, month=1, day=1, tz="Europe/London")], + [Timestamp(year=2020, month=1, day=1, tz="Europe/London")] * 2, + "datetime64[ns, Europe/London]", + ), + ], + ) + def test_update_extension_array_series(self, data, other, expected, dtype): + result = Series(data, dtype=dtype) + other = Series(other, dtype=dtype) + expected = Series(expected, dtype=dtype) + + result.update(other) + tm.assert_series_equal(result, expected) + + def test_update_with_categorical_type(self): + # GH 25744 + dtype = CategoricalDtype(["a", "b", "c", "d"]) + s1 = Series(["a", "b", "c"], index=[1, 2, 3], dtype=dtype) + s2 = Series(["b", "a"], index=[1, 2], dtype=dtype) + s1.update(s2) + result = s1 + expected = Series(["b", "a", "c"], index=[1, 2, 3], dtype=dtype) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_value_counts.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_value_counts.py new file mode 100644 index 0000000000000000000000000000000000000000..859010d9c79c64fbac70f2f5eaa0033bddb4a0c2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_value_counts.py @@ -0,0 +1,271 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + Categorical, + CategoricalIndex, + Index, + Series, +) +import pandas._testing as tm + + +class TestSeriesValueCounts: + def test_value_counts_datetime(self, unit): + # most dtypes are tested in tests/base + values = [ + pd.Timestamp("2011-01-01 09:00"), + pd.Timestamp("2011-01-01 10:00"), + pd.Timestamp("2011-01-01 11:00"), + pd.Timestamp("2011-01-01 09:00"), + pd.Timestamp("2011-01-01 09:00"), + pd.Timestamp("2011-01-01 11:00"), + ] + + exp_idx = pd.DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"], + name="xxx", + ).as_unit(unit) + exp = Series([3, 2, 1], index=exp_idx, name="count") + + ser = Series(values, name="xxx").dt.as_unit(unit) + tm.assert_series_equal(ser.value_counts(), exp) + # check DatetimeIndex outputs the same result + idx = pd.DatetimeIndex(values, name="xxx").as_unit(unit) + tm.assert_series_equal(idx.value_counts(), exp) + + # normalize + exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion") + tm.assert_series_equal(ser.value_counts(normalize=True), exp) + tm.assert_series_equal(idx.value_counts(normalize=True), exp) + + def test_value_counts_datetime_tz(self, unit): + values = [ + pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), + pd.Timestamp("2011-01-01 10:00", tz="US/Eastern"), + pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"), + pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), + pd.Timestamp("2011-01-01 09:00", tz="US/Eastern"), + pd.Timestamp("2011-01-01 11:00", tz="US/Eastern"), + ] + + exp_idx = pd.DatetimeIndex( + ["2011-01-01 09:00", "2011-01-01 11:00", "2011-01-01 10:00"], + tz="US/Eastern", + name="xxx", + ).as_unit(unit) + exp = Series([3, 2, 1], index=exp_idx, name="count") + + ser = Series(values, name="xxx").dt.as_unit(unit) + tm.assert_series_equal(ser.value_counts(), exp) + idx = pd.DatetimeIndex(values, name="xxx").as_unit(unit) + tm.assert_series_equal(idx.value_counts(), exp) + + exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion") + tm.assert_series_equal(ser.value_counts(normalize=True), exp) + tm.assert_series_equal(idx.value_counts(normalize=True), exp) + + def test_value_counts_period(self): + values = [ + pd.Period("2011-01", freq="M"), + pd.Period("2011-02", freq="M"), + pd.Period("2011-03", freq="M"), + pd.Period("2011-01", freq="M"), + pd.Period("2011-01", freq="M"), + pd.Period("2011-03", freq="M"), + ] + + exp_idx = pd.PeriodIndex( + ["2011-01", "2011-03", "2011-02"], freq="M", name="xxx" + ) + exp = Series([3, 2, 1], index=exp_idx, name="count") + + ser = Series(values, name="xxx") + tm.assert_series_equal(ser.value_counts(), exp) + # check DatetimeIndex outputs the same result + idx = pd.PeriodIndex(values, name="xxx") + tm.assert_series_equal(idx.value_counts(), exp) + + # normalize + exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion") + tm.assert_series_equal(ser.value_counts(normalize=True), exp) + tm.assert_series_equal(idx.value_counts(normalize=True), exp) + + def test_value_counts_categorical_ordered(self): + # most dtypes are tested in tests/base + values = Categorical([1, 2, 3, 1, 1, 3], ordered=True) + + exp_idx = CategoricalIndex( + [1, 3, 2], categories=[1, 2, 3], ordered=True, name="xxx" + ) + exp = Series([3, 2, 1], index=exp_idx, name="count") + + ser = Series(values, name="xxx") + tm.assert_series_equal(ser.value_counts(), exp) + # check CategoricalIndex outputs the same result + idx = CategoricalIndex(values, name="xxx") + tm.assert_series_equal(idx.value_counts(), exp) + + # normalize + exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion") + tm.assert_series_equal(ser.value_counts(normalize=True), exp) + tm.assert_series_equal(idx.value_counts(normalize=True), exp) + + def test_value_counts_categorical_not_ordered(self): + values = Categorical([1, 2, 3, 1, 1, 3], ordered=False) + + exp_idx = CategoricalIndex( + [1, 3, 2], categories=[1, 2, 3], ordered=False, name="xxx" + ) + exp = Series([3, 2, 1], index=exp_idx, name="count") + + ser = Series(values, name="xxx") + tm.assert_series_equal(ser.value_counts(), exp) + # check CategoricalIndex outputs the same result + idx = CategoricalIndex(values, name="xxx") + tm.assert_series_equal(idx.value_counts(), exp) + + # normalize + exp = Series(np.array([3.0, 2.0, 1]) / 6.0, index=exp_idx, name="proportion") + tm.assert_series_equal(ser.value_counts(normalize=True), exp) + tm.assert_series_equal(idx.value_counts(normalize=True), exp) + + def test_value_counts_categorical(self): + # GH#12835 + cats = Categorical(list("abcccb"), categories=list("cabd")) + ser = Series(cats, name="xxx") + res = ser.value_counts(sort=False) + + exp_index = CategoricalIndex( + list("cabd"), categories=cats.categories, name="xxx" + ) + exp = Series([3, 1, 2, 0], name="count", index=exp_index) + tm.assert_series_equal(res, exp) + + res = ser.value_counts(sort=True) + + exp_index = CategoricalIndex( + list("cbad"), categories=cats.categories, name="xxx" + ) + exp = Series([3, 2, 1, 0], name="count", index=exp_index) + tm.assert_series_equal(res, exp) + + # check object dtype handles the Series.name as the same + # (tested in tests/base) + ser = Series(["a", "b", "c", "c", "c", "b"], name="xxx") + res = ser.value_counts() + exp = Series([3, 2, 1], name="count", index=Index(["c", "b", "a"], name="xxx")) + tm.assert_series_equal(res, exp) + + def test_value_counts_categorical_with_nan(self): + # see GH#9443 + + # sanity check + ser = Series(["a", "b", "a"], dtype="category") + exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count") + + res = ser.value_counts(dropna=True) + tm.assert_series_equal(res, exp) + + res = ser.value_counts(dropna=True) + tm.assert_series_equal(res, exp) + + # same Series via two different constructions --> same behaviour + series = [ + Series(["a", "b", None, "a", None, None], dtype="category"), + Series( + Categorical(["a", "b", None, "a", None, None], categories=["a", "b"]) + ), + ] + + for ser in series: + # None is a NaN value, so we exclude its count here + exp = Series([2, 1], index=CategoricalIndex(["a", "b"]), name="count") + res = ser.value_counts(dropna=True) + tm.assert_series_equal(res, exp) + + # we don't exclude the count of None and sort by counts + exp = Series( + [3, 2, 1], index=CategoricalIndex([np.nan, "a", "b"]), name="count" + ) + res = ser.value_counts(dropna=False) + tm.assert_series_equal(res, exp) + + # When we aren't sorting by counts, and np.nan isn't a + # category, it should be last. + exp = Series( + [2, 1, 3], index=CategoricalIndex(["a", "b", np.nan]), name="count" + ) + res = ser.value_counts(dropna=False, sort=False) + tm.assert_series_equal(res, exp) + + @pytest.mark.parametrize( + "ser, dropna, exp", + [ + ( + Series([False, True, True, pd.NA]), + False, + Series([2, 1, 1], index=[True, False, pd.NA], name="count"), + ), + ( + Series([False, True, True, pd.NA]), + True, + Series([2, 1], index=Index([True, False], dtype=object), name="count"), + ), + ( + Series(range(3), index=[True, False, np.nan]).index, + False, + Series([1, 1, 1], index=[True, False, np.nan], name="count"), + ), + ], + ) + def test_value_counts_bool_with_nan(self, ser, dropna, exp): + # GH32146 + out = ser.value_counts(dropna=dropna) + tm.assert_series_equal(out, exp) + + @pytest.mark.parametrize( + "input_array,expected", + [ + ( + [1 + 1j, 1 + 1j, 1, 3j, 3j, 3j], + Series( + [3, 2, 1], + index=Index([3j, 1 + 1j, 1], dtype=np.complex128), + name="count", + ), + ), + ( + np.array([1 + 1j, 1 + 1j, 1, 3j, 3j, 3j], dtype=np.complex64), + Series( + [3, 2, 1], + index=Index([3j, 1 + 1j, 1], dtype=np.complex64), + name="count", + ), + ), + ], + ) + def test_value_counts_complex_numbers(self, input_array, expected): + # GH 17927 + result = Series(input_array).value_counts() + tm.assert_series_equal(result, expected) + + def test_value_counts_masked(self): + # GH#54984 + dtype = "Int64" + ser = Series([1, 2, None, 2, None, 3], dtype=dtype) + result = ser.value_counts(dropna=False) + expected = Series( + [2, 2, 1, 1], + index=Index([2, None, 1, 3], dtype=dtype), + dtype=dtype, + name="count", + ) + tm.assert_series_equal(result, expected) + + result = ser.value_counts(dropna=True) + expected = Series( + [2, 1, 1], index=Index([2, 1, 3], dtype=dtype), dtype=dtype, name="count" + ) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py new file mode 100644 index 0000000000000000000000000000000000000000..cb1595e68264fbe5f07b014be4975657fa2fa8cf --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_values.py @@ -0,0 +1,29 @@ +import numpy as np +import pytest + +from pandas import ( + IntervalIndex, + Series, + period_range, +) +import pandas._testing as tm + + +class TestValues: + @pytest.mark.parametrize( + "data", + [ + period_range("2000", periods=4), + IntervalIndex.from_breaks([1, 2, 3, 4]), + ], + ) + def test_values_object_extension_dtypes(self, data): + # https://github.com/pandas-dev/pandas/issues/23995 + result = Series(data).values + expected = np.array(data.astype(object)) + tm.assert_numpy_array_equal(result, expected) + + def test_values(self, datetime_series): + tm.assert_almost_equal( + datetime_series.values, list(datetime_series), check_dtype=False + ) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py new file mode 100644 index 0000000000000000000000000000000000000000..7e0ac372cd443cf9a468b469df1c22818f10aad2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_view.py @@ -0,0 +1,61 @@ +import numpy as np +import pytest + +from pandas import ( + Index, + Series, + array, + date_range, +) +import pandas._testing as tm + +pytestmark = pytest.mark.filterwarnings( + "ignore:Series.view is deprecated and will be removed in a future version.:FutureWarning" # noqa: E501 +) + + +class TestView: + def test_view_i8_to_datetimelike(self): + dti = date_range("2000", periods=4, tz="US/Central") + ser = Series(dti.asi8) + + result = ser.view(dti.dtype) + tm.assert_datetime_array_equal(result._values, dti._data._with_freq(None)) + + pi = dti.tz_localize(None).to_period("D") + ser = Series(pi.asi8) + result = ser.view(pi.dtype) + tm.assert_period_array_equal(result._values, pi._data) + + def test_view_tz(self): + # GH#24024 + ser = Series(date_range("2000", periods=4, tz="US/Central")) + result = ser.view("i8") + expected = Series( + [ + 946706400000000000, + 946792800000000000, + 946879200000000000, + 946965600000000000, + ] + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "first", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"] + ) + @pytest.mark.parametrize( + "second", ["m8[ns]", "M8[ns]", "M8[ns, US/Central]", "period[D]"] + ) + @pytest.mark.parametrize("box", [Series, Index, array]) + def test_view_between_datetimelike(self, first, second, box): + dti = date_range("2016-01-01", periods=3) + + orig = box(dti) + obj = orig.view(first) + assert obj.dtype == first + tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8) + + res = obj.view(second) + assert res.dtype == second + tm.assert_numpy_array_equal(np.asarray(obj.view("i8")), dti.asi8)