diff --git "a/venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py" "b/venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/scipy/ndimage/tests/test_morphology.py" @@ -0,0 +1,2395 @@ +import numpy +import numpy as np +from numpy.testing import (assert_, assert_equal, assert_array_equal, + assert_array_almost_equal) +import pytest +from pytest import raises as assert_raises + +from scipy import ndimage + +from . import types + + +class TestNdimageMorphology: + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf01(self, dtype): + # brute force (bf) distance transform + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'euclidean', + return_indices=True) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 2, 4, 2, 1, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 1, 2, 4, 2, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 2, 1, 2, 3, 3, 3], + [4, 4, 4, 4, 6, 4, 4, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 2, 4, 6, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'cityblock', + return_indices=True) + + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 1, 2, 3, 2, 1, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 3, 1, 3, 3, 3, 3], + [4, 4, 4, 4, 7, 4, 4, 4, 4], + [5, 5, 6, 7, 7, 7, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(expected, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf(data, 'chessboard', + return_indices=True) + + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 2, 1, 1, 0, 0], + [0, 0, 1, 2, 2, 2, 1, 0, 0], + [0, 0, 1, 1, 2, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 4, 2, 2, 2, 4, 3, 3], + [4, 4, 5, 6, 6, 6, 5, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 5, 6, 6, 7, 8], + [0, 1, 1, 2, 6, 6, 7, 7, 8], + [0, 1, 1, 2, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 6, 6, 7, 7, 8], + [0, 1, 2, 4, 5, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf04(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_bf(data, return_indices=1) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ndimage.distance_transform_bf(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_bf( + data, return_distances=False, return_indices=1) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_bf( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_bf( + data, return_indices=1) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = ndimage.distance_transform_bf( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_bf( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_bf( + data, distances=dt, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf05(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf( + data, 'euclidean', return_indices=True, sampling=[2, 2]) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 4, 4, 4, 0, 0, 0], + [0, 0, 4, 8, 16, 8, 4, 0, 0], + [0, 0, 4, 16, 32, 16, 4, 0, 0], + [0, 0, 4, 8, 16, 8, 4, 0, 0], + [0, 0, 0, 4, 4, 4, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 1, 2, 2, 2, 2], + [3, 3, 3, 2, 1, 2, 3, 3, 3], + [4, 4, 4, 4, 6, 4, 4, 4, 4], + [5, 5, 6, 6, 7, 6, 6, 5, 5], + [6, 6, 6, 7, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 1, 2, 4, 6, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_bf06(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_bf( + data, 'euclidean', return_indices=True, sampling=[2, 1]) + expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 4, 1, 0, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 1, 4, 9, 4, 1, 0, 0], + [0, 0, 1, 4, 8, 4, 1, 0, 0], + [0, 0, 0, 1, 4, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]] + assert_array_almost_equal(out * out, expected) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 2, 2, 2, 2, 2, 2], + [3, 3, 3, 3, 2, 3, 3, 3, 3], + [4, 4, 4, 4, 4, 4, 4, 4, 4], + [5, 5, 5, 5, 6, 5, 5, 5, 5], + [6, 6, 6, 6, 7, 6, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 6, 6, 6, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 1, 1, 7, 7, 7, 7, 8], + [0, 1, 1, 1, 6, 7, 7, 7, 8], + [0, 1, 2, 2, 4, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + def test_distance_transform_bf07(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, return_distances=False, return_indices=False + ) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt01(self, dtype): + # chamfer type distance (cdt) transform + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_cdt( + data, 'cityblock', return_indices=True) + bf = ndimage.distance_transform_bf(data, 'cityblock') + assert_array_almost_equal(bf, out) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 1, 1, 1, 2, 2, 2], + [3, 3, 2, 1, 1, 1, 2, 3, 3], + [4, 4, 4, 4, 1, 4, 4, 4, 4], + [5, 5, 5, 5, 7, 7, 6, 5, 5], + [6, 6, 6, 6, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 1, 1, 4, 7, 7, 7, 8], + [0, 1, 1, 1, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_cdt(data, 'chessboard', + return_indices=True) + bf = ndimage.distance_transform_bf(data, 'chessboard') + assert_array_almost_equal(bf, out) + + expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [2, 2, 2, 1, 1, 1, 2, 2, 2], + [3, 3, 2, 2, 1, 2, 2, 3, 3], + [4, 4, 3, 2, 2, 2, 3, 4, 4], + [5, 5, 4, 6, 7, 6, 4, 5, 5], + [6, 6, 6, 6, 7, 7, 6, 6, 6], + [7, 7, 7, 7, 7, 7, 7, 7, 7], + [8, 8, 8, 8, 8, 8, 8, 8, 8]], + [[0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 2, 3, 4, 6, 7, 8], + [0, 1, 1, 2, 2, 6, 6, 7, 8], + [0, 1, 1, 1, 2, 6, 7, 7, 8], + [0, 1, 1, 2, 6, 6, 7, 7, 8], + [0, 1, 2, 2, 5, 6, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8], + [0, 1, 2, 3, 4, 5, 6, 7, 8]]] + assert_array_almost_equal(ft, expected) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_cdt(data, return_indices=True) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_cdt( + data, return_distances=False, return_indices=True) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_cdt( + data, return_indices=True) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ft = ndimage.distance_transform_cdt( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_cdt( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.int32) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_cdt(data, distances=dt, + return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + def test_distance_transform_cdt04(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + indices_out = numpy.zeros((data.ndim,) + data.shape, dtype=numpy.int32) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, + return_distances=True, + return_indices=False, + indices=indices_out + ) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_cdt05(self, dtype): + # test custom metric type per discussion on issue #17381 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + metric_arg = np.ones((3, 3)) + actual = ndimage.distance_transform_cdt(data, metric=metric_arg) + assert actual.sum() == -21 + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt01(self, dtype): + # euclidean distance transform (edt) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out, ft = ndimage.distance_transform_edt(data, return_indices=True) + bf = ndimage.distance_transform_bf(data, 'euclidean') + assert_array_almost_equal(bf, out) + + dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype) + dt = dt.astype(numpy.float64) + numpy.multiply(dt, dt, dt) + dt = numpy.add.reduce(dt, axis=0) + numpy.sqrt(dt, dt) + + assert_array_almost_equal(bf, dt) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt02(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + tdt, tft = ndimage.distance_transform_edt(data, return_indices=True) + dts = [] + fts = [] + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ndimage.distance_transform_edt(data, distances=dt) + dts.append(dt) + ft = ndimage.distance_transform_edt( + data, return_distances=0, return_indices=True) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_edt( + data, return_distances=False, return_indices=True, indices=ft) + fts.append(ft) + dt, ft = ndimage.distance_transform_edt( + data, return_indices=True) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = ndimage.distance_transform_edt( + data, distances=dt, return_indices=True) + dts.append(dt) + fts.append(ft) + ft = numpy.indices(data.shape, dtype=numpy.int32) + dt = ndimage.distance_transform_edt( + data, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + dt = numpy.zeros(data.shape, dtype=numpy.float64) + ft = numpy.indices(data.shape, dtype=numpy.int32) + ndimage.distance_transform_edt( + data, distances=dt, return_indices=True, indices=ft) + dts.append(dt) + fts.append(ft) + for dt in dts: + assert_array_almost_equal(tdt, dt) + for ft in fts: + assert_array_almost_equal(tft, ft) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt03(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 2]) + out = ndimage.distance_transform_edt(data, sampling=[2, 2]) + assert_array_almost_equal(ref, out) + + @pytest.mark.parametrize('dtype', types) + def test_distance_transform_edt4(self, dtype): + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype) + ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 1]) + out = ndimage.distance_transform_edt(data, sampling=[2, 1]) + assert_array_almost_equal(ref, out) + + def test_distance_transform_edt5(self): + # Ticket #954 regression test + out = ndimage.distance_transform_edt(False) + assert_array_almost_equal(out, [0.]) + + def test_distance_transform_edt6(self): + # test input validation per discussion on PR #13302 + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + distances_out = numpy.zeros(data.shape, dtype=numpy.float64) + with assert_raises(RuntimeError): + ndimage.distance_transform_bf( + data, + return_indices=True, + return_distances=False, + distances=distances_out + ) + + def test_generate_structure01(self): + struct = ndimage.generate_binary_structure(0, 1) + assert_array_almost_equal(struct, 1) + + def test_generate_structure02(self): + struct = ndimage.generate_binary_structure(1, 1) + assert_array_almost_equal(struct, [1, 1, 1]) + + def test_generate_structure03(self): + struct = ndimage.generate_binary_structure(2, 1) + assert_array_almost_equal(struct, [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]]) + + def test_generate_structure04(self): + struct = ndimage.generate_binary_structure(2, 2) + assert_array_almost_equal(struct, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + def test_iterate_structure01(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + out = ndimage.iterate_structure(struct, 2) + assert_array_almost_equal(out, [[0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0]]) + + def test_iterate_structure02(self): + struct = [[0, 1], + [1, 1], + [0, 1]] + out = ndimage.iterate_structure(struct, 2) + assert_array_almost_equal(out, [[0, 0, 1], + [0, 1, 1], + [1, 1, 1], + [0, 1, 1], + [0, 0, 1]]) + + def test_iterate_structure03(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + out = ndimage.iterate_structure(struct, 2, 1) + expected = [[0, 0, 1, 0, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 0, 1, 0, 0]] + assert_array_almost_equal(out[0], expected) + assert_equal(out[1], [2, 2]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion01(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion02(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion03(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion04(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion05(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion06(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion07(self, dtype): + data = numpy.ones([5], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 1, 1, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion08(self, dtype): + data = numpy.ones([5], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 1, 1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion09(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [0, 0, 0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion10(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [1, 0, 0, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion11(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 0, 1, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion12(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1) + assert_array_almost_equal(out, [0, 1, 0, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion13(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 0, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=1) + assert_array_almost_equal(out, [1, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion14(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 1] + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 1, 0, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion15(self, dtype): + data = numpy.ones([5], dtype) + data[2] = 0 + struct = [1, 1] + out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1) + assert_array_almost_equal(out, [1, 0, 0, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion16(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion17(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion18(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0, 0, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion19(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion20(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_erosion(data) + assert_array_almost_equal(out, [[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion21(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion22(self, dtype): + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion23(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion24(self, dtype): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion25(self, dtype): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_erosion26(self, dtype): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_erosion(data, struct, border_value=1, + origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion27(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, border_value=1, + iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_erosion28(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=2, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_erosion29(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, iterations=3) + assert_array_almost_equal(out, expected) + + def test_binary_erosion30(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=3, output=out) + assert_array_almost_equal(out, expected) + + # test with output memory overlap + ndimage.binary_erosion(data, struct, border_value=1, + iterations=3, output=data) + assert_array_almost_equal(data, expected) + + def test_binary_erosion31(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 0, 1], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=1, output=out, origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion32(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_erosion33(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 1, 1], + [0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + mask = [[1, 1, 1, 1, 1, 0, 0], + [1, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 1, 1], + [0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, mask=mask, iterations=-1) + assert_array_almost_equal(out, expected) + + def test_binary_erosion34(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_erosion(data, struct, + border_value=1, mask=mask) + assert_array_almost_equal(out, expected) + + def test_binary_erosion35(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + tmp = [[0, 0, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 0, 1], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 1]] + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=1, output=out, + origin=(-1, -1), mask=mask) + assert_array_almost_equal(out, expected) + + def test_binary_erosion36(self): + struct = [[0, 1, 0], + [1, 0, 1], + [0, 1, 0]] + mask = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + tmp = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1], + [0, 0, 0, 0, 1, 0, 0, 1], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 1, 1, 1, 0, 1, 1], + [0, 0, 1, 0, 1, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + out = ndimage.binary_erosion(data, struct, mask=mask, + border_value=1, origin=(-1, -1)) + assert_array_almost_equal(out, expected) + + def test_binary_erosion37(self): + a = numpy.array([[1, 0, 1], + [0, 1, 0], + [1, 0, 1]], dtype=bool) + b = numpy.zeros_like(a) + out = ndimage.binary_erosion(a, structure=a, output=b, iterations=0, + border_value=True, brute_force=True) + assert_(out is b) + assert_array_equal( + ndimage.binary_erosion(a, structure=a, iterations=0, + border_value=True), + b) + + def test_binary_erosion38(self): + data = numpy.array([[1, 0, 1], + [0, 1, 0], + [1, 0, 1]], dtype=bool) + iterations = 2.0 + with assert_raises(TypeError): + _ = ndimage.binary_erosion(data, iterations=iterations) + + def test_binary_erosion39(self): + iterations = numpy.int32(3) + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=iterations, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_erosion40(self): + iterations = numpy.int64(3) + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [1, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_erosion(data, struct, border_value=1, + iterations=iterations, output=out) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation01(self, dtype): + data = numpy.ones([], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, 1) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation02(self, dtype): + data = numpy.zeros([], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, 0) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation03(self, dtype): + data = numpy.ones([1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation04(self, dtype): + data = numpy.zeros([1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation05(self, dtype): + data = numpy.ones([3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation06(self, dtype): + data = numpy.zeros([3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation07(self, dtype): + data = numpy.zeros([3], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation08(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + data[3] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1, 1, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation09(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [1, 1, 1, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation10(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data, origin=-1) + assert_array_almost_equal(out, [0, 1, 1, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation11(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + out = ndimage.binary_dilation(data, origin=1) + assert_array_almost_equal(out, [1, 1, 0, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation12(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, [1, 0, 1, 0, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation13(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, border_value=1) + assert_array_almost_equal(out, [1, 0, 1, 0, 1]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation14(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, origin=-1) + assert_array_almost_equal(out, [0, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation15(self, dtype): + data = numpy.zeros([5], dtype) + data[1] = 1 + struct = [1, 0, 1] + out = ndimage.binary_dilation(data, struct, + origin=-1, border_value=1) + assert_array_almost_equal(out, [1, 1, 0, 1, 0]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation16(self, dtype): + data = numpy.ones([1, 1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation17(self, dtype): + data = numpy.zeros([1, 1], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation18(self, dtype): + data = numpy.ones([1, 3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation19(self, dtype): + data = numpy.ones([3, 3], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation20(self, dtype): + data = numpy.zeros([3, 3], dtype) + data[1, 1] = 1 + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation21(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + data = numpy.zeros([3, 3], dtype) + data[1, 1] = 1 + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, [[1, 1, 1], + [1, 1, 1], + [1, 1, 1]]) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation22(self, dtype): + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation23(self, dtype): + expected = [[1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 0, 0, 0, 0, 1], + [1, 1, 0, 0, 0, 1, 0, 1], + [1, 0, 0, 1, 1, 1, 1, 1], + [1, 0, 1, 1, 1, 1, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 0, 1, 0, 0, 1, 0, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation24(self, dtype): + expected = [[1, 1, 0, 0, 0, 0, 0, 0], + [1, 0, 0, 0, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 0, 0], + [0, 1, 0, 0, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, origin=(1, 1)) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation25(self, dtype): + expected = [[1, 1, 0, 0, 0, 0, 1, 1], + [1, 0, 0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 1, 0, 0, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, origin=(1, 1), border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation26(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation27(self, dtype): + struct = [[0, 1], + [1, 1]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation28(self, dtype): + expected = [[1, 1, 1, 1], + [1, 0, 0, 1], + [1, 0, 0, 1], + [1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, border_value=1) + assert_array_almost_equal(out, expected) + + def test_binary_dilation29(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = ndimage.binary_dilation(data, struct, iterations=2) + assert_array_almost_equal(out, expected) + + def test_binary_dilation30(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_dilation(data, struct, iterations=2, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_dilation31(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = ndimage.binary_dilation(data, struct, iterations=3) + assert_array_almost_equal(out, expected) + + def test_binary_dilation32(self): + struct = [[0, 1], + [1, 1]] + expected = [[0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 1, 1, 1, 0], + [1, 1, 1, 1, 0], + [0, 0, 0, 0, 0]] + + data = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 0]], bool) + out = numpy.zeros(data.shape, bool) + ndimage.binary_dilation(data, struct, iterations=3, output=out) + assert_array_almost_equal(out, expected) + + def test_binary_dilation33(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + + out = ndimage.binary_dilation(data, struct, iterations=-1, + mask=mask, border_value=0) + assert_array_almost_equal(out, expected) + + def test_binary_dilation34(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.zeros(mask.shape, bool) + out = ndimage.binary_dilation(data, struct, iterations=-1, + mask=mask, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_dilation35(self, dtype): + tmp = [[1, 1, 0, 0, 0, 0, 1, 1], + [1, 0, 0, 0, 1, 0, 1, 1], + [0, 0, 1, 1, 1, 1, 1, 1], + [0, 1, 1, 1, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 1, 0, 0, 1, 0, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1]] + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]]) + mask = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + expected = numpy.logical_and(tmp, mask) + tmp = numpy.logical_and(data, numpy.logical_not(mask)) + expected = numpy.logical_or(expected, tmp) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_dilation(data, mask=mask, + origin=(1, 1), border_value=1) + assert_array_almost_equal(out, expected) + + def test_binary_propagation01(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 0, 0, 0], + [0, 1, 1, 0, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + + out = ndimage.binary_propagation(data, struct, + mask=mask, border_value=0) + assert_array_almost_equal(out, expected) + + def test_binary_propagation02(self): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.zeros(mask.shape, bool) + out = ndimage.binary_propagation(data, struct, + mask=mask, border_value=1) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_opening01(self, dtype): + expected = [[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_opening(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_opening02(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_opening(data, struct) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_closing01(self, dtype): + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 0, 1, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_closing(data) + assert_array_almost_equal(out, expected) + + @pytest.mark.parametrize('dtype', types) + def test_binary_closing02(self, dtype): + struct = ndimage.generate_binary_structure(2, 2) + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [1, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_closing(data, struct) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes01(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes02(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 1, 1, 1, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 1, 0, 0, 1, 0, 0], + [0, 0, 0, 1, 1, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_binary_fill_holes03(self): + expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 1, 1, 1, 0, 1, 1, 1], + [0, 0, 1, 0, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 1, 0, 1, 1, 1], + [0, 1, 0, 1, 0, 1, 0, 1], + [0, 1, 0, 1, 0, 1, 0, 1], + [0, 0, 1, 0, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0]], bool) + out = ndimage.binary_fill_holes(data) + assert_array_almost_equal(out, expected) + + def test_grey_erosion01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + output = ndimage.grey_erosion(array, footprint=footprint) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], output) + + def test_grey_erosion01_overlap(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + ndimage.grey_erosion(array, footprint=footprint, output=array) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], array) + + def test_grey_erosion02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + output = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[2, 2, 1, 1, 1], + [2, 3, 1, 3, 1], + [5, 5, 3, 3, 1]], output) + + def test_grey_erosion03(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[1, 1, 1], [1, 1, 1]] + output = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[1, 1, 0, 0, 0], + [1, 2, 0, 2, 0], + [4, 4, 2, 2, 0]], output) + + def test_grey_dilation01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + output = ndimage.grey_dilation(array, footprint=footprint) + assert_array_almost_equal([[7, 7, 9, 9, 5], + [7, 9, 8, 9, 7], + [8, 8, 8, 7, 7]], output) + + def test_grey_dilation02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + structure = [[0, 0, 0], [0, 0, 0]] + output = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[7, 7, 9, 9, 5], + [7, 9, 8, 9, 7], + [8, 8, 8, 7, 7]], output) + + def test_grey_dilation03(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[0, 1, 1], [1, 0, 1]] + structure = [[1, 1, 1], [1, 1, 1]] + output = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + assert_array_almost_equal([[8, 8, 10, 10, 6], + [8, 10, 9, 10, 8], + [9, 9, 9, 8, 8]], output) + + def test_grey_opening01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + tmp = ndimage.grey_erosion(array, footprint=footprint) + expected = ndimage.grey_dilation(tmp, footprint=footprint) + output = ndimage.grey_opening(array, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_grey_opening02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = ndimage.grey_dilation(tmp, footprint=footprint, + structure=structure) + output = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_grey_closing01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + tmp = ndimage.grey_dilation(array, footprint=footprint) + expected = ndimage.grey_erosion(tmp, footprint=footprint) + output = ndimage.grey_closing(array, footprint=footprint) + assert_array_almost_equal(expected, output) + + def test_grey_closing02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + expected = ndimage.grey_erosion(tmp, footprint=footprint, + structure=structure) + output = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_morphological_gradient01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 - tmp2 + output = numpy.zeros(array.shape, array.dtype) + ndimage.morphological_gradient(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_morphological_gradient02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 - tmp2 + output = ndimage.morphological_gradient(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_morphological_laplace01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 + tmp2 - 2 * array + output = numpy.zeros(array.shape, array.dtype) + ndimage.morphological_laplace(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_morphological_laplace02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp1 = ndimage.grey_dilation(array, footprint=footprint, + structure=structure) + tmp2 = ndimage.grey_erosion(array, footprint=footprint, + structure=structure) + expected = tmp1 + tmp2 - 2 * array + output = ndimage.morphological_laplace(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_white_tophat01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + expected = array - tmp + output = numpy.zeros(array.shape, array.dtype) + ndimage.white_tophat(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_white_tophat02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_opening(array, footprint=footprint, + structure=structure) + expected = array - tmp + output = ndimage.white_tophat(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_white_tophat03(self): + array = numpy.array([[1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + expected = numpy.array([[0, 1, 1, 0, 0, 0, 0], + [1, 0, 0, 1, 1, 1, 0], + [1, 0, 0, 1, 1, 1, 0], + [0, 1, 1, 0, 0, 0, 1], + [0, 1, 1, 0, 1, 0, 1], + [0, 1, 1, 0, 0, 0, 1], + [0, 0, 0, 1, 1, 1, 1]], dtype=numpy.bool_) + + output = ndimage.white_tophat(array, structure=structure) + assert_array_equal(expected, output) + + def test_white_tophat04(self): + array = numpy.eye(5, dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + + # Check that type mismatch is properly handled + output = numpy.empty_like(array, dtype=numpy.float64) + ndimage.white_tophat(array, structure=structure, output=output) + + def test_black_tophat01(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + expected = tmp - array + output = numpy.zeros(array.shape, array.dtype) + ndimage.black_tophat(array, footprint=footprint, + structure=structure, output=output) + assert_array_almost_equal(expected, output) + + def test_black_tophat02(self): + array = numpy.array([[3, 2, 5, 1, 4], + [7, 6, 9, 3, 5], + [5, 8, 3, 7, 1]]) + footprint = [[1, 0, 1], [1, 1, 0]] + structure = [[0, 0, 0], [0, 0, 0]] + tmp = ndimage.grey_closing(array, footprint=footprint, + structure=structure) + expected = tmp - array + output = ndimage.black_tophat(array, footprint=footprint, + structure=structure) + assert_array_almost_equal(expected, output) + + def test_black_tophat03(self): + array = numpy.array([[1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 0], + [0, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + expected = numpy.array([[0, 1, 1, 1, 1, 1, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 0, 0, 0, 1, 0, 1], + [1, 0, 0, 0, 0, 0, 1], + [1, 1, 1, 1, 1, 1, 0]], dtype=numpy.bool_) + + output = ndimage.black_tophat(array, structure=structure) + assert_array_equal(expected, output) + + def test_black_tophat04(self): + array = numpy.eye(5, dtype=numpy.bool_) + structure = numpy.ones((3, 3), dtype=numpy.bool_) + + # Check that type mismatch is properly handled + output = numpy.empty_like(array, dtype=numpy.float64) + ndimage.black_tophat(array, structure=structure, output=output) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss01(self, dtype): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 0], + [1, 1, 1, 0, 0], + [0, 1, 0, 1, 1], + [0, 0, 1, 1, 1], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 1], + [0, 1, 1, 1, 1], + [0, 0, 0, 0, 0]], dtype) + out = numpy.zeros(data.shape, bool) + ndimage.binary_hit_or_miss(data, struct, output=out) + assert_array_almost_equal(expected, out) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss02(self, dtype): + struct = [[0, 1, 0], + [1, 1, 1], + [0, 1, 0]] + expected = [[0, 0, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0], + [1, 1, 1, 0, 0, 1, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_hit_or_miss(data, struct) + assert_array_almost_equal(expected, out) + + @pytest.mark.parametrize('dtype', types) + def test_hit_or_miss03(self, dtype): + struct1 = [[0, 0, 0], + [1, 1, 1], + [0, 0, 0]] + struct2 = [[1, 1, 1], + [0, 0, 0], + [1, 1, 1]] + expected = [[0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]] + data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0], + [1, 1, 1, 0, 0, 0, 0, 0], + [0, 1, 0, 1, 1, 1, 1, 0], + [0, 0, 1, 1, 1, 1, 1, 0], + [0, 1, 1, 1, 0, 1, 1, 0], + [0, 0, 0, 0, 1, 1, 1, 0], + [0, 1, 1, 1, 1, 1, 1, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype) + out = ndimage.binary_hit_or_miss(data, struct1, struct2) + assert_array_almost_equal(expected, out) + + +class TestDilateFix: + + def setup_method(self): + # dilation related setup + self.array = numpy.array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 1, 1, 0], + [0, 0, 0, 0, 0]], dtype=numpy.uint8) + + self.sq3x3 = numpy.ones((3, 3)) + dilated3x3 = ndimage.binary_dilation(self.array, structure=self.sq3x3) + self.dilated3x3 = dilated3x3.view(numpy.uint8) + + def test_dilation_square_structure(self): + result = ndimage.grey_dilation(self.array, structure=self.sq3x3) + # +1 accounts for difference between grey and binary dilation + assert_array_almost_equal(result, self.dilated3x3 + 1) + + def test_dilation_scalar_size(self): + result = ndimage.grey_dilation(self.array, size=3) + assert_array_almost_equal(result, self.dilated3x3) + + +class TestBinaryOpeningClosing: + + def setup_method(self): + a = numpy.zeros((5, 5), dtype=bool) + a[1:4, 1:4] = True + a[4, 4] = True + self.array = a + self.sq3x3 = numpy.ones((3, 3)) + self.opened_old = ndimage.binary_opening(self.array, self.sq3x3, + 1, None, 0) + self.closed_old = ndimage.binary_closing(self.array, self.sq3x3, + 1, None, 0) + + def test_opening_new_arguments(self): + opened_new = ndimage.binary_opening(self.array, self.sq3x3, 1, None, + 0, None, 0, False) + assert_array_equal(opened_new, self.opened_old) + + def test_closing_new_arguments(self): + closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None, + 0, None, 0, False) + assert_array_equal(closed_new, self.closed_old) + + +def test_binary_erosion_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_erosion, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_erosion, data, iterations=1.5) + + +def test_binary_dilation_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_dilation, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_dilation, data, iterations=1.5) + + +def test_binary_opening_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_opening, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_opening, data, iterations=1.5) + + +def test_binary_closing_noninteger_iterations(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + assert_raises(TypeError, ndimage.binary_closing, data, iterations=0.5) + assert_raises(TypeError, ndimage.binary_closing, data, iterations=1.5) + + +def test_binary_closing_noninteger_brute_force_passes_when_true(): + # regression test for gh-9905, gh-9909: ValueError for + # non integer iterations + data = numpy.ones([1]) + + assert ndimage.binary_erosion( + data, iterations=2, brute_force=1.5 + ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(1.5)) + assert ndimage.binary_erosion( + data, iterations=2, brute_force=0.0 + ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(0.0)) + + +@pytest.mark.parametrize( + 'function', + ['binary_erosion', 'binary_dilation', 'binary_opening', 'binary_closing'], +) +@pytest.mark.parametrize('iterations', [1, 5]) +@pytest.mark.parametrize('brute_force', [False, True]) +def test_binary_input_as_output(function, iterations, brute_force): + rstate = numpy.random.RandomState(123) + data = rstate.randint(low=0, high=2, size=100).astype(bool) + ndi_func = getattr(ndimage, function) + + # input data is not modified + data_orig = data.copy() + expected = ndi_func(data, brute_force=brute_force, iterations=iterations) + assert_array_equal(data, data_orig) + + # data should now contain the expected result + ndi_func(data, brute_force=brute_force, iterations=iterations, output=data) + assert_array_equal(expected, data) + + +def test_binary_hit_or_miss_input_as_output(): + rstate = numpy.random.RandomState(123) + data = rstate.randint(low=0, high=2, size=100).astype(bool) + + # input data is not modified + data_orig = data.copy() + expected = ndimage.binary_hit_or_miss(data) + assert_array_equal(data, data_orig) + + # data should now contain the expected result + ndimage.binary_hit_or_miss(data, output=data) + assert_array_equal(expected, data) + + +def test_distance_transform_cdt_invalid_metric(): + msg = 'invalid metric provided' + with pytest.raises(ValueError, match=msg): + ndimage.distance_transform_cdt(np.ones((5, 5)), + metric="garbage")