diff --git a/ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..65a5b4f93de721d3f12aebd44752d5d8a9b10815 --- /dev/null +++ b/ckpts/universal/global_step80/zero/17.attention.query_key_value.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:68f0995291896fb0c60bf50061a75e1e24302a5f6ec758f1297fefa2c595583a +size 50332843 diff --git a/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..e7261b8a5370522525f8d60b2a43ae1bacceb0d7 --- /dev/null +++ b/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:917a98408d3518dca6f23b61c93b96be4236af751f219fca4447feda8d625258 +size 33555627 diff --git a/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/fp32.pt b/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..122b5962e1e9a4e4beeca4762a5c99ae67a5f100 --- /dev/null +++ b/ckpts/universal/global_step80/zero/24.mlp.dense_4h_to_h.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d87eb2ec79a76f0787ddb5442faccf4d778f2acefd2f09fb5a6dc642323684aa +size 33555533 diff --git a/ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..a1accc29bbd07c923696640748e8c9c8ab9869d5 --- /dev/null +++ b/ckpts/universal/global_step80/zero/25.mlp.dense_4h_to_h.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3e906612ce58afd0156b8ba63deb18e2e4917017a4172fb76b0d4aedd39dc74b +size 33555627 diff --git a/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg.pt b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..851034f2c2bc0470b46fcb0ac36d28973cb11fd0 --- /dev/null +++ b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:18135723478193588f29e4a82749e5fd9a6fd160930ad51a65ef90b1a1528852 +size 9372 diff --git a/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg_sq.pt b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..03104fe4740e8beaf62d471d96bf621a47879b62 --- /dev/null +++ b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:21ad7a7d222d3ce6785a94348cf4cd95bc63274a114adb0229ba8ef316dda338 +size 9387 diff --git a/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/fp32.pt b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..1d9e20370d23eaa60207c420396f0a2c76304b28 --- /dev/null +++ b/ckpts/universal/global_step80/zero/8.post_attention_layernorm.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:60cd4e22cece5d8390f006a8c28ef20517902c794f98223d5fd98fdd9997d2d4 +size 9293 diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82099a680a658a4b0d5afd27fd1037473273f61d Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/aesaracode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/aesaracode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d8a290a851798dc94631c4a6befcd5d382a9c08 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/aesaracode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/c.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/c.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a844c05a4ff408718d67ccbc8edbacbc7ce8620 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/c.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/codeprinter.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/codeprinter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e0eac1b7b7a8b32bad42050c859dfb1dda2811d Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/codeprinter.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/conventions.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/conventions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67abf1d1cf93970817da4aef5b2fc1e0fe2be90b Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/conventions.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/cxx.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/cxx.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a64c3613d431e855dc151f0a52b2aee7b76636f0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/cxx.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/defaults.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/defaults.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3588c5b1184aaa14f9e31402bc0a1384138882d4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/defaults.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/dot.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/dot.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2656e7cdd5f8881aaa35b057c76427b7d0150b5e Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/dot.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/fortran.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/fortran.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0c823dee49c882b1e0433da7b34a8453c63a63e2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/fortran.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/glsl.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/glsl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..12af62ce82b80aaa197ab7bedbddeb721c36bd23 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/glsl.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/gtk.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/gtk.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..352eb2f067209181647070d58385497c3a99816d Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/gtk.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/jscode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/jscode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0489acf3fab9d5940b2ff7b29e113ed1bb032de Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/jscode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/julia.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/julia.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ccbb0262f736826e1e1f110ef41c1938c6d25d9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/julia.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/lambdarepr.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/lambdarepr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..94289904b585903b3a76c1957e5a276c2d4b2d3b Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/lambdarepr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/latex.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/latex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b595a81270b5b96c497c8183c27419a8f586768 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/latex.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5cf889ca2ae90f88f2d70abf45dec5cda5952492 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/maple.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/maple.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..669e2e13d179b71b0be4fdf5fa2fa07e15404b85 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/maple.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/mathml.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/mathml.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8c5f1c62badb96c53984d4ea0a9c75aa0becdfa Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/mathml.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/numpy.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/numpy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4d9cb4e5f876f5960a66ae54c7736340c14843b1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/numpy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/octave.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/octave.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..336f5eaa8bf99563b0703a1d5a736aba136078e8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/octave.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/precedence.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/precedence.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b1696636f4625302d64e63b04b9ab23b25ff5cf Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/precedence.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/preview.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/preview.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..446a110475dd25fcee85c5758ea8b010899fccad Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/preview.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/printer.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/printer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f286d62c9e84e06049c3d3e7e2fe9185d47df6f6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/printer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/pycode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/pycode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ded5c1c51d37af3122cf4c142dd8426205781a89 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/pycode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/python.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/python.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3cbb9142023c4a248c5f6f076941182b97c51a3a Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/python.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rcode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rcode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c90da7ae297042d5a5284f14f935eab2a7358061 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rcode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/repr.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/repr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..509d0a89fd409bf2cb21861d59366866d14d6cd9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/repr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rust.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rust.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e35183c745aec7c1c247d0c7464d88e5606962bf Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/rust.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/smtlib.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/smtlib.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1835cf08211b52f0d804518745c6dec369d7e3d5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/smtlib.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/str.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/str.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb1ca79ae73ae5af392c471c501a3a1cd77eff9c Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/str.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tableform.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tableform.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..200dbb9b98d1ec332ad9c396c7971af43f6ef7ad Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tableform.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tensorflow.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tensorflow.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bed6c21ecc60e3f0ca009220004d9d216c60dc2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tensorflow.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/theanocode.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/theanocode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9afcf3d8f09694513eb17945d20f54efadec8c2a Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/theanocode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tree.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tree.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3485f4e25ea8f74972f353ea41a1346db5b761c9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/__pycache__/tree.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/conventions.py b/venv/lib/python3.10/site-packages/sympy/printing/conventions.py new file mode 100644 index 0000000000000000000000000000000000000000..3eda9c1a54aef5dd5090debf98dc74bba72f9405 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/conventions.py @@ -0,0 +1,88 @@ +""" +A few practical conventions common to all printers. +""" + +import re + +from collections.abc import Iterable +from sympy.core.function import Derivative + +_name_with_digits_p = re.compile(r'^([^\W\d_]+)(\d+)$', re.U) + + +def split_super_sub(text): + """Split a symbol name into a name, superscripts and subscripts + + The first part of the symbol name is considered to be its actual + 'name', followed by super- and subscripts. Each superscript is + preceded with a "^" character or by "__". Each subscript is preceded + by a "_" character. The three return values are the actual name, a + list with superscripts and a list with subscripts. + + Examples + ======== + + >>> from sympy.printing.conventions import split_super_sub + >>> split_super_sub('a_x^1') + ('a', ['1'], ['x']) + >>> split_super_sub('var_sub1__sup_sub2') + ('var', ['sup'], ['sub1', 'sub2']) + + """ + if not text: + return text, [], [] + + pos = 0 + name = None + supers = [] + subs = [] + while pos < len(text): + start = pos + 1 + if text[pos:pos + 2] == "__": + start += 1 + pos_hat = text.find("^", start) + if pos_hat < 0: + pos_hat = len(text) + pos_usc = text.find("_", start) + if pos_usc < 0: + pos_usc = len(text) + pos_next = min(pos_hat, pos_usc) + part = text[pos:pos_next] + pos = pos_next + if name is None: + name = part + elif part.startswith("^"): + supers.append(part[1:]) + elif part.startswith("__"): + supers.append(part[2:]) + elif part.startswith("_"): + subs.append(part[1:]) + else: + raise RuntimeError("This should never happen.") + + # Make a little exception when a name ends with digits, i.e. treat them + # as a subscript too. + m = _name_with_digits_p.match(name) + if m: + name, sub = m.groups() + subs.insert(0, sub) + + return name, supers, subs + + +def requires_partial(expr): + """Return whether a partial derivative symbol is required for printing + + This requires checking how many free variables there are, + filtering out the ones that are integers. Some expressions do not have + free variables. In that case, check its variable list explicitly to + get the context of the expression. + """ + + if isinstance(expr, Derivative): + return requires_partial(expr.expr) + + if not isinstance(expr.free_symbols, Iterable): + return len(set(expr.variables)) > 1 + + return sum(not s.is_integer for s in expr.free_symbols) > 1 diff --git a/venv/lib/python3.10/site-packages/sympy/printing/defaults.py b/venv/lib/python3.10/site-packages/sympy/printing/defaults.py new file mode 100644 index 0000000000000000000000000000000000000000..77a88d353fed4bd70496456ddd03cc429a4ba5e7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/defaults.py @@ -0,0 +1,5 @@ +from sympy.core._print_helpers import Printable + +# alias for compatibility +Printable.__module__ = __name__ +DefaultPrinting = Printable diff --git a/venv/lib/python3.10/site-packages/sympy/printing/fortran.py b/venv/lib/python3.10/site-packages/sympy/printing/fortran.py new file mode 100644 index 0000000000000000000000000000000000000000..184116648bbb774c7d0215c56197b13ce848803d --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/fortran.py @@ -0,0 +1,782 @@ +""" +Fortran code printer + +The FCodePrinter converts single SymPy expressions into single Fortran +expressions, using the functions defined in the Fortran 77 standard where +possible. Some useful pointers to Fortran can be found on wikipedia: + +https://en.wikipedia.org/wiki/Fortran + +Most of the code below is based on the "Professional Programmer\'s Guide to +Fortran77" by Clive G. Page: + +https://www.star.le.ac.uk/~cgp/prof77.html + +Fortran is a case-insensitive language. This might cause trouble because +SymPy is case sensitive. So, fcode adds underscores to variable names when +it is necessary to make them different for Fortran. +""" + +from __future__ import annotations +from typing import Any + +from collections import defaultdict +from itertools import chain +import string + +from sympy.codegen.ast import ( + Assignment, Declaration, Pointer, value_const, + float32, float64, float80, complex64, complex128, int8, int16, int32, + int64, intc, real, integer, bool_, complex_ +) +from sympy.codegen.fnodes import ( + allocatable, isign, dsign, cmplx, merge, literal_dp, elemental, pure, + intent_in, intent_out, intent_inout +) +from sympy.core import S, Add, N, Float, Symbol +from sympy.core.function import Function +from sympy.core.numbers import equal_valued +from sympy.core.relational import Eq +from sympy.sets import Range +from sympy.printing.codeprinter import CodePrinter +from sympy.printing.precedence import precedence, PRECEDENCE +from sympy.printing.printer import printer_context + +# These are defined in the other file so we can avoid importing sympy.codegen +# from the top-level 'import sympy'. Export them here as well. +from sympy.printing.codeprinter import fcode, print_fcode # noqa:F401 + +known_functions = { + "sin": "sin", + "cos": "cos", + "tan": "tan", + "asin": "asin", + "acos": "acos", + "atan": "atan", + "atan2": "atan2", + "sinh": "sinh", + "cosh": "cosh", + "tanh": "tanh", + "log": "log", + "exp": "exp", + "erf": "erf", + "Abs": "abs", + "conjugate": "conjg", + "Max": "max", + "Min": "min", +} + + +class FCodePrinter(CodePrinter): + """A printer to convert SymPy expressions to strings of Fortran code""" + printmethod = "_fcode" + language = "Fortran" + + type_aliases = { + integer: int32, + real: float64, + complex_: complex128, + } + + type_mappings = { + intc: 'integer(c_int)', + float32: 'real*4', # real(kind(0.e0)) + float64: 'real*8', # real(kind(0.d0)) + float80: 'real*10', # real(kind(????)) + complex64: 'complex*8', + complex128: 'complex*16', + int8: 'integer*1', + int16: 'integer*2', + int32: 'integer*4', + int64: 'integer*8', + bool_: 'logical' + } + + type_modules = { + intc: {'iso_c_binding': 'c_int'} + } + + _default_settings: dict[str, Any] = { + 'order': None, + 'full_prec': 'auto', + 'precision': 17, + 'user_functions': {}, + 'human': True, + 'allow_unknown_functions': False, + 'source_format': 'fixed', + 'contract': True, + 'standard': 77, + 'name_mangling': True, + } + + _operators = { + 'and': '.and.', + 'or': '.or.', + 'xor': '.neqv.', + 'equivalent': '.eqv.', + 'not': '.not. ', + } + + _relationals = { + '!=': '/=', + } + + def __init__(self, settings=None): + if not settings: + settings = {} + self.mangled_symbols = {} # Dict showing mapping of all words + self.used_name = [] + self.type_aliases = dict(chain(self.type_aliases.items(), + settings.pop('type_aliases', {}).items())) + self.type_mappings = dict(chain(self.type_mappings.items(), + settings.pop('type_mappings', {}).items())) + super().__init__(settings) + self.known_functions = dict(known_functions) + userfuncs = settings.get('user_functions', {}) + self.known_functions.update(userfuncs) + # leading columns depend on fixed or free format + standards = {66, 77, 90, 95, 2003, 2008} + if self._settings['standard'] not in standards: + raise ValueError("Unknown Fortran standard: %s" % self._settings[ + 'standard']) + self.module_uses = defaultdict(set) # e.g.: use iso_c_binding, only: c_int + + @property + def _lead(self): + if self._settings['source_format'] == 'fixed': + return {'code': " ", 'cont': " @ ", 'comment': "C "} + elif self._settings['source_format'] == 'free': + return {'code': "", 'cont': " ", 'comment': "! "} + else: + raise ValueError("Unknown source format: %s" % self._settings['source_format']) + + def _print_Symbol(self, expr): + if self._settings['name_mangling'] == True: + if expr not in self.mangled_symbols: + name = expr.name + while name.lower() in self.used_name: + name += '_' + self.used_name.append(name.lower()) + if name == expr.name: + self.mangled_symbols[expr] = expr + else: + self.mangled_symbols[expr] = Symbol(name) + + expr = expr.xreplace(self.mangled_symbols) + + name = super()._print_Symbol(expr) + return name + + def _rate_index_position(self, p): + return -p*5 + + def _get_statement(self, codestring): + return codestring + + def _get_comment(self, text): + return "! {}".format(text) + + def _declare_number_const(self, name, value): + return "parameter ({} = {})".format(name, self._print(value)) + + def _print_NumberSymbol(self, expr): + # A Number symbol that is not implemented here or with _printmethod + # is registered and evaluated + self._number_symbols.add((expr, Float(expr.evalf(self._settings['precision'])))) + return str(expr) + + def _format_code(self, lines): + return self._wrap_fortran(self.indent_code(lines)) + + def _traverse_matrix_indices(self, mat): + rows, cols = mat.shape + return ((i, j) for j in range(cols) for i in range(rows)) + + def _get_loop_opening_ending(self, indices): + open_lines = [] + close_lines = [] + for i in indices: + # fortran arrays start at 1 and end at dimension + var, start, stop = map(self._print, + [i.label, i.lower + 1, i.upper + 1]) + open_lines.append("do %s = %s, %s" % (var, start, stop)) + close_lines.append("end do") + return open_lines, close_lines + + def _print_sign(self, expr): + from sympy.functions.elementary.complexes import Abs + arg, = expr.args + if arg.is_integer: + new_expr = merge(0, isign(1, arg), Eq(arg, 0)) + elif (arg.is_complex or arg.is_infinite): + new_expr = merge(cmplx(literal_dp(0), literal_dp(0)), arg/Abs(arg), Eq(Abs(arg), literal_dp(0))) + else: + new_expr = merge(literal_dp(0), dsign(literal_dp(1), arg), Eq(arg, literal_dp(0))) + return self._print(new_expr) + + + def _print_Piecewise(self, expr): + if expr.args[-1].cond != True: + # We need the last conditional to be a True, otherwise the resulting + # function may not return a result. + raise ValueError("All Piecewise expressions must contain an " + "(expr, True) statement to be used as a default " + "condition. Without one, the generated " + "expression may not evaluate to anything under " + "some condition.") + lines = [] + if expr.has(Assignment): + for i, (e, c) in enumerate(expr.args): + if i == 0: + lines.append("if (%s) then" % self._print(c)) + elif i == len(expr.args) - 1 and c == True: + lines.append("else") + else: + lines.append("else if (%s) then" % self._print(c)) + lines.append(self._print(e)) + lines.append("end if") + return "\n".join(lines) + elif self._settings["standard"] >= 95: + # Only supported in F95 and newer: + # The piecewise was used in an expression, need to do inline + # operators. This has the downside that inline operators will + # not work for statements that span multiple lines (Matrix or + # Indexed expressions). + pattern = "merge({T}, {F}, {COND})" + code = self._print(expr.args[-1].expr) + terms = list(expr.args[:-1]) + while terms: + e, c = terms.pop() + expr = self._print(e) + cond = self._print(c) + code = pattern.format(T=expr, F=code, COND=cond) + return code + else: + # `merge` is not supported prior to F95 + raise NotImplementedError("Using Piecewise as an expression using " + "inline operators is not supported in " + "standards earlier than Fortran95.") + + def _print_MatrixElement(self, expr): + return "{}({}, {})".format(self.parenthesize(expr.parent, + PRECEDENCE["Atom"], strict=True), expr.i + 1, expr.j + 1) + + def _print_Add(self, expr): + # purpose: print complex numbers nicely in Fortran. + # collect the purely real and purely imaginary parts: + pure_real = [] + pure_imaginary = [] + mixed = [] + for arg in expr.args: + if arg.is_number and arg.is_real: + pure_real.append(arg) + elif arg.is_number and arg.is_imaginary: + pure_imaginary.append(arg) + else: + mixed.append(arg) + if pure_imaginary: + if mixed: + PREC = precedence(expr) + term = Add(*mixed) + t = self._print(term) + if t.startswith('-'): + sign = "-" + t = t[1:] + else: + sign = "+" + if precedence(term) < PREC: + t = "(%s)" % t + + return "cmplx(%s,%s) %s %s" % ( + self._print(Add(*pure_real)), + self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), + sign, t, + ) + else: + return "cmplx(%s,%s)" % ( + self._print(Add(*pure_real)), + self._print(-S.ImaginaryUnit*Add(*pure_imaginary)), + ) + else: + return CodePrinter._print_Add(self, expr) + + def _print_Function(self, expr): + # All constant function args are evaluated as floats + prec = self._settings['precision'] + args = [N(a, prec) for a in expr.args] + eval_expr = expr.func(*args) + if not isinstance(eval_expr, Function): + return self._print(eval_expr) + else: + return CodePrinter._print_Function(self, expr.func(*args)) + + def _print_Mod(self, expr): + # NOTE : Fortran has the functions mod() and modulo(). modulo() behaves + # the same wrt to the sign of the arguments as Python and SymPy's + # modulus computations (% and Mod()) but is not available in Fortran 66 + # or Fortran 77, thus we raise an error. + if self._settings['standard'] in [66, 77]: + msg = ("Python % operator and SymPy's Mod() function are not " + "supported by Fortran 66 or 77 standards.") + raise NotImplementedError(msg) + else: + x, y = expr.args + return " modulo({}, {})".format(self._print(x), self._print(y)) + + def _print_ImaginaryUnit(self, expr): + # purpose: print complex numbers nicely in Fortran. + return "cmplx(0,1)" + + def _print_int(self, expr): + return str(expr) + + def _print_Mul(self, expr): + # purpose: print complex numbers nicely in Fortran. + if expr.is_number and expr.is_imaginary: + return "cmplx(0,%s)" % ( + self._print(-S.ImaginaryUnit*expr) + ) + else: + return CodePrinter._print_Mul(self, expr) + + def _print_Pow(self, expr): + PREC = precedence(expr) + if equal_valued(expr.exp, -1): + return '%s/%s' % ( + self._print(literal_dp(1)), + self.parenthesize(expr.base, PREC) + ) + elif equal_valued(expr.exp, 0.5): + if expr.base.is_integer: + # Fortran intrinsic sqrt() does not accept integer argument + if expr.base.is_Number: + return 'sqrt(%s.0d0)' % self._print(expr.base) + else: + return 'sqrt(dble(%s))' % self._print(expr.base) + else: + return 'sqrt(%s)' % self._print(expr.base) + else: + return CodePrinter._print_Pow(self, expr) + + def _print_Rational(self, expr): + p, q = int(expr.p), int(expr.q) + return "%d.0d0/%d.0d0" % (p, q) + + def _print_Float(self, expr): + printed = CodePrinter._print_Float(self, expr) + e = printed.find('e') + if e > -1: + return "%sd%s" % (printed[:e], printed[e + 1:]) + return "%sd0" % printed + + def _print_Relational(self, expr): + lhs_code = self._print(expr.lhs) + rhs_code = self._print(expr.rhs) + op = expr.rel_op + op = op if op not in self._relationals else self._relationals[op] + return "{} {} {}".format(lhs_code, op, rhs_code) + + def _print_Indexed(self, expr): + inds = [ self._print(i) for i in expr.indices ] + return "%s(%s)" % (self._print(expr.base.label), ", ".join(inds)) + + def _print_Idx(self, expr): + return self._print(expr.label) + + def _print_AugmentedAssignment(self, expr): + lhs_code = self._print(expr.lhs) + rhs_code = self._print(expr.rhs) + return self._get_statement("{0} = {0} {1} {2}".format( + self._print(lhs_code), self._print(expr.binop), self._print(rhs_code))) + + def _print_sum_(self, sm): + params = self._print(sm.array) + if sm.dim != None: # Must use '!= None', cannot use 'is not None' + params += ', ' + self._print(sm.dim) + if sm.mask != None: # Must use '!= None', cannot use 'is not None' + params += ', mask=' + self._print(sm.mask) + return '%s(%s)' % (sm.__class__.__name__.rstrip('_'), params) + + def _print_product_(self, prod): + return self._print_sum_(prod) + + def _print_Do(self, do): + excl = ['concurrent'] + if do.step == 1: + excl.append('step') + step = '' + else: + step = ', {step}' + + return ( + 'do {concurrent}{counter} = {first}, {last}'+step+'\n' + '{body}\n' + 'end do\n' + ).format( + concurrent='concurrent ' if do.concurrent else '', + **do.kwargs(apply=lambda arg: self._print(arg), exclude=excl) + ) + + def _print_ImpliedDoLoop(self, idl): + step = '' if idl.step == 1 else ', {step}' + return ('({expr}, {counter} = {first}, {last}'+step+')').format( + **idl.kwargs(apply=lambda arg: self._print(arg)) + ) + + def _print_For(self, expr): + target = self._print(expr.target) + if isinstance(expr.iterable, Range): + start, stop, step = expr.iterable.args + else: + raise NotImplementedError("Only iterable currently supported is Range") + body = self._print(expr.body) + return ('do {target} = {start}, {stop}, {step}\n' + '{body}\n' + 'end do').format(target=target, start=start, stop=stop - 1, + step=step, body=body) + + def _print_Type(self, type_): + type_ = self.type_aliases.get(type_, type_) + type_str = self.type_mappings.get(type_, type_.name) + module_uses = self.type_modules.get(type_) + if module_uses: + for k, v in module_uses: + self.module_uses[k].add(v) + return type_str + + def _print_Element(self, elem): + return '{symbol}({idxs})'.format( + symbol=self._print(elem.symbol), + idxs=', '.join((self._print(arg) for arg in elem.indices)) + ) + + def _print_Extent(self, ext): + return str(ext) + + def _print_Declaration(self, expr): + var = expr.variable + val = var.value + dim = var.attr_params('dimension') + intents = [intent in var.attrs for intent in (intent_in, intent_out, intent_inout)] + if intents.count(True) == 0: + intent = '' + elif intents.count(True) == 1: + intent = ', intent(%s)' % ['in', 'out', 'inout'][intents.index(True)] + else: + raise ValueError("Multiple intents specified for %s" % self) + + if isinstance(var, Pointer): + raise NotImplementedError("Pointers are not available by default in Fortran.") + if self._settings["standard"] >= 90: + result = '{t}{vc}{dim}{intent}{alloc} :: {s}'.format( + t=self._print(var.type), + vc=', parameter' if value_const in var.attrs else '', + dim=', dimension(%s)' % ', '.join((self._print(arg) for arg in dim)) if dim else '', + intent=intent, + alloc=', allocatable' if allocatable in var.attrs else '', + s=self._print(var.symbol) + ) + if val != None: # Must be "!= None", cannot be "is not None" + result += ' = %s' % self._print(val) + else: + if value_const in var.attrs or val: + raise NotImplementedError("F77 init./parameter statem. req. multiple lines.") + result = ' '.join((self._print(arg) for arg in [var.type, var.symbol])) + + return result + + + def _print_Infinity(self, expr): + return '(huge(%s) + 1)' % self._print(literal_dp(0)) + + def _print_While(self, expr): + return 'do while ({condition})\n{body}\nend do'.format(**expr.kwargs( + apply=lambda arg: self._print(arg))) + + def _print_BooleanTrue(self, expr): + return '.true.' + + def _print_BooleanFalse(self, expr): + return '.false.' + + def _pad_leading_columns(self, lines): + result = [] + for line in lines: + if line.startswith('!'): + result.append(self._lead['comment'] + line[1:].lstrip()) + else: + result.append(self._lead['code'] + line) + return result + + def _wrap_fortran(self, lines): + """Wrap long Fortran lines + + Argument: + lines -- a list of lines (without \\n character) + + A comment line is split at white space. Code lines are split with a more + complex rule to give nice results. + """ + # routine to find split point in a code line + my_alnum = set("_+-." + string.digits + string.ascii_letters) + my_white = set(" \t()") + + def split_pos_code(line, endpos): + if len(line) <= endpos: + return len(line) + pos = endpos + split = lambda pos: \ + (line[pos] in my_alnum and line[pos - 1] not in my_alnum) or \ + (line[pos] not in my_alnum and line[pos - 1] in my_alnum) or \ + (line[pos] in my_white and line[pos - 1] not in my_white) or \ + (line[pos] not in my_white and line[pos - 1] in my_white) + while not split(pos): + pos -= 1 + if pos == 0: + return endpos + return pos + # split line by line and add the split lines to result + result = [] + if self._settings['source_format'] == 'free': + trailing = ' &' + else: + trailing = '' + for line in lines: + if line.startswith(self._lead['comment']): + # comment line + if len(line) > 72: + pos = line.rfind(" ", 6, 72) + if pos == -1: + pos = 72 + hunk = line[:pos] + line = line[pos:].lstrip() + result.append(hunk) + while line: + pos = line.rfind(" ", 0, 66) + if pos == -1 or len(line) < 66: + pos = 66 + hunk = line[:pos] + line = line[pos:].lstrip() + result.append("%s%s" % (self._lead['comment'], hunk)) + else: + result.append(line) + elif line.startswith(self._lead['code']): + # code line + pos = split_pos_code(line, 72) + hunk = line[:pos].rstrip() + line = line[pos:].lstrip() + if line: + hunk += trailing + result.append(hunk) + while line: + pos = split_pos_code(line, 65) + hunk = line[:pos].rstrip() + line = line[pos:].lstrip() + if line: + hunk += trailing + result.append("%s%s" % (self._lead['cont'], hunk)) + else: + result.append(line) + return result + + def indent_code(self, code): + """Accepts a string of code or a list of code lines""" + if isinstance(code, str): + code_lines = self.indent_code(code.splitlines(True)) + return ''.join(code_lines) + + free = self._settings['source_format'] == 'free' + code = [ line.lstrip(' \t') for line in code ] + + inc_keyword = ('do ', 'if(', 'if ', 'do\n', 'else', 'program', 'interface') + dec_keyword = ('end do', 'enddo', 'end if', 'endif', 'else', 'end program', 'end interface') + + increase = [ int(any(map(line.startswith, inc_keyword))) + for line in code ] + decrease = [ int(any(map(line.startswith, dec_keyword))) + for line in code ] + continuation = [ int(any(map(line.endswith, ['&', '&\n']))) + for line in code ] + + level = 0 + cont_padding = 0 + tabwidth = 3 + new_code = [] + for i, line in enumerate(code): + if line in ('', '\n'): + new_code.append(line) + continue + level -= decrease[i] + + if free: + padding = " "*(level*tabwidth + cont_padding) + else: + padding = " "*level*tabwidth + + line = "%s%s" % (padding, line) + if not free: + line = self._pad_leading_columns([line])[0] + + new_code.append(line) + + if continuation[i]: + cont_padding = 2*tabwidth + else: + cont_padding = 0 + level += increase[i] + + if not free: + return self._wrap_fortran(new_code) + return new_code + + def _print_GoTo(self, goto): + if goto.expr: # computed goto + return "go to ({labels}), {expr}".format( + labels=', '.join((self._print(arg) for arg in goto.labels)), + expr=self._print(goto.expr) + ) + else: + lbl, = goto.labels + return "go to %s" % self._print(lbl) + + def _print_Program(self, prog): + return ( + "program {name}\n" + "{body}\n" + "end program\n" + ).format(**prog.kwargs(apply=lambda arg: self._print(arg))) + + def _print_Module(self, mod): + return ( + "module {name}\n" + "{declarations}\n" + "\ncontains\n\n" + "{definitions}\n" + "end module\n" + ).format(**mod.kwargs(apply=lambda arg: self._print(arg))) + + def _print_Stream(self, strm): + if strm.name == 'stdout' and self._settings["standard"] >= 2003: + self.module_uses['iso_c_binding'].add('stdint=>input_unit') + return 'input_unit' + elif strm.name == 'stderr' and self._settings["standard"] >= 2003: + self.module_uses['iso_c_binding'].add('stdint=>error_unit') + return 'error_unit' + else: + if strm.name == 'stdout': + return '*' + else: + return strm.name + + def _print_Print(self, ps): + if ps.format_string != None: # Must be '!= None', cannot be 'is not None' + fmt = self._print(ps.format_string) + else: + fmt = "*" + return "print {fmt}, {iolist}".format(fmt=fmt, iolist=', '.join( + (self._print(arg) for arg in ps.print_args))) + + def _print_Return(self, rs): + arg, = rs.args + return "{result_name} = {arg}".format( + result_name=self._context.get('result_name', 'sympy_result'), + arg=self._print(arg) + ) + + def _print_FortranReturn(self, frs): + arg, = frs.args + if arg: + return 'return %s' % self._print(arg) + else: + return 'return' + + def _head(self, entity, fp, **kwargs): + bind_C_params = fp.attr_params('bind_C') + if bind_C_params is None: + bind = '' + else: + bind = ' bind(C, name="%s")' % bind_C_params[0] if bind_C_params else ' bind(C)' + result_name = self._settings.get('result_name', None) + return ( + "{entity}{name}({arg_names}){result}{bind}\n" + "{arg_declarations}" + ).format( + entity=entity, + name=self._print(fp.name), + arg_names=', '.join([self._print(arg.symbol) for arg in fp.parameters]), + result=(' result(%s)' % result_name) if result_name else '', + bind=bind, + arg_declarations='\n'.join((self._print(Declaration(arg)) for arg in fp.parameters)) + ) + + def _print_FunctionPrototype(self, fp): + entity = "{} function ".format(self._print(fp.return_type)) + return ( + "interface\n" + "{function_head}\n" + "end function\n" + "end interface" + ).format(function_head=self._head(entity, fp)) + + def _print_FunctionDefinition(self, fd): + if elemental in fd.attrs: + prefix = 'elemental ' + elif pure in fd.attrs: + prefix = 'pure ' + else: + prefix = '' + + entity = "{} function ".format(self._print(fd.return_type)) + with printer_context(self, result_name=fd.name): + return ( + "{prefix}{function_head}\n" + "{body}\n" + "end function\n" + ).format( + prefix=prefix, + function_head=self._head(entity, fd), + body=self._print(fd.body) + ) + + def _print_Subroutine(self, sub): + return ( + '{subroutine_head}\n' + '{body}\n' + 'end subroutine\n' + ).format( + subroutine_head=self._head('subroutine ', sub), + body=self._print(sub.body) + ) + + def _print_SubroutineCall(self, scall): + return 'call {name}({args})'.format( + name=self._print(scall.name), + args=', '.join((self._print(arg) for arg in scall.subroutine_args)) + ) + + def _print_use_rename(self, rnm): + return "%s => %s" % tuple((self._print(arg) for arg in rnm.args)) + + def _print_use(self, use): + result = 'use %s' % self._print(use.namespace) + if use.rename != None: # Must be '!= None', cannot be 'is not None' + result += ', ' + ', '.join([self._print(rnm) for rnm in use.rename]) + if use.only != None: # Must be '!= None', cannot be 'is not None' + result += ', only: ' + ', '.join([self._print(nly) for nly in use.only]) + return result + + def _print_BreakToken(self, _): + return 'exit' + + def _print_ContinueToken(self, _): + return 'cycle' + + def _print_ArrayConstructor(self, ac): + fmtstr = "[%s]" if self._settings["standard"] >= 2003 else '(/%s/)' + return fmtstr % ', '.join((self._print(arg) for arg in ac.elements)) + + def _print_ArrayElement(self, elem): + return '{symbol}({idxs})'.format( + symbol=self._print(elem.name), + idxs=', '.join((self._print(arg) for arg in elem.indices)) + ) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/jscode.py b/venv/lib/python3.10/site-packages/sympy/printing/jscode.py new file mode 100644 index 0000000000000000000000000000000000000000..b214cbce3962ab085de48b17d2d4faac3dd01231 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/jscode.py @@ -0,0 +1,339 @@ +""" +Javascript code printer + +The JavascriptCodePrinter converts single SymPy expressions into single +Javascript expressions, using the functions defined in the Javascript +Math object where possible. + +""" + +from __future__ import annotations +from typing import Any + +from sympy.core import S +from sympy.core.numbers import equal_valued +from sympy.printing.codeprinter import CodePrinter +from sympy.printing.precedence import precedence, PRECEDENCE + + +# dictionary mapping SymPy function to (argument_conditions, Javascript_function). +# Used in JavascriptCodePrinter._print_Function(self) +known_functions = { + 'Abs': 'Math.abs', + 'acos': 'Math.acos', + 'acosh': 'Math.acosh', + 'asin': 'Math.asin', + 'asinh': 'Math.asinh', + 'atan': 'Math.atan', + 'atan2': 'Math.atan2', + 'atanh': 'Math.atanh', + 'ceiling': 'Math.ceil', + 'cos': 'Math.cos', + 'cosh': 'Math.cosh', + 'exp': 'Math.exp', + 'floor': 'Math.floor', + 'log': 'Math.log', + 'Max': 'Math.max', + 'Min': 'Math.min', + 'sign': 'Math.sign', + 'sin': 'Math.sin', + 'sinh': 'Math.sinh', + 'tan': 'Math.tan', + 'tanh': 'Math.tanh', +} + + +class JavascriptCodePrinter(CodePrinter): + """"A Printer to convert Python expressions to strings of JavaScript code + """ + printmethod = '_javascript' + language = 'JavaScript' + + _default_settings: dict[str, Any] = { + 'order': None, + 'full_prec': 'auto', + 'precision': 17, + 'user_functions': {}, + 'human': True, + 'allow_unknown_functions': False, + 'contract': True, + } + + def __init__(self, settings={}): + CodePrinter.__init__(self, settings) + self.known_functions = dict(known_functions) + userfuncs = settings.get('user_functions', {}) + self.known_functions.update(userfuncs) + + def _rate_index_position(self, p): + return p*5 + + def _get_statement(self, codestring): + return "%s;" % codestring + + def _get_comment(self, text): + return "// {}".format(text) + + def _declare_number_const(self, name, value): + return "var {} = {};".format(name, value.evalf(self._settings['precision'])) + + def _format_code(self, lines): + return self.indent_code(lines) + + def _traverse_matrix_indices(self, mat): + rows, cols = mat.shape + return ((i, j) for i in range(rows) for j in range(cols)) + + def _get_loop_opening_ending(self, indices): + open_lines = [] + close_lines = [] + loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" + for i in indices: + # Javascript arrays start at 0 and end at dimension-1 + open_lines.append(loopstart % { + 'varble': self._print(i.label), + 'start': self._print(i.lower), + 'end': self._print(i.upper + 1)}) + close_lines.append("}") + return open_lines, close_lines + + def _print_Pow(self, expr): + PREC = precedence(expr) + if equal_valued(expr.exp, -1): + return '1/%s' % (self.parenthesize(expr.base, PREC)) + elif equal_valued(expr.exp, 0.5): + return 'Math.sqrt(%s)' % self._print(expr.base) + elif expr.exp == S.One/3: + return 'Math.cbrt(%s)' % self._print(expr.base) + else: + return 'Math.pow(%s, %s)' % (self._print(expr.base), + self._print(expr.exp)) + + def _print_Rational(self, expr): + p, q = int(expr.p), int(expr.q) + return '%d/%d' % (p, q) + + def _print_Mod(self, expr): + num, den = expr.args + PREC = precedence(expr) + snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args] + # % is remainder (same sign as numerator), not modulo (same sign as + # denominator), in js. Hence, % only works as modulo if both numbers + # have the same sign + if (num.is_nonnegative and den.is_nonnegative or + num.is_nonpositive and den.is_nonpositive): + return f"{snum} % {sden}" + return f"(({snum} % {sden}) + {sden}) % {sden}" + + def _print_Relational(self, expr): + lhs_code = self._print(expr.lhs) + rhs_code = self._print(expr.rhs) + op = expr.rel_op + return "{} {} {}".format(lhs_code, op, rhs_code) + + def _print_Indexed(self, expr): + # calculate index for 1d array + dims = expr.shape + elem = S.Zero + offset = S.One + for i in reversed(range(expr.rank)): + elem += expr.indices[i]*offset + offset *= dims[i] + return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) + + def _print_Idx(self, expr): + return self._print(expr.label) + + def _print_Exp1(self, expr): + return "Math.E" + + def _print_Pi(self, expr): + return 'Math.PI' + + def _print_Infinity(self, expr): + return 'Number.POSITIVE_INFINITY' + + def _print_NegativeInfinity(self, expr): + return 'Number.NEGATIVE_INFINITY' + + def _print_Piecewise(self, expr): + from sympy.codegen.ast import Assignment + if expr.args[-1].cond != True: + # We need the last conditional to be a True, otherwise the resulting + # function may not return a result. + raise ValueError("All Piecewise expressions must contain an " + "(expr, True) statement to be used as a default " + "condition. Without one, the generated " + "expression may not evaluate to anything under " + "some condition.") + lines = [] + if expr.has(Assignment): + for i, (e, c) in enumerate(expr.args): + if i == 0: + lines.append("if (%s) {" % self._print(c)) + elif i == len(expr.args) - 1 and c == True: + lines.append("else {") + else: + lines.append("else if (%s) {" % self._print(c)) + code0 = self._print(e) + lines.append(code0) + lines.append("}") + return "\n".join(lines) + else: + # The piecewise was used in an expression, need to do inline + # operators. This has the downside that inline operators will + # not work for statements that span multiple lines (Matrix or + # Indexed expressions). + ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) + for e, c in expr.args[:-1]] + last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) + return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) + + def _print_MatrixElement(self, expr): + return "{}[{}]".format(self.parenthesize(expr.parent, + PRECEDENCE["Atom"], strict=True), + expr.j + expr.i*expr.parent.shape[1]) + + def indent_code(self, code): + """Accepts a string of code or a list of code lines""" + + if isinstance(code, str): + code_lines = self.indent_code(code.splitlines(True)) + return ''.join(code_lines) + + tab = " " + inc_token = ('{', '(', '{\n', '(\n') + dec_token = ('}', ')') + + code = [ line.lstrip(' \t') for line in code ] + + increase = [ int(any(map(line.endswith, inc_token))) for line in code ] + decrease = [ int(any(map(line.startswith, dec_token))) + for line in code ] + + pretty = [] + level = 0 + for n, line in enumerate(code): + if line in ('', '\n'): + pretty.append(line) + continue + level -= decrease[n] + pretty.append("%s%s" % (tab*level, line)) + level += increase[n] + return pretty + + +def jscode(expr, assign_to=None, **settings): + """Converts an expr to a string of javascript code + + Parameters + ========== + + expr : Expr + A SymPy expression to be converted. + assign_to : optional + When given, the argument is used as the name of the variable to which + the expression is assigned. Can be a string, ``Symbol``, + ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of + line-wrapping, or for expressions that generate multi-line statements. + precision : integer, optional + The precision for numbers such as pi [default=15]. + user_functions : dict, optional + A dictionary where keys are ``FunctionClass`` instances and values are + their string representations. Alternatively, the dictionary value can + be a list of tuples i.e. [(argument_test, js_function_string)]. See + below for examples. + human : bool, optional + If True, the result is a single string that may contain some constant + declarations for the number symbols. If False, the same information is + returned in a tuple of (symbols_to_declare, not_supported_functions, + code_text). [default=True]. + contract: bool, optional + If True, ``Indexed`` instances are assumed to obey tensor contraction + rules and the corresponding nested loops over indices are generated. + Setting contract=False will not generate loops, instead the user is + responsible to provide values for the indices in the code. + [default=True]. + + Examples + ======== + + >>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs + >>> x, tau = symbols("x, tau") + >>> jscode((2*tau)**Rational(7, 2)) + '8*Math.sqrt(2)*Math.pow(tau, 7/2)' + >>> jscode(sin(x), assign_to="s") + 's = Math.sin(x);' + + Custom printing can be defined for certain types by passing a dictionary of + "type" : "function" to the ``user_functions`` kwarg. Alternatively, the + dictionary value can be a list of tuples i.e. [(argument_test, + js_function_string)]. + + >>> custom_functions = { + ... "ceiling": "CEIL", + ... "Abs": [(lambda x: not x.is_integer, "fabs"), + ... (lambda x: x.is_integer, "ABS")] + ... } + >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions) + 'fabs(x) + CEIL(x)' + + ``Piecewise`` expressions are converted into conditionals. If an + ``assign_to`` variable is provided an if statement is created, otherwise + the ternary operator is used. Note that if the ``Piecewise`` lacks a + default term, represented by ``(expr, True)`` then an error will be thrown. + This is to prevent generating an expression that may not evaluate to + anything. + + >>> from sympy import Piecewise + >>> expr = Piecewise((x + 1, x > 0), (x, True)) + >>> print(jscode(expr, tau)) + if (x > 0) { + tau = x + 1; + } + else { + tau = x; + } + + Support for loops is provided through ``Indexed`` types. With + ``contract=True`` these expressions will be turned into loops, whereas + ``contract=False`` will just print the assignment expression that should be + looped over: + + >>> from sympy import Eq, IndexedBase, Idx + >>> len_y = 5 + >>> y = IndexedBase('y', shape=(len_y,)) + >>> t = IndexedBase('t', shape=(len_y,)) + >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) + >>> i = Idx('i', len_y-1) + >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) + >>> jscode(e.rhs, assign_to=e.lhs, contract=False) + 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' + + Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions + must be provided to ``assign_to``. Note that any expression that can be + generated normally can also exist inside a Matrix: + + >>> from sympy import Matrix, MatrixSymbol + >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) + >>> A = MatrixSymbol('A', 3, 1) + >>> print(jscode(mat, A)) + A[0] = Math.pow(x, 2); + if (x > 0) { + A[1] = x + 1; + } + else { + A[1] = x; + } + A[2] = Math.sin(x); + """ + + return JavascriptCodePrinter(settings).doprint(expr, assign_to) + + +def print_jscode(expr, **settings): + """Prints the Javascript representation of the given expression. + + See jscode for the meaning of the optional arguments. + """ + print(jscode(expr, **settings)) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/latex.py b/venv/lib/python3.10/site-packages/sympy/printing/latex.py new file mode 100644 index 0000000000000000000000000000000000000000..0f2a9a6efade243c93b6cf9f950b514aad5cd224 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/latex.py @@ -0,0 +1,3277 @@ +""" +A Printer which converts an expression into its LaTeX equivalent. +""" +from __future__ import annotations +from typing import Any, Callable, TYPE_CHECKING + +import itertools + +from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol, Expr +from sympy.core.alphabets import greeks +from sympy.core.containers import Tuple +from sympy.core.function import Function, AppliedUndef, Derivative +from sympy.core.operations import AssocOp +from sympy.core.power import Pow +from sympy.core.sorting import default_sort_key +from sympy.core.sympify import SympifyError +from sympy.logic.boolalg import true, BooleanTrue, BooleanFalse +from sympy.tensor.array import NDimArray + +# sympy.printing imports +from sympy.printing.precedence import precedence_traditional +from sympy.printing.printer import Printer, print_function +from sympy.printing.conventions import split_super_sub, requires_partial +from sympy.printing.precedence import precedence, PRECEDENCE + +from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str + +from sympy.utilities.iterables import has_variety, sift + +import re + +if TYPE_CHECKING: + from sympy.vector.basisdependent import BasisDependent + +# Hand-picked functions which can be used directly in both LaTeX and MathJax +# Complete list at +# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands +# This variable only contains those functions which SymPy uses. +accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', + 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', + 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', + 'arg', + ] + +tex_greek_dictionary = { + 'Alpha': r'\mathrm{A}', + 'Beta': r'\mathrm{B}', + 'Gamma': r'\Gamma', + 'Delta': r'\Delta', + 'Epsilon': r'\mathrm{E}', + 'Zeta': r'\mathrm{Z}', + 'Eta': r'\mathrm{H}', + 'Theta': r'\Theta', + 'Iota': r'\mathrm{I}', + 'Kappa': r'\mathrm{K}', + 'Lambda': r'\Lambda', + 'Mu': r'\mathrm{M}', + 'Nu': r'\mathrm{N}', + 'Xi': r'\Xi', + 'omicron': 'o', + 'Omicron': r'\mathrm{O}', + 'Pi': r'\Pi', + 'Rho': r'\mathrm{P}', + 'Sigma': r'\Sigma', + 'Tau': r'\mathrm{T}', + 'Upsilon': r'\Upsilon', + 'Phi': r'\Phi', + 'Chi': r'\mathrm{X}', + 'Psi': r'\Psi', + 'Omega': r'\Omega', + 'lamda': r'\lambda', + 'Lamda': r'\Lambda', + 'khi': r'\chi', + 'Khi': r'\mathrm{X}', + 'varepsilon': r'\varepsilon', + 'varkappa': r'\varkappa', + 'varphi': r'\varphi', + 'varpi': r'\varpi', + 'varrho': r'\varrho', + 'varsigma': r'\varsigma', + 'vartheta': r'\vartheta', +} + +other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', + 'hslash', 'mho', 'wp'} + +# Variable name modifiers +modifier_dict: dict[str, Callable[[str], str]] = { + # Accents + 'mathring': lambda s: r'\mathring{'+s+r'}', + 'ddddot': lambda s: r'\ddddot{'+s+r'}', + 'dddot': lambda s: r'\dddot{'+s+r'}', + 'ddot': lambda s: r'\ddot{'+s+r'}', + 'dot': lambda s: r'\dot{'+s+r'}', + 'check': lambda s: r'\check{'+s+r'}', + 'breve': lambda s: r'\breve{'+s+r'}', + 'acute': lambda s: r'\acute{'+s+r'}', + 'grave': lambda s: r'\grave{'+s+r'}', + 'tilde': lambda s: r'\tilde{'+s+r'}', + 'hat': lambda s: r'\hat{'+s+r'}', + 'bar': lambda s: r'\bar{'+s+r'}', + 'vec': lambda s: r'\vec{'+s+r'}', + 'prime': lambda s: "{"+s+"}'", + 'prm': lambda s: "{"+s+"}'", + # Faces + 'bold': lambda s: r'\boldsymbol{'+s+r'}', + 'bm': lambda s: r'\boldsymbol{'+s+r'}', + 'cal': lambda s: r'\mathcal{'+s+r'}', + 'scr': lambda s: r'\mathscr{'+s+r'}', + 'frak': lambda s: r'\mathfrak{'+s+r'}', + # Brackets + 'norm': lambda s: r'\left\|{'+s+r'}\right\|', + 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', + 'abs': lambda s: r'\left|{'+s+r'}\right|', + 'mag': lambda s: r'\left|{'+s+r'}\right|', +} + +greek_letters_set = frozenset(greeks) + +_between_two_numbers_p = ( + re.compile(r'[0-9][} ]*$'), # search + re.compile(r'[0-9]'), # match +) + + +def latex_escape(s: str) -> str: + """ + Escape a string such that latex interprets it as plaintext. + + We cannot use verbatim easily with mathjax, so escaping is easier. + Rules from https://tex.stackexchange.com/a/34586/41112. + """ + s = s.replace('\\', r'\textbackslash') + for c in '&%$#_{}': + s = s.replace(c, '\\' + c) + s = s.replace('~', r'\textasciitilde') + s = s.replace('^', r'\textasciicircum') + return s + + +class LatexPrinter(Printer): + printmethod = "_latex" + + _default_settings: dict[str, Any] = { + "full_prec": False, + "fold_frac_powers": False, + "fold_func_brackets": False, + "fold_short_frac": None, + "inv_trig_style": "abbreviated", + "itex": False, + "ln_notation": False, + "long_frac_ratio": None, + "mat_delim": "[", + "mat_str": None, + "mode": "plain", + "mul_symbol": None, + "order": None, + "symbol_names": {}, + "root_notation": True, + "mat_symbol_style": "plain", + "imaginary_unit": "i", + "gothic_re_im": False, + "decimal_separator": "period", + "perm_cyclic": True, + "parenthesize_super": True, + "min": None, + "max": None, + "diff_operator": "d", + } + + def __init__(self, settings=None): + Printer.__init__(self, settings) + + if 'mode' in self._settings: + valid_modes = ['inline', 'plain', 'equation', + 'equation*'] + if self._settings['mode'] not in valid_modes: + raise ValueError("'mode' must be one of 'inline', 'plain', " + "'equation' or 'equation*'") + + if self._settings['fold_short_frac'] is None and \ + self._settings['mode'] == 'inline': + self._settings['fold_short_frac'] = True + + mul_symbol_table = { + None: r" ", + "ldot": r" \,.\, ", + "dot": r" \cdot ", + "times": r" \times " + } + try: + self._settings['mul_symbol_latex'] = \ + mul_symbol_table[self._settings['mul_symbol']] + except KeyError: + self._settings['mul_symbol_latex'] = \ + self._settings['mul_symbol'] + try: + self._settings['mul_symbol_latex_numbers'] = \ + mul_symbol_table[self._settings['mul_symbol'] or 'dot'] + except KeyError: + if (self._settings['mul_symbol'].strip() in + ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): + self._settings['mul_symbol_latex_numbers'] = \ + mul_symbol_table['dot'] + else: + self._settings['mul_symbol_latex_numbers'] = \ + self._settings['mul_symbol'] + + self._delim_dict = {'(': ')', '[': ']'} + + imaginary_unit_table = { + None: r"i", + "i": r"i", + "ri": r"\mathrm{i}", + "ti": r"\text{i}", + "j": r"j", + "rj": r"\mathrm{j}", + "tj": r"\text{j}", + } + imag_unit = self._settings['imaginary_unit'] + self._settings['imaginary_unit_latex'] = imaginary_unit_table.get(imag_unit, imag_unit) + + diff_operator_table = { + None: r"d", + "d": r"d", + "rd": r"\mathrm{d}", + "td": r"\text{d}", + } + diff_operator = self._settings['diff_operator'] + self._settings["diff_operator_latex"] = diff_operator_table.get(diff_operator, diff_operator) + + def _add_parens(self, s) -> str: + return r"\left({}\right)".format(s) + + # TODO: merge this with the above, which requires a lot of test changes + def _add_parens_lspace(self, s) -> str: + return r"\left( {}\right)".format(s) + + def parenthesize(self, item, level, is_neg=False, strict=False) -> str: + prec_val = precedence_traditional(item) + if is_neg and strict: + return self._add_parens(self._print(item)) + + if (prec_val < level) or ((not strict) and prec_val <= level): + return self._add_parens(self._print(item)) + else: + return self._print(item) + + def parenthesize_super(self, s): + """ + Protect superscripts in s + + If the parenthesize_super option is set, protect with parentheses, else + wrap in braces. + """ + if "^" in s: + if self._settings['parenthesize_super']: + return self._add_parens(s) + else: + return "{{{}}}".format(s) + return s + + def doprint(self, expr) -> str: + tex = Printer.doprint(self, expr) + + if self._settings['mode'] == 'plain': + return tex + elif self._settings['mode'] == 'inline': + return r"$%s$" % tex + elif self._settings['itex']: + return r"$$%s$$" % tex + else: + env_str = self._settings['mode'] + return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) + + def _needs_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed, False otherwise. For example: a + b => True; a => False; + 10 => False; -10 => True. + """ + return not ((expr.is_Integer and expr.is_nonnegative) + or (expr.is_Atom and (expr is not S.NegativeOne + and expr.is_Rational is False))) + + def _needs_function_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + passed as an argument to a function, False otherwise. This is a more + liberal version of _needs_brackets, in that many expressions which need + to be wrapped in brackets when added/subtracted/raised to a power do + not need them when passed to a function. Such an example is a*b. + """ + if not self._needs_brackets(expr): + return False + else: + # Muls of the form a*b*c... can be folded + if expr.is_Mul and not self._mul_is_clean(expr): + return True + # Pows which don't need brackets can be folded + elif expr.is_Pow and not self._pow_is_clean(expr): + return True + # Add and Function always need brackets + elif expr.is_Add or expr.is_Function: + return True + else: + return False + + def _needs_mul_brackets(self, expr, first=False, last=False) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed as part of a Mul, False otherwise. This is True for Add, + but also for some container objects that would not need brackets + when appearing last in a Mul, e.g. an Integral. ``last=True`` + specifies that this expr is the last to appear in a Mul. + ``first=True`` specifies that this expr is the first to appear in + a Mul. + """ + from sympy.concrete.products import Product + from sympy.concrete.summations import Sum + from sympy.integrals.integrals import Integral + + if expr.is_Mul: + if not first and expr.could_extract_minus_sign(): + return True + elif precedence_traditional(expr) < PRECEDENCE["Mul"]: + return True + elif expr.is_Relational: + return True + if expr.is_Piecewise: + return True + if any(expr.has(x) for x in (Mod,)): + return True + if (not last and + any(expr.has(x) for x in (Integral, Product, Sum))): + return True + + return False + + def _needs_add_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed as part of an Add, False otherwise. This is False for most + things. + """ + if expr.is_Relational: + return True + if any(expr.has(x) for x in (Mod,)): + return True + if expr.is_Add: + return True + return False + + def _mul_is_clean(self, expr) -> bool: + for arg in expr.args: + if arg.is_Function: + return False + return True + + def _pow_is_clean(self, expr) -> bool: + return not self._needs_brackets(expr.base) + + def _do_exponent(self, expr: str, exp): + if exp is not None: + return r"\left(%s\right)^{%s}" % (expr, exp) + else: + return expr + + def _print_Basic(self, expr): + name = self._deal_with_super_sub(expr.__class__.__name__) + if expr.args: + ls = [self._print(o) for o in expr.args] + s = r"\operatorname{{{}}}\left({}\right)" + return s.format(name, ", ".join(ls)) + else: + return r"\text{{{}}}".format(name) + + def _print_bool(self, e: bool | BooleanTrue | BooleanFalse): + return r"\text{%s}" % e + + _print_BooleanTrue = _print_bool + _print_BooleanFalse = _print_bool + + def _print_NoneType(self, e): + return r"\text{%s}" % e + + def _print_Add(self, expr, order=None): + terms = self._as_ordered_terms(expr, order=order) + + tex = "" + for i, term in enumerate(terms): + if i == 0: + pass + elif term.could_extract_minus_sign(): + tex += " - " + term = -term + else: + tex += " + " + term_tex = self._print(term) + if self._needs_add_brackets(term): + term_tex = r"\left(%s\right)" % term_tex + tex += term_tex + + return tex + + def _print_Cycle(self, expr): + from sympy.combinatorics.permutations import Permutation + if expr.size == 0: + return r"\left( \right)" + expr = Permutation(expr) + expr_perm = expr.cyclic_form + siz = expr.size + if expr.array_form[-1] == siz - 1: + expr_perm = expr_perm + [[siz - 1]] + term_tex = '' + for i in expr_perm: + term_tex += str(i).replace(',', r"\;") + term_tex = term_tex.replace('[', r"\left( ") + term_tex = term_tex.replace(']', r"\right)") + return term_tex + + def _print_Permutation(self, expr): + from sympy.combinatorics.permutations import Permutation + from sympy.utilities.exceptions import sympy_deprecation_warning + + perm_cyclic = Permutation.print_cyclic + if perm_cyclic is not None: + sympy_deprecation_warning( + f""" + Setting Permutation.print_cyclic is deprecated. Instead use + init_printing(perm_cyclic={perm_cyclic}). + """, + deprecated_since_version="1.6", + active_deprecations_target="deprecated-permutation-print_cyclic", + stacklevel=8, + ) + else: + perm_cyclic = self._settings.get("perm_cyclic", True) + + if perm_cyclic: + return self._print_Cycle(expr) + + if expr.size == 0: + return r"\left( \right)" + + lower = [self._print(arg) for arg in expr.array_form] + upper = [self._print(arg) for arg in range(len(lower))] + + row1 = " & ".join(upper) + row2 = " & ".join(lower) + mat = r" \\ ".join((row1, row2)) + return r"\begin{pmatrix} %s \end{pmatrix}" % mat + + + def _print_AppliedPermutation(self, expr): + perm, var = expr.args + return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var)) + + def _print_Float(self, expr): + # Based off of that in StrPrinter + dps = prec_to_dps(expr._prec) + strip = False if self._settings['full_prec'] else True + low = self._settings["min"] if "min" in self._settings else None + high = self._settings["max"] if "max" in self._settings else None + str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) + + # Must always have a mul symbol (as 2.5 10^{20} just looks odd) + # thus we use the number separator + separator = self._settings['mul_symbol_latex_numbers'] + + if 'e' in str_real: + (mant, exp) = str_real.split('e') + + if exp[0] == '+': + exp = exp[1:] + if self._settings['decimal_separator'] == 'comma': + mant = mant.replace('.','{,}') + + return r"%s%s10^{%s}" % (mant, separator, exp) + elif str_real == "+inf": + return r"\infty" + elif str_real == "-inf": + return r"- \infty" + else: + if self._settings['decimal_separator'] == 'comma': + str_real = str_real.replace('.','{,}') + return str_real + + def _print_Cross(self, expr): + vec1 = expr._expr1 + vec2 = expr._expr2 + return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), + self.parenthesize(vec2, PRECEDENCE['Mul'])) + + def _print_Curl(self, expr): + vec = expr._expr + return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) + + def _print_Divergence(self, expr): + vec = expr._expr + return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) + + def _print_Dot(self, expr): + vec1 = expr._expr1 + vec2 = expr._expr2 + return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), + self.parenthesize(vec2, PRECEDENCE['Mul'])) + + def _print_Gradient(self, expr): + func = expr._expr + return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) + + def _print_Laplacian(self, expr): + func = expr._expr + return r"\Delta %s" % self.parenthesize(func, PRECEDENCE['Mul']) + + def _print_Mul(self, expr: Expr): + from sympy.simplify import fraction + separator: str = self._settings['mul_symbol_latex'] + numbersep: str = self._settings['mul_symbol_latex_numbers'] + + def convert(expr) -> str: + if not expr.is_Mul: + return str(self._print(expr)) + else: + if self.order not in ('old', 'none'): + args = expr.as_ordered_factors() + else: + args = list(expr.args) + + # If there are quantities or prefixes, append them at the back. + units, nonunits = sift(args, lambda x: (hasattr(x, "_scale_factor") or hasattr(x, "is_physical_constant")) or + (isinstance(x, Pow) and + hasattr(x.base, "is_physical_constant")), binary=True) + prefixes, units = sift(units, lambda x: hasattr(x, "_scale_factor"), binary=True) + return convert_args(nonunits + prefixes + units) + + def convert_args(args) -> str: + _tex = last_term_tex = "" + + for i, term in enumerate(args): + term_tex = self._print(term) + if not (hasattr(term, "_scale_factor") or hasattr(term, "is_physical_constant")): + if self._needs_mul_brackets(term, first=(i == 0), + last=(i == len(args) - 1)): + term_tex = r"\left(%s\right)" % term_tex + + if _between_two_numbers_p[0].search(last_term_tex) and \ + _between_two_numbers_p[1].match(str(term)): + # between two numbers + _tex += numbersep + elif _tex: + _tex += separator + elif _tex: + _tex += separator + + _tex += term_tex + last_term_tex = term_tex + return _tex + + # Check for unevaluated Mul. In this case we need to make sure the + # identities are visible, multiple Rational factors are not combined + # etc so we display in a straight-forward form that fully preserves all + # args and their order. + # XXX: _print_Pow calls this routine with instances of Pow... + if isinstance(expr, Mul): + args = expr.args + if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): + return convert_args(args) + + include_parens = False + if expr.could_extract_minus_sign(): + expr = -expr + tex = "- " + if expr.is_Add: + tex += "(" + include_parens = True + else: + tex = "" + + numer, denom = fraction(expr, exact=True) + + if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: + # use the original expression here, since fraction() may have + # altered it when producing numer and denom + tex += convert(expr) + + else: + snumer = convert(numer) + sdenom = convert(denom) + ldenom = len(sdenom.split()) + ratio = self._settings['long_frac_ratio'] + if self._settings['fold_short_frac'] and ldenom <= 2 and \ + "^" not in sdenom: + # handle short fractions + if self._needs_mul_brackets(numer, last=False): + tex += r"\left(%s\right) / %s" % (snumer, sdenom) + else: + tex += r"%s / %s" % (snumer, sdenom) + elif ratio is not None and \ + len(snumer.split()) > ratio*ldenom: + # handle long fractions + if self._needs_mul_brackets(numer, last=True): + tex += r"\frac{1}{%s}%s\left(%s\right)" \ + % (sdenom, separator, snumer) + elif numer.is_Mul: + # split a long numerator + a = S.One + b = S.One + for x in numer.args: + if self._needs_mul_brackets(x, last=False) or \ + len(convert(a*x).split()) > ratio*ldenom or \ + (b.is_commutative is x.is_commutative is False): + b *= x + else: + a *= x + if self._needs_mul_brackets(b, last=True): + tex += r"\frac{%s}{%s}%s\left(%s\right)" \ + % (convert(a), sdenom, separator, convert(b)) + else: + tex += r"\frac{%s}{%s}%s%s" \ + % (convert(a), sdenom, separator, convert(b)) + else: + tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) + else: + tex += r"\frac{%s}{%s}" % (snumer, sdenom) + + if include_parens: + tex += ")" + return tex + + def _print_AlgebraicNumber(self, expr): + if expr.is_aliased: + return self._print(expr.as_poly().as_expr()) + else: + return self._print(expr.as_expr()) + + def _print_PrimeIdeal(self, expr): + p = self._print(expr.p) + if expr.is_inert: + return rf'\left({p}\right)' + alpha = self._print(expr.alpha.as_expr()) + return rf'\left({p}, {alpha}\right)' + + def _print_Pow(self, expr: Pow): + # Treat x**Rational(1,n) as special case + if expr.exp.is_Rational: + p: int = expr.exp.p # type: ignore + q: int = expr.exp.q # type: ignore + if abs(p) == 1 and q != 1 and self._settings['root_notation']: + base = self._print(expr.base) + if q == 2: + tex = r"\sqrt{%s}" % base + elif self._settings['itex']: + tex = r"\root{%d}{%s}" % (q, base) + else: + tex = r"\sqrt[%d]{%s}" % (q, base) + if expr.exp.is_negative: + return r"\frac{1}{%s}" % tex + else: + return tex + elif self._settings['fold_frac_powers'] and q != 1: + base = self.parenthesize(expr.base, PRECEDENCE['Pow']) + # issue #12886: add parentheses for superscripts raised to powers + if expr.base.is_Symbol: + base = self.parenthesize_super(base) + if expr.base.is_Function: + return self._print(expr.base, exp="%s/%s" % (p, q)) + return r"%s^{%s/%s}" % (base, p, q) + elif expr.exp.is_negative and expr.base.is_commutative: + # special case for 1^(-x), issue 9216 + if expr.base == 1: + return r"%s^{%s}" % (expr.base, expr.exp) + # special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252 + if expr.base.is_Rational: + base_p: int = expr.base.p # type: ignore + base_q: int = expr.base.q # type: ignore + if base_p * base_q == abs(base_q): + if expr.exp == -1: + return r"\frac{1}{\frac{%s}{%s}}" % (base_p, base_q) + else: + return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (base_p, base_q, abs(expr.exp)) + # things like 1/x + return self._print_Mul(expr) + if expr.base.is_Function: + return self._print(expr.base, exp=self._print(expr.exp)) + tex = r"%s^{%s}" + return self._helper_print_standard_power(expr, tex) + + def _helper_print_standard_power(self, expr, template: str) -> str: + exp = self._print(expr.exp) + # issue #12886: add parentheses around superscripts raised + # to powers + base = self.parenthesize(expr.base, PRECEDENCE['Pow']) + if expr.base.is_Symbol: + base = self.parenthesize_super(base) + elif (isinstance(expr.base, Derivative) + and base.startswith(r'\left(') + and re.match(r'\\left\(\\d?d?dot', base) + and base.endswith(r'\right)')): + # don't use parentheses around dotted derivative + base = base[6: -7] # remove outermost added parens + return template % (base, exp) + + def _print_UnevaluatedExpr(self, expr): + return self._print(expr.args[0]) + + def _print_Sum(self, expr): + if len(expr.limits) == 1: + tex = r"\sum_{%s=%s}^{%s} " % \ + tuple([self._print(i) for i in expr.limits[0]]) + else: + def _format_ineq(l): + return r"%s \leq %s \leq %s" % \ + tuple([self._print(s) for s in (l[1], l[0], l[2])]) + + tex = r"\sum_{\substack{%s}} " % \ + str.join('\\\\', [_format_ineq(l) for l in expr.limits]) + + if isinstance(expr.function, Add): + tex += r"\left(%s\right)" % self._print(expr.function) + else: + tex += self._print(expr.function) + + return tex + + def _print_Product(self, expr): + if len(expr.limits) == 1: + tex = r"\prod_{%s=%s}^{%s} " % \ + tuple([self._print(i) for i in expr.limits[0]]) + else: + def _format_ineq(l): + return r"%s \leq %s \leq %s" % \ + tuple([self._print(s) for s in (l[1], l[0], l[2])]) + + tex = r"\prod_{\substack{%s}} " % \ + str.join('\\\\', [_format_ineq(l) for l in expr.limits]) + + if isinstance(expr.function, Add): + tex += r"\left(%s\right)" % self._print(expr.function) + else: + tex += self._print(expr.function) + + return tex + + def _print_BasisDependent(self, expr: 'BasisDependent'): + from sympy.vector import Vector + + o1: list[str] = [] + if expr == expr.zero: + return expr.zero._latex_form + if isinstance(expr, Vector): + items = expr.separate().items() + else: + items = [(0, expr)] + + for system, vect in items: + inneritems = list(vect.components.items()) + inneritems.sort(key=lambda x: x[0].__str__()) + for k, v in inneritems: + if v == 1: + o1.append(' + ' + k._latex_form) + elif v == -1: + o1.append(' - ' + k._latex_form) + else: + arg_str = r'\left(' + self._print(v) + r'\right)' + o1.append(' + ' + arg_str + k._latex_form) + + outstr = (''.join(o1)) + if outstr[1] != '-': + outstr = outstr[3:] + else: + outstr = outstr[1:] + return outstr + + def _print_Indexed(self, expr): + tex_base = self._print(expr.base) + tex = '{'+tex_base+'}'+'_{%s}' % ','.join( + map(self._print, expr.indices)) + return tex + + def _print_IndexedBase(self, expr): + return self._print(expr.label) + + def _print_Idx(self, expr): + label = self._print(expr.label) + if expr.upper is not None: + upper = self._print(expr.upper) + if expr.lower is not None: + lower = self._print(expr.lower) + else: + lower = self._print(S.Zero) + interval = '{lower}\\mathrel{{..}}\\nobreak {upper}'.format( + lower = lower, upper = upper) + return '{{{label}}}_{{{interval}}}'.format( + label = label, interval = interval) + #if no bounds are defined this just prints the label + return label + + def _print_Derivative(self, expr): + if requires_partial(expr.expr): + diff_symbol = r'\partial' + else: + diff_symbol = self._settings["diff_operator_latex"] + + tex = "" + dim = 0 + for x, num in reversed(expr.variable_count): + dim += num + if num == 1: + tex += r"%s %s" % (diff_symbol, self._print(x)) + else: + tex += r"%s %s^{%s}" % (diff_symbol, + self.parenthesize_super(self._print(x)), + self._print(num)) + + if dim == 1: + tex = r"\frac{%s}{%s}" % (diff_symbol, tex) + else: + tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) + + if any(i.could_extract_minus_sign() for i in expr.args): + return r"%s %s" % (tex, self.parenthesize(expr.expr, + PRECEDENCE["Mul"], + is_neg=True, + strict=True)) + + return r"%s %s" % (tex, self.parenthesize(expr.expr, + PRECEDENCE["Mul"], + is_neg=False, + strict=True)) + + def _print_Subs(self, subs): + expr, old, new = subs.args + latex_expr = self._print(expr) + latex_old = (self._print(e) for e in old) + latex_new = (self._print(e) for e in new) + latex_subs = r'\\ '.join( + e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) + return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, + latex_subs) + + def _print_Integral(self, expr): + tex, symbols = "", [] + diff_symbol = self._settings["diff_operator_latex"] + + # Only up to \iiiint exists + if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): + # Use len(expr.limits)-1 so that syntax highlighters don't think + # \" is an escaped quote + tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" + symbols = [r"\, %s%s" % (diff_symbol, self._print(symbol[0])) + for symbol in expr.limits] + + else: + for lim in reversed(expr.limits): + symbol = lim[0] + tex += r"\int" + + if len(lim) > 1: + if self._settings['mode'] != 'inline' \ + and not self._settings['itex']: + tex += r"\limits" + + if len(lim) == 3: + tex += "_{%s}^{%s}" % (self._print(lim[1]), + self._print(lim[2])) + if len(lim) == 2: + tex += "^{%s}" % (self._print(lim[1])) + + symbols.insert(0, r"\, %s%s" % (diff_symbol, self._print(symbol))) + + return r"%s %s%s" % (tex, self.parenthesize(expr.function, + PRECEDENCE["Mul"], + is_neg=any(i.could_extract_minus_sign() for i in expr.args), + strict=True), + "".join(symbols)) + + def _print_Limit(self, expr): + e, z, z0, dir = expr.args + + tex = r"\lim_{%s \to " % self._print(z) + if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): + tex += r"%s}" % self._print(z0) + else: + tex += r"%s^%s}" % (self._print(z0), self._print(dir)) + + if isinstance(e, AssocOp): + return r"%s\left(%s\right)" % (tex, self._print(e)) + else: + return r"%s %s" % (tex, self._print(e)) + + def _hprint_Function(self, func: str) -> str: + r''' + Logic to decide how to render a function to latex + - if it is a recognized latex name, use the appropriate latex command + - if it is a single letter, excluding sub- and superscripts, just use that letter + - if it is a longer name, then put \operatorname{} around it and be + mindful of undercores in the name + ''' + func = self._deal_with_super_sub(func) + superscriptidx = func.find("^") + subscriptidx = func.find("_") + if func in accepted_latex_functions: + name = r"\%s" % func + elif len(func) == 1 or func.startswith('\\') or subscriptidx == 1 or superscriptidx == 1: + name = func + else: + if superscriptidx > 0 and subscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:min(subscriptidx,superscriptidx)], + func[min(subscriptidx,superscriptidx):]) + elif superscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:superscriptidx], + func[superscriptidx:]) + elif subscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:subscriptidx], + func[subscriptidx:]) + else: + name = r"\operatorname{%s}" % func + return name + + def _print_Function(self, expr: Function, exp=None) -> str: + r''' + Render functions to LaTeX, handling functions that LaTeX knows about + e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). + For single-letter function names, render them as regular LaTeX math + symbols. For multi-letter function names that LaTeX does not know + about, (e.g., Li, sech) use \operatorname{} so that the function name + is rendered in Roman font and LaTeX handles spacing properly. + + expr is the expression involving the function + exp is an exponent + ''' + func = expr.func.__name__ + if hasattr(self, '_print_' + func) and \ + not isinstance(expr, AppliedUndef): + return getattr(self, '_print_' + func)(expr, exp) + else: + args = [str(self._print(arg)) for arg in expr.args] + # How inverse trig functions should be displayed, formats are: + # abbreviated: asin, full: arcsin, power: sin^-1 + inv_trig_style = self._settings['inv_trig_style'] + # If we are dealing with a power-style inverse trig function + inv_trig_power_case = False + # If it is applicable to fold the argument brackets + can_fold_brackets = self._settings['fold_func_brackets'] and \ + len(args) == 1 and \ + not self._needs_function_brackets(expr.args[0]) + + inv_trig_table = [ + "asin", "acos", "atan", + "acsc", "asec", "acot", + "asinh", "acosh", "atanh", + "acsch", "asech", "acoth", + ] + + # If the function is an inverse trig function, handle the style + if func in inv_trig_table: + if inv_trig_style == "abbreviated": + pass + elif inv_trig_style == "full": + func = ("ar" if func[-1] == "h" else "arc") + func[1:] + elif inv_trig_style == "power": + func = func[1:] + inv_trig_power_case = True + + # Can never fold brackets if we're raised to a power + if exp is not None: + can_fold_brackets = False + + if inv_trig_power_case: + if func in accepted_latex_functions: + name = r"\%s^{-1}" % func + else: + name = r"\operatorname{%s}^{-1}" % func + elif exp is not None: + func_tex = self._hprint_Function(func) + func_tex = self.parenthesize_super(func_tex) + name = r'%s^{%s}' % (func_tex, exp) + else: + name = self._hprint_Function(func) + + if can_fold_brackets: + if func in accepted_latex_functions: + # Wrap argument safely to avoid parse-time conflicts + # with the function name itself + name += r" {%s}" + else: + name += r"%s" + else: + name += r"{\left(%s \right)}" + + if inv_trig_power_case and exp is not None: + name += r"^{%s}" % exp + + return name % ",".join(args) + + def _print_UndefinedFunction(self, expr): + return self._hprint_Function(str(expr)) + + def _print_ElementwiseApplyFunction(self, expr): + return r"{%s}_{\circ}\left({%s}\right)" % ( + self._print(expr.function), + self._print(expr.expr), + ) + + @property + def _special_function_classes(self): + from sympy.functions.special.tensor_functions import KroneckerDelta + from sympy.functions.special.gamma_functions import gamma, lowergamma + from sympy.functions.special.beta_functions import beta + from sympy.functions.special.delta_functions import DiracDelta + from sympy.functions.special.error_functions import Chi + return {KroneckerDelta: r'\delta', + gamma: r'\Gamma', + lowergamma: r'\gamma', + beta: r'\operatorname{B}', + DiracDelta: r'\delta', + Chi: r'\operatorname{Chi}'} + + def _print_FunctionClass(self, expr): + for cls in self._special_function_classes: + if issubclass(expr, cls) and expr.__name__ == cls.__name__: + return self._special_function_classes[cls] + return self._hprint_Function(str(expr)) + + def _print_Lambda(self, expr): + symbols, expr = expr.args + + if len(symbols) == 1: + symbols = self._print(symbols[0]) + else: + symbols = self._print(tuple(symbols)) + + tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) + + return tex + + def _print_IdentityFunction(self, expr): + return r"\left( x \mapsto x \right)" + + def _hprint_variadic_function(self, expr, exp=None) -> str: + args = sorted(expr.args, key=default_sort_key) + texargs = [r"%s" % self._print(symbol) for symbol in args] + tex = r"\%s\left(%s\right)" % (str(expr.func).lower(), + ", ".join(texargs)) + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + _print_Min = _print_Max = _hprint_variadic_function + + def _print_floor(self, expr, exp=None): + tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_ceiling(self, expr, exp=None): + tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_log(self, expr, exp=None): + if not self._settings["ln_notation"]: + tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) + else: + tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_Abs(self, expr, exp=None): + tex = r"\left|{%s}\right|" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_re(self, expr, exp=None): + if self._settings['gothic_re_im']: + tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) + else: + tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) + + return self._do_exponent(tex, exp) + + def _print_im(self, expr, exp=None): + if self._settings['gothic_re_im']: + tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) + else: + tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) + + return self._do_exponent(tex, exp) + + def _print_Not(self, e): + from sympy.logic.boolalg import (Equivalent, Implies) + if isinstance(e.args[0], Equivalent): + return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") + if isinstance(e.args[0], Implies): + return self._print_Implies(e.args[0], r"\not\Rightarrow") + if (e.args[0].is_Boolean): + return r"\neg \left(%s\right)" % self._print(e.args[0]) + else: + return r"\neg %s" % self._print(e.args[0]) + + def _print_LogOp(self, args, char): + arg = args[0] + if arg.is_Boolean and not arg.is_Not: + tex = r"\left(%s\right)" % self._print(arg) + else: + tex = r"%s" % self._print(arg) + + for arg in args[1:]: + if arg.is_Boolean and not arg.is_Not: + tex += r" %s \left(%s\right)" % (char, self._print(arg)) + else: + tex += r" %s %s" % (char, self._print(arg)) + + return tex + + def _print_And(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\wedge") + + def _print_Or(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\vee") + + def _print_Xor(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\veebar") + + def _print_Implies(self, e, altchar=None): + return self._print_LogOp(e.args, altchar or r"\Rightarrow") + + def _print_Equivalent(self, e, altchar=None): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, altchar or r"\Leftrightarrow") + + def _print_conjugate(self, expr, exp=None): + tex = r"\overline{%s}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_polar_lift(self, expr, exp=None): + func = r"\operatorname{polar\_lift}" + arg = r"{\left(%s \right)}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (func, exp, arg) + else: + return r"%s%s" % (func, arg) + + def _print_ExpBase(self, expr, exp=None): + # TODO should exp_polar be printed differently? + # what about exp_polar(0), exp_polar(1)? + tex = r"e^{%s}" % self._print(expr.args[0]) + return self._do_exponent(tex, exp) + + def _print_Exp1(self, expr, exp=None): + return "e" + + def _print_elliptic_k(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"K^{%s}%s" % (exp, tex) + else: + return r"K%s" % tex + + def _print_elliptic_f(self, expr, exp=None): + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + if exp is not None: + return r"F^{%s}%s" % (exp, tex) + else: + return r"F%s" % tex + + def _print_elliptic_e(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"E^{%s}%s" % (exp, tex) + else: + return r"E%s" % tex + + def _print_elliptic_pi(self, expr, exp=None): + if len(expr.args) == 3: + tex = r"\left(%s; %s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1]), + self._print(expr.args[2])) + else: + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + if exp is not None: + return r"\Pi^{%s}%s" % (exp, tex) + else: + return r"\Pi%s" % tex + + def _print_beta(self, expr, exp=None): + x = expr.args[0] + # Deal with unevaluated single argument beta + y = expr.args[0] if len(expr.args) == 1 else expr.args[1] + tex = rf"\left({x}, {y}\right)" + + if exp is not None: + return r"\operatorname{B}^{%s}%s" % (exp, tex) + else: + return r"\operatorname{B}%s" % tex + + def _print_betainc(self, expr, exp=None, operator='B'): + largs = [self._print(arg) for arg in expr.args] + tex = r"\left(%s, %s\right)" % (largs[0], largs[1]) + + if exp is not None: + return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex) + else: + return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex) + + def _print_betainc_regularized(self, expr, exp=None): + return self._print_betainc(expr, exp, operator='I') + + def _print_uppergamma(self, expr, exp=None): + tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"\Gamma^{%s}%s" % (exp, tex) + else: + return r"\Gamma%s" % tex + + def _print_lowergamma(self, expr, exp=None): + tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"\gamma^{%s}%s" % (exp, tex) + else: + return r"\gamma%s" % tex + + def _hprint_one_arg_func(self, expr, exp=None) -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) + else: + return r"%s%s" % (self._print(expr.func), tex) + + _print_gamma = _hprint_one_arg_func + + def _print_Chi(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"\operatorname{Chi}^{%s}%s" % (exp, tex) + else: + return r"\operatorname{Chi}%s" % tex + + def _print_expint(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[1]) + nu = self._print(expr.args[0]) + + if exp is not None: + return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) + else: + return r"\operatorname{E}_{%s}%s" % (nu, tex) + + def _print_fresnels(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"S^{%s}%s" % (exp, tex) + else: + return r"S%s" % tex + + def _print_fresnelc(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"C^{%s}%s" % (exp, tex) + else: + return r"C%s" % tex + + def _print_subfactorial(self, expr, exp=None): + tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"\left(%s\right)^{%s}" % (tex, exp) + else: + return tex + + def _print_factorial(self, expr, exp=None): + tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_factorial2(self, expr, exp=None): + tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_binomial(self, expr, exp=None): + tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_RisingFactorial(self, expr, exp=None): + n, k = expr.args + base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) + + tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) + + return self._do_exponent(tex, exp) + + def _print_FallingFactorial(self, expr, exp=None): + n, k = expr.args + sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) + + tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) + + return self._do_exponent(tex, exp) + + def _hprint_BesselBase(self, expr, exp, sym: str) -> str: + tex = r"%s" % (sym) + + need_exp = False + if exp is not None: + if tex.find('^') == -1: + tex = r"%s^{%s}" % (tex, exp) + else: + need_exp = True + + tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), + self._print(expr.argument)) + + if need_exp: + tex = self._do_exponent(tex, exp) + return tex + + def _hprint_vec(self, vec) -> str: + if not vec: + return "" + s = "" + for i in vec[:-1]: + s += "%s, " % self._print(i) + s += self._print(vec[-1]) + return s + + def _print_besselj(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'J') + + def _print_besseli(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'I') + + def _print_besselk(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'K') + + def _print_bessely(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'Y') + + def _print_yn(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'y') + + def _print_jn(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'j') + + def _print_hankel1(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'H^{(1)}') + + def _print_hankel2(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'H^{(2)}') + + def _print_hn1(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'h^{(1)}') + + def _print_hn2(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'h^{(2)}') + + def _hprint_airy(self, expr, exp=None, notation="") -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (notation, exp, tex) + else: + return r"%s%s" % (notation, tex) + + def _hprint_airy_prime(self, expr, exp=None, notation="") -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) + else: + return r"%s^\prime%s" % (notation, tex) + + def _print_airyai(self, expr, exp=None): + return self._hprint_airy(expr, exp, 'Ai') + + def _print_airybi(self, expr, exp=None): + return self._hprint_airy(expr, exp, 'Bi') + + def _print_airyaiprime(self, expr, exp=None): + return self._hprint_airy_prime(expr, exp, 'Ai') + + def _print_airybiprime(self, expr, exp=None): + return self._hprint_airy_prime(expr, exp, 'Bi') + + def _print_hyper(self, expr, exp=None): + tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ + r"\middle| {%s} \right)}" % \ + (self._print(len(expr.ap)), self._print(len(expr.bq)), + self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), + self._print(expr.argument)) + + if exp is not None: + tex = r"{%s}^{%s}" % (tex, exp) + return tex + + def _print_meijerg(self, expr, exp=None): + tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ + r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ + (self._print(len(expr.ap)), self._print(len(expr.bq)), + self._print(len(expr.bm)), self._print(len(expr.an)), + self._hprint_vec(expr.an), self._hprint_vec(expr.aother), + self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), + self._print(expr.argument)) + + if exp is not None: + tex = r"{%s}^{%s}" % (tex, exp) + return tex + + def _print_dirichlet_eta(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\eta^{%s}%s" % (exp, tex) + return r"\eta%s" % tex + + def _print_zeta(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\zeta^{%s}%s" % (exp, tex) + return r"\zeta%s" % tex + + def _print_stieltjes(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) + else: + tex = r"_{%s}" % self._print(expr.args[0]) + if exp is not None: + return r"\gamma%s^{%s}" % (tex, exp) + return r"\gamma%s" % tex + + def _print_lerchphi(self, expr, exp=None): + tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) + if exp is None: + return r"\Phi%s" % tex + return r"\Phi^{%s}%s" % (exp, tex) + + def _print_polylog(self, expr, exp=None): + s, z = map(self._print, expr.args) + tex = r"\left(%s\right)" % z + if exp is None: + return r"\operatorname{Li}_{%s}%s" % (s, tex) + return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex) + + def _print_jacobi(self, expr, exp=None): + n, a, b, x = map(self._print, expr.args) + tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_gegenbauer(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_chebyshevt(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"T_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_chebyshevu(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"U_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_legendre(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"P_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_assoc_legendre(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_hermite(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"H_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_laguerre(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"L_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_assoc_laguerre(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_Ynm(self, expr, exp=None): + n, m, theta, phi = map(self._print, expr.args) + tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_Znm(self, expr, exp=None): + n, m, theta, phi = map(self._print, expr.args) + tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def __print_mathieu_functions(self, character, args, prime=False, exp=None): + a, q, z = map(self._print, args) + sup = r"^{\prime}" if prime else "" + exp = "" if not exp else "^{%s}" % exp + return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) + + def _print_mathieuc(self, expr, exp=None): + return self.__print_mathieu_functions("C", expr.args, exp=exp) + + def _print_mathieus(self, expr, exp=None): + return self.__print_mathieu_functions("S", expr.args, exp=exp) + + def _print_mathieucprime(self, expr, exp=None): + return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) + + def _print_mathieusprime(self, expr, exp=None): + return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) + + def _print_Rational(self, expr): + if expr.q != 1: + sign = "" + p = expr.p + if expr.p < 0: + sign = "- " + p = -p + if self._settings['fold_short_frac']: + return r"%s%d / %d" % (sign, p, expr.q) + return r"%s\frac{%d}{%d}" % (sign, p, expr.q) + else: + return self._print(expr.p) + + def _print_Order(self, expr): + s = self._print(expr.expr) + if expr.point and any(p != S.Zero for p in expr.point) or \ + len(expr.variables) > 1: + s += '; ' + if len(expr.variables) > 1: + s += self._print(expr.variables) + elif expr.variables: + s += self._print(expr.variables[0]) + s += r'\rightarrow ' + if len(expr.point) > 1: + s += self._print(expr.point) + else: + s += self._print(expr.point[0]) + return r"O\left(%s\right)" % s + + def _print_Symbol(self, expr: Symbol, style='plain'): + name: str = self._settings['symbol_names'].get(expr) + if name is not None: + return name + + return self._deal_with_super_sub(expr.name, style=style) + + _print_RandomSymbol = _print_Symbol + + def _deal_with_super_sub(self, string: str, style='plain') -> str: + if '{' in string: + name, supers, subs = string, [], [] + else: + name, supers, subs = split_super_sub(string) + + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + # apply the style only to the name + if style == 'bold': + name = "\\mathbf{{{}}}".format(name) + + # glue all items together: + if supers: + name += "^{%s}" % " ".join(supers) + if subs: + name += "_{%s}" % " ".join(subs) + + return name + + def _print_Relational(self, expr): + if self._settings['itex']: + gt = r"\gt" + lt = r"\lt" + else: + gt = ">" + lt = "<" + + charmap = { + "==": "=", + ">": gt, + "<": lt, + ">=": r"\geq", + "<=": r"\leq", + "!=": r"\neq", + } + + return "%s %s %s" % (self._print(expr.lhs), + charmap[expr.rel_op], self._print(expr.rhs)) + + def _print_Piecewise(self, expr): + ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) + for e, c in expr.args[:-1]] + if expr.args[-1].cond == true: + ecpairs.append(r"%s & \text{otherwise}" % + self._print(expr.args[-1].expr)) + else: + ecpairs.append(r"%s & \text{for}\: %s" % + (self._print(expr.args[-1].expr), + self._print(expr.args[-1].cond))) + tex = r"\begin{cases} %s \end{cases}" + return tex % r" \\".join(ecpairs) + + def _print_matrix_contents(self, expr): + lines = [] + + for line in range(expr.rows): # horrible, should be 'rows' + lines.append(" & ".join([self._print(i) for i in expr[line, :]])) + + mat_str = self._settings['mat_str'] + if mat_str is None: + if self._settings['mode'] == 'inline': + mat_str = 'smallmatrix' + else: + if (expr.cols <= 10) is True: + mat_str = 'matrix' + else: + mat_str = 'array' + + out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' + out_str = out_str.replace('%MATSTR%', mat_str) + if mat_str == 'array': + out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') + return out_str % r"\\".join(lines) + + def _print_MatrixBase(self, expr): + out_str = self._print_matrix_contents(expr) + if self._settings['mat_delim']: + left_delim = self._settings['mat_delim'] + right_delim = self._delim_dict[left_delim] + out_str = r'\left' + left_delim + out_str + \ + r'\right' + right_delim + return out_str + + def _print_MatrixElement(self, expr): + return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) + + def _print_MatrixSlice(self, expr): + def latexslice(x, dim): + x = list(x) + if x[2] == 1: + del x[2] + if x[0] == 0: + x[0] = None + if x[1] == dim: + x[1] = None + return ':'.join(self._print(xi) if xi is not None else '' for xi in x) + return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' + + latexslice(expr.rowslice, expr.parent.rows) + ', ' + + latexslice(expr.colslice, expr.parent.cols) + r'\right]') + + def _print_BlockMatrix(self, expr): + return self._print(expr.blocks) + + def _print_Transpose(self, expr): + mat = expr.arg + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + return r"\left(%s\right)^{T}" % self._print(mat) + else: + s = self.parenthesize(mat, precedence_traditional(expr), True) + if '^' in s: + return r"\left(%s\right)^{T}" % s + else: + return "%s^{T}" % s + + def _print_Trace(self, expr): + mat = expr.arg + return r"\operatorname{tr}\left(%s \right)" % self._print(mat) + + def _print_Adjoint(self, expr): + mat = expr.arg + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + return r"\left(%s\right)^{\dagger}" % self._print(mat) + else: + s = self.parenthesize(mat, precedence_traditional(expr), True) + if '^' in s: + return r"\left(%s\right)^{\dagger}" % s + else: + return r"%s^{\dagger}" % s + + def _print_MatMul(self, expr): + from sympy import MatMul + + # Parenthesize nested MatMul but not other types of Mul objects: + parens = lambda x: self._print(x) if isinstance(x, Mul) and not isinstance(x, MatMul) else \ + self.parenthesize(x, precedence_traditional(expr), False) + + args = list(expr.args) + if expr.could_extract_minus_sign(): + if args[0] == -1: + args = args[1:] + else: + args[0] = -args[0] + return '- ' + ' '.join(map(parens, args)) + else: + return ' '.join(map(parens, args)) + + def _print_Determinant(self, expr): + mat = expr.arg + if mat.is_MatrixExpr: + from sympy.matrices.expressions.blockmatrix import BlockMatrix + if isinstance(mat, BlockMatrix): + return r"\left|{%s}\right|" % self._print_matrix_contents(mat.blocks) + return r"\left|{%s}\right|" % self._print(mat) + return r"\left|{%s}\right|" % self._print_matrix_contents(mat) + + + def _print_Mod(self, expr, exp=None): + if exp is not None: + return r'\left(%s \bmod %s\right)^{%s}' % \ + (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], + strict=True), + self.parenthesize(expr.args[1], PRECEDENCE['Mul'], + strict=True), + exp) + return r'%s \bmod %s' % (self.parenthesize(expr.args[0], + PRECEDENCE['Mul'], + strict=True), + self.parenthesize(expr.args[1], + PRECEDENCE['Mul'], + strict=True)) + + def _print_HadamardProduct(self, expr): + args = expr.args + prec = PRECEDENCE['Pow'] + parens = self.parenthesize + + return r' \circ '.join( + (parens(arg, prec, strict=True) for arg in args)) + + def _print_HadamardPower(self, expr): + if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: + template = r"%s^{\circ \left({%s}\right)}" + else: + template = r"%s^{\circ {%s}}" + return self._helper_print_standard_power(expr, template) + + def _print_KroneckerProduct(self, expr): + args = expr.args + prec = PRECEDENCE['Pow'] + parens = self.parenthesize + + return r' \otimes '.join( + (parens(arg, prec, strict=True) for arg in args)) + + def _print_MatPow(self, expr): + base, exp = expr.base, expr.exp + from sympy.matrices import MatrixSymbol + if not isinstance(base, MatrixSymbol) and base.is_MatrixExpr: + return "\\left(%s\\right)^{%s}" % (self._print(base), + self._print(exp)) + else: + base_str = self._print(base) + if '^' in base_str: + return r"\left(%s\right)^{%s}" % (base_str, self._print(exp)) + else: + return "%s^{%s}" % (base_str, self._print(exp)) + + def _print_MatrixSymbol(self, expr): + return self._print_Symbol(expr, style=self._settings[ + 'mat_symbol_style']) + + def _print_ZeroMatrix(self, Z): + return "0" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" + + def _print_OneMatrix(self, O): + return "1" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" + + def _print_Identity(self, I): + return r"\mathbb{I}" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" + + def _print_PermutationMatrix(self, P): + perm_str = self._print(P.args[0]) + return "P_{%s}" % perm_str + + def _print_NDimArray(self, expr: NDimArray): + + if expr.rank() == 0: + return self._print(expr[()]) + + mat_str = self._settings['mat_str'] + if mat_str is None: + if self._settings['mode'] == 'inline': + mat_str = 'smallmatrix' + else: + if (expr.rank() == 0) or (expr.shape[-1] <= 10): + mat_str = 'matrix' + else: + mat_str = 'array' + block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' + block_str = block_str.replace('%MATSTR%', mat_str) + if mat_str == 'array': + block_str= block_str.replace('%s','{}%s') + if self._settings['mat_delim']: + left_delim: str = self._settings['mat_delim'] + right_delim = self._delim_dict[left_delim] + block_str = r'\left' + left_delim + block_str + \ + r'\right' + right_delim + + if expr.rank() == 0: + return block_str % "" + + level_str: list[list[str]] = [[] for i in range(expr.rank() + 1)] + shape_ranges = [list(range(i)) for i in expr.shape] + for outer_i in itertools.product(*shape_ranges): + level_str[-1].append(self._print(expr[outer_i])) + even = True + for back_outer_i in range(expr.rank()-1, -1, -1): + if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: + break + if even: + level_str[back_outer_i].append( + r" & ".join(level_str[back_outer_i+1])) + else: + level_str[back_outer_i].append( + block_str % (r"\\".join(level_str[back_outer_i+1]))) + if len(level_str[back_outer_i+1]) == 1: + level_str[back_outer_i][-1] = r"\left[" + \ + level_str[back_outer_i][-1] + r"\right]" + even = not even + level_str[back_outer_i+1] = [] + + out_str = level_str[0][0] + + if expr.rank() % 2 == 1: + out_str = block_str % out_str + + return out_str + + def _printer_tensor_indices(self, name, indices, index_map: dict): + out_str = self._print(name) + last_valence = None + prev_map = None + for index in indices: + new_valence = index.is_up + if ((index in index_map) or prev_map) and \ + last_valence == new_valence: + out_str += "," + if last_valence != new_valence: + if last_valence is not None: + out_str += "}" + if index.is_up: + out_str += "{}^{" + else: + out_str += "{}_{" + out_str += self._print(index.args[0]) + if index in index_map: + out_str += "=" + out_str += self._print(index_map[index]) + prev_map = True + else: + prev_map = False + last_valence = new_valence + if last_valence is not None: + out_str += "}" + return out_str + + def _print_Tensor(self, expr): + name = expr.args[0].args[0] + indices = expr.get_indices() + return self._printer_tensor_indices(name, indices, {}) + + def _print_TensorElement(self, expr): + name = expr.expr.args[0].args[0] + indices = expr.expr.get_indices() + index_map = expr.index_map + return self._printer_tensor_indices(name, indices, index_map) + + def _print_TensMul(self, expr): + # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" + sign, args = expr._get_args_for_traditional_printer() + return sign + "".join( + [self.parenthesize(arg, precedence(expr)) for arg in args] + ) + + def _print_TensAdd(self, expr): + a = [] + args = expr.args + for x in args: + a.append(self.parenthesize(x, precedence(expr))) + a.sort() + s = ' + '.join(a) + s = s.replace('+ -', '- ') + return s + + def _print_TensorIndex(self, expr): + return "{}%s{%s}" % ( + "^" if expr.is_up else "_", + self._print(expr.args[0]) + ) + + def _print_PartialDerivative(self, expr): + if len(expr.variables) == 1: + return r"\frac{\partial}{\partial {%s}}{%s}" % ( + self._print(expr.variables[0]), + self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) + ) + else: + return r"\frac{\partial^{%s}}{%s}{%s}" % ( + len(expr.variables), + " ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]), + self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) + ) + + def _print_ArraySymbol(self, expr): + return self._print(expr.name) + + def _print_ArrayElement(self, expr): + return "{{%s}_{%s}}" % ( + self.parenthesize(expr.name, PRECEDENCE["Func"], True), + ", ".join([f"{self._print(i)}" for i in expr.indices])) + + def _print_UniversalSet(self, expr): + return r"\mathbb{U}" + + def _print_frac(self, expr, exp=None): + if exp is None: + return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) + else: + return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( + self._print(expr.args[0]), exp) + + def _print_tuple(self, expr): + if self._settings['decimal_separator'] == 'comma': + sep = ";" + elif self._settings['decimal_separator'] == 'period': + sep = "," + else: + raise ValueError('Unknown Decimal Separator') + + if len(expr) == 1: + # 1-tuple needs a trailing separator + return self._add_parens_lspace(self._print(expr[0]) + sep) + else: + return self._add_parens_lspace( + (sep + r" \ ").join([self._print(i) for i in expr])) + + def _print_TensorProduct(self, expr): + elements = [self._print(a) for a in expr.args] + return r' \otimes '.join(elements) + + def _print_WedgeProduct(self, expr): + elements = [self._print(a) for a in expr.args] + return r' \wedge '.join(elements) + + def _print_Tuple(self, expr): + return self._print_tuple(expr) + + def _print_list(self, expr): + if self._settings['decimal_separator'] == 'comma': + return r"\left[ %s\right]" % \ + r"; \ ".join([self._print(i) for i in expr]) + elif self._settings['decimal_separator'] == 'period': + return r"\left[ %s\right]" % \ + r", \ ".join([self._print(i) for i in expr]) + else: + raise ValueError('Unknown Decimal Separator') + + + def _print_dict(self, d): + keys = sorted(d.keys(), key=default_sort_key) + items = [] + + for key in keys: + val = d[key] + items.append("%s : %s" % (self._print(key), self._print(val))) + + return r"\left\{ %s\right\}" % r", \ ".join(items) + + def _print_Dict(self, expr): + return self._print_dict(expr) + + def _print_DiracDelta(self, expr, exp=None): + if len(expr.args) == 1 or expr.args[1] == 0: + tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) + else: + tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( + self._print(expr.args[1]), self._print(expr.args[0])) + if exp: + tex = r"\left(%s\right)^{%s}" % (tex, exp) + return tex + + def _print_SingularityFunction(self, expr, exp=None): + shift = self._print(expr.args[0] - expr.args[1]) + power = self._print(expr.args[2]) + tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) + if exp is not None: + tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp) + return tex + + def _print_Heaviside(self, expr, exp=None): + pargs = ', '.join(self._print(arg) for arg in expr.pargs) + tex = r"\theta\left(%s\right)" % pargs + if exp: + tex = r"\left(%s\right)^{%s}" % (tex, exp) + return tex + + def _print_KroneckerDelta(self, expr, exp=None): + i = self._print(expr.args[0]) + j = self._print(expr.args[1]) + if expr.args[0].is_Atom and expr.args[1].is_Atom: + tex = r'\delta_{%s %s}' % (i, j) + else: + tex = r'\delta_{%s, %s}' % (i, j) + if exp is not None: + tex = r'\left(%s\right)^{%s}' % (tex, exp) + return tex + + def _print_LeviCivita(self, expr, exp=None): + indices = map(self._print, expr.args) + if all(x.is_Atom for x in expr.args): + tex = r'\varepsilon_{%s}' % " ".join(indices) + else: + tex = r'\varepsilon_{%s}' % ", ".join(indices) + if exp: + tex = r'\left(%s\right)^{%s}' % (tex, exp) + return tex + + def _print_RandomDomain(self, d): + if hasattr(d, 'as_boolean'): + return '\\text{Domain: }' + self._print(d.as_boolean()) + elif hasattr(d, 'set'): + return ('\\text{Domain: }' + self._print(d.symbols) + ' \\in ' + + self._print(d.set)) + elif hasattr(d, 'symbols'): + return '\\text{Domain on }' + self._print(d.symbols) + else: + return self._print(None) + + def _print_FiniteSet(self, s): + items = sorted(s.args, key=default_sort_key) + return self._print_set(items) + + def _print_set(self, s): + items = sorted(s, key=default_sort_key) + if self._settings['decimal_separator'] == 'comma': + items = "; ".join(map(self._print, items)) + elif self._settings['decimal_separator'] == 'period': + items = ", ".join(map(self._print, items)) + else: + raise ValueError('Unknown Decimal Separator') + return r"\left\{%s\right\}" % items + + + _print_frozenset = _print_set + + def _print_Range(self, s): + def _print_symbolic_range(): + # Symbolic Range that cannot be resolved + if s.args[0] == 0: + if s.args[2] == 1: + cont = self._print(s.args[1]) + else: + cont = ", ".join(self._print(arg) for arg in s.args) + else: + if s.args[2] == 1: + cont = ", ".join(self._print(arg) for arg in s.args[:2]) + else: + cont = ", ".join(self._print(arg) for arg in s.args) + + return(f"\\text{{Range}}\\left({cont}\\right)") + + dots = object() + + if s.start.is_infinite and s.stop.is_infinite: + if s.step.is_positive: + printset = dots, -1, 0, 1, dots + else: + printset = dots, 1, 0, -1, dots + elif s.start.is_infinite: + printset = dots, s[-1] - s.step, s[-1] + elif s.stop.is_infinite: + it = iter(s) + printset = next(it), next(it), dots + elif s.is_empty is not None: + if (s.size < 4) == True: + printset = tuple(s) + elif s.is_iterable: + it = iter(s) + printset = next(it), next(it), dots, s[-1] + else: + return _print_symbolic_range() + else: + return _print_symbolic_range() + return (r"\left\{" + + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + + r"\right\}") + + def __print_number_polynomial(self, expr, letter, exp=None): + if len(expr.args) == 2: + if exp is not None: + return r"%s_{%s}^{%s}\left(%s\right)" % (letter, + self._print(expr.args[0]), exp, + self._print(expr.args[1])) + return r"%s_{%s}\left(%s\right)" % (letter, + self._print(expr.args[0]), self._print(expr.args[1])) + + tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_bernoulli(self, expr, exp=None): + return self.__print_number_polynomial(expr, "B", exp) + + def _print_genocchi(self, expr, exp=None): + return self.__print_number_polynomial(expr, "G", exp) + + def _print_bell(self, expr, exp=None): + if len(expr.args) == 3: + tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), + self._print(expr.args[1])) + tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for + el in expr.args[2]) + if exp is not None: + tex = r"%s^{%s}%s" % (tex1, exp, tex2) + else: + tex = tex1 + tex2 + return tex + return self.__print_number_polynomial(expr, "B", exp) + + def _print_fibonacci(self, expr, exp=None): + return self.__print_number_polynomial(expr, "F", exp) + + def _print_lucas(self, expr, exp=None): + tex = r"L_{%s}" % self._print(expr.args[0]) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_tribonacci(self, expr, exp=None): + return self.__print_number_polynomial(expr, "T", exp) + + def _print_SeqFormula(self, s): + dots = object() + if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: + return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( + self._print(s.formula), + self._print(s.variables[0]), + self._print(s.start), + self._print(s.stop) + ) + if s.start is S.NegativeInfinity: + stop = s.stop + printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), + s.coeff(stop - 1), s.coeff(stop)) + elif s.stop is S.Infinity or s.length > 4: + printset = s[:4] + printset.append(dots) + else: + printset = tuple(s) + + return (r"\left[" + + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + + r"\right]") + + _print_SeqPer = _print_SeqFormula + _print_SeqAdd = _print_SeqFormula + _print_SeqMul = _print_SeqFormula + + def _print_Interval(self, i): + if i.start == i.end: + return r"\left\{%s\right\}" % self._print(i.start) + + else: + if i.left_open: + left = '(' + else: + left = '[' + + if i.right_open: + right = ')' + else: + right = ']' + + return r"\left%s%s, %s\right%s" % \ + (left, self._print(i.start), self._print(i.end), right) + + def _print_AccumulationBounds(self, i): + return r"\left\langle %s, %s\right\rangle" % \ + (self._print(i.min), self._print(i.max)) + + def _print_Union(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \cup ".join(args_str) + + def _print_Complement(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \setminus ".join(args_str) + + def _print_Intersection(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \cap ".join(args_str) + + def _print_SymmetricDifference(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \triangle ".join(args_str) + + def _print_ProductSet(self, p): + prec = precedence_traditional(p) + if len(p.sets) >= 1 and not has_variety(p.sets): + return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) + return r" \times ".join( + self.parenthesize(set, prec) for set in p.sets) + + def _print_EmptySet(self, e): + return r"\emptyset" + + def _print_Naturals(self, n): + return r"\mathbb{N}" + + def _print_Naturals0(self, n): + return r"\mathbb{N}_0" + + def _print_Integers(self, i): + return r"\mathbb{Z}" + + def _print_Rationals(self, i): + return r"\mathbb{Q}" + + def _print_Reals(self, i): + return r"\mathbb{R}" + + def _print_Complexes(self, i): + return r"\mathbb{C}" + + def _print_ImageSet(self, s): + expr = s.lamda.expr + sig = s.lamda.signature + xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets)) + xinys = r", ".join(r"%s \in %s" % xy for xy in xys) + return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys) + + def _print_ConditionSet(self, s): + vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) + if s.base_set is S.UniversalSet: + return r"\left\{%s\; \middle|\; %s \right\}" % \ + (vars_print, self._print(s.condition)) + + return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % ( + vars_print, + vars_print, + self._print(s.base_set), + self._print(s.condition)) + + def _print_PowerSet(self, expr): + arg_print = self._print(expr.args[0]) + return r"\mathcal{{P}}\left({}\right)".format(arg_print) + + def _print_ComplexRegion(self, s): + vars_print = ', '.join([self._print(var) for var in s.variables]) + return r"\left\{%s\; \middle|\; %s \in %s \right\}" % ( + self._print(s.expr), + vars_print, + self._print(s.sets)) + + def _print_Contains(self, e): + return r"%s \in %s" % tuple(self._print(a) for a in e.args) + + def _print_FourierSeries(self, s): + if s.an.formula is S.Zero and s.bn.formula is S.Zero: + return self._print(s.a0) + return self._print_Add(s.truncate()) + r' + \ldots' + + def _print_FormalPowerSeries(self, s): + return self._print_Add(s.infinite) + + def _print_FiniteField(self, expr): + return r"\mathbb{F}_{%s}" % expr.mod + + def _print_IntegerRing(self, expr): + return r"\mathbb{Z}" + + def _print_RationalField(self, expr): + return r"\mathbb{Q}" + + def _print_RealField(self, expr): + return r"\mathbb{R}" + + def _print_ComplexField(self, expr): + return r"\mathbb{C}" + + def _print_PolynomialRing(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + return r"%s\left[%s\right]" % (domain, symbols) + + def _print_FractionField(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + return r"%s\left(%s\right)" % (domain, symbols) + + def _print_PolynomialRingBase(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + inv = "" + if not expr.is_Poly: + inv = r"S_<^{-1}" + return r"%s%s\left[%s\right]" % (inv, domain, symbols) + + def _print_Poly(self, poly): + cls = poly.__class__.__name__ + terms = [] + for monom, coeff in poly.terms(): + s_monom = '' + for i, exp in enumerate(monom): + if exp > 0: + if exp == 1: + s_monom += self._print(poly.gens[i]) + else: + s_monom += self._print(pow(poly.gens[i], exp)) + + if coeff.is_Add: + if s_monom: + s_coeff = r"\left(%s\right)" % self._print(coeff) + else: + s_coeff = self._print(coeff) + else: + if s_monom: + if coeff is S.One: + terms.extend(['+', s_monom]) + continue + + if coeff is S.NegativeOne: + terms.extend(['-', s_monom]) + continue + + s_coeff = self._print(coeff) + + if not s_monom: + s_term = s_coeff + else: + s_term = s_coeff + " " + s_monom + + if s_term.startswith('-'): + terms.extend(['-', s_term[1:]]) + else: + terms.extend(['+', s_term]) + + if terms[0] in ('-', '+'): + modifier = terms.pop(0) + + if modifier == '-': + terms[0] = '-' + terms[0] + + expr = ' '.join(terms) + gens = list(map(self._print, poly.gens)) + domain = "domain=%s" % self._print(poly.get_domain()) + + args = ", ".join([expr] + gens + [domain]) + if cls in accepted_latex_functions: + tex = r"\%s {\left(%s \right)}" % (cls, args) + else: + tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) + + return tex + + def _print_ComplexRootOf(self, root): + cls = root.__class__.__name__ + if cls == "ComplexRootOf": + cls = "CRootOf" + expr = self._print(root.expr) + index = root.index + if cls in accepted_latex_functions: + return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) + else: + return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, + index) + + def _print_RootSum(self, expr): + cls = expr.__class__.__name__ + args = [self._print(expr.expr)] + + if expr.fun is not S.IdentityFunction: + args.append(self._print(expr.fun)) + + if cls in accepted_latex_functions: + return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) + else: + return r"\operatorname{%s} {\left(%s\right)}" % (cls, + ", ".join(args)) + + def _print_OrdinalOmega(self, expr): + return r"\omega" + + def _print_OmegaPower(self, expr): + exp, mul = expr.args + if mul != 1: + if exp != 1: + return r"{} \omega^{{{}}}".format(mul, exp) + else: + return r"{} \omega".format(mul) + else: + if exp != 1: + return r"\omega^{{{}}}".format(exp) + else: + return r"\omega" + + def _print_Ordinal(self, expr): + return " + ".join([self._print(arg) for arg in expr.args]) + + def _print_PolyElement(self, poly): + mul_symbol = self._settings['mul_symbol_latex'] + return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) + + def _print_FracElement(self, frac): + if frac.denom == 1: + return self._print(frac.numer) + else: + numer = self._print(frac.numer) + denom = self._print(frac.denom) + return r"\frac{%s}{%s}" % (numer, denom) + + def _print_euler(self, expr, exp=None): + m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args + tex = r"E_{%s}" % self._print(m) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + if x is not None: + tex = r"%s\left(%s\right)" % (tex, self._print(x)) + return tex + + def _print_catalan(self, expr, exp=None): + tex = r"C_{%s}" % self._print(expr.args[0]) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_UnifiedTransform(self, expr, s, inverse=False): + return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) + + def _print_MellinTransform(self, expr): + return self._print_UnifiedTransform(expr, 'M') + + def _print_InverseMellinTransform(self, expr): + return self._print_UnifiedTransform(expr, 'M', True) + + def _print_LaplaceTransform(self, expr): + return self._print_UnifiedTransform(expr, 'L') + + def _print_InverseLaplaceTransform(self, expr): + return self._print_UnifiedTransform(expr, 'L', True) + + def _print_FourierTransform(self, expr): + return self._print_UnifiedTransform(expr, 'F') + + def _print_InverseFourierTransform(self, expr): + return self._print_UnifiedTransform(expr, 'F', True) + + def _print_SineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'SIN') + + def _print_InverseSineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'SIN', True) + + def _print_CosineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'COS') + + def _print_InverseCosineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'COS', True) + + def _print_DMP(self, p): + try: + if p.ring is not None: + # TODO incorporate order + return self._print(p.ring.to_sympy(p)) + except SympifyError: + pass + return self._print(repr(p)) + + def _print_DMF(self, p): + return self._print_DMP(p) + + def _print_Object(self, object): + return self._print(Symbol(object.name)) + + def _print_LambertW(self, expr, exp=None): + arg0 = self._print(expr.args[0]) + exp = r"^{%s}" % (exp,) if exp is not None else "" + if len(expr.args) == 1: + result = r"W%s\left(%s\right)" % (exp, arg0) + else: + arg1 = self._print(expr.args[1]) + result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0) + return result + + def _print_Expectation(self, expr): + return r"\operatorname{{E}}\left[{}\right]".format(self._print(expr.args[0])) + + def _print_Variance(self, expr): + return r"\operatorname{{Var}}\left({}\right)".format(self._print(expr.args[0])) + + def _print_Covariance(self, expr): + return r"\operatorname{{Cov}}\left({}\right)".format(", ".join(self._print(arg) for arg in expr.args)) + + def _print_Probability(self, expr): + return r"\operatorname{{P}}\left({}\right)".format(self._print(expr.args[0])) + + def _print_Morphism(self, morphism): + domain = self._print(morphism.domain) + codomain = self._print(morphism.codomain) + return "%s\\rightarrow %s" % (domain, codomain) + + def _print_TransferFunction(self, expr): + num, den = self._print(expr.num), self._print(expr.den) + return r"\frac{%s}{%s}" % (num, den) + + def _print_Series(self, expr): + args = list(expr.args) + parens = lambda x: self.parenthesize(x, precedence_traditional(expr), + False) + return ' '.join(map(parens, args)) + + def _print_MIMOSeries(self, expr): + from sympy.physics.control.lti import MIMOParallel + args = list(expr.args)[::-1] + parens = lambda x: self.parenthesize(x, precedence_traditional(expr), + False) if isinstance(x, MIMOParallel) else self._print(x) + return r"\cdot".join(map(parens, args)) + + def _print_Parallel(self, expr): + return ' + '.join(map(self._print, expr.args)) + + def _print_MIMOParallel(self, expr): + return ' + '.join(map(self._print, expr.args)) + + def _print_Feedback(self, expr): + from sympy.physics.control import TransferFunction, Series + + num, tf = expr.sys1, TransferFunction(1, 1, expr.var) + num_arg_list = list(num.args) if isinstance(num, Series) else [num] + den_arg_list = list(expr.sys2.args) if \ + isinstance(expr.sys2, Series) else [expr.sys2] + den_term_1 = tf + + if isinstance(num, Series) and isinstance(expr.sys2, Series): + den_term_2 = Series(*num_arg_list, *den_arg_list) + elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction): + if expr.sys2 == tf: + den_term_2 = Series(*num_arg_list) + else: + den_term_2 = tf, Series(*num_arg_list, expr.sys2) + elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series): + if num == tf: + den_term_2 = Series(*den_arg_list) + else: + den_term_2 = Series(num, *den_arg_list) + else: + if num == tf: + den_term_2 = Series(*den_arg_list) + elif expr.sys2 == tf: + den_term_2 = Series(*num_arg_list) + else: + den_term_2 = Series(*num_arg_list, *den_arg_list) + + numer = self._print(num) + denom_1 = self._print(den_term_1) + denom_2 = self._print(den_term_2) + _sign = "+" if expr.sign == -1 else "-" + + return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2) + + def _print_MIMOFeedback(self, expr): + from sympy.physics.control import MIMOSeries + inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1)) + sys1 = self._print(expr.sys1) + _sign = "+" if expr.sign == -1 else "-" + return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1) + + def _print_TransferFunctionMatrix(self, expr): + mat = self._print(expr._expr_mat) + return r"%s_\tau" % mat + + def _print_DFT(self, expr): + return r"\text{{{}}}_{{{}}}".format(expr.__class__.__name__, expr.n) + _print_IDFT = _print_DFT + + def _print_NamedMorphism(self, morphism): + pretty_name = self._print(Symbol(morphism.name)) + pretty_morphism = self._print_Morphism(morphism) + return "%s:%s" % (pretty_name, pretty_morphism) + + def _print_IdentityMorphism(self, morphism): + from sympy.categories import NamedMorphism + return self._print_NamedMorphism(NamedMorphism( + morphism.domain, morphism.codomain, "id")) + + def _print_CompositeMorphism(self, morphism): + # All components of the morphism have names and it is thus + # possible to build the name of the composite. + component_names_list = [self._print(Symbol(component.name)) for + component in morphism.components] + component_names_list.reverse() + component_names = "\\circ ".join(component_names_list) + ":" + + pretty_morphism = self._print_Morphism(morphism) + return component_names + pretty_morphism + + def _print_Category(self, morphism): + return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) + + def _print_Diagram(self, diagram): + if not diagram.premises: + # This is an empty diagram. + return self._print(S.EmptySet) + + latex_result = self._print(diagram.premises) + if diagram.conclusions: + latex_result += "\\Longrightarrow %s" % \ + self._print(diagram.conclusions) + + return latex_result + + def _print_DiagramGrid(self, grid): + latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) + + for i in range(grid.height): + for j in range(grid.width): + if grid[i, j]: + latex_result += latex(grid[i, j]) + latex_result += " " + if j != grid.width - 1: + latex_result += "& " + + if i != grid.height - 1: + latex_result += "\\\\" + latex_result += "\n" + + latex_result += "\\end{array}\n" + return latex_result + + def _print_FreeModule(self, M): + return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) + + def _print_FreeModuleElement(self, m): + # Print as row vector for convenience, for now. + return r"\left[ {} \right]".format(",".join( + '{' + self._print(x) + '}' for x in m)) + + def _print_SubModule(self, m): + return r"\left\langle {} \right\rangle".format(",".join( + '{' + self._print(x) + '}' for x in m.gens)) + + def _print_ModuleImplementedIdeal(self, m): + return r"\left\langle {} \right\rangle".format(",".join( + '{' + self._print(x) + '}' for [x] in m._module.gens)) + + def _print_Quaternion(self, expr): + # TODO: This expression is potentially confusing, + # shall we print it as `Quaternion( ... )`? + s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) + for i in expr.args] + a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] + return " + ".join(a) + + def _print_QuotientRing(self, R): + # TODO nicer fractions for few generators... + return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), + self._print(R.base_ideal)) + + def _print_QuotientRingElement(self, x): + return r"{{{}}} + {{{}}}".format(self._print(x.data), + self._print(x.ring.base_ideal)) + + def _print_QuotientModuleElement(self, m): + return r"{{{}}} + {{{}}}".format(self._print(m.data), + self._print(m.module.killed_module)) + + def _print_QuotientModule(self, M): + # TODO nicer fractions for few generators... + return r"\frac{{{}}}{{{}}}".format(self._print(M.base), + self._print(M.killed_module)) + + def _print_MatrixHomomorphism(self, h): + return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), + self._print(h.domain), self._print(h.codomain)) + + def _print_Manifold(self, manifold): + string = manifold.name.name + if '{' in string: + name, supers, subs = string, [], [] + else: + name, supers, subs = split_super_sub(string) + + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + name = r'\text{%s}' % name + if supers: + name += "^{%s}" % " ".join(supers) + if subs: + name += "_{%s}" % " ".join(subs) + + return name + + def _print_Patch(self, patch): + return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold)) + + def _print_CoordSystem(self, coordsys): + return r'\text{%s}^{\text{%s}}_{%s}' % ( + self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold) + ) + + def _print_CovarDerivativeOp(self, cvd): + return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt) + + def _print_BaseScalarField(self, field): + string = field._coord_sys.symbols[field._index].name + return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) + + def _print_BaseVectorField(self, field): + string = field._coord_sys.symbols[field._index].name + return r'\partial_{{{}}}'.format(self._print(Symbol(string))) + + def _print_Differential(self, diff): + field = diff._form_field + if hasattr(field, '_coord_sys'): + string = field._coord_sys.symbols[field._index].name + return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) + else: + string = self._print(field) + return r'\operatorname{{d}}\left({}\right)'.format(string) + + def _print_Tr(self, p): + # TODO: Handle indices + contents = self._print(p.args[0]) + return r'\operatorname{{tr}}\left({}\right)'.format(contents) + + def _print_totient(self, expr, exp=None): + if exp is not None: + return r'\left(\phi\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\phi\left(%s\right)' % self._print(expr.args[0]) + + def _print_reduced_totient(self, expr, exp=None): + if exp is not None: + return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\lambda\left(%s\right)' % self._print(expr.args[0]) + + def _print_divisor_sigma(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_%s\left(%s\right)" % tuple(map(self._print, + (expr.args[1], expr.args[0]))) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\sigma^{%s}%s" % (exp, tex) + return r"\sigma%s" % tex + + def _print_udivisor_sigma(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_%s\left(%s\right)" % tuple(map(self._print, + (expr.args[1], expr.args[0]))) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\sigma^*^{%s}%s" % (exp, tex) + return r"\sigma^*%s" % tex + + def _print_primenu(self, expr, exp=None): + if exp is not None: + return r'\left(\nu\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\nu\left(%s\right)' % self._print(expr.args[0]) + + def _print_primeomega(self, expr, exp=None): + if exp is not None: + return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\Omega\left(%s\right)' % self._print(expr.args[0]) + + def _print_Str(self, s): + return str(s.name) + + def _print_float(self, expr): + return self._print(Float(expr)) + + def _print_int(self, expr): + return str(expr) + + def _print_mpz(self, expr): + return str(expr) + + def _print_mpq(self, expr): + return str(expr) + + def _print_Predicate(self, expr): + return r"\operatorname{{Q}}_{{\text{{{}}}}}".format(latex_escape(str(expr.name))) + + def _print_AppliedPredicate(self, expr): + pred = expr.function + args = expr.arguments + pred_latex = self._print(pred) + args_latex = ', '.join([self._print(a) for a in args]) + return '%s(%s)' % (pred_latex, args_latex) + + def emptyPrinter(self, expr): + # default to just printing as monospace, like would normally be shown + s = super().emptyPrinter(expr) + + return r"\mathtt{\text{%s}}" % latex_escape(s) + + +def translate(s: str) -> str: + r''' + Check for a modifier ending the string. If present, convert the + modifier to latex and translate the rest recursively. + + Given a description of a Greek letter or other special character, + return the appropriate latex. + + Let everything else pass as given. + + >>> from sympy.printing.latex import translate + >>> translate('alphahatdotprime') + "{\\dot{\\hat{\\alpha}}}'" + ''' + # Process the rest + tex = tex_greek_dictionary.get(s) + if tex: + return tex + elif s.lower() in greek_letters_set: + return "\\" + s.lower() + elif s in other_symbols: + return "\\" + s + else: + # Process modifiers, if any, and recurse + for key in sorted(modifier_dict.keys(), key=len, reverse=True): + if s.lower().endswith(key) and len(s) > len(key): + return modifier_dict[key](translate(s[:-len(key)])) + return s + + + +@print_function(LatexPrinter) +def latex(expr, **settings): + r"""Convert the given expression to LaTeX string representation. + + Parameters + ========== + full_prec: boolean, optional + If set to True, a floating point number is printed with full precision. + fold_frac_powers : boolean, optional + Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. + fold_func_brackets : boolean, optional + Fold function brackets where applicable. + fold_short_frac : boolean, optional + Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is + simple enough (at most two terms and no powers). The default value is + ``True`` for inline mode, ``False`` otherwise. + inv_trig_style : string, optional + How inverse trig functions should be displayed. Can be one of + ``'abbreviated'``, ``'full'``, or ``'power'``. Defaults to + ``'abbreviated'``. + itex : boolean, optional + Specifies if itex-specific syntax is used, including emitting + ``$$...$$``. + ln_notation : boolean, optional + If set to ``True``, ``\ln`` is used instead of default ``\log``. + long_frac_ratio : float or None, optional + The allowed ratio of the width of the numerator to the width of the + denominator before the printer breaks off long fractions. If ``None`` + (the default value), long fractions are not broken up. + mat_delim : string, optional + The delimiter to wrap around matrices. Can be one of ``'['``, ``'('``, + or the empty string ``''``. Defaults to ``'['``. + mat_str : string, optional + Which matrix environment string to emit. ``'smallmatrix'``, + ``'matrix'``, ``'array'``, etc. Defaults to ``'smallmatrix'`` for + inline mode, ``'matrix'`` for matrices of no more than 10 columns, and + ``'array'`` otherwise. + mode: string, optional + Specifies how the generated code will be delimited. ``mode`` can be one + of ``'plain'``, ``'inline'``, ``'equation'`` or ``'equation*'``. If + ``mode`` is set to ``'plain'``, then the resulting code will not be + delimited at all (this is the default). If ``mode`` is set to + ``'inline'`` then inline LaTeX ``$...$`` will be used. If ``mode`` is + set to ``'equation'`` or ``'equation*'``, the resulting code will be + enclosed in the ``equation`` or ``equation*`` environment (remember to + import ``amsmath`` for ``equation*``), unless the ``itex`` option is + set. In the latter case, the ``$$...$$`` syntax is used. + mul_symbol : string or None, optional + The symbol to use for multiplication. Can be one of ``None``, + ``'ldot'``, ``'dot'``, or ``'times'``. + order: string, optional + Any of the supported monomial orderings (currently ``'lex'``, + ``'grlex'``, or ``'grevlex'``), ``'old'``, and ``'none'``. This + parameter does nothing for `~.Mul` objects. Setting order to ``'old'`` + uses the compatibility ordering for ``~.Add`` defined in Printer. For + very large expressions, set the ``order`` keyword to ``'none'`` if + speed is a concern. + symbol_names : dictionary of strings mapped to symbols, optional + Dictionary of symbols and the custom strings they should be emitted as. + root_notation : boolean, optional + If set to ``False``, exponents of the form 1/n are printed in fractonal + form. Default is ``True``, to print exponent in root form. + mat_symbol_style : string, optional + Can be either ``'plain'`` (default) or ``'bold'``. If set to + ``'bold'``, a `~.MatrixSymbol` A will be printed as ``\mathbf{A}``, + otherwise as ``A``. + imaginary_unit : string, optional + String to use for the imaginary unit. Defined options are ``'i'`` + (default) and ``'j'``. Adding ``r`` or ``t`` in front gives ``\mathrm`` + or ``\text``, so ``'ri'`` leads to ``\mathrm{i}`` which gives + `\mathrm{i}`. + gothic_re_im : boolean, optional + If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. + The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. + decimal_separator : string, optional + Specifies what separator to use to separate the whole and fractional parts of a + floating point number as in `2.5` for the default, ``period`` or `2{,}5` + when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon + separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when + ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. + parenthesize_super : boolean, optional + If set to ``False``, superscripted expressions will not be parenthesized when + powered. Default is ``True``, which parenthesizes the expression when powered. + min: Integer or None, optional + Sets the lower bound for the exponent to print floating point numbers in + fixed-point format. + max: Integer or None, optional + Sets the upper bound for the exponent to print floating point numbers in + fixed-point format. + diff_operator: string, optional + String to use for differential operator. Default is ``'d'``, to print in italic + form. ``'rd'``, ``'td'`` are shortcuts for ``\mathrm{d}`` and ``\text{d}``. + + Notes + ===== + + Not using a print statement for printing, results in double backslashes for + latex commands since that's the way Python escapes backslashes in strings. + + >>> from sympy import latex, Rational + >>> from sympy.abc import tau + >>> latex((2*tau)**Rational(7,2)) + '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' + >>> print(latex((2*tau)**Rational(7,2))) + 8 \sqrt{2} \tau^{\frac{7}{2}} + + Examples + ======== + + >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log + >>> from sympy.abc import x, y, mu, r, tau + + Basic usage: + + >>> print(latex((2*tau)**Rational(7,2))) + 8 \sqrt{2} \tau^{\frac{7}{2}} + + ``mode`` and ``itex`` options: + + >>> print(latex((2*mu)**Rational(7,2), mode='plain')) + 8 \sqrt{2} \mu^{\frac{7}{2}} + >>> print(latex((2*tau)**Rational(7,2), mode='inline')) + $8 \sqrt{2} \tau^{7 / 2}$ + >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) + \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} + >>> print(latex((2*mu)**Rational(7,2), mode='equation')) + \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} + >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) + $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ + >>> print(latex((2*mu)**Rational(7,2), mode='plain')) + 8 \sqrt{2} \mu^{\frac{7}{2}} + >>> print(latex((2*tau)**Rational(7,2), mode='inline')) + $8 \sqrt{2} \tau^{7 / 2}$ + >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) + \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} + >>> print(latex((2*mu)**Rational(7,2), mode='equation')) + \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} + >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) + $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ + + Fraction options: + + >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) + 8 \sqrt{2} \tau^{7/2} + >>> print(latex((2*tau)**sin(Rational(7,2)))) + \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} + >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) + \left(2 \tau\right)^{\sin {\frac{7}{2}}} + >>> print(latex(3*x**2/y)) + \frac{3 x^{2}}{y} + >>> print(latex(3*x**2/y, fold_short_frac=True)) + 3 x^{2} / y + >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) + \frac{\int r\, dr}{2 \pi} + >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) + \frac{1}{2 \pi} \int r\, dr + + Multiplication options: + + >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) + \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} + + Trig options: + + >>> print(latex(asin(Rational(7,2)))) + \operatorname{asin}{\left(\frac{7}{2} \right)} + >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) + \arcsin{\left(\frac{7}{2} \right)} + >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) + \sin^{-1}{\left(\frac{7}{2} \right)} + + Matrix options: + + >>> print(latex(Matrix(2, 1, [x, y]))) + \left[\begin{matrix}x\\y\end{matrix}\right] + >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) + \left[\begin{array}{c}x\\y\end{array}\right] + >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) + \left(\begin{matrix}x\\y\end{matrix}\right) + + Custom printing of symbols: + + >>> print(latex(x**2, symbol_names={x: 'x_i'})) + x_i^{2} + + Logarithms: + + >>> print(latex(log(10))) + \log{\left(10 \right)} + >>> print(latex(log(10), ln_notation=True)) + \ln{\left(10 \right)} + + ``latex()`` also supports the builtin container types :class:`list`, + :class:`tuple`, and :class:`dict`: + + >>> print(latex([2/x, y], mode='inline')) + $\left[ 2 / x, \ y\right]$ + + Unsupported types are rendered as monospaced plaintext: + + >>> print(latex(int)) + \mathtt{\text{}} + >>> print(latex("plain % text")) + \mathtt{\text{plain \% text}} + + See :ref:`printer_method_example` for an example of how to override + this behavior for your own types by implementing ``_latex``. + + .. versionchanged:: 1.7.0 + Unsupported types no longer have their ``str`` representation treated as valid latex. + + """ + return LatexPrinter(settings).doprint(expr) + + +def print_latex(expr, **settings): + """Prints LaTeX representation of the given expression. Takes the same + settings as ``latex()``.""" + + print(latex(expr, **settings)) + + +def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): + r""" + This function generates a LaTeX equation with a multiline right-hand side + in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. + + Parameters + ========== + + lhs : Expr + Left-hand side of equation + + rhs : Expr + Right-hand side of equation + + terms_per_line : integer, optional + Number of terms per line to print. Default is 1. + + environment : "string", optional + Which LaTeX wnvironment to use for the output. Options are "align*" + (default), "eqnarray", and "IEEEeqnarray". + + use_dots : boolean, optional + If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. + + Examples + ======== + + >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I + >>> x, y, alpha = symbols('x y alpha') + >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) + >>> print(multiline_latex(x, expr)) + \begin{align*} + x = & e^{i \alpha} \\ + & + \sin{\left(\alpha y \right)} \\ + & - \cos{\left(\log{\left(y \right)} \right)} + \end{align*} + + Using at most two terms per line: + >>> print(multiline_latex(x, expr, 2)) + \begin{align*} + x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ + & - \cos{\left(\log{\left(y \right)} \right)} + \end{align*} + + Using ``eqnarray`` and dots: + >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) + \begin{eqnarray} + x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ + & & - \cos{\left(\log{\left(y \right)} \right)} + \end{eqnarray} + + Using ``IEEEeqnarray``: + >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) + \begin{IEEEeqnarray}{rCl} + x & = & e^{i \alpha} \nonumber\\ + & & + \sin{\left(\alpha y \right)} \nonumber\\ + & & - \cos{\left(\log{\left(y \right)} \right)} + \end{IEEEeqnarray} + + Notes + ===== + + All optional parameters from ``latex`` can also be used. + + """ + + # Based on code from https://github.com/sympy/sympy/issues/3001 + l = LatexPrinter(**settings) + if environment == "eqnarray": + result = r'\begin{eqnarray}' + '\n' + first_term = '& = &' + nonumber = r'\nonumber' + end_term = '\n\\end{eqnarray}' + doubleet = True + elif environment == "IEEEeqnarray": + result = r'\begin{IEEEeqnarray}{rCl}' + '\n' + first_term = '& = &' + nonumber = r'\nonumber' + end_term = '\n\\end{IEEEeqnarray}' + doubleet = True + elif environment == "align*": + result = r'\begin{align*}' + '\n' + first_term = '= &' + nonumber = '' + end_term = '\n\\end{align*}' + doubleet = False + else: + raise ValueError("Unknown environment: {}".format(environment)) + dots = '' + if use_dots: + dots=r'\dots' + terms = rhs.as_ordered_terms() + n_terms = len(terms) + term_count = 1 + for i in range(n_terms): + term = terms[i] + term_start = '' + term_end = '' + sign = '+' + if term_count > terms_per_line: + if doubleet: + term_start = '& & ' + else: + term_start = '& ' + term_count = 1 + if term_count == terms_per_line: + # End of line + if i < n_terms-1: + # There are terms remaining + term_end = dots + nonumber + r'\\' + '\n' + else: + term_end = '' + + if term.as_ordered_factors()[0] == -1: + term = -1*term + sign = r'-' + if i == 0: # beginning + if sign == '+': + sign = '' + result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), + first_term, sign, l.doprint(term), term_end) + else: + result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, + l.doprint(term), term_end) + term_count += 1 + result += end_term + return result diff --git a/venv/lib/python3.10/site-packages/sympy/printing/maple.py b/venv/lib/python3.10/site-packages/sympy/printing/maple.py new file mode 100644 index 0000000000000000000000000000000000000000..16a17f3a9e1ffbe0d4101185a69c1408c4ae2bc9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/maple.py @@ -0,0 +1,311 @@ +""" +Maple code printer + +The MapleCodePrinter converts single SymPy expressions into single +Maple expressions, using the functions defined in the Maple objects where possible. + + +FIXME: This module is still under actively developed. Some functions may be not completed. +""" + +from sympy.core import S +from sympy.core.numbers import Integer, IntegerConstant, equal_valued +from sympy.printing.codeprinter import CodePrinter +from sympy.printing.precedence import precedence, PRECEDENCE + +import sympy + +_known_func_same_name = ( + 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinh', 'cosh', 'tanh', 'sech', + 'csch', 'coth', 'exp', 'floor', 'factorial', 'bernoulli', 'euler', + 'fibonacci', 'gcd', 'lcm', 'conjugate', 'Ci', 'Chi', 'Ei', 'Li', 'Si', 'Shi', + 'erf', 'erfc', 'harmonic', 'LambertW', + 'sqrt', # For automatic rewrites +) + +known_functions = { + # SymPy -> Maple + 'Abs': 'abs', + 'log': 'ln', + 'asin': 'arcsin', + 'acos': 'arccos', + 'atan': 'arctan', + 'asec': 'arcsec', + 'acsc': 'arccsc', + 'acot': 'arccot', + 'asinh': 'arcsinh', + 'acosh': 'arccosh', + 'atanh': 'arctanh', + 'asech': 'arcsech', + 'acsch': 'arccsch', + 'acoth': 'arccoth', + 'ceiling': 'ceil', + 'Max' : 'max', + 'Min' : 'min', + + 'factorial2': 'doublefactorial', + 'RisingFactorial': 'pochhammer', + 'besseli': 'BesselI', + 'besselj': 'BesselJ', + 'besselk': 'BesselK', + 'bessely': 'BesselY', + 'hankelh1': 'HankelH1', + 'hankelh2': 'HankelH2', + 'airyai': 'AiryAi', + 'airybi': 'AiryBi', + 'appellf1': 'AppellF1', + 'fresnelc': 'FresnelC', + 'fresnels': 'FresnelS', + 'lerchphi' : 'LerchPhi', +} + +for _func in _known_func_same_name: + known_functions[_func] = _func + +number_symbols = { + # SymPy -> Maple + S.Pi: 'Pi', + S.Exp1: 'exp(1)', + S.Catalan: 'Catalan', + S.EulerGamma: 'gamma', + S.GoldenRatio: '(1/2 + (1/2)*sqrt(5))' +} + +spec_relational_ops = { + # SymPy -> Maple + '==': '=', + '!=': '<>' +} + +not_supported_symbol = [ + S.ComplexInfinity +] + +class MapleCodePrinter(CodePrinter): + """ + Printer which converts a SymPy expression into a maple code. + """ + printmethod = "_maple" + language = "maple" + + _default_settings = { + 'order': None, + 'full_prec': 'auto', + 'human': True, + 'inline': True, + 'allow_unknown_functions': True, + } + + def __init__(self, settings=None): + if settings is None: + settings = {} + super().__init__(settings) + self.known_functions = dict(known_functions) + userfuncs = settings.get('user_functions', {}) + self.known_functions.update(userfuncs) + + def _get_statement(self, codestring): + return "%s;" % codestring + + def _get_comment(self, text): + return "# {}".format(text) + + def _declare_number_const(self, name, value): + return "{} := {};".format(name, + value.evalf(self._settings['precision'])) + + def _format_code(self, lines): + return lines + + def _print_tuple(self, expr): + return self._print(list(expr)) + + def _print_Tuple(self, expr): + return self._print(list(expr)) + + def _print_Assignment(self, expr): + lhs = self._print(expr.lhs) + rhs = self._print(expr.rhs) + return "{lhs} := {rhs}".format(lhs=lhs, rhs=rhs) + + def _print_Pow(self, expr, **kwargs): + PREC = precedence(expr) + if equal_valued(expr.exp, -1): + return '1/%s' % (self.parenthesize(expr.base, PREC)) + elif equal_valued(expr.exp, 0.5): + return 'sqrt(%s)' % self._print(expr.base) + elif equal_valued(expr.exp, -0.5): + return '1/sqrt(%s)' % self._print(expr.base) + else: + return '{base}^{exp}'.format( + base=self.parenthesize(expr.base, PREC), + exp=self.parenthesize(expr.exp, PREC)) + + def _print_Piecewise(self, expr): + if (expr.args[-1].cond is not True) and (expr.args[-1].cond != S.BooleanTrue): + # We need the last conditional to be a True, otherwise the resulting + # function may not return a result. + raise ValueError("All Piecewise expressions must contain an " + "(expr, True) statement to be used as a default " + "condition. Without one, the generated " + "expression may not evaluate to anything under " + "some condition.") + _coup_list = [ + ("{c}, {e}".format(c=self._print(c), + e=self._print(e)) if c is not True and c is not S.BooleanTrue else "{e}".format( + e=self._print(e))) + for e, c in expr.args] + _inbrace = ', '.join(_coup_list) + return 'piecewise({_inbrace})'.format(_inbrace=_inbrace) + + def _print_Rational(self, expr): + p, q = int(expr.p), int(expr.q) + return "{p}/{q}".format(p=str(p), q=str(q)) + + def _print_Relational(self, expr): + PREC=precedence(expr) + lhs_code = self.parenthesize(expr.lhs, PREC) + rhs_code = self.parenthesize(expr.rhs, PREC) + op = expr.rel_op + if op in spec_relational_ops: + op = spec_relational_ops[op] + return "{lhs} {rel_op} {rhs}".format(lhs=lhs_code, rel_op=op, rhs=rhs_code) + + def _print_NumberSymbol(self, expr): + return number_symbols[expr] + + def _print_NegativeInfinity(self, expr): + return '-infinity' + + def _print_Infinity(self, expr): + return 'infinity' + + def _print_Idx(self, expr): + return self._print(expr.label) + + def _print_BooleanTrue(self, expr): + return "true" + + def _print_BooleanFalse(self, expr): + return "false" + + def _print_bool(self, expr): + return 'true' if expr else 'false' + + def _print_NaN(self, expr): + return 'undefined' + + def _get_matrix(self, expr, sparse=False): + if S.Zero in expr.shape: + _strM = 'Matrix([], storage = {storage})'.format( + storage='sparse' if sparse else 'rectangular') + else: + _strM = 'Matrix({list}, storage = {storage})'.format( + list=self._print(expr.tolist()), + storage='sparse' if sparse else 'rectangular') + return _strM + + def _print_MatrixElement(self, expr): + return "{parent}[{i_maple}, {j_maple}]".format( + parent=self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True), + i_maple=self._print(expr.i + 1), + j_maple=self._print(expr.j + 1)) + + def _print_MatrixBase(self, expr): + return self._get_matrix(expr, sparse=False) + + def _print_SparseRepMatrix(self, expr): + return self._get_matrix(expr, sparse=True) + + def _print_Identity(self, expr): + if isinstance(expr.rows, (Integer, IntegerConstant)): + return self._print(sympy.SparseMatrix(expr)) + else: + return "Matrix({var_size}, shape = identity)".format(var_size=self._print(expr.rows)) + + def _print_MatMul(self, expr): + PREC=precedence(expr) + _fact_list = list(expr.args) + _const = None + if not isinstance(_fact_list[0], (sympy.MatrixBase, sympy.MatrixExpr, + sympy.MatrixSlice, sympy.MatrixSymbol)): + _const, _fact_list = _fact_list[0], _fact_list[1:] + + if _const is None or _const == 1: + return '.'.join(self.parenthesize(_m, PREC) for _m in _fact_list) + else: + return '{c}*{m}'.format(c=_const, m='.'.join(self.parenthesize(_m, PREC) for _m in _fact_list)) + + def _print_MatPow(self, expr): + # This function requires LinearAlgebra Function in Maple + return 'MatrixPower({A}, {n})'.format(A=self._print(expr.base), n=self._print(expr.exp)) + + def _print_HadamardProduct(self, expr): + PREC = precedence(expr) + _fact_list = list(expr.args) + return '*'.join(self.parenthesize(_m, PREC) for _m in _fact_list) + + def _print_Derivative(self, expr): + _f, (_var, _order) = expr.args + + if _order != 1: + _second_arg = '{var}${order}'.format(var=self._print(_var), + order=self._print(_order)) + else: + _second_arg = '{var}'.format(var=self._print(_var)) + return 'diff({func_expr}, {sec_arg})'.format(func_expr=self._print(_f), sec_arg=_second_arg) + + +def maple_code(expr, assign_to=None, **settings): + r"""Converts ``expr`` to a string of Maple code. + + Parameters + ========== + + expr : Expr + A SymPy expression to be converted. + assign_to : optional + When given, the argument is used as the name of the variable to which + the expression is assigned. Can be a string, ``Symbol``, + ``MatrixSymbol``, or ``Indexed`` type. This can be helpful for + expressions that generate multi-line statements. + precision : integer, optional + The precision for numbers such as pi [default=16]. + user_functions : dict, optional + A dictionary where keys are ``FunctionClass`` instances and values are + their string representations. Alternatively, the dictionary value can + be a list of tuples i.e. [(argument_test, cfunction_string)]. See + below for examples. + human : bool, optional + If True, the result is a single string that may contain some constant + declarations for the number symbols. If False, the same information is + returned in a tuple of (symbols_to_declare, not_supported_functions, + code_text). [default=True]. + contract: bool, optional + If True, ``Indexed`` instances are assumed to obey tensor contraction + rules and the corresponding nested loops over indices are generated. + Setting contract=False will not generate loops, instead the user is + responsible to provide values for the indices in the code. + [default=True]. + inline: bool, optional + If True, we try to create single-statement code instead of multiple + statements. [default=True]. + + """ + return MapleCodePrinter(settings).doprint(expr, assign_to) + + +def print_maple_code(expr, **settings): + """Prints the Maple representation of the given expression. + + See :func:`maple_code` for the meaning of the optional arguments. + + Examples + ======== + + >>> from sympy import print_maple_code, symbols + >>> x, y = symbols('x y') + >>> print_maple_code(x, assign_to=y) + y := x + """ + print(maple_code(expr, **settings)) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/mathml.py b/venv/lib/python3.10/site-packages/sympy/printing/mathml.py new file mode 100644 index 0000000000000000000000000000000000000000..16e269566c20b3034a9818e5c10f813b171a0d2e --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/mathml.py @@ -0,0 +1,2126 @@ +""" +A MathML printer. +""" + +from __future__ import annotations +from typing import Any + +from sympy.core.mul import Mul +from sympy.core.singleton import S +from sympy.core.sorting import default_sort_key +from sympy.core.sympify import sympify +from sympy.printing.conventions import split_super_sub, requires_partial +from sympy.printing.precedence import \ + precedence_traditional, PRECEDENCE, PRECEDENCE_TRADITIONAL +from sympy.printing.pretty.pretty_symbology import greek_unicode +from sympy.printing.printer import Printer, print_function + +from mpmath.libmp import prec_to_dps, repr_dps, to_str as mlib_to_str + + +class MathMLPrinterBase(Printer): + """Contains common code required for MathMLContentPrinter and + MathMLPresentationPrinter. + """ + + _default_settings: dict[str, Any] = { + "order": None, + "encoding": "utf-8", + "fold_frac_powers": False, + "fold_func_brackets": False, + "fold_short_frac": None, + "inv_trig_style": "abbreviated", + "ln_notation": False, + "long_frac_ratio": None, + "mat_delim": "[", + "mat_symbol_style": "plain", + "mul_symbol": None, + "root_notation": True, + "symbol_names": {}, + "mul_symbol_mathml_numbers": '·', + } + + def __init__(self, settings=None): + Printer.__init__(self, settings) + from xml.dom.minidom import Document, Text + + self.dom = Document() + + # Workaround to allow strings to remain unescaped + # Based on + # https://stackoverflow.com/questions/38015864/python-xml-dom-minidom-\ + # please-dont-escape-my-strings/38041194 + class RawText(Text): + def writexml(self, writer, indent='', addindent='', newl=''): + if self.data: + writer.write('{}{}{}'.format(indent, self.data, newl)) + + def createRawTextNode(data): + r = RawText() + r.data = data + r.ownerDocument = self.dom + return r + + self.dom.createTextNode = createRawTextNode + + def doprint(self, expr): + """ + Prints the expression as MathML. + """ + mathML = Printer._print(self, expr) + unistr = mathML.toxml() + xmlbstr = unistr.encode('ascii', 'xmlcharrefreplace') + res = xmlbstr.decode() + return res + + def apply_patch(self): + # Applying the patch of xml.dom.minidom bug + # Date: 2011-11-18 + # Description: http://ronrothman.com/public/leftbraned/xml-dom-minidom\ + # -toprettyxml-and-silly-whitespace/#best-solution + # Issue: https://bugs.python.org/issue4147 + # Patch: https://hg.python.org/cpython/rev/7262f8f276ff/ + + from xml.dom.minidom import Element, Text, Node, _write_data + + def writexml(self, writer, indent="", addindent="", newl=""): + # indent = current indentation + # addindent = indentation to add to higher levels + # newl = newline string + writer.write(indent + "<" + self.tagName) + + attrs = self._get_attributes() + a_names = list(attrs.keys()) + a_names.sort() + + for a_name in a_names: + writer.write(" %s=\"" % a_name) + _write_data(writer, attrs[a_name].value) + writer.write("\"") + if self.childNodes: + writer.write(">") + if (len(self.childNodes) == 1 and + self.childNodes[0].nodeType == Node.TEXT_NODE): + self.childNodes[0].writexml(writer, '', '', '') + else: + writer.write(newl) + for node in self.childNodes: + node.writexml( + writer, indent + addindent, addindent, newl) + writer.write(indent) + writer.write("%s" % (self.tagName, newl)) + else: + writer.write("/>%s" % (newl)) + self._Element_writexml_old = Element.writexml + Element.writexml = writexml + + def writexml(self, writer, indent="", addindent="", newl=""): + _write_data(writer, "%s%s%s" % (indent, self.data, newl)) + self._Text_writexml_old = Text.writexml + Text.writexml = writexml + + def restore_patch(self): + from xml.dom.minidom import Element, Text + Element.writexml = self._Element_writexml_old + Text.writexml = self._Text_writexml_old + + +class MathMLContentPrinter(MathMLPrinterBase): + """Prints an expression to the Content MathML markup language. + + References: https://www.w3.org/TR/MathML2/chapter4.html + """ + printmethod = "_mathml_content" + + def mathml_tag(self, e): + """Returns the MathML tag for an expression.""" + translate = { + 'Add': 'plus', + 'Mul': 'times', + 'Derivative': 'diff', + 'Number': 'cn', + 'int': 'cn', + 'Pow': 'power', + 'Max': 'max', + 'Min': 'min', + 'Abs': 'abs', + 'And': 'and', + 'Or': 'or', + 'Xor': 'xor', + 'Not': 'not', + 'Implies': 'implies', + 'Symbol': 'ci', + 'MatrixSymbol': 'ci', + 'RandomSymbol': 'ci', + 'Integral': 'int', + 'Sum': 'sum', + 'sin': 'sin', + 'cos': 'cos', + 'tan': 'tan', + 'cot': 'cot', + 'csc': 'csc', + 'sec': 'sec', + 'sinh': 'sinh', + 'cosh': 'cosh', + 'tanh': 'tanh', + 'coth': 'coth', + 'csch': 'csch', + 'sech': 'sech', + 'asin': 'arcsin', + 'asinh': 'arcsinh', + 'acos': 'arccos', + 'acosh': 'arccosh', + 'atan': 'arctan', + 'atanh': 'arctanh', + 'atan2': 'arctan', + 'acot': 'arccot', + 'acoth': 'arccoth', + 'asec': 'arcsec', + 'asech': 'arcsech', + 'acsc': 'arccsc', + 'acsch': 'arccsch', + 'log': 'ln', + 'Equality': 'eq', + 'Unequality': 'neq', + 'GreaterThan': 'geq', + 'LessThan': 'leq', + 'StrictGreaterThan': 'gt', + 'StrictLessThan': 'lt', + 'Union': 'union', + 'Intersection': 'intersect', + } + + for cls in e.__class__.__mro__: + n = cls.__name__ + if n in translate: + return translate[n] + # Not found in the MRO set + n = e.__class__.__name__ + return n.lower() + + def _print_Mul(self, expr): + + if expr.could_extract_minus_sign(): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('minus')) + x.appendChild(self._print_Mul(-expr)) + return x + + from sympy.simplify import fraction + numer, denom = fraction(expr) + + if denom is not S.One: + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('divide')) + x.appendChild(self._print(numer)) + x.appendChild(self._print(denom)) + return x + + coeff, terms = expr.as_coeff_mul() + if coeff is S.One and len(terms) == 1: + # XXX since the negative coefficient has been handled, I don't + # think a coeff of 1 can remain + return self._print(terms[0]) + + if self.order != 'old': + terms = Mul._from_args(terms).as_ordered_factors() + + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('times')) + if coeff != 1: + x.appendChild(self._print(coeff)) + for term in terms: + x.appendChild(self._print(term)) + return x + + def _print_Add(self, expr, order=None): + args = self._as_ordered_terms(expr, order=order) + lastProcessed = self._print(args[0]) + plusNodes = [] + for arg in args[1:]: + if arg.could_extract_minus_sign(): + # use minus + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('minus')) + x.appendChild(lastProcessed) + x.appendChild(self._print(-arg)) + # invert expression since this is now minused + lastProcessed = x + if arg == args[-1]: + plusNodes.append(lastProcessed) + else: + plusNodes.append(lastProcessed) + lastProcessed = self._print(arg) + if arg == args[-1]: + plusNodes.append(self._print(arg)) + if len(plusNodes) == 1: + return lastProcessed + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('plus')) + while plusNodes: + x.appendChild(plusNodes.pop(0)) + return x + + def _print_Piecewise(self, expr): + if expr.args[-1].cond != True: + # We need the last conditional to be a True, otherwise the resulting + # function may not return a result. + raise ValueError("All Piecewise expressions must contain an " + "(expr, True) statement to be used as a default " + "condition. Without one, the generated " + "expression may not evaluate to anything under " + "some condition.") + root = self.dom.createElement('piecewise') + for i, (e, c) in enumerate(expr.args): + if i == len(expr.args) - 1 and c == True: + piece = self.dom.createElement('otherwise') + piece.appendChild(self._print(e)) + else: + piece = self.dom.createElement('piece') + piece.appendChild(self._print(e)) + piece.appendChild(self._print(c)) + root.appendChild(piece) + return root + + def _print_MatrixBase(self, m): + x = self.dom.createElement('matrix') + for i in range(m.rows): + x_r = self.dom.createElement('matrixrow') + for j in range(m.cols): + x_r.appendChild(self._print(m[i, j])) + x.appendChild(x_r) + return x + + def _print_Rational(self, e): + if e.q == 1: + # don't divide + x = self.dom.createElement('cn') + x.appendChild(self.dom.createTextNode(str(e.p))) + return x + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('divide')) + # numerator + xnum = self.dom.createElement('cn') + xnum.appendChild(self.dom.createTextNode(str(e.p))) + # denominator + xdenom = self.dom.createElement('cn') + xdenom.appendChild(self.dom.createTextNode(str(e.q))) + x.appendChild(xnum) + x.appendChild(xdenom) + return x + + def _print_Limit(self, e): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement(self.mathml_tag(e))) + + x_1 = self.dom.createElement('bvar') + x_2 = self.dom.createElement('lowlimit') + x_1.appendChild(self._print(e.args[1])) + x_2.appendChild(self._print(e.args[2])) + + x.appendChild(x_1) + x.appendChild(x_2) + x.appendChild(self._print(e.args[0])) + return x + + def _print_ImaginaryUnit(self, e): + return self.dom.createElement('imaginaryi') + + def _print_EulerGamma(self, e): + return self.dom.createElement('eulergamma') + + def _print_GoldenRatio(self, e): + """We use unicode #x3c6 for Greek letter phi as defined here + https://www.w3.org/2003/entities/2007doc/isogrk1.html""" + x = self.dom.createElement('cn') + x.appendChild(self.dom.createTextNode("\N{GREEK SMALL LETTER PHI}")) + return x + + def _print_Exp1(self, e): + return self.dom.createElement('exponentiale') + + def _print_Pi(self, e): + return self.dom.createElement('pi') + + def _print_Infinity(self, e): + return self.dom.createElement('infinity') + + def _print_NaN(self, e): + return self.dom.createElement('notanumber') + + def _print_EmptySet(self, e): + return self.dom.createElement('emptyset') + + def _print_BooleanTrue(self, e): + return self.dom.createElement('true') + + def _print_BooleanFalse(self, e): + return self.dom.createElement('false') + + def _print_NegativeInfinity(self, e): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('minus')) + x.appendChild(self.dom.createElement('infinity')) + return x + + def _print_Integral(self, e): + def lime_recur(limits): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement(self.mathml_tag(e))) + bvar_elem = self.dom.createElement('bvar') + bvar_elem.appendChild(self._print(limits[0][0])) + x.appendChild(bvar_elem) + + if len(limits[0]) == 3: + low_elem = self.dom.createElement('lowlimit') + low_elem.appendChild(self._print(limits[0][1])) + x.appendChild(low_elem) + up_elem = self.dom.createElement('uplimit') + up_elem.appendChild(self._print(limits[0][2])) + x.appendChild(up_elem) + if len(limits[0]) == 2: + up_elem = self.dom.createElement('uplimit') + up_elem.appendChild(self._print(limits[0][1])) + x.appendChild(up_elem) + if len(limits) == 1: + x.appendChild(self._print(e.function)) + else: + x.appendChild(lime_recur(limits[1:])) + return x + + limits = list(e.limits) + limits.reverse() + return lime_recur(limits) + + def _print_Sum(self, e): + # Printer can be shared because Sum and Integral have the + # same internal representation. + return self._print_Integral(e) + + def _print_Symbol(self, sym): + ci = self.dom.createElement(self.mathml_tag(sym)) + + def join(items): + if len(items) > 1: + mrow = self.dom.createElement('mml:mrow') + for i, item in enumerate(items): + if i > 0: + mo = self.dom.createElement('mml:mo') + mo.appendChild(self.dom.createTextNode(" ")) + mrow.appendChild(mo) + mi = self.dom.createElement('mml:mi') + mi.appendChild(self.dom.createTextNode(item)) + mrow.appendChild(mi) + return mrow + else: + mi = self.dom.createElement('mml:mi') + mi.appendChild(self.dom.createTextNode(items[0])) + return mi + + # translate name, supers and subs to unicode characters + def translate(s): + if s in greek_unicode: + return greek_unicode.get(s) + else: + return s + + name, supers, subs = split_super_sub(sym.name) + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + mname = self.dom.createElement('mml:mi') + mname.appendChild(self.dom.createTextNode(name)) + if not supers: + if not subs: + ci.appendChild(self.dom.createTextNode(name)) + else: + msub = self.dom.createElement('mml:msub') + msub.appendChild(mname) + msub.appendChild(join(subs)) + ci.appendChild(msub) + else: + if not subs: + msup = self.dom.createElement('mml:msup') + msup.appendChild(mname) + msup.appendChild(join(supers)) + ci.appendChild(msup) + else: + msubsup = self.dom.createElement('mml:msubsup') + msubsup.appendChild(mname) + msubsup.appendChild(join(subs)) + msubsup.appendChild(join(supers)) + ci.appendChild(msubsup) + return ci + + _print_MatrixSymbol = _print_Symbol + _print_RandomSymbol = _print_Symbol + + def _print_Pow(self, e): + # Here we use root instead of power if the exponent is the reciprocal + # of an integer + if (self._settings['root_notation'] and e.exp.is_Rational + and e.exp.p == 1): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('root')) + if e.exp.q != 2: + xmldeg = self.dom.createElement('degree') + xmlcn = self.dom.createElement('cn') + xmlcn.appendChild(self.dom.createTextNode(str(e.exp.q))) + xmldeg.appendChild(xmlcn) + x.appendChild(xmldeg) + x.appendChild(self._print(e.base)) + return x + + x = self.dom.createElement('apply') + x_1 = self.dom.createElement(self.mathml_tag(e)) + x.appendChild(x_1) + x.appendChild(self._print(e.base)) + x.appendChild(self._print(e.exp)) + return x + + def _print_Number(self, e): + x = self.dom.createElement(self.mathml_tag(e)) + x.appendChild(self.dom.createTextNode(str(e))) + return x + + def _print_Float(self, e): + x = self.dom.createElement(self.mathml_tag(e)) + repr_e = mlib_to_str(e._mpf_, repr_dps(e._prec)) + x.appendChild(self.dom.createTextNode(repr_e)) + return x + + def _print_Derivative(self, e): + x = self.dom.createElement('apply') + diff_symbol = self.mathml_tag(e) + if requires_partial(e.expr): + diff_symbol = 'partialdiff' + x.appendChild(self.dom.createElement(diff_symbol)) + x_1 = self.dom.createElement('bvar') + + for sym, times in reversed(e.variable_count): + x_1.appendChild(self._print(sym)) + if times > 1: + degree = self.dom.createElement('degree') + degree.appendChild(self._print(sympify(times))) + x_1.appendChild(degree) + + x.appendChild(x_1) + x.appendChild(self._print(e.expr)) + return x + + def _print_Function(self, e): + x = self.dom.createElement("apply") + x.appendChild(self.dom.createElement(self.mathml_tag(e))) + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + def _print_Basic(self, e): + x = self.dom.createElement(self.mathml_tag(e)) + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + def _print_AssocOp(self, e): + x = self.dom.createElement('apply') + x_1 = self.dom.createElement(self.mathml_tag(e)) + x.appendChild(x_1) + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + def _print_Relational(self, e): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement(self.mathml_tag(e))) + x.appendChild(self._print(e.lhs)) + x.appendChild(self._print(e.rhs)) + return x + + def _print_list(self, seq): + """MathML reference for the element: + https://www.w3.org/TR/MathML2/chapter4.html#contm.list""" + dom_element = self.dom.createElement('list') + for item in seq: + dom_element.appendChild(self._print(item)) + return dom_element + + def _print_int(self, p): + dom_element = self.dom.createElement(self.mathml_tag(p)) + dom_element.appendChild(self.dom.createTextNode(str(p))) + return dom_element + + _print_Implies = _print_AssocOp + _print_Not = _print_AssocOp + _print_Xor = _print_AssocOp + + def _print_FiniteSet(self, e): + x = self.dom.createElement('set') + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + def _print_Complement(self, e): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('setdiff')) + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + def _print_ProductSet(self, e): + x = self.dom.createElement('apply') + x.appendChild(self.dom.createElement('cartesianproduct')) + for arg in e.args: + x.appendChild(self._print(arg)) + return x + + # XXX Symmetric difference is not supported for MathML content printers. + + +class MathMLPresentationPrinter(MathMLPrinterBase): + """Prints an expression to the Presentation MathML markup language. + + References: https://www.w3.org/TR/MathML2/chapter3.html + """ + printmethod = "_mathml_presentation" + + def mathml_tag(self, e): + """Returns the MathML tag for an expression.""" + translate = { + 'Number': 'mn', + 'Limit': '→', + 'Derivative': 'ⅆ', + 'int': 'mn', + 'Symbol': 'mi', + 'Integral': '∫', + 'Sum': '∑', + 'sin': 'sin', + 'cos': 'cos', + 'tan': 'tan', + 'cot': 'cot', + 'asin': 'arcsin', + 'asinh': 'arcsinh', + 'acos': 'arccos', + 'acosh': 'arccosh', + 'atan': 'arctan', + 'atanh': 'arctanh', + 'acot': 'arccot', + 'atan2': 'arctan', + 'Equality': '=', + 'Unequality': '≠', + 'GreaterThan': '≥', + 'LessThan': '≤', + 'StrictGreaterThan': '>', + 'StrictLessThan': '<', + 'lerchphi': 'Φ', + 'zeta': 'ζ', + 'dirichlet_eta': 'η', + 'elliptic_k': 'Κ', + 'lowergamma': 'γ', + 'uppergamma': 'Γ', + 'gamma': 'Γ', + 'totient': 'ϕ', + 'reduced_totient': 'λ', + 'primenu': 'ν', + 'primeomega': 'Ω', + 'fresnels': 'S', + 'fresnelc': 'C', + 'LambertW': 'W', + 'Heaviside': 'Θ', + 'BooleanTrue': 'True', + 'BooleanFalse': 'False', + 'NoneType': 'None', + 'mathieus': 'S', + 'mathieuc': 'C', + 'mathieusprime': 'S′', + 'mathieucprime': 'C′', + } + + def mul_symbol_selection(): + if (self._settings["mul_symbol"] is None or + self._settings["mul_symbol"] == 'None'): + return '⁢' + elif self._settings["mul_symbol"] == 'times': + return '×' + elif self._settings["mul_symbol"] == 'dot': + return '·' + elif self._settings["mul_symbol"] == 'ldot': + return '․' + elif not isinstance(self._settings["mul_symbol"], str): + raise TypeError + else: + return self._settings["mul_symbol"] + for cls in e.__class__.__mro__: + n = cls.__name__ + if n in translate: + return translate[n] + # Not found in the MRO set + if e.__class__.__name__ == "Mul": + return mul_symbol_selection() + n = e.__class__.__name__ + return n.lower() + + def parenthesize(self, item, level, strict=False): + prec_val = precedence_traditional(item) + if (prec_val < level) or ((not strict) and prec_val <= level): + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(item)) + return brac + else: + return self._print(item) + + def _print_Mul(self, expr): + + def multiply(expr, mrow): + from sympy.simplify import fraction + numer, denom = fraction(expr) + if denom is not S.One: + frac = self.dom.createElement('mfrac') + if self._settings["fold_short_frac"] and len(str(expr)) < 7: + frac.setAttribute('bevelled', 'true') + xnum = self._print(numer) + xden = self._print(denom) + frac.appendChild(xnum) + frac.appendChild(xden) + mrow.appendChild(frac) + return mrow + + coeff, terms = expr.as_coeff_mul() + if coeff is S.One and len(terms) == 1: + mrow.appendChild(self._print(terms[0])) + return mrow + if self.order != 'old': + terms = Mul._from_args(terms).as_ordered_factors() + + if coeff != 1: + x = self._print(coeff) + y = self.dom.createElement('mo') + y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) + mrow.appendChild(x) + mrow.appendChild(y) + for term in terms: + mrow.appendChild(self.parenthesize(term, PRECEDENCE['Mul'])) + if not term == terms[-1]: + y = self.dom.createElement('mo') + y.appendChild(self.dom.createTextNode(self.mathml_tag(expr))) + mrow.appendChild(y) + return mrow + mrow = self.dom.createElement('mrow') + if expr.could_extract_minus_sign(): + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode('-')) + mrow.appendChild(x) + mrow = multiply(-expr, mrow) + else: + mrow = multiply(expr, mrow) + + return mrow + + def _print_Add(self, expr, order=None): + mrow = self.dom.createElement('mrow') + args = self._as_ordered_terms(expr, order=order) + mrow.appendChild(self._print(args[0])) + for arg in args[1:]: + if arg.could_extract_minus_sign(): + # use minus + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode('-')) + y = self._print(-arg) + # invert expression since this is now minused + else: + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode('+')) + y = self._print(arg) + mrow.appendChild(x) + mrow.appendChild(y) + + return mrow + + def _print_MatrixBase(self, m): + table = self.dom.createElement('mtable') + for i in range(m.rows): + x = self.dom.createElement('mtr') + for j in range(m.cols): + y = self.dom.createElement('mtd') + y.appendChild(self._print(m[i, j])) + x.appendChild(y) + table.appendChild(x) + if self._settings["mat_delim"] == '': + return table + brac = self.dom.createElement('mfenced') + if self._settings["mat_delim"] == "[": + brac.setAttribute('close', ']') + brac.setAttribute('open', '[') + brac.appendChild(table) + return brac + + def _get_printed_Rational(self, e, folded=None): + if e.p < 0: + p = -e.p + else: + p = e.p + x = self.dom.createElement('mfrac') + if folded or self._settings["fold_short_frac"]: + x.setAttribute('bevelled', 'true') + x.appendChild(self._print(p)) + x.appendChild(self._print(e.q)) + if e.p < 0: + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('-')) + mrow.appendChild(mo) + mrow.appendChild(x) + return mrow + else: + return x + + def _print_Rational(self, e): + if e.q == 1: + # don't divide + return self._print(e.p) + + return self._get_printed_Rational(e, self._settings["fold_short_frac"]) + + def _print_Limit(self, e): + mrow = self.dom.createElement('mrow') + munder = self.dom.createElement('munder') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('lim')) + + x = self.dom.createElement('mrow') + x_1 = self._print(e.args[1]) + arrow = self.dom.createElement('mo') + arrow.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + x_2 = self._print(e.args[2]) + x.appendChild(x_1) + x.appendChild(arrow) + x.appendChild(x_2) + + munder.appendChild(mi) + munder.appendChild(x) + mrow.appendChild(munder) + mrow.appendChild(self._print(e.args[0])) + + return mrow + + def _print_ImaginaryUnit(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('ⅈ')) + return x + + def _print_GoldenRatio(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('Φ')) + return x + + def _print_Exp1(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('ⅇ')) + return x + + def _print_Pi(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('π')) + return x + + def _print_Infinity(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('∞')) + return x + + def _print_NegativeInfinity(self, e): + mrow = self.dom.createElement('mrow') + y = self.dom.createElement('mo') + y.appendChild(self.dom.createTextNode('-')) + x = self._print_Infinity(e) + mrow.appendChild(y) + mrow.appendChild(x) + return mrow + + def _print_HBar(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('ℏ')) + return x + + def _print_EulerGamma(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('γ')) + return x + + def _print_TribonacciConstant(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('TribonacciConstant')) + return x + + def _print_Dagger(self, e): + msup = self.dom.createElement('msup') + msup.appendChild(self._print(e.args[0])) + msup.appendChild(self.dom.createTextNode('†')) + return msup + + def _print_Contains(self, e): + mrow = self.dom.createElement('mrow') + mrow.appendChild(self._print(e.args[0])) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∈')) + mrow.appendChild(mo) + mrow.appendChild(self._print(e.args[1])) + return mrow + + def _print_HilbertSpace(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('ℋ')) + return x + + def _print_ComplexSpace(self, e): + msup = self.dom.createElement('msup') + msup.appendChild(self.dom.createTextNode('𝒞')) + msup.appendChild(self._print(e.args[0])) + return msup + + def _print_FockSpace(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('ℱ')) + return x + + + def _print_Integral(self, expr): + intsymbols = {1: "∫", 2: "∬", 3: "∭"} + + mrow = self.dom.createElement('mrow') + if len(expr.limits) <= 3 and all(len(lim) == 1 for lim in expr.limits): + # Only up to three-integral signs exists + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode(intsymbols[len(expr.limits)])) + mrow.appendChild(mo) + else: + # Either more than three or limits provided + for lim in reversed(expr.limits): + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode(intsymbols[1])) + if len(lim) == 1: + mrow.appendChild(mo) + if len(lim) == 2: + msup = self.dom.createElement('msup') + msup.appendChild(mo) + msup.appendChild(self._print(lim[1])) + mrow.appendChild(msup) + if len(lim) == 3: + msubsup = self.dom.createElement('msubsup') + msubsup.appendChild(mo) + msubsup.appendChild(self._print(lim[1])) + msubsup.appendChild(self._print(lim[2])) + mrow.appendChild(msubsup) + # print function + mrow.appendChild(self.parenthesize(expr.function, PRECEDENCE["Mul"], + strict=True)) + # print integration variables + for lim in reversed(expr.limits): + d = self.dom.createElement('mo') + d.appendChild(self.dom.createTextNode('ⅆ')) + mrow.appendChild(d) + mrow.appendChild(self._print(lim[0])) + return mrow + + def _print_Sum(self, e): + limits = list(e.limits) + subsup = self.dom.createElement('munderover') + low_elem = self._print(limits[0][1]) + up_elem = self._print(limits[0][2]) + summand = self.dom.createElement('mo') + summand.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + + low = self.dom.createElement('mrow') + var = self._print(limits[0][0]) + equal = self.dom.createElement('mo') + equal.appendChild(self.dom.createTextNode('=')) + low.appendChild(var) + low.appendChild(equal) + low.appendChild(low_elem) + + subsup.appendChild(summand) + subsup.appendChild(low) + subsup.appendChild(up_elem) + + mrow = self.dom.createElement('mrow') + mrow.appendChild(subsup) + if len(str(e.function)) == 1: + mrow.appendChild(self._print(e.function)) + else: + fence = self.dom.createElement('mfenced') + fence.appendChild(self._print(e.function)) + mrow.appendChild(fence) + + return mrow + + def _print_Symbol(self, sym, style='plain'): + def join(items): + if len(items) > 1: + mrow = self.dom.createElement('mrow') + for i, item in enumerate(items): + if i > 0: + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode(" ")) + mrow.appendChild(mo) + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(item)) + mrow.appendChild(mi) + return mrow + else: + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(items[0])) + return mi + + # translate name, supers and subs to unicode characters + def translate(s): + if s in greek_unicode: + return greek_unicode.get(s) + else: + return s + + name, supers, subs = split_super_sub(sym.name) + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + mname = self.dom.createElement('mi') + mname.appendChild(self.dom.createTextNode(name)) + if len(supers) == 0: + if len(subs) == 0: + x = mname + else: + x = self.dom.createElement('msub') + x.appendChild(mname) + x.appendChild(join(subs)) + else: + if len(subs) == 0: + x = self.dom.createElement('msup') + x.appendChild(mname) + x.appendChild(join(supers)) + else: + x = self.dom.createElement('msubsup') + x.appendChild(mname) + x.appendChild(join(subs)) + x.appendChild(join(supers)) + # Set bold font? + if style == 'bold': + x.setAttribute('mathvariant', 'bold') + return x + + def _print_MatrixSymbol(self, sym): + return self._print_Symbol(sym, + style=self._settings['mat_symbol_style']) + + _print_RandomSymbol = _print_Symbol + + def _print_conjugate(self, expr): + enc = self.dom.createElement('menclose') + enc.setAttribute('notation', 'top') + enc.appendChild(self._print(expr.args[0])) + return enc + + def _print_operator_after(self, op, expr): + row = self.dom.createElement('mrow') + row.appendChild(self.parenthesize(expr, PRECEDENCE["Func"])) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode(op)) + row.appendChild(mo) + return row + + def _print_factorial(self, expr): + return self._print_operator_after('!', expr.args[0]) + + def _print_factorial2(self, expr): + return self._print_operator_after('!!', expr.args[0]) + + def _print_binomial(self, expr): + brac = self.dom.createElement('mfenced') + frac = self.dom.createElement('mfrac') + frac.setAttribute('linethickness', '0') + frac.appendChild(self._print(expr.args[0])) + frac.appendChild(self._print(expr.args[1])) + brac.appendChild(frac) + return brac + + def _print_Pow(self, e): + # Here we use root instead of power if the exponent is the + # reciprocal of an integer + if (e.exp.is_Rational and abs(e.exp.p) == 1 and e.exp.q != 1 and + self._settings['root_notation']): + if e.exp.q == 2: + x = self.dom.createElement('msqrt') + x.appendChild(self._print(e.base)) + if e.exp.q != 2: + x = self.dom.createElement('mroot') + x.appendChild(self._print(e.base)) + x.appendChild(self._print(e.exp.q)) + if e.exp.p == -1: + frac = self.dom.createElement('mfrac') + frac.appendChild(self._print(1)) + frac.appendChild(x) + return frac + else: + return x + + if e.exp.is_Rational and e.exp.q != 1: + if e.exp.is_negative: + top = self.dom.createElement('mfrac') + top.appendChild(self._print(1)) + x = self.dom.createElement('msup') + x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) + x.appendChild(self._get_printed_Rational(-e.exp, + self._settings['fold_frac_powers'])) + top.appendChild(x) + return top + else: + x = self.dom.createElement('msup') + x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) + x.appendChild(self._get_printed_Rational(e.exp, + self._settings['fold_frac_powers'])) + return x + + if e.exp.is_negative: + top = self.dom.createElement('mfrac') + top.appendChild(self._print(1)) + if e.exp == -1: + top.appendChild(self._print(e.base)) + else: + x = self.dom.createElement('msup') + x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) + x.appendChild(self._print(-e.exp)) + top.appendChild(x) + return top + + x = self.dom.createElement('msup') + x.appendChild(self.parenthesize(e.base, PRECEDENCE['Pow'])) + x.appendChild(self._print(e.exp)) + return x + + def _print_Number(self, e): + x = self.dom.createElement(self.mathml_tag(e)) + x.appendChild(self.dom.createTextNode(str(e))) + return x + + def _print_AccumulationBounds(self, i): + brac = self.dom.createElement('mfenced') + brac.setAttribute('close', '\u27e9') + brac.setAttribute('open', '\u27e8') + brac.appendChild(self._print(i.min)) + brac.appendChild(self._print(i.max)) + return brac + + def _print_Derivative(self, e): + + if requires_partial(e.expr): + d = '∂' + else: + d = self.mathml_tag(e) + + # Determine denominator + m = self.dom.createElement('mrow') + dim = 0 # Total diff dimension, for numerator + for sym, num in reversed(e.variable_count): + dim += num + if num >= 2: + x = self.dom.createElement('msup') + xx = self.dom.createElement('mo') + xx.appendChild(self.dom.createTextNode(d)) + x.appendChild(xx) + x.appendChild(self._print(num)) + else: + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode(d)) + m.appendChild(x) + y = self._print(sym) + m.appendChild(y) + + mnum = self.dom.createElement('mrow') + if dim >= 2: + x = self.dom.createElement('msup') + xx = self.dom.createElement('mo') + xx.appendChild(self.dom.createTextNode(d)) + x.appendChild(xx) + x.appendChild(self._print(dim)) + else: + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode(d)) + + mnum.appendChild(x) + mrow = self.dom.createElement('mrow') + frac = self.dom.createElement('mfrac') + frac.appendChild(mnum) + frac.appendChild(m) + mrow.appendChild(frac) + + # Print function + mrow.appendChild(self._print(e.expr)) + + return mrow + + def _print_Function(self, e): + mrow = self.dom.createElement('mrow') + x = self.dom.createElement('mi') + if self.mathml_tag(e) == 'log' and self._settings["ln_notation"]: + x.appendChild(self.dom.createTextNode('ln')) + else: + x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + y = self.dom.createElement('mfenced') + for arg in e.args: + y.appendChild(self._print(arg)) + mrow.appendChild(x) + mrow.appendChild(y) + return mrow + + def _print_Float(self, expr): + # Based off of that in StrPrinter + dps = prec_to_dps(expr._prec) + str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=True) + + # Must always have a mul symbol (as 2.5 10^{20} just looks odd) + # thus we use the number separator + separator = self._settings['mul_symbol_mathml_numbers'] + mrow = self.dom.createElement('mrow') + if 'e' in str_real: + (mant, exp) = str_real.split('e') + + if exp[0] == '+': + exp = exp[1:] + + mn = self.dom.createElement('mn') + mn.appendChild(self.dom.createTextNode(mant)) + mrow.appendChild(mn) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode(separator)) + mrow.appendChild(mo) + msup = self.dom.createElement('msup') + mn = self.dom.createElement('mn') + mn.appendChild(self.dom.createTextNode("10")) + msup.appendChild(mn) + mn = self.dom.createElement('mn') + mn.appendChild(self.dom.createTextNode(exp)) + msup.appendChild(mn) + mrow.appendChild(msup) + return mrow + elif str_real == "+inf": + return self._print_Infinity(None) + elif str_real == "-inf": + return self._print_NegativeInfinity(None) + else: + mn = self.dom.createElement('mn') + mn.appendChild(self.dom.createTextNode(str_real)) + return mn + + def _print_polylog(self, expr): + mrow = self.dom.createElement('mrow') + m = self.dom.createElement('msub') + + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('Li')) + m.appendChild(mi) + m.appendChild(self._print(expr.args[0])) + mrow.appendChild(m) + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(expr.args[1])) + mrow.appendChild(brac) + return mrow + + def _print_Basic(self, e): + mrow = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + mrow.appendChild(mi) + brac = self.dom.createElement('mfenced') + for arg in e.args: + brac.appendChild(self._print(arg)) + mrow.appendChild(brac) + return mrow + + def _print_Tuple(self, e): + mrow = self.dom.createElement('mrow') + x = self.dom.createElement('mfenced') + for arg in e.args: + x.appendChild(self._print(arg)) + mrow.appendChild(x) + return mrow + + def _print_Interval(self, i): + mrow = self.dom.createElement('mrow') + brac = self.dom.createElement('mfenced') + if i.start == i.end: + # Most often, this type of Interval is converted to a FiniteSet + brac.setAttribute('close', '}') + brac.setAttribute('open', '{') + brac.appendChild(self._print(i.start)) + else: + if i.right_open: + brac.setAttribute('close', ')') + else: + brac.setAttribute('close', ']') + + if i.left_open: + brac.setAttribute('open', '(') + else: + brac.setAttribute('open', '[') + brac.appendChild(self._print(i.start)) + brac.appendChild(self._print(i.end)) + + mrow.appendChild(brac) + return mrow + + def _print_Abs(self, expr, exp=None): + mrow = self.dom.createElement('mrow') + x = self.dom.createElement('mfenced') + x.setAttribute('close', '|') + x.setAttribute('open', '|') + x.appendChild(self._print(expr.args[0])) + mrow.appendChild(x) + return mrow + + _print_Determinant = _print_Abs + + def _print_re_im(self, c, expr): + mrow = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'fraktur') + mi.appendChild(self.dom.createTextNode(c)) + mrow.appendChild(mi) + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(expr)) + mrow.appendChild(brac) + return mrow + + def _print_re(self, expr, exp=None): + return self._print_re_im('R', expr.args[0]) + + def _print_im(self, expr, exp=None): + return self._print_re_im('I', expr.args[0]) + + def _print_AssocOp(self, e): + mrow = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + mrow.appendChild(mi) + for arg in e.args: + mrow.appendChild(self._print(arg)) + return mrow + + def _print_SetOp(self, expr, symbol, prec): + mrow = self.dom.createElement('mrow') + mrow.appendChild(self.parenthesize(expr.args[0], prec)) + for arg in expr.args[1:]: + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode(symbol)) + y = self.parenthesize(arg, prec) + mrow.appendChild(x) + mrow.appendChild(y) + return mrow + + def _print_Union(self, expr): + prec = PRECEDENCE_TRADITIONAL['Union'] + return self._print_SetOp(expr, '∪', prec) + + def _print_Intersection(self, expr): + prec = PRECEDENCE_TRADITIONAL['Intersection'] + return self._print_SetOp(expr, '∩', prec) + + def _print_Complement(self, expr): + prec = PRECEDENCE_TRADITIONAL['Complement'] + return self._print_SetOp(expr, '∖', prec) + + def _print_SymmetricDifference(self, expr): + prec = PRECEDENCE_TRADITIONAL['SymmetricDifference'] + return self._print_SetOp(expr, '∆', prec) + + def _print_ProductSet(self, expr): + prec = PRECEDENCE_TRADITIONAL['ProductSet'] + return self._print_SetOp(expr, '×', prec) + + def _print_FiniteSet(self, s): + return self._print_set(s.args) + + def _print_set(self, s): + items = sorted(s, key=default_sort_key) + brac = self.dom.createElement('mfenced') + brac.setAttribute('close', '}') + brac.setAttribute('open', '{') + for item in items: + brac.appendChild(self._print(item)) + return brac + + _print_frozenset = _print_set + + def _print_LogOp(self, args, symbol): + mrow = self.dom.createElement('mrow') + if args[0].is_Boolean and not args[0].is_Not: + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(args[0])) + mrow.appendChild(brac) + else: + mrow.appendChild(self._print(args[0])) + for arg in args[1:]: + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode(symbol)) + if arg.is_Boolean and not arg.is_Not: + y = self.dom.createElement('mfenced') + y.appendChild(self._print(arg)) + else: + y = self._print(arg) + mrow.appendChild(x) + mrow.appendChild(y) + return mrow + + def _print_BasisDependent(self, expr): + from sympy.vector import Vector + + if expr == expr.zero: + # Not clear if this is ever called + return self._print(expr.zero) + if isinstance(expr, Vector): + items = expr.separate().items() + else: + items = [(0, expr)] + + mrow = self.dom.createElement('mrow') + for system, vect in items: + inneritems = list(vect.components.items()) + inneritems.sort(key = lambda x:x[0].__str__()) + for i, (k, v) in enumerate(inneritems): + if v == 1: + if i: # No + for first item + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('+')) + mrow.appendChild(mo) + mrow.appendChild(self._print(k)) + elif v == -1: + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('-')) + mrow.appendChild(mo) + mrow.appendChild(self._print(k)) + else: + if i: # No + for first item + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('+')) + mrow.appendChild(mo) + mbrac = self.dom.createElement('mfenced') + mbrac.appendChild(self._print(v)) + mrow.appendChild(mbrac) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('⁢')) + mrow.appendChild(mo) + mrow.appendChild(self._print(k)) + return mrow + + + def _print_And(self, expr): + args = sorted(expr.args, key=default_sort_key) + return self._print_LogOp(args, '∧') + + def _print_Or(self, expr): + args = sorted(expr.args, key=default_sort_key) + return self._print_LogOp(args, '∨') + + def _print_Xor(self, expr): + args = sorted(expr.args, key=default_sort_key) + return self._print_LogOp(args, '⊻') + + def _print_Implies(self, expr): + return self._print_LogOp(expr.args, '⇒') + + def _print_Equivalent(self, expr): + args = sorted(expr.args, key=default_sort_key) + return self._print_LogOp(args, '⇔') + + def _print_Not(self, e): + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('¬')) + mrow.appendChild(mo) + if (e.args[0].is_Boolean): + x = self.dom.createElement('mfenced') + x.appendChild(self._print(e.args[0])) + else: + x = self._print(e.args[0]) + mrow.appendChild(x) + return mrow + + def _print_bool(self, e): + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + return mi + + _print_BooleanTrue = _print_bool + _print_BooleanFalse = _print_bool + + def _print_NoneType(self, e): + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + return mi + + def _print_Range(self, s): + dots = "\u2026" + brac = self.dom.createElement('mfenced') + brac.setAttribute('close', '}') + brac.setAttribute('open', '{') + + if s.start.is_infinite and s.stop.is_infinite: + if s.step.is_positive: + printset = dots, -1, 0, 1, dots + else: + printset = dots, 1, 0, -1, dots + elif s.start.is_infinite: + printset = dots, s[-1] - s.step, s[-1] + elif s.stop.is_infinite: + it = iter(s) + printset = next(it), next(it), dots + elif len(s) > 4: + it = iter(s) + printset = next(it), next(it), dots, s[-1] + else: + printset = tuple(s) + + for el in printset: + if el == dots: + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(dots)) + brac.appendChild(mi) + else: + brac.appendChild(self._print(el)) + + return brac + + def _hprint_variadic_function(self, expr): + args = sorted(expr.args, key=default_sort_key) + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode((str(expr.func)).lower())) + mrow.appendChild(mo) + brac = self.dom.createElement('mfenced') + for symbol in args: + brac.appendChild(self._print(symbol)) + mrow.appendChild(brac) + return mrow + + _print_Min = _print_Max = _hprint_variadic_function + + def _print_exp(self, expr): + msup = self.dom.createElement('msup') + msup.appendChild(self._print_Exp1(None)) + msup.appendChild(self._print(expr.args[0])) + return msup + + def _print_Relational(self, e): + mrow = self.dom.createElement('mrow') + mrow.appendChild(self._print(e.lhs)) + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode(self.mathml_tag(e))) + mrow.appendChild(x) + mrow.appendChild(self._print(e.rhs)) + return mrow + + def _print_int(self, p): + dom_element = self.dom.createElement(self.mathml_tag(p)) + dom_element.appendChild(self.dom.createTextNode(str(p))) + return dom_element + + def _print_BaseScalar(self, e): + msub = self.dom.createElement('msub') + index, system = e._id + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'bold') + mi.appendChild(self.dom.createTextNode(system._variable_names[index])) + msub.appendChild(mi) + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'bold') + mi.appendChild(self.dom.createTextNode(system._name)) + msub.appendChild(mi) + return msub + + def _print_BaseVector(self, e): + msub = self.dom.createElement('msub') + index, system = e._id + mover = self.dom.createElement('mover') + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'bold') + mi.appendChild(self.dom.createTextNode(system._vector_names[index])) + mover.appendChild(mi) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('^')) + mover.appendChild(mo) + msub.appendChild(mover) + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'bold') + mi.appendChild(self.dom.createTextNode(system._name)) + msub.appendChild(mi) + return msub + + def _print_VectorZero(self, e): + mover = self.dom.createElement('mover') + mi = self.dom.createElement('mi') + mi.setAttribute('mathvariant', 'bold') + mi.appendChild(self.dom.createTextNode("0")) + mover.appendChild(mi) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('^')) + mover.appendChild(mo) + return mover + + def _print_Cross(self, expr): + mrow = self.dom.createElement('mrow') + vec1 = expr._expr1 + vec2 = expr._expr2 + mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('×')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) + return mrow + + def _print_Curl(self, expr): + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∇')) + mrow.appendChild(mo) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('×')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) + return mrow + + def _print_Divergence(self, expr): + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∇')) + mrow.appendChild(mo) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('·')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) + return mrow + + def _print_Dot(self, expr): + mrow = self.dom.createElement('mrow') + vec1 = expr._expr1 + vec2 = expr._expr2 + mrow.appendChild(self.parenthesize(vec1, PRECEDENCE['Mul'])) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('·')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(vec2, PRECEDENCE['Mul'])) + return mrow + + def _print_Gradient(self, expr): + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∇')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) + return mrow + + def _print_Laplacian(self, expr): + mrow = self.dom.createElement('mrow') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∆')) + mrow.appendChild(mo) + mrow.appendChild(self.parenthesize(expr._expr, PRECEDENCE['Mul'])) + return mrow + + def _print_Integers(self, e): + x = self.dom.createElement('mi') + x.setAttribute('mathvariant', 'normal') + x.appendChild(self.dom.createTextNode('ℤ')) + return x + + def _print_Complexes(self, e): + x = self.dom.createElement('mi') + x.setAttribute('mathvariant', 'normal') + x.appendChild(self.dom.createTextNode('ℂ')) + return x + + def _print_Reals(self, e): + x = self.dom.createElement('mi') + x.setAttribute('mathvariant', 'normal') + x.appendChild(self.dom.createTextNode('ℝ')) + return x + + def _print_Naturals(self, e): + x = self.dom.createElement('mi') + x.setAttribute('mathvariant', 'normal') + x.appendChild(self.dom.createTextNode('ℕ')) + return x + + def _print_Naturals0(self, e): + sub = self.dom.createElement('msub') + x = self.dom.createElement('mi') + x.setAttribute('mathvariant', 'normal') + x.appendChild(self.dom.createTextNode('ℕ')) + sub.appendChild(x) + sub.appendChild(self._print(S.Zero)) + return sub + + def _print_SingularityFunction(self, expr): + shift = expr.args[0] - expr.args[1] + power = expr.args[2] + sup = self.dom.createElement('msup') + brac = self.dom.createElement('mfenced') + brac.setAttribute('close', '\u27e9') + brac.setAttribute('open', '\u27e8') + brac.appendChild(self._print(shift)) + sup.appendChild(brac) + sup.appendChild(self._print(power)) + return sup + + def _print_NaN(self, e): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('NaN')) + return x + + def _print_number_function(self, e, name): + # Print name_arg[0] for one argument or name_arg[0](arg[1]) + # for more than one argument + sub = self.dom.createElement('msub') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode(name)) + sub.appendChild(mi) + sub.appendChild(self._print(e.args[0])) + if len(e.args) == 1: + return sub + # TODO: copy-pasted from _print_Function: can we do better? + mrow = self.dom.createElement('mrow') + y = self.dom.createElement('mfenced') + for arg in e.args[1:]: + y.appendChild(self._print(arg)) + mrow.appendChild(sub) + mrow.appendChild(y) + return mrow + + def _print_bernoulli(self, e): + return self._print_number_function(e, 'B') + + _print_bell = _print_bernoulli + + def _print_catalan(self, e): + return self._print_number_function(e, 'C') + + def _print_euler(self, e): + return self._print_number_function(e, 'E') + + def _print_fibonacci(self, e): + return self._print_number_function(e, 'F') + + def _print_lucas(self, e): + return self._print_number_function(e, 'L') + + def _print_stieltjes(self, e): + return self._print_number_function(e, 'γ') + + def _print_tribonacci(self, e): + return self._print_number_function(e, 'T') + + def _print_ComplexInfinity(self, e): + x = self.dom.createElement('mover') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∞')) + x.appendChild(mo) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('~')) + x.appendChild(mo) + return x + + def _print_EmptySet(self, e): + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode('∅')) + return x + + def _print_UniversalSet(self, e): + x = self.dom.createElement('mo') + x.appendChild(self.dom.createTextNode('𝕌')) + return x + + def _print_Adjoint(self, expr): + from sympy.matrices import MatrixSymbol + mat = expr.arg + sup = self.dom.createElement('msup') + if not isinstance(mat, MatrixSymbol): + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(mat)) + sup.appendChild(brac) + else: + sup.appendChild(self._print(mat)) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('†')) + sup.appendChild(mo) + return sup + + def _print_Transpose(self, expr): + from sympy.matrices import MatrixSymbol + mat = expr.arg + sup = self.dom.createElement('msup') + if not isinstance(mat, MatrixSymbol): + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(mat)) + sup.appendChild(brac) + else: + sup.appendChild(self._print(mat)) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('T')) + sup.appendChild(mo) + return sup + + def _print_Inverse(self, expr): + from sympy.matrices import MatrixSymbol + mat = expr.arg + sup = self.dom.createElement('msup') + if not isinstance(mat, MatrixSymbol): + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(mat)) + sup.appendChild(brac) + else: + sup.appendChild(self._print(mat)) + sup.appendChild(self._print(-1)) + return sup + + def _print_MatMul(self, expr): + from sympy.matrices.expressions.matmul import MatMul + + x = self.dom.createElement('mrow') + args = expr.args + if isinstance(args[0], Mul): + args = args[0].as_ordered_factors() + list(args[1:]) + else: + args = list(args) + + if isinstance(expr, MatMul) and expr.could_extract_minus_sign(): + if args[0] == -1: + args = args[1:] + else: + args[0] = -args[0] + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('-')) + x.appendChild(mo) + + for arg in args[:-1]: + x.appendChild(self.parenthesize(arg, precedence_traditional(expr), + False)) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('⁢')) + x.appendChild(mo) + x.appendChild(self.parenthesize(args[-1], precedence_traditional(expr), + False)) + return x + + def _print_MatPow(self, expr): + from sympy.matrices import MatrixSymbol + base, exp = expr.base, expr.exp + sup = self.dom.createElement('msup') + if not isinstance(base, MatrixSymbol): + brac = self.dom.createElement('mfenced') + brac.appendChild(self._print(base)) + sup.appendChild(brac) + else: + sup.appendChild(self._print(base)) + sup.appendChild(self._print(exp)) + return sup + + def _print_HadamardProduct(self, expr): + x = self.dom.createElement('mrow') + args = expr.args + for arg in args[:-1]: + x.appendChild( + self.parenthesize(arg, precedence_traditional(expr), False)) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('∘')) + x.appendChild(mo) + x.appendChild( + self.parenthesize(args[-1], precedence_traditional(expr), False)) + return x + + def _print_ZeroMatrix(self, Z): + x = self.dom.createElement('mn') + x.appendChild(self.dom.createTextNode('𝟘')) + return x + + def _print_OneMatrix(self, Z): + x = self.dom.createElement('mn') + x.appendChild(self.dom.createTextNode('𝟙')) + return x + + def _print_Identity(self, I): + x = self.dom.createElement('mi') + x.appendChild(self.dom.createTextNode('𝕀')) + return x + + def _print_floor(self, e): + mrow = self.dom.createElement('mrow') + x = self.dom.createElement('mfenced') + x.setAttribute('close', '\u230B') + x.setAttribute('open', '\u230A') + x.appendChild(self._print(e.args[0])) + mrow.appendChild(x) + return mrow + + def _print_ceiling(self, e): + mrow = self.dom.createElement('mrow') + x = self.dom.createElement('mfenced') + x.setAttribute('close', '\u2309') + x.setAttribute('open', '\u2308') + x.appendChild(self._print(e.args[0])) + mrow.appendChild(x) + return mrow + + def _print_Lambda(self, e): + x = self.dom.createElement('mfenced') + mrow = self.dom.createElement('mrow') + symbols = e.args[0] + if len(symbols) == 1: + symbols = self._print(symbols[0]) + else: + symbols = self._print(symbols) + mrow.appendChild(symbols) + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('↦')) + mrow.appendChild(mo) + mrow.appendChild(self._print(e.args[1])) + x.appendChild(mrow) + return x + + def _print_tuple(self, e): + x = self.dom.createElement('mfenced') + for i in e: + x.appendChild(self._print(i)) + return x + + def _print_IndexedBase(self, e): + return self._print(e.label) + + def _print_Indexed(self, e): + x = self.dom.createElement('msub') + x.appendChild(self._print(e.base)) + if len(e.indices) == 1: + x.appendChild(self._print(e.indices[0])) + return x + x.appendChild(self._print(e.indices)) + return x + + def _print_MatrixElement(self, e): + x = self.dom.createElement('msub') + x.appendChild(self.parenthesize(e.parent, PRECEDENCE["Atom"], strict = True)) + brac = self.dom.createElement('mfenced') + brac.setAttribute("close", "") + brac.setAttribute("open", "") + for i in e.indices: + brac.appendChild(self._print(i)) + x.appendChild(brac) + return x + + def _print_elliptic_f(self, e): + x = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('𝖥')) + x.appendChild(mi) + y = self.dom.createElement('mfenced') + y.setAttribute("separators", "|") + for i in e.args: + y.appendChild(self._print(i)) + x.appendChild(y) + return x + + def _print_elliptic_e(self, e): + x = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('𝖤')) + x.appendChild(mi) + y = self.dom.createElement('mfenced') + y.setAttribute("separators", "|") + for i in e.args: + y.appendChild(self._print(i)) + x.appendChild(y) + return x + + def _print_elliptic_pi(self, e): + x = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('𝛱')) + x.appendChild(mi) + y = self.dom.createElement('mfenced') + if len(e.args) == 2: + y.setAttribute("separators", "|") + else: + y.setAttribute("separators", ";|") + for i in e.args: + y.appendChild(self._print(i)) + x.appendChild(y) + return x + + def _print_Ei(self, e): + x = self.dom.createElement('mrow') + mi = self.dom.createElement('mi') + mi.appendChild(self.dom.createTextNode('Ei')) + x.appendChild(mi) + x.appendChild(self._print(e.args)) + return x + + def _print_expint(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('E')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + def _print_jacobi(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msubsup') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('P')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + y.appendChild(self._print(e.args[1:3])) + x.appendChild(y) + x.appendChild(self._print(e.args[3:])) + return x + + def _print_gegenbauer(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msubsup') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('C')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + y.appendChild(self._print(e.args[1:2])) + x.appendChild(y) + x.appendChild(self._print(e.args[2:])) + return x + + def _print_chebyshevt(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('T')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + def _print_chebyshevu(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('U')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + def _print_legendre(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('P')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + def _print_assoc_legendre(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msubsup') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('P')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + y.appendChild(self._print(e.args[1:2])) + x.appendChild(y) + x.appendChild(self._print(e.args[2:])) + return x + + def _print_laguerre(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('L')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + def _print_assoc_laguerre(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msubsup') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('L')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + y.appendChild(self._print(e.args[1:2])) + x.appendChild(y) + x.appendChild(self._print(e.args[2:])) + return x + + def _print_hermite(self, e): + x = self.dom.createElement('mrow') + y = self.dom.createElement('msub') + mo = self.dom.createElement('mo') + mo.appendChild(self.dom.createTextNode('H')) + y.appendChild(mo) + y.appendChild(self._print(e.args[0])) + x.appendChild(y) + x.appendChild(self._print(e.args[1:])) + return x + + +@print_function(MathMLPrinterBase) +def mathml(expr, printer='content', **settings): + """Returns the MathML representation of expr. If printer is presentation + then prints Presentation MathML else prints content MathML. + """ + if printer == 'presentation': + return MathMLPresentationPrinter(settings).doprint(expr) + else: + return MathMLContentPrinter(settings).doprint(expr) + + +def print_mathml(expr, printer='content', **settings): + """ + Prints a pretty representation of the MathML code for expr. If printer is + presentation then prints Presentation MathML else prints content MathML. + + Examples + ======== + + >>> ## + >>> from sympy import print_mathml + >>> from sympy.abc import x + >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE + + + x + 1 + + >>> print_mathml(x+1, printer='presentation') + + x + + + 1 + + + """ + if printer == 'presentation': + s = MathMLPresentationPrinter(settings) + else: + s = MathMLContentPrinter(settings) + xml = s._print(sympify(expr)) + s.apply_patch() + pretty_xml = xml.toprettyxml() + s.restore_patch() + + print(pretty_xml) + + +# For backward compatibility +MathMLPrinter = MathMLContentPrinter diff --git a/venv/lib/python3.10/site-packages/sympy/printing/numpy.py b/venv/lib/python3.10/site-packages/sympy/printing/numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..3a6083d8144999e033e0e8521f48d0de067414d9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/numpy.py @@ -0,0 +1,507 @@ +from sympy.core import S +from sympy.core.function import Lambda +from sympy.core.power import Pow +from .pycode import PythonCodePrinter, _known_functions_math, _print_known_const, _print_known_func, _unpack_integral_limits, ArrayPrinter +from .codeprinter import CodePrinter + + +_not_in_numpy = 'erf erfc factorial gamma loggamma'.split() +_in_numpy = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_numpy] +_known_functions_numpy = dict(_in_numpy, **{ + 'acos': 'arccos', + 'acosh': 'arccosh', + 'asin': 'arcsin', + 'asinh': 'arcsinh', + 'atan': 'arctan', + 'atan2': 'arctan2', + 'atanh': 'arctanh', + 'exp2': 'exp2', + 'sign': 'sign', + 'logaddexp': 'logaddexp', + 'logaddexp2': 'logaddexp2', +}) +_known_constants_numpy = { + 'Exp1': 'e', + 'Pi': 'pi', + 'EulerGamma': 'euler_gamma', + 'NaN': 'nan', + 'Infinity': 'PINF', + 'NegativeInfinity': 'NINF' +} + +_numpy_known_functions = {k: 'numpy.' + v for k, v in _known_functions_numpy.items()} +_numpy_known_constants = {k: 'numpy.' + v for k, v in _known_constants_numpy.items()} + +class NumPyPrinter(ArrayPrinter, PythonCodePrinter): + """ + Numpy printer which handles vectorized piecewise functions, + logical operators, etc. + """ + + _module = 'numpy' + _kf = _numpy_known_functions + _kc = _numpy_known_constants + + def __init__(self, settings=None): + """ + `settings` is passed to CodePrinter.__init__() + `module` specifies the array module to use, currently 'NumPy', 'CuPy' + or 'JAX'. + """ + self.language = "Python with {}".format(self._module) + self.printmethod = "_{}code".format(self._module) + + self._kf = {**PythonCodePrinter._kf, **self._kf} + + super().__init__(settings=settings) + + + def _print_seq(self, seq): + "General sequence printer: converts to tuple" + # Print tuples here instead of lists because numba supports + # tuples in nopython mode. + delimiter=', ' + return '({},)'.format(delimiter.join(self._print(item) for item in seq)) + + def _print_MatMul(self, expr): + "Matrix multiplication printer" + if expr.as_coeff_matrices()[0] is not S.One: + expr_list = expr.as_coeff_matrices()[1]+[(expr.as_coeff_matrices()[0])] + return '({})'.format(').dot('.join(self._print(i) for i in expr_list)) + return '({})'.format(').dot('.join(self._print(i) for i in expr.args)) + + def _print_MatPow(self, expr): + "Matrix power printer" + return '{}({}, {})'.format(self._module_format(self._module + '.linalg.matrix_power'), + self._print(expr.args[0]), self._print(expr.args[1])) + + def _print_Inverse(self, expr): + "Matrix inverse printer" + return '{}({})'.format(self._module_format(self._module + '.linalg.inv'), + self._print(expr.args[0])) + + def _print_DotProduct(self, expr): + # DotProduct allows any shape order, but numpy.dot does matrix + # multiplication, so we have to make sure it gets 1 x n by n x 1. + arg1, arg2 = expr.args + if arg1.shape[0] != 1: + arg1 = arg1.T + if arg2.shape[1] != 1: + arg2 = arg2.T + + return "%s(%s, %s)" % (self._module_format(self._module + '.dot'), + self._print(arg1), + self._print(arg2)) + + def _print_MatrixSolve(self, expr): + return "%s(%s, %s)" % (self._module_format(self._module + '.linalg.solve'), + self._print(expr.matrix), + self._print(expr.vector)) + + def _print_ZeroMatrix(self, expr): + return '{}({})'.format(self._module_format(self._module + '.zeros'), + self._print(expr.shape)) + + def _print_OneMatrix(self, expr): + return '{}({})'.format(self._module_format(self._module + '.ones'), + self._print(expr.shape)) + + def _print_FunctionMatrix(self, expr): + from sympy.abc import i, j + lamda = expr.lamda + if not isinstance(lamda, Lambda): + lamda = Lambda((i, j), lamda(i, j)) + return '{}(lambda {}: {}, {})'.format(self._module_format(self._module + '.fromfunction'), + ', '.join(self._print(arg) for arg in lamda.args[0]), + self._print(lamda.args[1]), self._print(expr.shape)) + + def _print_HadamardProduct(self, expr): + func = self._module_format(self._module + '.multiply') + return ''.join('{}({}, '.format(func, self._print(arg)) \ + for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]), + ')' * (len(expr.args) - 1)) + + def _print_KroneckerProduct(self, expr): + func = self._module_format(self._module + '.kron') + return ''.join('{}({}, '.format(func, self._print(arg)) \ + for arg in expr.args[:-1]) + "{}{}".format(self._print(expr.args[-1]), + ')' * (len(expr.args) - 1)) + + def _print_Adjoint(self, expr): + return '{}({}({}))'.format( + self._module_format(self._module + '.conjugate'), + self._module_format(self._module + '.transpose'), + self._print(expr.args[0])) + + def _print_DiagonalOf(self, expr): + vect = '{}({})'.format( + self._module_format(self._module + '.diag'), + self._print(expr.arg)) + return '{}({}, (-1, 1))'.format( + self._module_format(self._module + '.reshape'), vect) + + def _print_DiagMatrix(self, expr): + return '{}({})'.format(self._module_format(self._module + '.diagflat'), + self._print(expr.args[0])) + + def _print_DiagonalMatrix(self, expr): + return '{}({}, {}({}, {}))'.format(self._module_format(self._module + '.multiply'), + self._print(expr.arg), self._module_format(self._module + '.eye'), + self._print(expr.shape[0]), self._print(expr.shape[1])) + + def _print_Piecewise(self, expr): + "Piecewise function printer" + from sympy.logic.boolalg import ITE, simplify_logic + def print_cond(cond): + """ Problem having an ITE in the cond. """ + if cond.has(ITE): + return self._print(simplify_logic(cond)) + else: + return self._print(cond) + exprs = '[{}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) + conds = '[{}]'.format(','.join(print_cond(arg.cond) for arg in expr.args)) + # If [default_value, True] is a (expr, cond) sequence in a Piecewise object + # it will behave the same as passing the 'default' kwarg to select() + # *as long as* it is the last element in expr.args. + # If this is not the case, it may be triggered prematurely. + return '{}({}, {}, default={})'.format( + self._module_format(self._module + '.select'), conds, exprs, + self._print(S.NaN)) + + def _print_Relational(self, expr): + "Relational printer for Equality and Unequality" + op = { + '==' :'equal', + '!=' :'not_equal', + '<' :'less', + '<=' :'less_equal', + '>' :'greater', + '>=' :'greater_equal', + } + if expr.rel_op in op: + lhs = self._print(expr.lhs) + rhs = self._print(expr.rhs) + return '{op}({lhs}, {rhs})'.format(op=self._module_format(self._module + '.'+op[expr.rel_op]), + lhs=lhs, rhs=rhs) + return super()._print_Relational(expr) + + def _print_And(self, expr): + "Logical And printer" + # We have to override LambdaPrinter because it uses Python 'and' keyword. + # If LambdaPrinter didn't define it, we could use StrPrinter's + # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. + return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_and'), ','.join(self._print(i) for i in expr.args)) + + def _print_Or(self, expr): + "Logical Or printer" + # We have to override LambdaPrinter because it uses Python 'or' keyword. + # If LambdaPrinter didn't define it, we could use StrPrinter's + # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. + return '{}.reduce(({}))'.format(self._module_format(self._module + '.logical_or'), ','.join(self._print(i) for i in expr.args)) + + def _print_Not(self, expr): + "Logical Not printer" + # We have to override LambdaPrinter because it uses Python 'not' keyword. + # If LambdaPrinter didn't define it, we would still have to define our + # own because StrPrinter doesn't define it. + return '{}({})'.format(self._module_format(self._module + '.logical_not'), ','.join(self._print(i) for i in expr.args)) + + def _print_Pow(self, expr, rational=False): + # XXX Workaround for negative integer power error + if expr.exp.is_integer and expr.exp.is_negative: + expr = Pow(expr.base, expr.exp.evalf(), evaluate=False) + return self._hprint_Pow(expr, rational=rational, sqrt=self._module + '.sqrt') + + def _print_Min(self, expr): + return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amin'), ','.join(self._print(i) for i in expr.args)) + + def _print_Max(self, expr): + return '{}(({}), axis=0)'.format(self._module_format(self._module + '.amax'), ','.join(self._print(i) for i in expr.args)) + + def _print_arg(self, expr): + return "%s(%s)" % (self._module_format(self._module + '.angle'), self._print(expr.args[0])) + + def _print_im(self, expr): + return "%s(%s)" % (self._module_format(self._module + '.imag'), self._print(expr.args[0])) + + def _print_Mod(self, expr): + return "%s(%s)" % (self._module_format(self._module + '.mod'), ', '.join( + (self._print(arg) for arg in expr.args))) + + def _print_re(self, expr): + return "%s(%s)" % (self._module_format(self._module + '.real'), self._print(expr.args[0])) + + def _print_sinc(self, expr): + return "%s(%s)" % (self._module_format(self._module + '.sinc'), self._print(expr.args[0]/S.Pi)) + + def _print_MatrixBase(self, expr): + func = self.known_functions.get(expr.__class__.__name__, None) + if func is None: + func = self._module_format(self._module + '.array') + return "%s(%s)" % (func, self._print(expr.tolist())) + + def _print_Identity(self, expr): + shape = expr.shape + if all(dim.is_Integer for dim in shape): + return "%s(%s)" % (self._module_format(self._module + '.eye'), self._print(expr.shape[0])) + else: + raise NotImplementedError("Symbolic matrix dimensions are not yet supported for identity matrices") + + def _print_BlockMatrix(self, expr): + return '{}({})'.format(self._module_format(self._module + '.block'), + self._print(expr.args[0].tolist())) + + def _print_NDimArray(self, expr): + if len(expr.shape) == 1: + return self._module + '.array(' + self._print(expr.args[0]) + ')' + if len(expr.shape) == 2: + return self._print(expr.tomatrix()) + # Should be possible to extend to more dimensions + return CodePrinter._print_not_supported(self, expr) + + _add = "add" + _einsum = "einsum" + _transpose = "transpose" + _ones = "ones" + _zeros = "zeros" + + _print_lowergamma = CodePrinter._print_not_supported + _print_uppergamma = CodePrinter._print_not_supported + _print_fresnelc = CodePrinter._print_not_supported + _print_fresnels = CodePrinter._print_not_supported + +for func in _numpy_known_functions: + setattr(NumPyPrinter, f'_print_{func}', _print_known_func) + +for const in _numpy_known_constants: + setattr(NumPyPrinter, f'_print_{const}', _print_known_const) + + +_known_functions_scipy_special = { + 'Ei': 'expi', + 'erf': 'erf', + 'erfc': 'erfc', + 'besselj': 'jv', + 'bessely': 'yv', + 'besseli': 'iv', + 'besselk': 'kv', + 'cosm1': 'cosm1', + 'powm1': 'powm1', + 'factorial': 'factorial', + 'gamma': 'gamma', + 'loggamma': 'gammaln', + 'digamma': 'psi', + 'polygamma': 'polygamma', + 'RisingFactorial': 'poch', + 'jacobi': 'eval_jacobi', + 'gegenbauer': 'eval_gegenbauer', + 'chebyshevt': 'eval_chebyt', + 'chebyshevu': 'eval_chebyu', + 'legendre': 'eval_legendre', + 'hermite': 'eval_hermite', + 'laguerre': 'eval_laguerre', + 'assoc_laguerre': 'eval_genlaguerre', + 'beta': 'beta', + 'LambertW' : 'lambertw', +} + +_known_constants_scipy_constants = { + 'GoldenRatio': 'golden_ratio', + 'Pi': 'pi', +} +_scipy_known_functions = {k : "scipy.special." + v for k, v in _known_functions_scipy_special.items()} +_scipy_known_constants = {k : "scipy.constants." + v for k, v in _known_constants_scipy_constants.items()} + +class SciPyPrinter(NumPyPrinter): + + _kf = {**NumPyPrinter._kf, **_scipy_known_functions} + _kc = {**NumPyPrinter._kc, **_scipy_known_constants} + + def __init__(self, settings=None): + super().__init__(settings=settings) + self.language = "Python with SciPy and NumPy" + + def _print_SparseRepMatrix(self, expr): + i, j, data = [], [], [] + for (r, c), v in expr.todok().items(): + i.append(r) + j.append(c) + data.append(v) + + return "{name}(({data}, ({i}, {j})), shape={shape})".format( + name=self._module_format('scipy.sparse.coo_matrix'), + data=data, i=i, j=j, shape=expr.shape + ) + + _print_ImmutableSparseMatrix = _print_SparseRepMatrix + + # SciPy's lpmv has a different order of arguments from assoc_legendre + def _print_assoc_legendre(self, expr): + return "{0}({2}, {1}, {3})".format( + self._module_format('scipy.special.lpmv'), + self._print(expr.args[0]), + self._print(expr.args[1]), + self._print(expr.args[2])) + + def _print_lowergamma(self, expr): + return "{0}({2})*{1}({2}, {3})".format( + self._module_format('scipy.special.gamma'), + self._module_format('scipy.special.gammainc'), + self._print(expr.args[0]), + self._print(expr.args[1])) + + def _print_uppergamma(self, expr): + return "{0}({2})*{1}({2}, {3})".format( + self._module_format('scipy.special.gamma'), + self._module_format('scipy.special.gammaincc'), + self._print(expr.args[0]), + self._print(expr.args[1])) + + def _print_betainc(self, expr): + betainc = self._module_format('scipy.special.betainc') + beta = self._module_format('scipy.special.beta') + args = [self._print(arg) for arg in expr.args] + return f"({betainc}({args[0]}, {args[1]}, {args[3]}) - {betainc}({args[0]}, {args[1]}, {args[2]})) \ + * {beta}({args[0]}, {args[1]})" + + def _print_betainc_regularized(self, expr): + return "{0}({1}, {2}, {4}) - {0}({1}, {2}, {3})".format( + self._module_format('scipy.special.betainc'), + self._print(expr.args[0]), + self._print(expr.args[1]), + self._print(expr.args[2]), + self._print(expr.args[3])) + + def _print_fresnels(self, expr): + return "{}({})[0]".format( + self._module_format("scipy.special.fresnel"), + self._print(expr.args[0])) + + def _print_fresnelc(self, expr): + return "{}({})[1]".format( + self._module_format("scipy.special.fresnel"), + self._print(expr.args[0])) + + def _print_airyai(self, expr): + return "{}({})[0]".format( + self._module_format("scipy.special.airy"), + self._print(expr.args[0])) + + def _print_airyaiprime(self, expr): + return "{}({})[1]".format( + self._module_format("scipy.special.airy"), + self._print(expr.args[0])) + + def _print_airybi(self, expr): + return "{}({})[2]".format( + self._module_format("scipy.special.airy"), + self._print(expr.args[0])) + + def _print_airybiprime(self, expr): + return "{}({})[3]".format( + self._module_format("scipy.special.airy"), + self._print(expr.args[0])) + + def _print_bernoulli(self, expr): + # scipy's bernoulli is inconsistent with SymPy's so rewrite + return self._print(expr._eval_rewrite_as_zeta(*expr.args)) + + def _print_harmonic(self, expr): + return self._print(expr._eval_rewrite_as_zeta(*expr.args)) + + def _print_Integral(self, e): + integration_vars, limits = _unpack_integral_limits(e) + + if len(limits) == 1: + # nicer (but not necessary) to prefer quad over nquad for 1D case + module_str = self._module_format("scipy.integrate.quad") + limit_str = "%s, %s" % tuple(map(self._print, limits[0])) + else: + module_str = self._module_format("scipy.integrate.nquad") + limit_str = "({})".format(", ".join( + "(%s, %s)" % tuple(map(self._print, l)) for l in limits)) + + return "{}(lambda {}: {}, {})[0]".format( + module_str, + ", ".join(map(self._print, integration_vars)), + self._print(e.args[0]), + limit_str) + + def _print_Si(self, expr): + return "{}({})[0]".format( + self._module_format("scipy.special.sici"), + self._print(expr.args[0])) + + def _print_Ci(self, expr): + return "{}({})[1]".format( + self._module_format("scipy.special.sici"), + self._print(expr.args[0])) + +for func in _scipy_known_functions: + setattr(SciPyPrinter, f'_print_{func}', _print_known_func) + +for const in _scipy_known_constants: + setattr(SciPyPrinter, f'_print_{const}', _print_known_const) + + +_cupy_known_functions = {k : "cupy." + v for k, v in _known_functions_numpy.items()} +_cupy_known_constants = {k : "cupy." + v for k, v in _known_constants_numpy.items()} + +class CuPyPrinter(NumPyPrinter): + """ + CuPy printer which handles vectorized piecewise functions, + logical operators, etc. + """ + + _module = 'cupy' + _kf = _cupy_known_functions + _kc = _cupy_known_constants + + def __init__(self, settings=None): + super().__init__(settings=settings) + +for func in _cupy_known_functions: + setattr(CuPyPrinter, f'_print_{func}', _print_known_func) + +for const in _cupy_known_constants: + setattr(CuPyPrinter, f'_print_{const}', _print_known_const) + + +_jax_known_functions = {k: 'jax.numpy.' + v for k, v in _known_functions_numpy.items()} +_jax_known_constants = {k: 'jax.numpy.' + v for k, v in _known_constants_numpy.items()} + +class JaxPrinter(NumPyPrinter): + """ + JAX printer which handles vectorized piecewise functions, + logical operators, etc. + """ + _module = "jax.numpy" + + _kf = _jax_known_functions + _kc = _jax_known_constants + + def __init__(self, settings=None): + super().__init__(settings=settings) + + # These need specific override to allow for the lack of "jax.numpy.reduce" + def _print_And(self, expr): + "Logical And printer" + return "{}({}.asarray([{}]), axis=0)".format( + self._module_format(self._module + ".all"), + self._module_format(self._module), + ",".join(self._print(i) for i in expr.args), + ) + + def _print_Or(self, expr): + "Logical Or printer" + return "{}({}.asarray([{}]), axis=0)".format( + self._module_format(self._module + ".any"), + self._module_format(self._module), + ",".join(self._print(i) for i in expr.args), + ) + +for func in _jax_known_functions: + setattr(JaxPrinter, f'_print_{func}', _print_known_func) + +for const in _jax_known_constants: + setattr(JaxPrinter, f'_print_{const}', _print_known_const) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..cbabc649152a3c353a37225d342064634fbb5805 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__init__.py @@ -0,0 +1,12 @@ +"""ASCII-ART 2D pretty-printer""" + +from .pretty import (pretty, pretty_print, pprint, pprint_use_unicode, + pprint_try_use_unicode, pager_print) + +# if unicode output is available -- let's use it +pprint_try_use_unicode() + +__all__ = [ + 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', + 'pprint_try_use_unicode', 'pager_print', +] diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8409091d960ed1ce33961d0967758b2754e9ae41 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f16d93333a7a6d9bd1e0ff075a82be21f107b21 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..962ef0f6b022dc0b42e8cecaaac0e79ea0935f21 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eeb11dc8db2c61fad7e52aff60f80157e3aaa956 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py new file mode 100644 index 0000000000000000000000000000000000000000..e934712b88111bf60489c319db4ba71f9aae702f --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty.py @@ -0,0 +1,2939 @@ +import itertools + +from sympy.core import S +from sympy.core.add import Add +from sympy.core.containers import Tuple +from sympy.core.function import Function +from sympy.core.mul import Mul +from sympy.core.numbers import Number, Rational +from sympy.core.power import Pow +from sympy.core.sorting import default_sort_key +from sympy.core.symbol import Symbol +from sympy.core.sympify import SympifyError +from sympy.printing.conventions import requires_partial +from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional +from sympy.printing.printer import Printer, print_function +from sympy.printing.str import sstr +from sympy.utilities.iterables import has_variety +from sympy.utilities.exceptions import sympy_deprecation_warning + +from sympy.printing.pretty.stringpict import prettyForm, stringPict +from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \ + xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ + pretty_try_use_unicode, annotated + +# rename for usage from outside +pprint_use_unicode = pretty_use_unicode +pprint_try_use_unicode = pretty_try_use_unicode + + +class PrettyPrinter(Printer): + """Printer, which converts an expression into 2D ASCII-art figure.""" + printmethod = "_pretty" + + _default_settings = { + "order": None, + "full_prec": "auto", + "use_unicode": None, + "wrap_line": True, + "num_columns": None, + "use_unicode_sqrt_char": True, + "root_notation": True, + "mat_symbol_style": "plain", + "imaginary_unit": "i", + "perm_cyclic": True + } + + def __init__(self, settings=None): + Printer.__init__(self, settings) + + if not isinstance(self._settings['imaginary_unit'], str): + raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) + elif self._settings['imaginary_unit'] not in ("i", "j"): + raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) + + def emptyPrinter(self, expr): + return prettyForm(str(expr)) + + @property + def _use_unicode(self): + if self._settings['use_unicode']: + return True + else: + return pretty_use_unicode() + + def doprint(self, expr): + return self._print(expr).render(**self._settings) + + # empty op so _print(stringPict) returns the same + def _print_stringPict(self, e): + return e + + def _print_basestring(self, e): + return prettyForm(e) + + def _print_atan2(self, e): + pform = prettyForm(*self._print_seq(e.args).parens()) + pform = prettyForm(*pform.left('atan2')) + return pform + + def _print_Symbol(self, e, bold_name=False): + symb = pretty_symbol(e.name, bold_name) + return prettyForm(symb) + _print_RandomSymbol = _print_Symbol + def _print_MatrixSymbol(self, e): + return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") + + def _print_Float(self, e): + # we will use StrPrinter's Float printer, but we need to handle the + # full_prec ourselves, according to the self._print_level + full_prec = self._settings["full_prec"] + if full_prec == "auto": + full_prec = self._print_level == 1 + return prettyForm(sstr(e, full_prec=full_prec)) + + def _print_Cross(self, e): + vec1 = e._expr1 + vec2 = e._expr2 + pform = self._print(vec2) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) + pform = prettyForm(*pform.left(')')) + pform = prettyForm(*pform.left(self._print(vec1))) + pform = prettyForm(*pform.left('(')) + return pform + + def _print_Curl(self, e): + vec = e._expr + pform = self._print(vec) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) + pform = prettyForm(*pform.left(self._print(U('NABLA')))) + return pform + + def _print_Divergence(self, e): + vec = e._expr + pform = self._print(vec) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) + pform = prettyForm(*pform.left(self._print(U('NABLA')))) + return pform + + def _print_Dot(self, e): + vec1 = e._expr1 + vec2 = e._expr2 + pform = self._print(vec2) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) + pform = prettyForm(*pform.left(')')) + pform = prettyForm(*pform.left(self._print(vec1))) + pform = prettyForm(*pform.left('(')) + return pform + + def _print_Gradient(self, e): + func = e._expr + pform = self._print(func) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('NABLA')))) + return pform + + def _print_Laplacian(self, e): + func = e._expr + pform = self._print(func) + pform = prettyForm(*pform.left('(')) + pform = prettyForm(*pform.right(')')) + pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) + return pform + + def _print_Atom(self, e): + try: + # print atoms like Exp1 or Pi + return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) + except KeyError: + return self.emptyPrinter(e) + + # Infinity inherits from Number, so we have to override _print_XXX order + _print_Infinity = _print_Atom + _print_NegativeInfinity = _print_Atom + _print_EmptySet = _print_Atom + _print_Naturals = _print_Atom + _print_Naturals0 = _print_Atom + _print_Integers = _print_Atom + _print_Rationals = _print_Atom + _print_Complexes = _print_Atom + + _print_EmptySequence = _print_Atom + + def _print_Reals(self, e): + if self._use_unicode: + return self._print_Atom(e) + else: + inf_list = ['-oo', 'oo'] + return self._print_seq(inf_list, '(', ')') + + def _print_subfactorial(self, e): + x = e.args[0] + pform = self._print(x) + # Add parentheses if needed + if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left('!')) + return pform + + def _print_factorial(self, e): + x = e.args[0] + pform = self._print(x) + # Add parentheses if needed + if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.right('!')) + return pform + + def _print_factorial2(self, e): + x = e.args[0] + pform = self._print(x) + # Add parentheses if needed + if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.right('!!')) + return pform + + def _print_binomial(self, e): + n, k = e.args + + n_pform = self._print(n) + k_pform = self._print(k) + + bar = ' '*max(n_pform.width(), k_pform.width()) + + pform = prettyForm(*k_pform.above(bar)) + pform = prettyForm(*pform.above(n_pform)) + pform = prettyForm(*pform.parens('(', ')')) + + pform.baseline = (pform.baseline + 1)//2 + + return pform + + def _print_Relational(self, e): + op = prettyForm(' ' + xsym(e.rel_op) + ' ') + + l = self._print(e.lhs) + r = self._print(e.rhs) + pform = prettyForm(*stringPict.next(l, op, r), binding=prettyForm.OPEN) + return pform + + def _print_Not(self, e): + from sympy.logic.boolalg import (Equivalent, Implies) + if self._use_unicode: + arg = e.args[0] + pform = self._print(arg) + if isinstance(arg, Equivalent): + return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") + if isinstance(arg, Implies): + return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}") + + if arg.is_Boolean and not arg.is_Not: + pform = prettyForm(*pform.parens()) + + return prettyForm(*pform.left("\N{NOT SIGN}")) + else: + return self._print_Function(e) + + def __print_Boolean(self, e, char, sort=True): + args = e.args + if sort: + args = sorted(e.args, key=default_sort_key) + arg = args[0] + pform = self._print(arg) + + if arg.is_Boolean and not arg.is_Not: + pform = prettyForm(*pform.parens()) + + for arg in args[1:]: + pform_arg = self._print(arg) + + if arg.is_Boolean and not arg.is_Not: + pform_arg = prettyForm(*pform_arg.parens()) + + pform = prettyForm(*pform.right(' %s ' % char)) + pform = prettyForm(*pform.right(pform_arg)) + + return pform + + def _print_And(self, e): + if self._use_unicode: + return self.__print_Boolean(e, "\N{LOGICAL AND}") + else: + return self._print_Function(e, sort=True) + + def _print_Or(self, e): + if self._use_unicode: + return self.__print_Boolean(e, "\N{LOGICAL OR}") + else: + return self._print_Function(e, sort=True) + + def _print_Xor(self, e): + if self._use_unicode: + return self.__print_Boolean(e, "\N{XOR}") + else: + return self._print_Function(e, sort=True) + + def _print_Nand(self, e): + if self._use_unicode: + return self.__print_Boolean(e, "\N{NAND}") + else: + return self._print_Function(e, sort=True) + + def _print_Nor(self, e): + if self._use_unicode: + return self.__print_Boolean(e, "\N{NOR}") + else: + return self._print_Function(e, sort=True) + + def _print_Implies(self, e, altchar=None): + if self._use_unicode: + return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False) + else: + return self._print_Function(e) + + def _print_Equivalent(self, e, altchar=None): + if self._use_unicode: + return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}") + else: + return self._print_Function(e, sort=True) + + def _print_conjugate(self, e): + pform = self._print(e.args[0]) + return prettyForm( *pform.above( hobj('_', pform.width())) ) + + def _print_Abs(self, e): + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens('|', '|')) + return pform + + def _print_floor(self, e): + if self._use_unicode: + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens('lfloor', 'rfloor')) + return pform + else: + return self._print_Function(e) + + def _print_ceiling(self, e): + if self._use_unicode: + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens('lceil', 'rceil')) + return pform + else: + return self._print_Function(e) + + def _print_Derivative(self, deriv): + if requires_partial(deriv.expr) and self._use_unicode: + deriv_symbol = U('PARTIAL DIFFERENTIAL') + else: + deriv_symbol = r'd' + x = None + count_total_deriv = 0 + + for sym, num in reversed(deriv.variable_count): + s = self._print(sym) + ds = prettyForm(*s.left(deriv_symbol)) + count_total_deriv += num + + if (not num.is_Integer) or (num > 1): + ds = ds**prettyForm(str(num)) + + if x is None: + x = ds + else: + x = prettyForm(*x.right(' ')) + x = prettyForm(*x.right(ds)) + + f = prettyForm( + binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) + + pform = prettyForm(deriv_symbol) + + if (count_total_deriv > 1) != False: + pform = pform**prettyForm(str(count_total_deriv)) + + pform = prettyForm(*pform.below(stringPict.LINE, x)) + pform.baseline = pform.baseline + 1 + pform = prettyForm(*stringPict.next(pform, f)) + pform.binding = prettyForm.MUL + + return pform + + def _print_Cycle(self, dc): + from sympy.combinatorics.permutations import Permutation, Cycle + # for Empty Cycle + if dc == Cycle(): + cyc = stringPict('') + return prettyForm(*cyc.parens()) + + dc_list = Permutation(dc.list()).cyclic_form + # for Identity Cycle + if dc_list == []: + cyc = self._print(dc.size - 1) + return prettyForm(*cyc.parens()) + + cyc = stringPict('') + for i in dc_list: + l = self._print(str(tuple(i)).replace(',', '')) + cyc = prettyForm(*cyc.right(l)) + return cyc + + def _print_Permutation(self, expr): + from sympy.combinatorics.permutations import Permutation, Cycle + + perm_cyclic = Permutation.print_cyclic + if perm_cyclic is not None: + sympy_deprecation_warning( + f""" + Setting Permutation.print_cyclic is deprecated. Instead use + init_printing(perm_cyclic={perm_cyclic}). + """, + deprecated_since_version="1.6", + active_deprecations_target="deprecated-permutation-print_cyclic", + stacklevel=7, + ) + else: + perm_cyclic = self._settings.get("perm_cyclic", True) + + if perm_cyclic: + return self._print_Cycle(Cycle(expr)) + + lower = expr.array_form + upper = list(range(len(lower))) + + result = stringPict('') + first = True + for u, l in zip(upper, lower): + s1 = self._print(u) + s2 = self._print(l) + col = prettyForm(*s1.below(s2)) + if first: + first = False + else: + col = prettyForm(*col.left(" ")) + result = prettyForm(*result.right(col)) + return prettyForm(*result.parens()) + + + def _print_Integral(self, integral): + f = integral.function + + # Add parentheses if arg involves addition of terms and + # create a pretty form for the argument + prettyF = self._print(f) + # XXX generalize parens + if f.is_Add: + prettyF = prettyForm(*prettyF.parens()) + + # dx dy dz ... + arg = prettyF + for x in integral.limits: + prettyArg = self._print(x[0]) + # XXX qparens (parens if needs-parens) + if prettyArg.width() > 1: + prettyArg = prettyForm(*prettyArg.parens()) + + arg = prettyForm(*arg.right(' d', prettyArg)) + + # \int \int \int ... + firstterm = True + s = None + for lim in integral.limits: + # Create bar based on the height of the argument + h = arg.height() + H = h + 2 + + # XXX hack! + ascii_mode = not self._use_unicode + if ascii_mode: + H += 2 + + vint = vobj('int', H) + + # Construct the pretty form with the integral sign and the argument + pform = prettyForm(vint) + pform.baseline = arg.baseline + ( + H - h)//2 # covering the whole argument + + if len(lim) > 1: + # Create pretty forms for endpoints, if definite integral. + # Do not print empty endpoints. + if len(lim) == 2: + prettyA = prettyForm("") + prettyB = self._print(lim[1]) + if len(lim) == 3: + prettyA = self._print(lim[1]) + prettyB = self._print(lim[2]) + + if ascii_mode: # XXX hack + # Add spacing so that endpoint can more easily be + # identified with the correct integral sign + spc = max(1, 3 - prettyB.width()) + prettyB = prettyForm(*prettyB.left(' ' * spc)) + + spc = max(1, 4 - prettyA.width()) + prettyA = prettyForm(*prettyA.right(' ' * spc)) + + pform = prettyForm(*pform.above(prettyB)) + pform = prettyForm(*pform.below(prettyA)) + + if not ascii_mode: # XXX hack + pform = prettyForm(*pform.right(' ')) + + if firstterm: + s = pform # first term + firstterm = False + else: + s = prettyForm(*s.left(pform)) + + pform = prettyForm(*arg.left(s)) + pform.binding = prettyForm.MUL + return pform + + def _print_Product(self, expr): + func = expr.term + pretty_func = self._print(func) + + horizontal_chr = xobj('_', 1) + corner_chr = xobj('_', 1) + vertical_chr = xobj('|', 1) + + if self._use_unicode: + # use unicode corners + horizontal_chr = xobj('-', 1) + corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' + + func_height = pretty_func.height() + + first = True + max_upper = 0 + sign_height = 0 + + for lim in expr.limits: + pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) + + width = (func_height + 2) * 5 // 3 - 2 + sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] + for _ in range(func_height + 1): + sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') + + pretty_sign = stringPict('') + pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) + + + max_upper = max(max_upper, pretty_upper.height()) + + if first: + sign_height = pretty_sign.height() + + pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) + pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) + + if first: + pretty_func.baseline = 0 + first = False + + height = pretty_sign.height() + padding = stringPict('') + padding = prettyForm(*padding.stack(*[' ']*(height - 1))) + pretty_sign = prettyForm(*pretty_sign.right(padding)) + + pretty_func = prettyForm(*pretty_sign.right(pretty_func)) + + pretty_func.baseline = max_upper + sign_height//2 + pretty_func.binding = prettyForm.MUL + return pretty_func + + def __print_SumProduct_Limits(self, lim): + def print_start(lhs, rhs): + op = prettyForm(' ' + xsym("==") + ' ') + l = self._print(lhs) + r = self._print(rhs) + pform = prettyForm(*stringPict.next(l, op, r)) + return pform + + prettyUpper = self._print(lim[2]) + prettyLower = print_start(lim[0], lim[1]) + return prettyLower, prettyUpper + + def _print_Sum(self, expr): + ascii_mode = not self._use_unicode + + def asum(hrequired, lower, upper, use_ascii): + def adjust(s, wid=None, how='<^>'): + if not wid or len(s) > wid: + return s + need = wid - len(s) + if how in ('<^>', "<") or how not in list('<^>'): + return s + ' '*need + half = need//2 + lead = ' '*half + if how == ">": + return " "*need + s + return lead + s + ' '*(need - len(lead)) + + h = max(hrequired, 2) + d = h//2 + w = d + 1 + more = hrequired % 2 + + lines = [] + if use_ascii: + lines.append("_"*(w) + ' ') + lines.append(r"\%s`" % (' '*(w - 1))) + for i in range(1, d): + lines.append('%s\\%s' % (' '*i, ' '*(w - i))) + if more: + lines.append('%s)%s' % (' '*(d), ' '*(w - d))) + for i in reversed(range(1, d)): + lines.append('%s/%s' % (' '*i, ' '*(w - i))) + lines.append("/" + "_"*(w - 1) + ',') + return d, h + more, lines, more + else: + w = w + more + d = d + more + vsum = vobj('sum', 4) + lines.append("_"*(w)) + for i in range(0, d): + lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) + for i in reversed(range(0, d)): + lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) + lines.append(vsum[8]*(w)) + return d, h + 2*more, lines, more + + f = expr.function + + prettyF = self._print(f) + + if f.is_Add: # add parens + prettyF = prettyForm(*prettyF.parens()) + + H = prettyF.height() + 2 + + # \sum \sum \sum ... + first = True + max_upper = 0 + sign_height = 0 + + for lim in expr.limits: + prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) + + max_upper = max(max_upper, prettyUpper.height()) + + # Create sum sign based on the height of the argument + d, h, slines, adjustment = asum( + H, prettyLower.width(), prettyUpper.width(), ascii_mode) + prettySign = stringPict('') + prettySign = prettyForm(*prettySign.stack(*slines)) + + if first: + sign_height = prettySign.height() + + prettySign = prettyForm(*prettySign.above(prettyUpper)) + prettySign = prettyForm(*prettySign.below(prettyLower)) + + if first: + # change F baseline so it centers on the sign + prettyF.baseline -= d - (prettyF.height()//2 - + prettyF.baseline) + first = False + + # put padding to the right + pad = stringPict('') + pad = prettyForm(*pad.stack(*[' ']*h)) + prettySign = prettyForm(*prettySign.right(pad)) + # put the present prettyF to the right + prettyF = prettyForm(*prettySign.right(prettyF)) + + # adjust baseline of ascii mode sigma with an odd height so that it is + # exactly through the center + ascii_adjustment = ascii_mode if not adjustment else 0 + prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment + + prettyF.binding = prettyForm.MUL + return prettyF + + def _print_Limit(self, l): + e, z, z0, dir = l.args + + E = self._print(e) + if precedence(e) <= PRECEDENCE["Mul"]: + E = prettyForm(*E.parens('(', ')')) + Lim = prettyForm('lim') + + LimArg = self._print(z) + if self._use_unicode: + LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) + else: + LimArg = prettyForm(*LimArg.right('->')) + LimArg = prettyForm(*LimArg.right(self._print(z0))) + + if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): + dir = "" + else: + if self._use_unicode: + dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}' + + LimArg = prettyForm(*LimArg.right(self._print(dir))) + + Lim = prettyForm(*Lim.below(LimArg)) + Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) + + return Lim + + def _print_matrix_contents(self, e): + """ + This method factors out what is essentially grid printing. + """ + M = e # matrix + Ms = {} # i,j -> pretty(M[i,j]) + for i in range(M.rows): + for j in range(M.cols): + Ms[i, j] = self._print(M[i, j]) + + # h- and v- spacers + hsep = 2 + vsep = 1 + + # max width for columns + maxw = [-1] * M.cols + + for j in range(M.cols): + maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) + + # drawing result + D = None + + for i in range(M.rows): + + D_row = None + for j in range(M.cols): + s = Ms[i, j] + + # reshape s to maxw + # XXX this should be generalized, and go to stringPict.reshape ? + assert s.width() <= maxw[j] + + # hcenter it, +0.5 to the right 2 + # ( it's better to align formula starts for say 0 and r ) + # XXX this is not good in all cases -- maybe introduce vbaseline? + wdelta = maxw[j] - s.width() + wleft = wdelta // 2 + wright = wdelta - wleft + + s = prettyForm(*s.right(' '*wright)) + s = prettyForm(*s.left(' '*wleft)) + + # we don't need vcenter cells -- this is automatically done in + # a pretty way because when their baselines are taking into + # account in .right() + + if D_row is None: + D_row = s # first box in a row + continue + + D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer + D_row = prettyForm(*D_row.right(s)) + + if D is None: + D = D_row # first row in a picture + continue + + # v-spacer + for _ in range(vsep): + D = prettyForm(*D.below(' ')) + + D = prettyForm(*D.below(D_row)) + + if D is None: + D = prettyForm('') # Empty Matrix + + return D + + def _print_MatrixBase(self, e, lparens='[', rparens=']'): + D = self._print_matrix_contents(e) + D.baseline = D.height()//2 + D = prettyForm(*D.parens(lparens, rparens)) + return D + + def _print_Determinant(self, e): + mat = e.arg + if mat.is_MatrixExpr: + from sympy.matrices.expressions.blockmatrix import BlockMatrix + if isinstance(mat, BlockMatrix): + return self._print_MatrixBase(mat.blocks, lparens='|', rparens='|') + D = self._print(mat) + D.baseline = D.height()//2 + return prettyForm(*D.parens('|', '|')) + else: + return self._print_MatrixBase(mat, lparens='|', rparens='|') + + def _print_TensorProduct(self, expr): + # This should somehow share the code with _print_WedgeProduct: + if self._use_unicode: + circled_times = "\u2297" + else: + circled_times = ".*" + return self._print_seq(expr.args, None, None, circled_times, + parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) + + def _print_WedgeProduct(self, expr): + # This should somehow share the code with _print_TensorProduct: + if self._use_unicode: + wedge_symbol = "\u2227" + else: + wedge_symbol = '/\\' + return self._print_seq(expr.args, None, None, wedge_symbol, + parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) + + def _print_Trace(self, e): + D = self._print(e.arg) + D = prettyForm(*D.parens('(',')')) + D.baseline = D.height()//2 + D = prettyForm(*D.left('\n'*(0) + 'tr')) + return D + + + def _print_MatrixElement(self, expr): + from sympy.matrices import MatrixSymbol + if (isinstance(expr.parent, MatrixSymbol) + and expr.i.is_number and expr.j.is_number): + return self._print( + Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) + else: + prettyFunc = self._print(expr.parent) + prettyFunc = prettyForm(*prettyFunc.parens()) + prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' + ).parens(left='[', right=']')[0] + pform = prettyForm(binding=prettyForm.FUNC, + *stringPict.next(prettyFunc, prettyIndices)) + + # store pform parts so it can be reassembled e.g. when powered + pform.prettyFunc = prettyFunc + pform.prettyArgs = prettyIndices + + return pform + + + def _print_MatrixSlice(self, m): + # XXX works only for applied functions + from sympy.matrices import MatrixSymbol + prettyFunc = self._print(m.parent) + if not isinstance(m.parent, MatrixSymbol): + prettyFunc = prettyForm(*prettyFunc.parens()) + def ppslice(x, dim): + x = list(x) + if x[2] == 1: + del x[2] + if x[0] == 0: + x[0] = '' + if x[1] == dim: + x[1] = '' + return prettyForm(*self._print_seq(x, delimiter=':')) + prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows), + ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0] + + pform = prettyForm( + binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) + + # store pform parts so it can be reassembled e.g. when powered + pform.prettyFunc = prettyFunc + pform.prettyArgs = prettyArgs + + return pform + + def _print_Transpose(self, expr): + mat = expr.arg + pform = self._print(mat) + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + pform = prettyForm(*pform.parens()) + pform = pform**(prettyForm('T')) + return pform + + def _print_Adjoint(self, expr): + mat = expr.arg + pform = self._print(mat) + if self._use_unicode: + dag = prettyForm('\N{DAGGER}') + else: + dag = prettyForm('+') + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + pform = prettyForm(*pform.parens()) + pform = pform**dag + return pform + + def _print_BlockMatrix(self, B): + if B.blocks.shape == (1, 1): + return self._print(B.blocks[0, 0]) + return self._print(B.blocks) + + def _print_MatAdd(self, expr): + s = None + for item in expr.args: + pform = self._print(item) + if s is None: + s = pform # First element + else: + coeff = item.as_coeff_mmul()[0] + if S(coeff).could_extract_minus_sign(): + s = prettyForm(*stringPict.next(s, ' ')) + pform = self._print(item) + else: + s = prettyForm(*stringPict.next(s, ' + ')) + s = prettyForm(*stringPict.next(s, pform)) + + return s + + def _print_MatMul(self, expr): + args = list(expr.args) + from sympy.matrices.expressions.hadamard import HadamardProduct + from sympy.matrices.expressions.kronecker import KroneckerProduct + from sympy.matrices.expressions.matadd import MatAdd + for i, a in enumerate(args): + if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) + and len(expr.args) > 1): + args[i] = prettyForm(*self._print(a).parens()) + else: + args[i] = self._print(a) + + return prettyForm.__mul__(*args) + + def _print_Identity(self, expr): + if self._use_unicode: + return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') + else: + return prettyForm('I') + + def _print_ZeroMatrix(self, expr): + if self._use_unicode: + return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') + else: + return prettyForm('0') + + def _print_OneMatrix(self, expr): + if self._use_unicode: + return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') + else: + return prettyForm('1') + + def _print_DotProduct(self, expr): + args = list(expr.args) + + for i, a in enumerate(args): + args[i] = self._print(a) + return prettyForm.__mul__(*args) + + def _print_MatPow(self, expr): + pform = self._print(expr.base) + from sympy.matrices import MatrixSymbol + if not isinstance(expr.base, MatrixSymbol) and expr.base.is_MatrixExpr: + pform = prettyForm(*pform.parens()) + pform = pform**(self._print(expr.exp)) + return pform + + def _print_HadamardProduct(self, expr): + from sympy.matrices.expressions.hadamard import HadamardProduct + from sympy.matrices.expressions.matadd import MatAdd + from sympy.matrices.expressions.matmul import MatMul + if self._use_unicode: + delim = pretty_atom('Ring') + else: + delim = '.*' + return self._print_seq(expr.args, None, None, delim, + parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) + + def _print_HadamardPower(self, expr): + # from sympy import MatAdd, MatMul + if self._use_unicode: + circ = pretty_atom('Ring') + else: + circ = self._print('.') + pretty_base = self._print(expr.base) + pretty_exp = self._print(expr.exp) + if precedence(expr.exp) < PRECEDENCE["Mul"]: + pretty_exp = prettyForm(*pretty_exp.parens()) + pretty_circ_exp = prettyForm( + binding=prettyForm.LINE, + *stringPict.next(circ, pretty_exp) + ) + return pretty_base**pretty_circ_exp + + def _print_KroneckerProduct(self, expr): + from sympy.matrices.expressions.matadd import MatAdd + from sympy.matrices.expressions.matmul import MatMul + if self._use_unicode: + delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} ' + else: + delim = ' x ' + return self._print_seq(expr.args, None, None, delim, + parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) + + def _print_FunctionMatrix(self, X): + D = self._print(X.lamda.expr) + D = prettyForm(*D.parens('[', ']')) + return D + + def _print_TransferFunction(self, expr): + if not expr.num == 1: + num, den = expr.num, expr.den + res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) + return self._print_Mul(res) + else: + return self._print(1)/self._print(expr.den) + + def _print_Series(self, expr): + args = list(expr.args) + for i, a in enumerate(expr.args): + args[i] = prettyForm(*self._print(a).parens()) + return prettyForm.__mul__(*args) + + def _print_MIMOSeries(self, expr): + from sympy.physics.control.lti import MIMOParallel + args = list(expr.args) + pretty_args = [] + for i, a in enumerate(reversed(args)): + if (isinstance(a, MIMOParallel) and len(expr.args) > 1): + expression = self._print(a) + expression.baseline = expression.height()//2 + pretty_args.append(prettyForm(*expression.parens())) + else: + expression = self._print(a) + expression.baseline = expression.height()//2 + pretty_args.append(expression) + return prettyForm.__mul__(*pretty_args) + + def _print_Parallel(self, expr): + s = None + for item in expr.args: + pform = self._print(item) + if s is None: + s = pform # First element + else: + s = prettyForm(*stringPict.next(s)) + s.baseline = s.height()//2 + s = prettyForm(*stringPict.next(s, ' + ')) + s = prettyForm(*stringPict.next(s, pform)) + return s + + def _print_MIMOParallel(self, expr): + from sympy.physics.control.lti import TransferFunctionMatrix + s = None + for item in expr.args: + pform = self._print(item) + if s is None: + s = pform # First element + else: + s = prettyForm(*stringPict.next(s)) + s.baseline = s.height()//2 + s = prettyForm(*stringPict.next(s, ' + ')) + if isinstance(item, TransferFunctionMatrix): + s.baseline = s.height() - 1 + s = prettyForm(*stringPict.next(s, pform)) + # s.baseline = s.height()//2 + return s + + def _print_Feedback(self, expr): + from sympy.physics.control import TransferFunction, Series + + num, tf = expr.sys1, TransferFunction(1, 1, expr.var) + num_arg_list = list(num.args) if isinstance(num, Series) else [num] + den_arg_list = list(expr.sys2.args) if \ + isinstance(expr.sys2, Series) else [expr.sys2] + + if isinstance(num, Series) and isinstance(expr.sys2, Series): + den = Series(*num_arg_list, *den_arg_list) + elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction): + if expr.sys2 == tf: + den = Series(*num_arg_list) + else: + den = Series(*num_arg_list, expr.sys2) + elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series): + if num == tf: + den = Series(*den_arg_list) + else: + den = Series(num, *den_arg_list) + else: + if num == tf: + den = Series(*den_arg_list) + elif expr.sys2 == tf: + den = Series(*num_arg_list) + else: + den = Series(*num_arg_list, *den_arg_list) + + denom = prettyForm(*stringPict.next(self._print(tf))) + denom.baseline = denom.height()//2 + denom = prettyForm(*stringPict.next(denom, ' + ')) if expr.sign == -1 \ + else prettyForm(*stringPict.next(denom, ' - ')) + denom = prettyForm(*stringPict.next(denom, self._print(den))) + + return self._print(num)/denom + + def _print_MIMOFeedback(self, expr): + from sympy.physics.control import MIMOSeries, TransferFunctionMatrix + + inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1)) + plant = self._print(expr.sys1) + _feedback = prettyForm(*stringPict.next(inv_mat)) + _feedback = prettyForm(*stringPict.right("I + ", _feedback)) if expr.sign == -1 \ + else prettyForm(*stringPict.right("I - ", _feedback)) + _feedback = prettyForm(*stringPict.parens(_feedback)) + _feedback.baseline = 0 + _feedback = prettyForm(*stringPict.right(_feedback, '-1 ')) + _feedback.baseline = _feedback.height()//2 + _feedback = prettyForm.__mul__(_feedback, prettyForm(" ")) + if isinstance(expr.sys1, TransferFunctionMatrix): + _feedback.baseline = _feedback.height() - 1 + _feedback = prettyForm(*stringPict.next(_feedback, plant)) + return _feedback + + def _print_TransferFunctionMatrix(self, expr): + mat = self._print(expr._expr_mat) + mat.baseline = mat.height() - 1 + subscript = greek_unicode['tau'] if self._use_unicode else r'{t}' + mat = prettyForm(*mat.right(subscript)) + return mat + + def _print_BasisDependent(self, expr): + from sympy.vector import Vector + + if not self._use_unicode: + raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") + + if expr == expr.zero: + return prettyForm(expr.zero._pretty_form) + o1 = [] + vectstrs = [] + if isinstance(expr, Vector): + items = expr.separate().items() + else: + items = [(0, expr)] + for system, vect in items: + inneritems = list(vect.components.items()) + inneritems.sort(key = lambda x: x[0].__str__()) + for k, v in inneritems: + #if the coef of the basis vector is 1 + #we skip the 1 + if v == 1: + o1.append("" + + k._pretty_form) + #Same for -1 + elif v == -1: + o1.append("(-1) " + + k._pretty_form) + #For a general expr + else: + #We always wrap the measure numbers in + #parentheses + arg_str = self._print( + v).parens()[0] + + o1.append(arg_str + ' ' + k._pretty_form) + vectstrs.append(k._pretty_form) + + #outstr = u("").join(o1) + if o1[0].startswith(" + "): + o1[0] = o1[0][3:] + elif o1[0].startswith(" "): + o1[0] = o1[0][1:] + #Fixing the newlines + lengths = [] + strs = [''] + flag = [] + for i, partstr in enumerate(o1): + flag.append(0) + # XXX: What is this hack? + if '\n' in partstr: + tempstr = partstr + tempstr = tempstr.replace(vectstrs[i], '') + if '\N{RIGHT PARENTHESIS EXTENSION}' in tempstr: # If scalar is a fraction + for paren in range(len(tempstr)): + flag[i] = 1 + if tempstr[paren] == '\N{RIGHT PARENTHESIS EXTENSION}' and tempstr[paren + 1] == '\n': + # We want to place the vector string after all the right parentheses, because + # otherwise, the vector will be in the middle of the string + tempstr = tempstr[:paren] + '\N{RIGHT PARENTHESIS EXTENSION}'\ + + ' ' + vectstrs[i] + tempstr[paren + 1:] + break + elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: + # We want to place the vector string after all the right parentheses, because + # otherwise, the vector will be in the middle of the string. For this reason, + # we insert the vector string at the rightmost index. + index = tempstr.rfind('\N{RIGHT PARENTHESIS LOWER HOOK}') + if index != -1: # then this character was found in this string + flag[i] = 1 + tempstr = tempstr[:index] + '\N{RIGHT PARENTHESIS LOWER HOOK}'\ + + ' ' + vectstrs[i] + tempstr[index + 1:] + o1[i] = tempstr + + o1 = [x.split('\n') for x in o1] + n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form + + if 1 in flag: # If there was a fractional scalar + for i, parts in enumerate(o1): + if len(parts) == 1: # If part has no newline + parts.insert(0, ' ' * (len(parts[0]))) + flag[i] = 1 + + for i, parts in enumerate(o1): + lengths.append(len(parts[flag[i]])) + for j in range(n_newlines): + if j+1 <= len(parts): + if j >= len(strs): + strs.append(' ' * (sum(lengths[:-1]) + + 3*(len(lengths)-1))) + if j == flag[i]: + strs[flag[i]] += parts[flag[i]] + ' + ' + else: + strs[j] += parts[j] + ' '*(lengths[-1] - + len(parts[j])+ + 3) + else: + if j >= len(strs): + strs.append(' ' * (sum(lengths[:-1]) + + 3*(len(lengths)-1))) + strs[j] += ' '*(lengths[-1]+3) + + return prettyForm('\n'.join([s[:-3] for s in strs])) + + def _print_NDimArray(self, expr): + from sympy.matrices.immutable import ImmutableMatrix + + if expr.rank() == 0: + return self._print(expr[()]) + + level_str = [[]] + [[] for i in range(expr.rank())] + shape_ranges = [list(range(i)) for i in expr.shape] + # leave eventual matrix elements unflattened + mat = lambda x: ImmutableMatrix(x, evaluate=False) + for outer_i in itertools.product(*shape_ranges): + level_str[-1].append(expr[outer_i]) + even = True + for back_outer_i in range(expr.rank()-1, -1, -1): + if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: + break + if even: + level_str[back_outer_i].append(level_str[back_outer_i+1]) + else: + level_str[back_outer_i].append(mat( + level_str[back_outer_i+1])) + if len(level_str[back_outer_i + 1]) == 1: + level_str[back_outer_i][-1] = mat( + [[level_str[back_outer_i][-1]]]) + even = not even + level_str[back_outer_i+1] = [] + + out_expr = level_str[0][0] + if expr.rank() % 2 == 1: + out_expr = mat([out_expr]) + + return self._print(out_expr) + + def _printer_tensor_indices(self, name, indices, index_map={}): + center = stringPict(name) + top = stringPict(" "*center.width()) + bot = stringPict(" "*center.width()) + + last_valence = None + prev_map = None + + for i, index in enumerate(indices): + indpic = self._print(index.args[0]) + if ((index in index_map) or prev_map) and last_valence == index.is_up: + if index.is_up: + top = prettyForm(*stringPict.next(top, ",")) + else: + bot = prettyForm(*stringPict.next(bot, ",")) + if index in index_map: + indpic = prettyForm(*stringPict.next(indpic, "=")) + indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) + prev_map = True + else: + prev_map = False + if index.is_up: + top = stringPict(*top.right(indpic)) + center = stringPict(*center.right(" "*indpic.width())) + bot = stringPict(*bot.right(" "*indpic.width())) + else: + bot = stringPict(*bot.right(indpic)) + center = stringPict(*center.right(" "*indpic.width())) + top = stringPict(*top.right(" "*indpic.width())) + last_valence = index.is_up + + pict = prettyForm(*center.above(top)) + pict = prettyForm(*pict.below(bot)) + return pict + + def _print_Tensor(self, expr): + name = expr.args[0].name + indices = expr.get_indices() + return self._printer_tensor_indices(name, indices) + + def _print_TensorElement(self, expr): + name = expr.expr.args[0].name + indices = expr.expr.get_indices() + index_map = expr.index_map + return self._printer_tensor_indices(name, indices, index_map) + + def _print_TensMul(self, expr): + sign, args = expr._get_args_for_traditional_printer() + args = [ + prettyForm(*self._print(i).parens()) if + precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) + for i in args + ] + pform = prettyForm.__mul__(*args) + if sign: + return prettyForm(*pform.left(sign)) + else: + return pform + + def _print_TensAdd(self, expr): + args = [ + prettyForm(*self._print(i).parens()) if + precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) + for i in expr.args + ] + return prettyForm.__add__(*args) + + def _print_TensorIndex(self, expr): + sym = expr.args[0] + if not expr.is_up: + sym = -sym + return self._print(sym) + + def _print_PartialDerivative(self, deriv): + if self._use_unicode: + deriv_symbol = U('PARTIAL DIFFERENTIAL') + else: + deriv_symbol = r'd' + x = None + + for variable in reversed(deriv.variables): + s = self._print(variable) + ds = prettyForm(*s.left(deriv_symbol)) + + if x is None: + x = ds + else: + x = prettyForm(*x.right(' ')) + x = prettyForm(*x.right(ds)) + + f = prettyForm( + binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) + + pform = prettyForm(deriv_symbol) + + if len(deriv.variables) > 1: + pform = pform**self._print(len(deriv.variables)) + + pform = prettyForm(*pform.below(stringPict.LINE, x)) + pform.baseline = pform.baseline + 1 + pform = prettyForm(*stringPict.next(pform, f)) + pform.binding = prettyForm.MUL + + return pform + + def _print_Piecewise(self, pexpr): + + P = {} + for n, ec in enumerate(pexpr.args): + P[n, 0] = self._print(ec.expr) + if ec.cond == True: + P[n, 1] = prettyForm('otherwise') + else: + P[n, 1] = prettyForm( + *prettyForm('for ').right(self._print(ec.cond))) + hsep = 2 + vsep = 1 + len_args = len(pexpr.args) + + # max widths + maxw = [max([P[i, j].width() for i in range(len_args)]) + for j in range(2)] + + # FIXME: Refactor this code and matrix into some tabular environment. + # drawing result + D = None + + for i in range(len_args): + D_row = None + for j in range(2): + p = P[i, j] + assert p.width() <= maxw[j] + + wdelta = maxw[j] - p.width() + wleft = wdelta // 2 + wright = wdelta - wleft + + p = prettyForm(*p.right(' '*wright)) + p = prettyForm(*p.left(' '*wleft)) + + if D_row is None: + D_row = p + continue + + D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer + D_row = prettyForm(*D_row.right(p)) + if D is None: + D = D_row # first row in a picture + continue + + # v-spacer + for _ in range(vsep): + D = prettyForm(*D.below(' ')) + + D = prettyForm(*D.below(D_row)) + + D = prettyForm(*D.parens('{', '')) + D.baseline = D.height()//2 + D.binding = prettyForm.OPEN + return D + + def _print_ITE(self, ite): + from sympy.functions.elementary.piecewise import Piecewise + return self._print(ite.rewrite(Piecewise)) + + def _hprint_vec(self, v): + D = None + + for a in v: + p = a + if D is None: + D = p + else: + D = prettyForm(*D.right(', ')) + D = prettyForm(*D.right(p)) + if D is None: + D = stringPict(' ') + + return D + + def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False): + if ifascii_nougly and not self._use_unicode: + return self._print_seq((p1, '|', p2), left=left, right=right, + delimiter=delimiter, ifascii_nougly=True) + tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter) + sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) + return self._print_seq((p1, sep, p2), left=left, right=right, + delimiter=delimiter) + + def _print_hyper(self, e): + # FIXME refactor Matrix, Piecewise, and this into a tabular environment + ap = [self._print(a) for a in e.ap] + bq = [self._print(b) for b in e.bq] + + P = self._print(e.argument) + P.baseline = P.height()//2 + + # Drawing result - first create the ap, bq vectors + D = None + for v in [ap, bq]: + D_row = self._hprint_vec(v) + if D is None: + D = D_row # first row in a picture + else: + D = prettyForm(*D.below(' ')) + D = prettyForm(*D.below(D_row)) + + # make sure that the argument `z' is centred vertically + D.baseline = D.height()//2 + + # insert horizontal separator + P = prettyForm(*P.left(' ')) + D = prettyForm(*D.right(' ')) + + # insert separating `|` + D = self._hprint_vseparator(D, P) + + # add parens + D = prettyForm(*D.parens('(', ')')) + + # create the F symbol + above = D.height()//2 - 1 + below = D.height() - above - 1 + + sz, t, b, add, img = annotated('F') + F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), + baseline=above + sz) + add = (sz + 1)//2 + + F = prettyForm(*F.left(self._print(len(e.ap)))) + F = prettyForm(*F.right(self._print(len(e.bq)))) + F.baseline = above + add + + D = prettyForm(*F.right(' ', D)) + + return D + + def _print_meijerg(self, e): + # FIXME refactor Matrix, Piecewise, and this into a tabular environment + + v = {} + v[(0, 0)] = [self._print(a) for a in e.an] + v[(0, 1)] = [self._print(a) for a in e.aother] + v[(1, 0)] = [self._print(b) for b in e.bm] + v[(1, 1)] = [self._print(b) for b in e.bother] + + P = self._print(e.argument) + P.baseline = P.height()//2 + + vp = {} + for idx in v: + vp[idx] = self._hprint_vec(v[idx]) + + for i in range(2): + maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) + for j in range(2): + s = vp[(j, i)] + left = (maxw - s.width()) // 2 + right = maxw - left - s.width() + s = prettyForm(*s.left(' ' * left)) + s = prettyForm(*s.right(' ' * right)) + vp[(j, i)] = s + + D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) + D1 = prettyForm(*D1.below(' ')) + D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) + D = prettyForm(*D1.below(D2)) + + # make sure that the argument `z' is centred vertically + D.baseline = D.height()//2 + + # insert horizontal separator + P = prettyForm(*P.left(' ')) + D = prettyForm(*D.right(' ')) + + # insert separating `|` + D = self._hprint_vseparator(D, P) + + # add parens + D = prettyForm(*D.parens('(', ')')) + + # create the G symbol + above = D.height()//2 - 1 + below = D.height() - above - 1 + + sz, t, b, add, img = annotated('G') + F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), + baseline=above + sz) + + pp = self._print(len(e.ap)) + pq = self._print(len(e.bq)) + pm = self._print(len(e.bm)) + pn = self._print(len(e.an)) + + def adjust(p1, p2): + diff = p1.width() - p2.width() + if diff == 0: + return p1, p2 + elif diff > 0: + return p1, prettyForm(*p2.left(' '*diff)) + else: + return prettyForm(*p1.left(' '*-diff)), p2 + pp, pm = adjust(pp, pm) + pq, pn = adjust(pq, pn) + pu = prettyForm(*pm.right(', ', pn)) + pl = prettyForm(*pp.right(', ', pq)) + + ht = F.baseline - above - 2 + if ht > 0: + pu = prettyForm(*pu.below('\n'*ht)) + p = prettyForm(*pu.below(pl)) + + F.baseline = above + F = prettyForm(*F.right(p)) + + F.baseline = above + add + + D = prettyForm(*F.right(' ', D)) + + return D + + def _print_ExpBase(self, e): + # TODO should exp_polar be printed differently? + # what about exp_polar(0), exp_polar(1)? + base = prettyForm(pretty_atom('Exp1', 'e')) + return base ** self._print(e.args[0]) + + def _print_Exp1(self, e): + return prettyForm(pretty_atom('Exp1', 'e')) + + def _print_Function(self, e, sort=False, func_name=None, left='(', + right=')'): + # optional argument func_name for supplying custom names + # XXX works only for applied functions + return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name, left=left, right=right) + + def _print_mathieuc(self, e): + return self._print_Function(e, func_name='C') + + def _print_mathieus(self, e): + return self._print_Function(e, func_name='S') + + def _print_mathieucprime(self, e): + return self._print_Function(e, func_name="C'") + + def _print_mathieusprime(self, e): + return self._print_Function(e, func_name="S'") + + def _helper_print_function(self, func, args, sort=False, func_name=None, + delimiter=', ', elementwise=False, left='(', + right=')'): + if sort: + args = sorted(args, key=default_sort_key) + + if not func_name and hasattr(func, "__name__"): + func_name = func.__name__ + + if func_name: + prettyFunc = self._print(Symbol(func_name)) + else: + prettyFunc = prettyForm(*self._print(func).parens()) + + if elementwise: + if self._use_unicode: + circ = pretty_atom('Modifier Letter Low Ring') + else: + circ = '.' + circ = self._print(circ) + prettyFunc = prettyForm( + binding=prettyForm.LINE, + *stringPict.next(prettyFunc, circ) + ) + + prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens( + left=left, right=right)) + + pform = prettyForm( + binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) + + # store pform parts so it can be reassembled e.g. when powered + pform.prettyFunc = prettyFunc + pform.prettyArgs = prettyArgs + + return pform + + def _print_ElementwiseApplyFunction(self, e): + func = e.function + arg = e.expr + args = [arg] + return self._helper_print_function(func, args, delimiter="", elementwise=True) + + @property + def _special_function_classes(self): + from sympy.functions.special.tensor_functions import KroneckerDelta + from sympy.functions.special.gamma_functions import gamma, lowergamma + from sympy.functions.special.zeta_functions import lerchphi + from sympy.functions.special.beta_functions import beta + from sympy.functions.special.delta_functions import DiracDelta + from sympy.functions.special.error_functions import Chi + return {KroneckerDelta: [greek_unicode['delta'], 'delta'], + gamma: [greek_unicode['Gamma'], 'Gamma'], + lerchphi: [greek_unicode['Phi'], 'lerchphi'], + lowergamma: [greek_unicode['gamma'], 'gamma'], + beta: [greek_unicode['Beta'], 'B'], + DiracDelta: [greek_unicode['delta'], 'delta'], + Chi: ['Chi', 'Chi']} + + def _print_FunctionClass(self, expr): + for cls in self._special_function_classes: + if issubclass(expr, cls) and expr.__name__ == cls.__name__: + if self._use_unicode: + return prettyForm(self._special_function_classes[cls][0]) + else: + return prettyForm(self._special_function_classes[cls][1]) + func_name = expr.__name__ + return prettyForm(pretty_symbol(func_name)) + + def _print_GeometryEntity(self, expr): + # GeometryEntity is based on Tuple but should not print like a Tuple + return self.emptyPrinter(expr) + + def _print_lerchphi(self, e): + func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' + return self._print_Function(e, func_name=func_name) + + def _print_dirichlet_eta(self, e): + func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' + return self._print_Function(e, func_name=func_name) + + def _print_Heaviside(self, e): + func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' + if e.args[1] is S.Half: + pform = prettyForm(*self._print(e.args[0]).parens()) + pform = prettyForm(*pform.left(func_name)) + return pform + else: + return self._print_Function(e, func_name=func_name) + + def _print_fresnels(self, e): + return self._print_Function(e, func_name="S") + + def _print_fresnelc(self, e): + return self._print_Function(e, func_name="C") + + def _print_airyai(self, e): + return self._print_Function(e, func_name="Ai") + + def _print_airybi(self, e): + return self._print_Function(e, func_name="Bi") + + def _print_airyaiprime(self, e): + return self._print_Function(e, func_name="Ai'") + + def _print_airybiprime(self, e): + return self._print_Function(e, func_name="Bi'") + + def _print_LambertW(self, e): + return self._print_Function(e, func_name="W") + + def _print_Covariance(self, e): + return self._print_Function(e, func_name="Cov") + + def _print_Variance(self, e): + return self._print_Function(e, func_name="Var") + + def _print_Probability(self, e): + return self._print_Function(e, func_name="P") + + def _print_Expectation(self, e): + return self._print_Function(e, func_name="E", left='[', right=']') + + def _print_Lambda(self, e): + expr = e.expr + sig = e.signature + if self._use_unicode: + arrow = " \N{RIGHTWARDS ARROW FROM BAR} " + else: + arrow = " -> " + if len(sig) == 1 and sig[0].is_symbol: + sig = sig[0] + var_form = self._print(sig) + + return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) + + def _print_Order(self, expr): + pform = self._print(expr.expr) + if (expr.point and any(p != S.Zero for p in expr.point)) or \ + len(expr.variables) > 1: + pform = prettyForm(*pform.right("; ")) + if len(expr.variables) > 1: + pform = prettyForm(*pform.right(self._print(expr.variables))) + elif len(expr.variables): + pform = prettyForm(*pform.right(self._print(expr.variables[0]))) + if self._use_unicode: + pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} ")) + else: + pform = prettyForm(*pform.right(" -> ")) + if len(expr.point) > 1: + pform = prettyForm(*pform.right(self._print(expr.point))) + else: + pform = prettyForm(*pform.right(self._print(expr.point[0]))) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left("O")) + return pform + + def _print_SingularityFunction(self, e): + if self._use_unicode: + shift = self._print(e.args[0]-e.args[1]) + n = self._print(e.args[2]) + base = prettyForm("<") + base = prettyForm(*base.right(shift)) + base = prettyForm(*base.right(">")) + pform = base**n + return pform + else: + n = self._print(e.args[2]) + shift = self._print(e.args[0]-e.args[1]) + base = self._print_seq(shift, "<", ">", ' ') + return base**n + + def _print_beta(self, e): + func_name = greek_unicode['Beta'] if self._use_unicode else 'B' + return self._print_Function(e, func_name=func_name) + + def _print_betainc(self, e): + func_name = "B'" + return self._print_Function(e, func_name=func_name) + + def _print_betainc_regularized(self, e): + func_name = 'I' + return self._print_Function(e, func_name=func_name) + + def _print_gamma(self, e): + func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' + return self._print_Function(e, func_name=func_name) + + def _print_uppergamma(self, e): + func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' + return self._print_Function(e, func_name=func_name) + + def _print_lowergamma(self, e): + func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' + return self._print_Function(e, func_name=func_name) + + def _print_DiracDelta(self, e): + if self._use_unicode: + if len(e.args) == 2: + a = prettyForm(greek_unicode['delta']) + b = self._print(e.args[1]) + b = prettyForm(*b.parens()) + c = self._print(e.args[0]) + c = prettyForm(*c.parens()) + pform = a**b + pform = prettyForm(*pform.right(' ')) + pform = prettyForm(*pform.right(c)) + return pform + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left(greek_unicode['delta'])) + return pform + else: + return self._print_Function(e) + + def _print_expint(self, e): + if e.args[0].is_Integer and self._use_unicode: + return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) + return self._print_Function(e) + + def _print_Chi(self, e): + # This needs a special case since otherwise it comes out as greek + # letter chi... + prettyFunc = prettyForm("Chi") + prettyArgs = prettyForm(*self._print_seq(e.args).parens()) + + pform = prettyForm( + binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) + + # store pform parts so it can be reassembled e.g. when powered + pform.prettyFunc = prettyFunc + pform.prettyArgs = prettyArgs + + return pform + + def _print_elliptic_e(self, e): + pforma0 = self._print(e.args[0]) + if len(e.args) == 1: + pform = pforma0 + else: + pforma1 = self._print(e.args[1]) + pform = self._hprint_vseparator(pforma0, pforma1) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left('E')) + return pform + + def _print_elliptic_k(self, e): + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left('K')) + return pform + + def _print_elliptic_f(self, e): + pforma0 = self._print(e.args[0]) + pforma1 = self._print(e.args[1]) + pform = self._hprint_vseparator(pforma0, pforma1) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left('F')) + return pform + + def _print_elliptic_pi(self, e): + name = greek_unicode['Pi'] if self._use_unicode else 'Pi' + pforma0 = self._print(e.args[0]) + pforma1 = self._print(e.args[1]) + if len(e.args) == 2: + pform = self._hprint_vseparator(pforma0, pforma1) + else: + pforma2 = self._print(e.args[2]) + pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False) + pforma = prettyForm(*pforma.left('; ')) + pform = prettyForm(*pforma.left(pforma0)) + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left(name)) + return pform + + def _print_GoldenRatio(self, expr): + if self._use_unicode: + return prettyForm(pretty_symbol('phi')) + return self._print(Symbol("GoldenRatio")) + + def _print_EulerGamma(self, expr): + if self._use_unicode: + return prettyForm(pretty_symbol('gamma')) + return self._print(Symbol("EulerGamma")) + + def _print_Catalan(self, expr): + return self._print(Symbol("G")) + + def _print_Mod(self, expr): + pform = self._print(expr.args[0]) + if pform.binding > prettyForm.MUL: + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.right(' mod ')) + pform = prettyForm(*pform.right(self._print(expr.args[1]))) + pform.binding = prettyForm.OPEN + return pform + + def _print_Add(self, expr, order=None): + terms = self._as_ordered_terms(expr, order=order) + pforms, indices = [], [] + + def pretty_negative(pform, index): + """Prepend a minus sign to a pretty form. """ + #TODO: Move this code to prettyForm + if index == 0: + if pform.height() > 1: + pform_neg = '- ' + else: + pform_neg = '-' + else: + pform_neg = ' - ' + + if (pform.binding > prettyForm.NEG + or pform.binding == prettyForm.ADD): + p = stringPict(*pform.parens()) + else: + p = pform + p = stringPict.next(pform_neg, p) + # Lower the binding to NEG, even if it was higher. Otherwise, it + # will print as a + ( - (b)), instead of a - (b). + return prettyForm(binding=prettyForm.NEG, *p) + + for i, term in enumerate(terms): + if term.is_Mul and term.could_extract_minus_sign(): + coeff, other = term.as_coeff_mul(rational=False) + if coeff == -1: + negterm = Mul(*other, evaluate=False) + else: + negterm = Mul(-coeff, *other, evaluate=False) + pform = self._print(negterm) + pforms.append(pretty_negative(pform, i)) + elif term.is_Rational and term.q > 1: + pforms.append(None) + indices.append(i) + elif term.is_Number and term < 0: + pform = self._print(-term) + pforms.append(pretty_negative(pform, i)) + elif term.is_Relational: + pforms.append(prettyForm(*self._print(term).parens())) + else: + pforms.append(self._print(term)) + + if indices: + large = True + + for pform in pforms: + if pform is not None and pform.height() > 1: + break + else: + large = False + + for i in indices: + term, negative = terms[i], False + + if term < 0: + term, negative = -term, True + + if large: + pform = prettyForm(str(term.p))/prettyForm(str(term.q)) + else: + pform = self._print(term) + + if negative: + pform = pretty_negative(pform, i) + + pforms[i] = pform + + return prettyForm.__add__(*pforms) + + def _print_Mul(self, product): + from sympy.physics.units import Quantity + + # Check for unevaluated Mul. In this case we need to make sure the + # identities are visible, multiple Rational factors are not combined + # etc so we display in a straight-forward form that fully preserves all + # args and their order. + args = product.args + if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): + strargs = list(map(self._print, args)) + # XXX: This is a hack to work around the fact that + # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it + # would be better to fix this in prettyForm.__mul__ instead. + negone = strargs[0] == '-1' + if negone: + strargs[0] = prettyForm('1', 0, 0) + obj = prettyForm.__mul__(*strargs) + if negone: + obj = prettyForm('-' + obj.s, obj.baseline, obj.binding) + return obj + + a = [] # items in the numerator + b = [] # items that are in the denominator (if any) + + if self.order not in ('old', 'none'): + args = product.as_ordered_factors() + else: + args = list(product.args) + + # If quantities are present append them at the back + args = sorted(args, key=lambda x: isinstance(x, Quantity) or + (isinstance(x, Pow) and isinstance(x.base, Quantity))) + + # Gather terms for numerator/denominator + for item in args: + if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: + if item.exp != -1: + b.append(Pow(item.base, -item.exp, evaluate=False)) + else: + b.append(Pow(item.base, -item.exp)) + elif item.is_Rational and item is not S.Infinity: + if item.p != 1: + a.append( Rational(item.p) ) + if item.q != 1: + b.append( Rational(item.q) ) + else: + a.append(item) + + # Convert to pretty forms. Parentheses are added by `__mul__`. + a = [self._print(ai) for ai in a] + b = [self._print(bi) for bi in b] + + # Construct a pretty form + if len(b) == 0: + return prettyForm.__mul__(*a) + else: + if len(a) == 0: + a.append( self._print(S.One) ) + return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) + + # A helper function for _print_Pow to print x**(1/n) + def _print_nth_root(self, base, root): + bpretty = self._print(base) + + # In very simple cases, use a single-char root sign + if (self._settings['use_unicode_sqrt_char'] and self._use_unicode + and root == 2 and bpretty.height() == 1 + and (bpretty.width() == 1 + or (base.is_Integer and base.is_nonnegative))): + return prettyForm(*bpretty.left('\N{SQUARE ROOT}')) + + # Construct root sign, start with the \/ shape + _zZ = xobj('/', 1) + rootsign = xobj('\\', 1) + _zZ + # Constructing the number to put on root + rpretty = self._print(root) + # roots look bad if they are not a single line + if rpretty.height() != 1: + return self._print(base)**self._print(1/root) + # If power is half, no number should appear on top of root sign + exp = '' if root == 2 else str(rpretty).ljust(2) + if len(exp) > 2: + rootsign = ' '*(len(exp) - 2) + rootsign + # Stack the exponent + rootsign = stringPict(exp + '\n' + rootsign) + rootsign.baseline = 0 + # Diagonal: length is one less than height of base + linelength = bpretty.height() - 1 + diagonal = stringPict('\n'.join( + ' '*(linelength - i - 1) + _zZ + ' '*i + for i in range(linelength) + )) + # Put baseline just below lowest line: next to exp + diagonal.baseline = linelength - 1 + # Make the root symbol + rootsign = prettyForm(*rootsign.right(diagonal)) + # Det the baseline to match contents to fix the height + # but if the height of bpretty is one, the rootsign must be one higher + rootsign.baseline = max(1, bpretty.baseline) + #build result + s = prettyForm(hobj('_', 2 + bpretty.width())) + s = prettyForm(*bpretty.above(s)) + s = prettyForm(*s.left(rootsign)) + return s + + def _print_Pow(self, power): + from sympy.simplify.simplify import fraction + b, e = power.as_base_exp() + if power.is_commutative: + if e is S.NegativeOne: + return prettyForm("1")/self._print(b) + n, d = fraction(e) + if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \ + and self._settings['root_notation']: + return self._print_nth_root(b, d) + if e.is_Rational and e < 0: + return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) + + if b.is_Relational: + return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) + + return self._print(b)**self._print(e) + + def _print_UnevaluatedExpr(self, expr): + return self._print(expr.args[0]) + + def __print_numer_denom(self, p, q): + if q == 1: + if p < 0: + return prettyForm(str(p), binding=prettyForm.NEG) + else: + return prettyForm(str(p)) + elif abs(p) >= 10 and abs(q) >= 10: + # If more than one digit in numer and denom, print larger fraction + if p < 0: + return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) + # Old printing method: + #pform = prettyForm(str(-p))/prettyForm(str(q)) + #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) + else: + return prettyForm(str(p))/prettyForm(str(q)) + else: + return None + + def _print_Rational(self, expr): + result = self.__print_numer_denom(expr.p, expr.q) + + if result is not None: + return result + else: + return self.emptyPrinter(expr) + + def _print_Fraction(self, expr): + result = self.__print_numer_denom(expr.numerator, expr.denominator) + + if result is not None: + return result + else: + return self.emptyPrinter(expr) + + def _print_ProductSet(self, p): + if len(p.sets) >= 1 and not has_variety(p.sets): + return self._print(p.sets[0]) ** self._print(len(p.sets)) + else: + prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' + return self._print_seq(p.sets, None, None, ' %s ' % prod_char, + parenthesize=lambda set: set.is_Union or + set.is_Intersection or set.is_ProductSet) + + def _print_FiniteSet(self, s): + items = sorted(s.args, key=default_sort_key) + return self._print_seq(items, '{', '}', ', ' ) + + def _print_Range(self, s): + + if self._use_unicode: + dots = "\N{HORIZONTAL ELLIPSIS}" + else: + dots = '...' + + if s.start.is_infinite and s.stop.is_infinite: + if s.step.is_positive: + printset = dots, -1, 0, 1, dots + else: + printset = dots, 1, 0, -1, dots + elif s.start.is_infinite: + printset = dots, s[-1] - s.step, s[-1] + elif s.stop.is_infinite: + it = iter(s) + printset = next(it), next(it), dots + elif len(s) > 4: + it = iter(s) + printset = next(it), next(it), dots, s[-1] + else: + printset = tuple(s) + + return self._print_seq(printset, '{', '}', ', ' ) + + def _print_Interval(self, i): + if i.start == i.end: + return self._print_seq(i.args[:1], '{', '}') + + else: + if i.left_open: + left = '(' + else: + left = '[' + + if i.right_open: + right = ')' + else: + right = ']' + + return self._print_seq(i.args[:2], left, right) + + def _print_AccumulationBounds(self, i): + left = '<' + right = '>' + + return self._print_seq(i.args[:2], left, right) + + def _print_Intersection(self, u): + + delimiter = ' %s ' % pretty_atom('Intersection', 'n') + + return self._print_seq(u.args, None, None, delimiter, + parenthesize=lambda set: set.is_ProductSet or + set.is_Union or set.is_Complement) + + def _print_Union(self, u): + + union_delimiter = ' %s ' % pretty_atom('Union', 'U') + + return self._print_seq(u.args, None, None, union_delimiter, + parenthesize=lambda set: set.is_ProductSet or + set.is_Intersection or set.is_Complement) + + def _print_SymmetricDifference(self, u): + if not self._use_unicode: + raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") + + sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') + + return self._print_seq(u.args, None, None, sym_delimeter) + + def _print_Complement(self, u): + + delimiter = r' \ ' + + return self._print_seq(u.args, None, None, delimiter, + parenthesize=lambda set: set.is_ProductSet or set.is_Intersection + or set.is_Union) + + def _print_ImageSet(self, ts): + if self._use_unicode: + inn = "\N{SMALL ELEMENT OF}" + else: + inn = 'in' + fun = ts.lamda + sets = ts.base_sets + signature = fun.signature + expr = self._print(fun.expr) + + # TODO: the stuff to the left of the | and the stuff to the right of + # the | should have independent baselines, that way something like + # ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part + # centered on the right instead of aligned with the fraction bar on + # the left. The same also applies to ConditionSet and ComplexRegion + if len(signature) == 1: + S = self._print_seq((signature[0], inn, sets[0]), + delimiter=' ') + return self._hprint_vseparator(expr, S, + left='{', right='}', + ifascii_nougly=True, delimiter=' ') + else: + pargs = tuple(j for var, setv in zip(signature, sets) for j in + (var, ' ', inn, ' ', setv, ", ")) + S = self._print_seq(pargs[:-1], delimiter='') + return self._hprint_vseparator(expr, S, + left='{', right='}', + ifascii_nougly=True, delimiter=' ') + + def _print_ConditionSet(self, ts): + if self._use_unicode: + inn = "\N{SMALL ELEMENT OF}" + # using _and because and is a keyword and it is bad practice to + # overwrite them + _and = "\N{LOGICAL AND}" + else: + inn = 'in' + _and = 'and' + + variables = self._print_seq(Tuple(ts.sym)) + as_expr = getattr(ts.condition, 'as_expr', None) + if as_expr is not None: + cond = self._print(ts.condition.as_expr()) + else: + cond = self._print(ts.condition) + if self._use_unicode: + cond = self._print(cond) + cond = prettyForm(*cond.parens()) + + if ts.base_set is S.UniversalSet: + return self._hprint_vseparator(variables, cond, left="{", + right="}", ifascii_nougly=True, + delimiter=' ') + + base = self._print(ts.base_set) + C = self._print_seq((variables, inn, base, _and, cond), + delimiter=' ') + return self._hprint_vseparator(variables, C, left="{", right="}", + ifascii_nougly=True, delimiter=' ') + + def _print_ComplexRegion(self, ts): + if self._use_unicode: + inn = "\N{SMALL ELEMENT OF}" + else: + inn = 'in' + variables = self._print_seq(ts.variables) + expr = self._print(ts.expr) + prodsets = self._print(ts.sets) + + C = self._print_seq((variables, inn, prodsets), + delimiter=' ') + return self._hprint_vseparator(expr, C, left="{", right="}", + ifascii_nougly=True, delimiter=' ') + + def _print_Contains(self, e): + var, set = e.args + if self._use_unicode: + el = " \N{ELEMENT OF} " + return prettyForm(*stringPict.next(self._print(var), + el, self._print(set)), binding=8) + else: + return prettyForm(sstr(e)) + + def _print_FourierSeries(self, s): + if s.an.formula is S.Zero and s.bn.formula is S.Zero: + return self._print(s.a0) + if self._use_unicode: + dots = "\N{HORIZONTAL ELLIPSIS}" + else: + dots = '...' + return self._print_Add(s.truncate()) + self._print(dots) + + def _print_FormalPowerSeries(self, s): + return self._print_Add(s.infinite) + + def _print_SetExpr(self, se): + pretty_set = prettyForm(*self._print(se.set).parens()) + pretty_name = self._print(Symbol("SetExpr")) + return prettyForm(*pretty_name.right(pretty_set)) + + def _print_SeqFormula(self, s): + if self._use_unicode: + dots = "\N{HORIZONTAL ELLIPSIS}" + else: + dots = '...' + + if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: + raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") + + if s.start is S.NegativeInfinity: + stop = s.stop + printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), + s.coeff(stop - 1), s.coeff(stop)) + elif s.stop is S.Infinity or s.length > 4: + printset = s[:4] + printset.append(dots) + printset = tuple(printset) + else: + printset = tuple(s) + return self._print_list(printset) + + _print_SeqPer = _print_SeqFormula + _print_SeqAdd = _print_SeqFormula + _print_SeqMul = _print_SeqFormula + + def _print_seq(self, seq, left=None, right=None, delimiter=', ', + parenthesize=lambda x: False, ifascii_nougly=True): + try: + pforms = [] + for item in seq: + pform = self._print(item) + if parenthesize(item): + pform = prettyForm(*pform.parens()) + if pforms: + pforms.append(delimiter) + pforms.append(pform) + + if not pforms: + s = stringPict('') + else: + s = prettyForm(*stringPict.next(*pforms)) + + # XXX: Under the tests from #15686 the above raises: + # AttributeError: 'Fake' object has no attribute 'baseline' + # This is caught below but that is not the right way to + # fix it. + + except AttributeError: + s = None + for item in seq: + pform = self.doprint(item) + if parenthesize(item): + pform = prettyForm(*pform.parens()) + if s is None: + # first element + s = pform + else : + s = prettyForm(*stringPict.next(s, delimiter)) + s = prettyForm(*stringPict.next(s, pform)) + + if s is None: + s = stringPict('') + + s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly)) + return s + + def join(self, delimiter, args): + pform = None + + for arg in args: + if pform is None: + pform = arg + else: + pform = prettyForm(*pform.right(delimiter)) + pform = prettyForm(*pform.right(arg)) + + if pform is None: + return prettyForm("") + else: + return pform + + def _print_list(self, l): + return self._print_seq(l, '[', ']') + + def _print_tuple(self, t): + if len(t) == 1: + ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) + return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) + else: + return self._print_seq(t, '(', ')') + + def _print_Tuple(self, expr): + return self._print_tuple(expr) + + def _print_dict(self, d): + keys = sorted(d.keys(), key=default_sort_key) + items = [] + + for k in keys: + K = self._print(k) + V = self._print(d[k]) + s = prettyForm(*stringPict.next(K, ': ', V)) + + items.append(s) + + return self._print_seq(items, '{', '}') + + def _print_Dict(self, d): + return self._print_dict(d) + + def _print_set(self, s): + if not s: + return prettyForm('set()') + items = sorted(s, key=default_sort_key) + pretty = self._print_seq(items) + pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) + return pretty + + def _print_frozenset(self, s): + if not s: + return prettyForm('frozenset()') + items = sorted(s, key=default_sort_key) + pretty = self._print_seq(items) + pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) + pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) + pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) + return pretty + + def _print_UniversalSet(self, s): + if self._use_unicode: + return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") + else: + return prettyForm('UniversalSet') + + def _print_PolyRing(self, ring): + return prettyForm(sstr(ring)) + + def _print_FracField(self, field): + return prettyForm(sstr(field)) + + def _print_FreeGroupElement(self, elm): + return prettyForm(str(elm)) + + def _print_PolyElement(self, poly): + return prettyForm(sstr(poly)) + + def _print_FracElement(self, frac): + return prettyForm(sstr(frac)) + + def _print_AlgebraicNumber(self, expr): + if expr.is_aliased: + return self._print(expr.as_poly().as_expr()) + else: + return self._print(expr.as_expr()) + + def _print_ComplexRootOf(self, expr): + args = [self._print_Add(expr.expr, order='lex'), expr.index] + pform = prettyForm(*self._print_seq(args).parens()) + pform = prettyForm(*pform.left('CRootOf')) + return pform + + def _print_RootSum(self, expr): + args = [self._print_Add(expr.expr, order='lex')] + + if expr.fun is not S.IdentityFunction: + args.append(self._print(expr.fun)) + + pform = prettyForm(*self._print_seq(args).parens()) + pform = prettyForm(*pform.left('RootSum')) + + return pform + + def _print_FiniteField(self, expr): + if self._use_unicode: + form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d' + else: + form = 'GF(%d)' + + return prettyForm(pretty_symbol(form % expr.mod)) + + def _print_IntegerRing(self, expr): + if self._use_unicode: + return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}') + else: + return prettyForm('ZZ') + + def _print_RationalField(self, expr): + if self._use_unicode: + return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}') + else: + return prettyForm('QQ') + + def _print_RealField(self, domain): + if self._use_unicode: + prefix = '\N{DOUBLE-STRUCK CAPITAL R}' + else: + prefix = 'RR' + + if domain.has_default_precision: + return prettyForm(prefix) + else: + return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) + + def _print_ComplexField(self, domain): + if self._use_unicode: + prefix = '\N{DOUBLE-STRUCK CAPITAL C}' + else: + prefix = 'CC' + + if domain.has_default_precision: + return prettyForm(prefix) + else: + return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) + + def _print_PolynomialRing(self, expr): + args = list(expr.symbols) + + if not expr.order.is_default: + order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) + args.append(order) + + pform = self._print_seq(args, '[', ']') + pform = prettyForm(*pform.left(self._print(expr.domain))) + + return pform + + def _print_FractionField(self, expr): + args = list(expr.symbols) + + if not expr.order.is_default: + order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) + args.append(order) + + pform = self._print_seq(args, '(', ')') + pform = prettyForm(*pform.left(self._print(expr.domain))) + + return pform + + def _print_PolynomialRingBase(self, expr): + g = expr.symbols + if str(expr.order) != str(expr.default_order): + g = g + ("order=" + str(expr.order),) + pform = self._print_seq(g, '[', ']') + pform = prettyForm(*pform.left(self._print(expr.domain))) + + return pform + + def _print_GroebnerBasis(self, basis): + exprs = [ self._print_Add(arg, order=basis.order) + for arg in basis.exprs ] + exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) + + gens = [ self._print(gen) for gen in basis.gens ] + + domain = prettyForm( + *prettyForm("domain=").right(self._print(basis.domain))) + order = prettyForm( + *prettyForm("order=").right(self._print(basis.order))) + + pform = self.join(", ", [exprs] + gens + [domain, order]) + + pform = prettyForm(*pform.parens()) + pform = prettyForm(*pform.left(basis.__class__.__name__)) + + return pform + + def _print_Subs(self, e): + pform = self._print(e.expr) + pform = prettyForm(*pform.parens()) + + h = pform.height() if pform.height() > 1 else 2 + rvert = stringPict(vobj('|', h), baseline=pform.baseline) + pform = prettyForm(*pform.right(rvert)) + + b = pform.baseline + pform.baseline = pform.height() - 1 + pform = prettyForm(*pform.right(self._print_seq([ + self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), + delimiter='') for v in zip(e.variables, e.point) ]))) + + pform.baseline = b + return pform + + def _print_number_function(self, e, name): + # Print name_arg[0] for one argument or name_arg[0](arg[1]) + # for more than one argument + pform = prettyForm(name) + arg = self._print(e.args[0]) + pform_arg = prettyForm(" "*arg.width()) + pform_arg = prettyForm(*pform_arg.below(arg)) + pform = prettyForm(*pform.right(pform_arg)) + if len(e.args) == 1: + return pform + m, x = e.args + # TODO: copy-pasted from _print_Function: can we do better? + prettyFunc = pform + prettyArgs = prettyForm(*self._print_seq([x]).parens()) + pform = prettyForm( + binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) + pform.prettyFunc = prettyFunc + pform.prettyArgs = prettyArgs + return pform + + def _print_euler(self, e): + return self._print_number_function(e, "E") + + def _print_catalan(self, e): + return self._print_number_function(e, "C") + + def _print_bernoulli(self, e): + return self._print_number_function(e, "B") + + _print_bell = _print_bernoulli + + def _print_lucas(self, e): + return self._print_number_function(e, "L") + + def _print_fibonacci(self, e): + return self._print_number_function(e, "F") + + def _print_tribonacci(self, e): + return self._print_number_function(e, "T") + + def _print_stieltjes(self, e): + if self._use_unicode: + return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}') + else: + return self._print_number_function(e, "stieltjes") + + def _print_KroneckerDelta(self, e): + pform = self._print(e.args[0]) + pform = prettyForm(*pform.right(prettyForm(','))) + pform = prettyForm(*pform.right(self._print(e.args[1]))) + if self._use_unicode: + a = stringPict(pretty_symbol('delta')) + else: + a = stringPict('d') + b = pform + top = stringPict(*b.left(' '*a.width())) + bot = stringPict(*a.right(' '*b.width())) + return prettyForm(binding=prettyForm.POW, *bot.below(top)) + + def _print_RandomDomain(self, d): + if hasattr(d, 'as_boolean'): + pform = self._print('Domain: ') + pform = prettyForm(*pform.right(self._print(d.as_boolean()))) + return pform + elif hasattr(d, 'set'): + pform = self._print('Domain: ') + pform = prettyForm(*pform.right(self._print(d.symbols))) + pform = prettyForm(*pform.right(self._print(' in '))) + pform = prettyForm(*pform.right(self._print(d.set))) + return pform + elif hasattr(d, 'symbols'): + pform = self._print('Domain on ') + pform = prettyForm(*pform.right(self._print(d.symbols))) + return pform + else: + return self._print(None) + + def _print_DMP(self, p): + try: + if p.ring is not None: + # TODO incorporate order + return self._print(p.ring.to_sympy(p)) + except SympifyError: + pass + return self._print(repr(p)) + + def _print_DMF(self, p): + return self._print_DMP(p) + + def _print_Object(self, object): + return self._print(pretty_symbol(object.name)) + + def _print_Morphism(self, morphism): + arrow = xsym("-->") + + domain = self._print(morphism.domain) + codomain = self._print(morphism.codomain) + tail = domain.right(arrow, codomain)[0] + + return prettyForm(tail) + + def _print_NamedMorphism(self, morphism): + pretty_name = self._print(pretty_symbol(morphism.name)) + pretty_morphism = self._print_Morphism(morphism) + return prettyForm(pretty_name.right(":", pretty_morphism)[0]) + + def _print_IdentityMorphism(self, morphism): + from sympy.categories import NamedMorphism + return self._print_NamedMorphism( + NamedMorphism(morphism.domain, morphism.codomain, "id")) + + def _print_CompositeMorphism(self, morphism): + + circle = xsym(".") + + # All components of the morphism have names and it is thus + # possible to build the name of the composite. + component_names_list = [pretty_symbol(component.name) for + component in morphism.components] + component_names_list.reverse() + component_names = circle.join(component_names_list) + ":" + + pretty_name = self._print(component_names) + pretty_morphism = self._print_Morphism(morphism) + return prettyForm(pretty_name.right(pretty_morphism)[0]) + + def _print_Category(self, category): + return self._print(pretty_symbol(category.name)) + + def _print_Diagram(self, diagram): + if not diagram.premises: + # This is an empty diagram. + return self._print(S.EmptySet) + + pretty_result = self._print(diagram.premises) + if diagram.conclusions: + results_arrow = " %s " % xsym("==>") + + pretty_conclusions = self._print(diagram.conclusions)[0] + pretty_result = pretty_result.right( + results_arrow, pretty_conclusions) + + return prettyForm(pretty_result[0]) + + def _print_DiagramGrid(self, grid): + from sympy.matrices import Matrix + matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") + for j in range(grid.width)] + for i in range(grid.height)]) + return self._print_matrix_contents(matrix) + + def _print_FreeModuleElement(self, m): + # Print as row vector for convenience, for now. + return self._print_seq(m, '[', ']') + + def _print_SubModule(self, M): + return self._print_seq(M.gens, '<', '>') + + def _print_FreeModule(self, M): + return self._print(M.ring)**self._print(M.rank) + + def _print_ModuleImplementedIdeal(self, M): + return self._print_seq([x for [x] in M._module.gens], '<', '>') + + def _print_QuotientRing(self, R): + return self._print(R.ring) / self._print(R.base_ideal) + + def _print_QuotientRingElement(self, R): + return self._print(R.data) + self._print(R.ring.base_ideal) + + def _print_QuotientModuleElement(self, m): + return self._print(m.data) + self._print(m.module.killed_module) + + def _print_QuotientModule(self, M): + return self._print(M.base) / self._print(M.killed_module) + + def _print_MatrixHomomorphism(self, h): + matrix = self._print(h._sympy_matrix()) + matrix.baseline = matrix.height() // 2 + pform = prettyForm(*matrix.right(' : ', self._print(h.domain), + ' %s> ' % hobj('-', 2), self._print(h.codomain))) + return pform + + def _print_Manifold(self, manifold): + return self._print(manifold.name) + + def _print_Patch(self, patch): + return self._print(patch.name) + + def _print_CoordSystem(self, coords): + return self._print(coords.name) + + def _print_BaseScalarField(self, field): + string = field._coord_sys.symbols[field._index].name + return self._print(pretty_symbol(string)) + + def _print_BaseVectorField(self, field): + s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name + return self._print(pretty_symbol(s)) + + def _print_Differential(self, diff): + if self._use_unicode: + d = '\N{DOUBLE-STRUCK ITALIC SMALL D}' + else: + d = 'd' + field = diff._form_field + if hasattr(field, '_coord_sys'): + string = field._coord_sys.symbols[field._index].name + return self._print(d + ' ' + pretty_symbol(string)) + else: + pform = self._print(field) + pform = prettyForm(*pform.parens()) + return prettyForm(*pform.left(d)) + + def _print_Tr(self, p): + #TODO: Handle indices + pform = self._print(p.args[0]) + pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) + pform = prettyForm(*pform.right(')')) + return pform + + def _print_primenu(self, e): + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens()) + if self._use_unicode: + pform = prettyForm(*pform.left(greek_unicode['nu'])) + else: + pform = prettyForm(*pform.left('nu')) + return pform + + def _print_primeomega(self, e): + pform = self._print(e.args[0]) + pform = prettyForm(*pform.parens()) + if self._use_unicode: + pform = prettyForm(*pform.left(greek_unicode['Omega'])) + else: + pform = prettyForm(*pform.left('Omega')) + return pform + + def _print_Quantity(self, e): + if e.name.name == 'degree': + pform = self._print("\N{DEGREE SIGN}") + return pform + else: + return self.emptyPrinter(e) + + def _print_AssignmentBase(self, e): + + op = prettyForm(' ' + xsym(e.op) + ' ') + + l = self._print(e.lhs) + r = self._print(e.rhs) + pform = prettyForm(*stringPict.next(l, op, r)) + return pform + + def _print_Str(self, s): + return self._print(s.name) + + +@print_function(PrettyPrinter) +def pretty(expr, **settings): + """Returns a string containing the prettified form of expr. + + For information on keyword arguments see pretty_print function. + + """ + pp = PrettyPrinter(settings) + + # XXX: this is an ugly hack, but at least it works + use_unicode = pp._settings['use_unicode'] + uflag = pretty_use_unicode(use_unicode) + + try: + return pp.doprint(expr) + finally: + pretty_use_unicode(uflag) + + +def pretty_print(expr, **kwargs): + """Prints expr in pretty form. + + pprint is just a shortcut for this function. + + Parameters + ========== + + expr : expression + The expression to print. + + wrap_line : bool, optional (default=True) + Line wrapping enabled/disabled. + + num_columns : int or None, optional (default=None) + Number of columns before line breaking (default to None which reads + the terminal width), useful when using SymPy without terminal. + + use_unicode : bool or None, optional (default=None) + Use unicode characters, such as the Greek letter pi instead of + the string pi. + + full_prec : bool or string, optional (default="auto") + Use full precision. + + order : bool or string, optional (default=None) + Set to 'none' for long expressions if slow; default is None. + + use_unicode_sqrt_char : bool, optional (default=True) + Use compact single-character square root symbol (when unambiguous). + + root_notation : bool, optional (default=True) + Set to 'False' for printing exponents of the form 1/n in fractional form. + By default exponent is printed in root form. + + mat_symbol_style : string, optional (default="plain") + Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. + By default the standard face is used. + + imaginary_unit : string, optional (default="i") + Letter to use for imaginary unit when use_unicode is True. + Can be "i" (default) or "j". + """ + print(pretty(expr, **kwargs)) + +pprint = pretty_print + + +def pager_print(expr, **settings): + """Prints expr using the pager, in pretty form. + + This invokes a pager command using pydoc. Lines are not wrapped + automatically. This routine is meant to be used with a pager that allows + sideways scrolling, like ``less -S``. + + Parameters are the same as for ``pretty_print``. If you wish to wrap lines, + pass ``num_columns=None`` to auto-detect the width of the terminal. + + """ + from pydoc import pager + from locale import getpreferredencoding + if 'num_columns' not in settings: + settings['num_columns'] = 500000 # disable line wrap + pager(pretty(expr, **settings).encode(getpreferredencoding())) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py new file mode 100644 index 0000000000000000000000000000000000000000..b5b832ea5c94c4c38f134f5f9d4b62364da089bc --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/pretty/pretty_symbology.py @@ -0,0 +1,643 @@ +"""Symbolic primitives + unicode/ASCII abstraction for pretty.py""" + +import sys +import warnings +from string import ascii_lowercase, ascii_uppercase +import unicodedata + +unicode_warnings = '' + +def U(name): + """ + Get a unicode character by name or, None if not found. + + This exists because older versions of Python use older unicode databases. + """ + try: + return unicodedata.lookup(name) + except KeyError: + global unicode_warnings + unicode_warnings += 'No \'%s\' in unicodedata\n' % name + return None + +from sympy.printing.conventions import split_super_sub +from sympy.core.alphabets import greeks +from sympy.utilities.exceptions import sympy_deprecation_warning + +# prefix conventions when constructing tables +# L - LATIN i +# G - GREEK beta +# D - DIGIT 0 +# S - SYMBOL + + + +__all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol', + 'annotated'] + + +_use_unicode = False + + +def pretty_use_unicode(flag=None): + """Set whether pretty-printer should use unicode by default""" + global _use_unicode + global unicode_warnings + if flag is None: + return _use_unicode + + if flag and unicode_warnings: + # print warnings (if any) on first unicode usage + warnings.warn(unicode_warnings) + unicode_warnings = '' + + use_unicode_prev = _use_unicode + _use_unicode = flag + return use_unicode_prev + + +def pretty_try_use_unicode(): + """See if unicode output is available and leverage it if possible""" + + encoding = getattr(sys.stdout, 'encoding', None) + + # this happens when e.g. stdout is redirected through a pipe, or is + # e.g. a cStringIO.StringO + if encoding is None: + return # sys.stdout has no encoding + + symbols = [] + + # see if we can represent greek alphabet + symbols += greek_unicode.values() + + # and atoms + symbols += atoms_table.values() + + for s in symbols: + if s is None: + return # common symbols not present! + + try: + s.encode(encoding) + except UnicodeEncodeError: + return + + # all the characters were present and encodable + pretty_use_unicode(True) + + +def xstr(*args): + sympy_deprecation_warning( + """ + The sympy.printing.pretty.pretty_symbology.xstr() function is + deprecated. Use str() instead. + """, + deprecated_since_version="1.7", + active_deprecations_target="deprecated-pretty-printing-functions" + ) + return str(*args) + +# GREEK +g = lambda l: U('GREEK SMALL LETTER %s' % l.upper()) +G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper()) + +greek_letters = list(greeks) # make a copy +# deal with Unicode's funny spelling of lambda +greek_letters[greek_letters.index('lambda')] = 'lamda' + +# {} greek letter -> (g,G) +greek_unicode = {L: g(L) for L in greek_letters} +greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters) + +# aliases +greek_unicode['lambda'] = greek_unicode['lamda'] +greek_unicode['Lambda'] = greek_unicode['Lamda'] +greek_unicode['varsigma'] = '\N{GREEK SMALL LETTER FINAL SIGMA}' + +# BOLD +b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper()) +B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper()) + +bold_unicode = {l: b(l) for l in ascii_lowercase} +bold_unicode.update((L, B(L)) for L in ascii_uppercase) + +# GREEK BOLD +gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper()) +GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper()) + +greek_bold_letters = list(greeks) # make a copy, not strictly required here +# deal with Unicode's funny spelling of lambda +greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda' + +# {} greek letter -> (g,G) +greek_bold_unicode = {L: g(L) for L in greek_bold_letters} +greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters) +greek_bold_unicode['lambda'] = greek_unicode['lamda'] +greek_bold_unicode['Lambda'] = greek_unicode['Lamda'] +greek_bold_unicode['varsigma'] = '\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}' + +digit_2txt = { + '0': 'ZERO', + '1': 'ONE', + '2': 'TWO', + '3': 'THREE', + '4': 'FOUR', + '5': 'FIVE', + '6': 'SIX', + '7': 'SEVEN', + '8': 'EIGHT', + '9': 'NINE', +} + +symb_2txt = { + '+': 'PLUS SIGN', + '-': 'MINUS', + '=': 'EQUALS SIGN', + '(': 'LEFT PARENTHESIS', + ')': 'RIGHT PARENTHESIS', + '[': 'LEFT SQUARE BRACKET', + ']': 'RIGHT SQUARE BRACKET', + '{': 'LEFT CURLY BRACKET', + '}': 'RIGHT CURLY BRACKET', + + # non-std + '{}': 'CURLY BRACKET', + 'sum': 'SUMMATION', + 'int': 'INTEGRAL', +} + +# SUBSCRIPT & SUPERSCRIPT +LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper()) +GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper()) +DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit]) +SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb]) + +LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper()) +DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit]) +SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb]) + +sub = {} # symb -> subscript symbol +sup = {} # symb -> superscript symbol + +# latin subscripts +for l in 'aeioruvxhklmnpst': + sub[l] = LSUB(l) + +for l in 'in': + sup[l] = LSUP(l) + +for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']: + sub[gl] = GSUB(gl) + +for d in [str(i) for i in range(10)]: + sub[d] = DSUB(d) + sup[d] = DSUP(d) + +for s in '+-=()': + sub[s] = SSUB(s) + sup[s] = SSUP(s) + +# Variable modifiers +# TODO: Make brackets adjust to height of contents +modifier_dict = { + # Accents + 'mathring': lambda s: center_accent(s, '\N{COMBINING RING ABOVE}'), + 'ddddot': lambda s: center_accent(s, '\N{COMBINING FOUR DOTS ABOVE}'), + 'dddot': lambda s: center_accent(s, '\N{COMBINING THREE DOTS ABOVE}'), + 'ddot': lambda s: center_accent(s, '\N{COMBINING DIAERESIS}'), + 'dot': lambda s: center_accent(s, '\N{COMBINING DOT ABOVE}'), + 'check': lambda s: center_accent(s, '\N{COMBINING CARON}'), + 'breve': lambda s: center_accent(s, '\N{COMBINING BREVE}'), + 'acute': lambda s: center_accent(s, '\N{COMBINING ACUTE ACCENT}'), + 'grave': lambda s: center_accent(s, '\N{COMBINING GRAVE ACCENT}'), + 'tilde': lambda s: center_accent(s, '\N{COMBINING TILDE}'), + 'hat': lambda s: center_accent(s, '\N{COMBINING CIRCUMFLEX ACCENT}'), + 'bar': lambda s: center_accent(s, '\N{COMBINING OVERLINE}'), + 'vec': lambda s: center_accent(s, '\N{COMBINING RIGHT ARROW ABOVE}'), + 'prime': lambda s: s+'\N{PRIME}', + 'prm': lambda s: s+'\N{PRIME}', + # # Faces -- these are here for some compatibility with latex printing + # 'bold': lambda s: s, + # 'bm': lambda s: s, + # 'cal': lambda s: s, + # 'scr': lambda s: s, + # 'frak': lambda s: s, + # Brackets + 'norm': lambda s: '\N{DOUBLE VERTICAL LINE}'+s+'\N{DOUBLE VERTICAL LINE}', + 'avg': lambda s: '\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+'\N{MATHEMATICAL RIGHT ANGLE BRACKET}', + 'abs': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}', + 'mag': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}', +} + +# VERTICAL OBJECTS +HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb]) +CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb]) +MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb]) +EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb]) +HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb]) +CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb]) +TOP = lambda symb: U('%s TOP' % symb_2txt[symb]) +BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb]) + +# {} '(' -> (extension, start, end, middle) 1-character +_xobj_unicode = { + + # vertical symbols + # (( ext, top, bot, mid ), c1) + '(': (( EXT('('), HUP('('), HLO('(') ), '('), + ')': (( EXT(')'), HUP(')'), HLO(')') ), ')'), + '[': (( EXT('['), CUP('['), CLO('[') ), '['), + ']': (( EXT(']'), CUP(']'), CLO(']') ), ']'), + '{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'), + '}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'), + '|': U('BOX DRAWINGS LIGHT VERTICAL'), + + '<': ((U('BOX DRAWINGS LIGHT VERTICAL'), + U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'), + U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'), + + '>': ((U('BOX DRAWINGS LIGHT VERTICAL'), + U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), + U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'), + + 'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')), + 'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')), + 'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')), + 'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')), + + 'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')), + 'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')), + + # horizontal objects + #'-': '-', + '-': U('BOX DRAWINGS LIGHT HORIZONTAL'), + '_': U('LOW LINE'), + # We used to use this, but LOW LINE looks better for roots, as it's a + # little lower (i.e., it lines up with the / perfectly. But perhaps this + # one would still be wanted for some cases? + # '_': U('HORIZONTAL SCAN LINE-9'), + + # diagonal objects '\' & '/' ? + '/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'), + '\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), +} + +_xobj_ascii = { + # vertical symbols + # (( ext, top, bot, mid ), c1) + '(': (( '|', '/', '\\' ), '('), + ')': (( '|', '\\', '/' ), ')'), + +# XXX this looks ugly +# '[': (( '|', '-', '-' ), '['), +# ']': (( '|', '-', '-' ), ']'), +# XXX not so ugly :( + '[': (( '[', '[', '[' ), '['), + ']': (( ']', ']', ']' ), ']'), + + '{': (( '|', '/', '\\', '<' ), '{'), + '}': (( '|', '\\', '/', '>' ), '}'), + '|': '|', + + '<': (( '|', '/', '\\' ), '<'), + '>': (( '|', '\\', '/' ), '>'), + + 'int': ( ' | ', ' /', '/ ' ), + + # horizontal objects + '-': '-', + '_': '_', + + # diagonal objects '\' & '/' ? + '/': '/', + '\\': '\\', +} + + +def xobj(symb, length): + """Construct spatial object of given length. + + return: [] of equal-length strings + """ + + if length <= 0: + raise ValueError("Length should be greater than 0") + + # TODO robustify when no unicodedat available + if _use_unicode: + _xobj = _xobj_unicode + else: + _xobj = _xobj_ascii + + vinfo = _xobj[symb] + + c1 = top = bot = mid = None + + if not isinstance(vinfo, tuple): # 1 entry + ext = vinfo + else: + if isinstance(vinfo[0], tuple): # (vlong), c1 + vlong = vinfo[0] + c1 = vinfo[1] + else: # (vlong), c1 + vlong = vinfo + + ext = vlong[0] + + try: + top = vlong[1] + bot = vlong[2] + mid = vlong[3] + except IndexError: + pass + + if c1 is None: + c1 = ext + if top is None: + top = ext + if bot is None: + bot = ext + if mid is not None: + if (length % 2) == 0: + # even height, but we have to print it somehow anyway... + # XXX is it ok? + length += 1 + + else: + mid = ext + + if length == 1: + return c1 + + res = [] + next = (length - 2)//2 + nmid = (length - 2) - next*2 + + res += [top] + res += [ext]*next + res += [mid]*nmid + res += [ext]*next + res += [bot] + + return res + + +def vobj(symb, height): + """Construct vertical object of a given height + + see: xobj + """ + return '\n'.join( xobj(symb, height) ) + + +def hobj(symb, width): + """Construct horizontal object of a given width + + see: xobj + """ + return ''.join( xobj(symb, width) ) + +# RADICAL +# n -> symbol +root = { + 2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM') + 3: U('CUBE ROOT'), + 4: U('FOURTH ROOT'), +} + + +# RATIONAL +VF = lambda txt: U('VULGAR FRACTION %s' % txt) + +# (p,q) -> symbol +frac = { + (1, 2): VF('ONE HALF'), + (1, 3): VF('ONE THIRD'), + (2, 3): VF('TWO THIRDS'), + (1, 4): VF('ONE QUARTER'), + (3, 4): VF('THREE QUARTERS'), + (1, 5): VF('ONE FIFTH'), + (2, 5): VF('TWO FIFTHS'), + (3, 5): VF('THREE FIFTHS'), + (4, 5): VF('FOUR FIFTHS'), + (1, 6): VF('ONE SIXTH'), + (5, 6): VF('FIVE SIXTHS'), + (1, 8): VF('ONE EIGHTH'), + (3, 8): VF('THREE EIGHTHS'), + (5, 8): VF('FIVE EIGHTHS'), + (7, 8): VF('SEVEN EIGHTHS'), +} + + +# atom symbols +_xsym = { + '==': ('=', '='), + '<': ('<', '<'), + '>': ('>', '>'), + '<=': ('<=', U('LESS-THAN OR EQUAL TO')), + '>=': ('>=', U('GREATER-THAN OR EQUAL TO')), + '!=': ('!=', U('NOT EQUAL TO')), + ':=': (':=', ':='), + '+=': ('+=', '+='), + '-=': ('-=', '-='), + '*=': ('*=', '*='), + '/=': ('/=', '/='), + '%=': ('%=', '%='), + '*': ('*', U('DOT OPERATOR')), + '-->': ('-->', U('EM DASH') + U('EM DASH') + + U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH') + and U('BLACK RIGHT-POINTING TRIANGLE') else None), + '==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') + + U('BOX DRAWINGS DOUBLE HORIZONTAL') + + U('BLACK RIGHT-POINTING TRIANGLE') if + U('BOX DRAWINGS DOUBLE HORIZONTAL') and + U('BOX DRAWINGS DOUBLE HORIZONTAL') and + U('BLACK RIGHT-POINTING TRIANGLE') else None), + '.': ('*', U('RING OPERATOR')), +} + + +def xsym(sym): + """get symbology for a 'character'""" + op = _xsym[sym] + + if _use_unicode: + return op[1] + else: + return op[0] + + +# SYMBOLS + +atoms_table = { + # class how-to-display + 'Exp1': U('SCRIPT SMALL E'), + 'Pi': U('GREEK SMALL LETTER PI'), + 'Infinity': U('INFINITY'), + 'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here + #'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'), + #'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'), + 'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'), + 'EmptySet': U('EMPTY SET'), + 'Naturals': U('DOUBLE-STRUCK CAPITAL N'), + 'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and + (U('DOUBLE-STRUCK CAPITAL N') + + U('SUBSCRIPT ZERO'))), + 'Integers': U('DOUBLE-STRUCK CAPITAL Z'), + 'Rationals': U('DOUBLE-STRUCK CAPITAL Q'), + 'Reals': U('DOUBLE-STRUCK CAPITAL R'), + 'Complexes': U('DOUBLE-STRUCK CAPITAL C'), + 'Union': U('UNION'), + 'SymmetricDifference': U('INCREMENT'), + 'Intersection': U('INTERSECTION'), + 'Ring': U('RING OPERATOR'), + 'Modifier Letter Low Ring':U('Modifier Letter Low Ring'), + 'EmptySequence': 'EmptySequence', +} + + +def pretty_atom(atom_name, default=None, printer=None): + """return pretty representation of an atom""" + if _use_unicode: + if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j': + return U('DOUBLE-STRUCK ITALIC SMALL J') + else: + return atoms_table[atom_name] + else: + if default is not None: + return default + + raise KeyError('only unicode') # send it default printer + + +def pretty_symbol(symb_name, bold_name=False): + """return pretty representation of a symbol""" + # let's split symb_name into symbol + index + # UC: beta1 + # UC: f_beta + + if not _use_unicode: + return symb_name + + name, sups, subs = split_super_sub(symb_name) + + def translate(s, bold_name) : + if bold_name: + gG = greek_bold_unicode.get(s) + else: + gG = greek_unicode.get(s) + if gG is not None: + return gG + for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) : + if s.lower().endswith(key) and len(s)>len(key): + return modifier_dict[key](translate(s[:-len(key)], bold_name)) + if bold_name: + return ''.join([bold_unicode[c] for c in s]) + return s + + name = translate(name, bold_name) + + # Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are + # not used at all. + def pretty_list(l, mapping): + result = [] + for s in l: + pretty = mapping.get(s) + if pretty is None: + try: # match by separate characters + pretty = ''.join([mapping[c] for c in s]) + except (TypeError, KeyError): + return None + result.append(pretty) + return result + + pretty_sups = pretty_list(sups, sup) + if pretty_sups is not None: + pretty_subs = pretty_list(subs, sub) + else: + pretty_subs = None + + # glue the results into one string + if pretty_subs is None: # nice formatting of sups/subs did not work + if subs: + name += '_'+'_'.join([translate(s, bold_name) for s in subs]) + if sups: + name += '__'+'__'.join([translate(s, bold_name) for s in sups]) + return name + else: + sups_result = ' '.join(pretty_sups) + subs_result = ' '.join(pretty_subs) + + return ''.join([name, sups_result, subs_result]) + + +def annotated(letter): + """ + Return a stylised drawing of the letter ``letter``, together with + information on how to put annotations (super- and subscripts to the + left and to the right) on it. + + See pretty.py functions _print_meijerg, _print_hyper on how to use this + information. + """ + ucode_pics = { + 'F': (2, 0, 2, 0, '\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n' + '\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n' + '\N{BOX DRAWINGS LIGHT UP}'), + 'G': (3, 0, 3, 1, '\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n' + '\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n' + '\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}') + } + ascii_pics = { + 'F': (3, 0, 3, 0, ' _\n|_\n|\n'), + 'G': (3, 0, 3, 1, ' __\n/__\n\\_|') + } + + if _use_unicode: + return ucode_pics[letter] + else: + return ascii_pics[letter] + +_remove_combining = dict.fromkeys(list(range(ord('\N{COMBINING GRAVE ACCENT}'), ord('\N{COMBINING LATIN SMALL LETTER X}'))) + + list(range(ord('\N{COMBINING LEFT HARPOON ABOVE}'), ord('\N{COMBINING ASTERISK ABOVE}')))) + +def is_combining(sym): + """Check whether symbol is a unicode modifier. """ + + return ord(sym) in _remove_combining + + +def center_accent(string, accent): + """ + Returns a string with accent inserted on the middle character. Useful to + put combining accents on symbol names, including multi-character names. + + Parameters + ========== + + string : string + The string to place the accent in. + accent : string + The combining accent to insert + + References + ========== + + .. [1] https://en.wikipedia.org/wiki/Combining_character + .. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks + + """ + + # Accent is placed on the previous character, although it may not always look + # like that depending on console + midpoint = len(string) // 2 + 1 + firstpart = string[:midpoint] + secondpart = string[midpoint:] + return firstpart + accent + secondpart + + +def line_width(line): + """Unicode combining symbols (modifiers) are not ever displayed as + separate symbols and thus should not be counted + """ + return len(line.translate(_remove_combining)) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py new file mode 100644 index 0000000000000000000000000000000000000000..f5dfa0681a441b5db00e6ea27d1641ed03ee9f18 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/pretty/stringpict.py @@ -0,0 +1,538 @@ +"""Prettyprinter by Jurjen Bos. +(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay). +All objects have a method that create a "stringPict", +that can be used in the str method for pretty printing. + +Updates by Jason Gedge (email at cs mun ca) + - terminal_string() method + - minor fixes and changes (mostly to prettyForm) + +TODO: + - Allow left/center/right alignment options for above/below and + top/center/bottom alignment options for left/right +""" + +from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, line_width +from sympy.utilities.exceptions import sympy_deprecation_warning + +class stringPict: + """An ASCII picture. + The pictures are represented as a list of equal length strings. + """ + #special value for stringPict.below + LINE = 'line' + + def __init__(self, s, baseline=0): + """Initialize from string. + Multiline strings are centered. + """ + self.s = s + #picture is a string that just can be printed + self.picture = stringPict.equalLengths(s.splitlines()) + #baseline is the line number of the "base line" + self.baseline = baseline + self.binding = None + + @staticmethod + def equalLengths(lines): + # empty lines + if not lines: + return [''] + + width = max(line_width(line) for line in lines) + return [line.center(width) for line in lines] + + def height(self): + """The height of the picture in characters.""" + return len(self.picture) + + def width(self): + """The width of the picture in characters.""" + return line_width(self.picture[0]) + + @staticmethod + def next(*args): + """Put a string of stringPicts next to each other. + Returns string, baseline arguments for stringPict. + """ + #convert everything to stringPicts + objects = [] + for arg in args: + if isinstance(arg, str): + arg = stringPict(arg) + objects.append(arg) + + #make a list of pictures, with equal height and baseline + newBaseline = max(obj.baseline for obj in objects) + newHeightBelowBaseline = max( + obj.height() - obj.baseline + for obj in objects) + newHeight = newBaseline + newHeightBelowBaseline + + pictures = [] + for obj in objects: + oneEmptyLine = [' '*obj.width()] + basePadding = newBaseline - obj.baseline + totalPadding = newHeight - obj.height() + pictures.append( + oneEmptyLine * basePadding + + obj.picture + + oneEmptyLine * (totalPadding - basePadding)) + + result = [''.join(lines) for lines in zip(*pictures)] + return '\n'.join(result), newBaseline + + def right(self, *args): + r"""Put pictures next to this one. + Returns string, baseline arguments for stringPict. + (Multiline) strings are allowed, and are given a baseline of 0. + + Examples + ======== + + >>> from sympy.printing.pretty.stringpict import stringPict + >>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0]) + 1 + 10 + - + 2 + + """ + return stringPict.next(self, *args) + + def left(self, *args): + """Put pictures (left to right) at left. + Returns string, baseline arguments for stringPict. + """ + return stringPict.next(*(args + (self,))) + + @staticmethod + def stack(*args): + """Put pictures on top of each other, + from top to bottom. + Returns string, baseline arguments for stringPict. + The baseline is the baseline of the second picture. + Everything is centered. + Baseline is the baseline of the second picture. + Strings are allowed. + The special value stringPict.LINE is a row of '-' extended to the width. + """ + #convert everything to stringPicts; keep LINE + objects = [] + for arg in args: + if arg is not stringPict.LINE and isinstance(arg, str): + arg = stringPict(arg) + objects.append(arg) + + #compute new width + newWidth = max( + obj.width() + for obj in objects + if obj is not stringPict.LINE) + + lineObj = stringPict(hobj('-', newWidth)) + + #replace LINE with proper lines + for i, obj in enumerate(objects): + if obj is stringPict.LINE: + objects[i] = lineObj + + #stack the pictures, and center the result + newPicture = [] + for obj in objects: + newPicture.extend(obj.picture) + newPicture = [line.center(newWidth) for line in newPicture] + newBaseline = objects[0].height() + objects[1].baseline + return '\n'.join(newPicture), newBaseline + + def below(self, *args): + """Put pictures under this picture. + Returns string, baseline arguments for stringPict. + Baseline is baseline of top picture + + Examples + ======== + + >>> from sympy.printing.pretty.stringpict import stringPict + >>> print(stringPict("x+3").below( + ... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE + x+3 + --- + 3 + + """ + s, baseline = stringPict.stack(self, *args) + return s, self.baseline + + def above(self, *args): + """Put pictures above this picture. + Returns string, baseline arguments for stringPict. + Baseline is baseline of bottom picture. + """ + string, baseline = stringPict.stack(*(args + (self,))) + baseline = len(string.splitlines()) - self.height() + self.baseline + return string, baseline + + def parens(self, left='(', right=')', ifascii_nougly=False): + """Put parentheses around self. + Returns string, baseline arguments for stringPict. + + left or right can be None or empty string which means 'no paren from + that side' + """ + h = self.height() + b = self.baseline + + # XXX this is a hack -- ascii parens are ugly! + if ifascii_nougly and not pretty_use_unicode(): + h = 1 + b = 0 + + res = self + + if left: + lparen = stringPict(vobj(left, h), baseline=b) + res = stringPict(*lparen.right(self)) + if right: + rparen = stringPict(vobj(right, h), baseline=b) + res = stringPict(*res.right(rparen)) + + return ('\n'.join(res.picture), res.baseline) + + def leftslash(self): + """Precede object by a slash of the proper size. + """ + # XXX not used anywhere ? + height = max( + self.baseline, + self.height() - 1 - self.baseline)*2 + 1 + slash = '\n'.join( + ' '*(height - i - 1) + xobj('/', 1) + ' '*i + for i in range(height) + ) + return self.left(stringPict(slash, height//2)) + + def root(self, n=None): + """Produce a nice root symbol. + Produces ugly results for big n inserts. + """ + # XXX not used anywhere + # XXX duplicate of root drawing in pretty.py + #put line over expression + result = self.above('_'*self.width()) + #construct right half of root symbol + height = self.height() + slash = '\n'.join( + ' ' * (height - i - 1) + '/' + ' ' * i + for i in range(height) + ) + slash = stringPict(slash, height - 1) + #left half of root symbol + if height > 2: + downline = stringPict('\\ \n \\', 1) + else: + downline = stringPict('\\') + #put n on top, as low as possible + if n is not None and n.width() > downline.width(): + downline = downline.left(' '*(n.width() - downline.width())) + downline = downline.above(n) + #build root symbol + root = downline.right(slash) + #glue it on at the proper height + #normally, the root symbel is as high as self + #which is one less than result + #this moves the root symbol one down + #if the root became higher, the baseline has to grow too + root.baseline = result.baseline - result.height() + root.height() + return result.left(root) + + def render(self, * args, **kwargs): + """Return the string form of self. + + Unless the argument line_break is set to False, it will + break the expression in a form that can be printed + on the terminal without being broken up. + """ + if kwargs["wrap_line"] is False: + return "\n".join(self.picture) + + if kwargs["num_columns"] is not None: + # Read the argument num_columns if it is not None + ncols = kwargs["num_columns"] + else: + # Attempt to get a terminal width + ncols = self.terminal_width() + + ncols -= 2 + if ncols <= 0: + ncols = 78 + + # If smaller than the terminal width, no need to correct + if self.width() <= ncols: + return type(self.picture[0])(self) + + # for one-line pictures we don't need v-spacers. on the other hand, for + # multiline-pictures, we need v-spacers between blocks, compare: + # + # 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323 + # 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795 + # | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b | + # 3 4 4 | | *d*f | + # 4*y*x + x + y | + b*c*f + b*d*e + b | | + # | | | + # | *d*f + + i = 0 + svals = [] + do_vspacers = (self.height() > 1) + while i < self.width(): + svals.extend([ sval[i:i + ncols] for sval in self.picture ]) + if do_vspacers: + svals.append("") # a vertical spacer + i += ncols + + if svals[-1] == '': + del svals[-1] # Get rid of the last spacer + + return "\n".join(svals) + + def terminal_width(self): + """Return the terminal width if possible, otherwise return 0. + """ + ncols = 0 + try: + import curses + import io + try: + curses.setupterm() + ncols = curses.tigetnum('cols') + except AttributeError: + # windows curses doesn't implement setupterm or tigetnum + # code below from + # https://code.activestate.com/recipes/440694/ + from ctypes import windll, create_string_buffer + # stdin handle is -10 + # stdout handle is -11 + # stderr handle is -12 + h = windll.kernel32.GetStdHandle(-12) + csbi = create_string_buffer(22) + res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) + if res: + import struct + (bufx, bufy, curx, cury, wattr, + left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw) + ncols = right - left + 1 + except curses.error: + pass + except io.UnsupportedOperation: + pass + except (ImportError, TypeError): + pass + return ncols + + def __eq__(self, o): + if isinstance(o, str): + return '\n'.join(self.picture) == o + elif isinstance(o, stringPict): + return o.picture == self.picture + return False + + def __hash__(self): + return super().__hash__() + + def __str__(self): + return '\n'.join(self.picture) + + def __repr__(self): + return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline) + + def __getitem__(self, index): + return self.picture[index] + + def __len__(self): + return len(self.s) + + +class prettyForm(stringPict): + """ + Extension of the stringPict class that knows about basic math applications, + optimizing double minus signs. + + "Binding" is interpreted as follows:: + + ATOM this is an atom: never needs to be parenthesized + FUNC this is a function application: parenthesize if added (?) + DIV this is a division: make wider division if divided + POW this is a power: only parenthesize if exponent + MUL this is a multiplication: parenthesize if powered + ADD this is an addition: parenthesize if multiplied or powered + NEG this is a negative number: optimize if added, parenthesize if + multiplied or powered + OPEN this is an open object: parenthesize if added, multiplied, or + powered (example: Piecewise) + """ + ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8) + + def __init__(self, s, baseline=0, binding=0, unicode=None): + """Initialize from stringPict and binding power.""" + stringPict.__init__(self, s, baseline) + self.binding = binding + if unicode is not None: + sympy_deprecation_warning( + """ + The unicode argument to prettyForm is deprecated. Only the s + argument (the first positional argument) should be passed. + """, + deprecated_since_version="1.7", + active_deprecations_target="deprecated-pretty-printing-functions") + self._unicode = unicode or s + + @property + def unicode(self): + sympy_deprecation_warning( + """ + The prettyForm.unicode attribute is deprecated. Use the + prettyForm.s attribute instead. + """, + deprecated_since_version="1.7", + active_deprecations_target="deprecated-pretty-printing-functions") + return self._unicode + + # Note: code to handle subtraction is in _print_Add + + def __add__(self, *others): + """Make a pretty addition. + Addition of negative numbers is simplified. + """ + arg = self + if arg.binding > prettyForm.NEG: + arg = stringPict(*arg.parens()) + result = [arg] + for arg in others: + #add parentheses for weak binders + if arg.binding > prettyForm.NEG: + arg = stringPict(*arg.parens()) + #use existing minus sign if available + if arg.binding != prettyForm.NEG: + result.append(' + ') + result.append(arg) + return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result)) + + def __truediv__(self, den, slashed=False): + """Make a pretty division; stacked or slashed. + """ + if slashed: + raise NotImplementedError("Can't do slashed fraction yet") + num = self + if num.binding == prettyForm.DIV: + num = stringPict(*num.parens()) + if den.binding == prettyForm.DIV: + den = stringPict(*den.parens()) + + if num.binding==prettyForm.NEG: + num = num.right(" ")[0] + + return prettyForm(binding=prettyForm.DIV, *stringPict.stack( + num, + stringPict.LINE, + den)) + + def __mul__(self, *others): + """Make a pretty multiplication. + Parentheses are needed around +, - and neg. + """ + quantity = { + 'degree': "\N{DEGREE SIGN}" + } + + if len(others) == 0: + return self # We aren't actually multiplying... So nothing to do here. + + # add parens on args that need them + arg = self + if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG: + arg = stringPict(*arg.parens()) + result = [arg] + for arg in others: + if arg.picture[0] not in quantity.values(): + result.append(xsym('*')) + #add parentheses for weak binders + if arg.binding > prettyForm.MUL and arg.binding != prettyForm.NEG: + arg = stringPict(*arg.parens()) + result.append(arg) + + len_res = len(result) + for i in range(len_res): + if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'): + # substitute -1 by -, like in -1*x -> -x + result.pop(i) + result.pop(i) + result.insert(i, '-') + if result[0][0] == '-': + # if there is a - sign in front of all + # This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative + bin = prettyForm.NEG + if result[0] == '-': + right = result[1] + if right.picture[right.baseline][0] == '-': + result[0] = '- ' + else: + bin = prettyForm.MUL + return prettyForm(binding=bin, *stringPict.next(*result)) + + def __repr__(self): + return "prettyForm(%r,%d,%d)" % ( + '\n'.join(self.picture), + self.baseline, + self.binding) + + def __pow__(self, b): + """Make a pretty power. + """ + a = self + use_inline_func_form = False + if b.binding == prettyForm.POW: + b = stringPict(*b.parens()) + if a.binding > prettyForm.FUNC: + a = stringPict(*a.parens()) + elif a.binding == prettyForm.FUNC: + # heuristic for when to use inline power + if b.height() > 1: + a = stringPict(*a.parens()) + else: + use_inline_func_form = True + + if use_inline_func_form: + # 2 + # sin + + (x) + b.baseline = a.prettyFunc.baseline + b.height() + func = stringPict(*a.prettyFunc.right(b)) + return prettyForm(*func.right(a.prettyArgs)) + else: + # 2 <-- top + # (x+y) <-- bot + top = stringPict(*b.left(' '*a.width())) + bot = stringPict(*a.right(' '*b.width())) + + return prettyForm(binding=prettyForm.POW, *bot.above(top)) + + simpleFunctions = ["sin", "cos", "tan"] + + @staticmethod + def apply(function, *args): + """Functions of one or more variables. + """ + if function in prettyForm.simpleFunctions: + #simple function: use only space if possible + assert len( + args) == 1, "Simple function %s must have 1 argument" % function + arg = args[0].__pretty__() + if arg.binding <= prettyForm.DIV: + #optimization: no parentheses necessary + return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' ')) + argumentList = [] + for arg in args: + argumentList.append(',') + argumentList.append(arg.__pretty__()) + argumentList = stringPict(*stringPict.next(*argumentList[1:])) + argumentList = stringPict(*argumentList.parens()) + return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function)) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e6bfc4790000465a28036343b6edf8cb2e55366 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7689ce2d3df99dad40f5cbf67b9fc918a52ac831 Binary files /dev/null and b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py new file mode 100644 index 0000000000000000000000000000000000000000..7806e7aac00630f1a62d09358f1bb3ef74668340 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/pretty/tests/test_pretty.py @@ -0,0 +1,7825 @@ +# -*- coding: utf-8 -*- +from sympy.concrete.products import Product +from sympy.concrete.summations import Sum +from sympy.core.add import Add +from sympy.core.basic import Basic +from sympy.core.containers import (Dict, Tuple) +from sympy.core.function import (Derivative, Function, Lambda, Subs) +from sympy.core.mul import Mul +from sympy.core import (EulerGamma, GoldenRatio, Catalan) +from sympy.core.numbers import (I, Rational, oo, pi) +from sympy.core.power import Pow +from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) +from sympy.core.singleton import S +from sympy.core.symbol import (Symbol, symbols) +from sympy.functions.elementary.complexes import conjugate +from sympy.functions.elementary.exponential import LambertW +from sympy.functions.special.bessel import (airyai, airyaiprime, airybi, airybiprime) +from sympy.functions.special.delta_functions import Heaviside +from sympy.functions.special.error_functions import (fresnelc, fresnels) +from sympy.functions.special.singularity_functions import SingularityFunction +from sympy.functions.special.zeta_functions import dirichlet_eta +from sympy.geometry.line import (Ray, Segment) +from sympy.integrals.integrals import Integral +from sympy.logic.boolalg import (And, Equivalent, ITE, Implies, Nand, Nor, Not, Or, Xor) +from sympy.matrices.dense import (Matrix, diag) +from sympy.matrices.expressions.slice import MatrixSlice +from sympy.matrices.expressions.trace import Trace +from sympy.polys.domains.finitefield import FF +from sympy.polys.domains.integerring import ZZ +from sympy.polys.domains.rationalfield import QQ +from sympy.polys.domains.realfield import RR +from sympy.polys.orderings import (grlex, ilex) +from sympy.polys.polytools import groebner +from sympy.polys.rootoftools import (RootSum, rootof) +from sympy.series.formal import fps +from sympy.series.fourier import fourier_series +from sympy.series.limits import Limit +from sympy.series.order import O +from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer) +from sympy.sets.contains import Contains +from sympy.sets.fancysets import Range +from sympy.sets.sets import (Complement, FiniteSet, Intersection, Interval, Union) +from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, + SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) +from sympy.core.expr import UnevaluatedExpr +from sympy.physics.quantum.trace import Tr + +from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, + Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, + euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, + meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, + elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, + bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, + mathieusprime, mathieucprime) + +from sympy.matrices import (Adjoint, Inverse, MatrixSymbol, Transpose, + KroneckerProduct, BlockMatrix, OneMatrix, ZeroMatrix) +from sympy.matrices.expressions import hadamard_power + +from sympy.physics import mechanics +from sympy.physics.control.lti import (TransferFunction, Feedback, TransferFunctionMatrix, + Series, Parallel, MIMOSeries, MIMOParallel, MIMOFeedback) +from sympy.physics.units import joule, degree +from sympy.printing.pretty import pprint, pretty as xpretty +from sympy.printing.pretty.pretty_symbology import center_accent, is_combining +from sympy.sets.conditionset import ConditionSet + +from sympy.sets import ImageSet, ProductSet +from sympy.sets.setexpr import SetExpr +from sympy.stats.crv_types import Normal +from sympy.stats.symbolic_probability import (Covariance, Expectation, + Probability, Variance) +from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, + MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) +from sympy.tensor.functions import TensorProduct +from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, + TensorElement, tensor_heads) + +from sympy.testing.pytest import raises, _both_exp_pow, warns_deprecated_sympy + +from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian + + + +import sympy as sym +class lowergamma(sym.lowergamma): + pass # testing notation inheritance by a subclass with same name + +a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p') +f = Function("f") +th = Symbol('theta') +ph = Symbol('phi') + +""" +Expressions whose pretty-printing is tested here: +(A '#' to the right of an expression indicates that its various acceptable +orderings are accounted for by the tests.) + + +BASIC EXPRESSIONS: + +oo +(x**2) +1/x +y*x**-2 +x**Rational(-5,2) +(-2)**x +Pow(3, 1, evaluate=False) +(x**2 + x + 1) # +1-x # +1-2*x # +x/y +-x/y +(x+2)/y # +(1+x)*y #3 +-5*x/(x+10) # correct placement of negative sign +1 - Rational(3,2)*(x+1) +-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 + + +ORDERING: + +x**2 + x + 1 +1 - x +1 - 2*x +2*x**4 + y**2 - x**2 + y**3 + + +RELATIONAL: + +Eq(x, y) +Lt(x, y) +Gt(x, y) +Le(x, y) +Ge(x, y) +Ne(x/(y+1), y**2) # + + +RATIONAL NUMBERS: + +y*x**-2 +y**Rational(3,2) * x**Rational(-5,2) +sin(x)**3/tan(x)**2 + + +FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): + +(2*x + exp(x)) # +Abs(x) +Abs(x/(x**2+1)) # +Abs(1 / (y - Abs(x))) +factorial(n) +factorial(2*n) +subfactorial(n) +subfactorial(2*n) +factorial(factorial(factorial(n))) +factorial(n+1) # +conjugate(x) +conjugate(f(x+1)) # +f(x) +f(x, y) +f(x/(y+1), y) # +f(x**x**x**x**x**x) +sin(x)**2 +conjugate(a+b*I) +conjugate(exp(a+b*I)) +conjugate( f(1 + conjugate(f(x))) ) # +f(x/(y+1), y) # denom of first arg +floor(1 / (y - floor(x))) +ceiling(1 / (y - ceiling(x))) + + +SQRT: + +sqrt(2) +2**Rational(1,3) +2**Rational(1,1000) +sqrt(x**2 + 1) +(1 + sqrt(5))**Rational(1,3) +2**(1/x) +sqrt(2+pi) +(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) + + +DERIVATIVES: + +Derivative(log(x), x, evaluate=False) +Derivative(log(x), x, evaluate=False) + x # +Derivative(log(x) + x**2, x, y, evaluate=False) +Derivative(2*x*y, y, x, evaluate=False) + x**2 # +beta(alpha).diff(alpha) + + +INTEGRALS: + +Integral(log(x), x) +Integral(x**2, x) +Integral((sin(x))**2 / (tan(x))**2) +Integral(x**(2**x), x) +Integral(x**2, (x,1,2)) +Integral(x**2, (x,Rational(1,2),10)) +Integral(x**2*y**2, x,y) +Integral(x**2, (x, None, 1)) +Integral(x**2, (x, 1, None)) +Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) + + +MATRICES: + +Matrix([[x**2+1, 1], [y, x+y]]) # +Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) + + +PIECEWISE: + +Piecewise((x,x<1),(x**2,True)) + +ITE: + +ITE(x, y, z) + +SEQUENCES (TUPLES, LISTS, DICTIONARIES): + +() +[] +{} +(1/x,) +[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] +(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) +{x: sin(x)} +{1/x: 1/y, x: sin(x)**2} # +[x**2] +(x**2,) +{x**2: 1} + + +LIMITS: + +Limit(x, x, oo) +Limit(x**2, x, 0) +Limit(1/x, x, 0) +Limit(sin(x)/x, x, 0) + + +UNITS: + +joule => kg*m**2/s + + +SUBS: + +Subs(f(x), x, ph**2) +Subs(f(x).diff(x), x, 0) +Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) + + +ORDER: + +O(1) +O(1/x) +O(x**2 + y**2) + +""" + + +def pretty(expr, order=None): + """ASCII pretty-printing""" + return xpretty(expr, order=order, use_unicode=False, wrap_line=False) + + +def upretty(expr, order=None): + """Unicode pretty-printing""" + return xpretty(expr, order=order, use_unicode=True, wrap_line=False) + + +def test_pretty_ascii_str(): + assert pretty( 'xxx' ) == 'xxx' + assert pretty( "xxx" ) == 'xxx' + assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' + assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' + assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' + assert pretty( "xxx'xxx" ) == 'xxx\'xxx' + assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' + assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' + assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' + assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' + + +def test_pretty_unicode_str(): + assert pretty( 'xxx' ) == 'xxx' + assert pretty( 'xxx' ) == 'xxx' + assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' + assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' + assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' + assert pretty( "xxx'xxx" ) == 'xxx\'xxx' + assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' + assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' + assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' + assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' + + +def test_upretty_greek(): + assert upretty( oo ) == '∞' + assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁' + assert upretty( Symbol('beta') ) == 'β' + assert upretty(Symbol('lambda')) == 'λ' + + +def test_upretty_multiindex(): + assert upretty( Symbol('beta12') ) == 'β₁₂' + assert upretty( Symbol('Y00') ) == 'Y₀₀' + assert upretty( Symbol('Y_00') ) == 'Y₀₀' + assert upretty( Symbol('F^+-') ) == 'F⁺⁻' + + +def test_upretty_sub_super(): + assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂' + assert upretty( Symbol('beta^1^2') ) == 'β¹ ²' + assert upretty( Symbol('beta_1^2') ) == 'β²₁' + assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀' + assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ' + assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄' + assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂' + assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄' + assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴' + + +def test_upretty_subs_missing_in_24(): + assert upretty( Symbol('F_beta') ) == 'Fᵦ' + assert upretty( Symbol('F_gamma') ) == 'Fᵧ' + assert upretty( Symbol('F_rho') ) == 'Fᵨ' + assert upretty( Symbol('F_phi') ) == 'Fᵩ' + assert upretty( Symbol('F_chi') ) == 'Fᵪ' + + assert upretty( Symbol('F_a') ) == 'Fₐ' + assert upretty( Symbol('F_e') ) == 'Fₑ' + assert upretty( Symbol('F_i') ) == 'Fᵢ' + assert upretty( Symbol('F_o') ) == 'Fₒ' + assert upretty( Symbol('F_u') ) == 'Fᵤ' + assert upretty( Symbol('F_r') ) == 'Fᵣ' + assert upretty( Symbol('F_v') ) == 'Fᵥ' + assert upretty( Symbol('F_x') ) == 'Fₓ' + + +def test_missing_in_2X_issue_9047(): + assert upretty( Symbol('F_h') ) == 'Fₕ' + assert upretty( Symbol('F_k') ) == 'Fₖ' + assert upretty( Symbol('F_l') ) == 'Fₗ' + assert upretty( Symbol('F_m') ) == 'Fₘ' + assert upretty( Symbol('F_n') ) == 'Fₙ' + assert upretty( Symbol('F_p') ) == 'Fₚ' + assert upretty( Symbol('F_s') ) == 'Fₛ' + assert upretty( Symbol('F_t') ) == 'Fₜ' + + +def test_upretty_modifiers(): + # Accents + assert upretty( Symbol('Fmathring') ) == 'F̊' + assert upretty( Symbol('Fddddot') ) == 'F⃜' + assert upretty( Symbol('Fdddot') ) == 'F⃛' + assert upretty( Symbol('Fddot') ) == 'F̈' + assert upretty( Symbol('Fdot') ) == 'Ḟ' + assert upretty( Symbol('Fcheck') ) == 'F̌' + assert upretty( Symbol('Fbreve') ) == 'F̆' + assert upretty( Symbol('Facute') ) == 'F́' + assert upretty( Symbol('Fgrave') ) == 'F̀' + assert upretty( Symbol('Ftilde') ) == 'F̃' + assert upretty( Symbol('Fhat') ) == 'F̂' + assert upretty( Symbol('Fbar') ) == 'F̅' + assert upretty( Symbol('Fvec') ) == 'F⃗' + assert upretty( Symbol('Fprime') ) == 'F′' + assert upretty( Symbol('Fprm') ) == 'F′' + # No faces are actually implemented, but test to make sure the modifiers are stripped + assert upretty( Symbol('Fbold') ) == 'Fbold' + assert upretty( Symbol('Fbm') ) == 'Fbm' + assert upretty( Symbol('Fcal') ) == 'Fcal' + assert upretty( Symbol('Fscr') ) == 'Fscr' + assert upretty( Symbol('Ffrak') ) == 'Ffrak' + # Brackets + assert upretty( Symbol('Fnorm') ) == '‖F‖' + assert upretty( Symbol('Favg') ) == '⟨F⟩' + assert upretty( Symbol('Fabs') ) == '|F|' + assert upretty( Symbol('Fmag') ) == '|F|' + # Combinations + assert upretty( Symbol('xvecdot') ) == 'x⃗̇' + assert upretty( Symbol('xDotVec') ) == 'ẋ⃗' + assert upretty( Symbol('xHATNorm') ) == '‖x̂‖' + assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|' + assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′' + assert upretty( Symbol('x_dot') ) == 'x_dot' + assert upretty( Symbol('x__dot') ) == 'x__dot' + + +def test_pretty_Cycle(): + from sympy.combinatorics.permutations import Cycle + assert pretty(Cycle(1, 2)) == '(1 2)' + assert pretty(Cycle(2)) == '(2)' + assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' + assert pretty(Cycle()) == '()' + + +def test_pretty_Permutation(): + from sympy.combinatorics.permutations import Permutation + p1 = Permutation(1, 2)(3, 4) + assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)" + assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)" + assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \ + '⎛0 1 2 3 4⎞\n'\ + '⎝0 2 1 4 3⎠' + assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \ + "/0 1 2 3 4\\\n"\ + "\\0 2 1 4 3/" + + with warns_deprecated_sympy(): + old_print_cyclic = Permutation.print_cyclic + Permutation.print_cyclic = False + assert xpretty(p1, use_unicode=True) == \ + '⎛0 1 2 3 4⎞\n'\ + '⎝0 2 1 4 3⎠' + assert xpretty(p1, use_unicode=False) == \ + "/0 1 2 3 4\\\n"\ + "\\0 2 1 4 3/" + Permutation.print_cyclic = old_print_cyclic + + +def test_pretty_basic(): + assert pretty( -Rational(1)/2 ) == '-1/2' + assert pretty( -Rational(13)/22 ) == \ +"""\ +-13 \n\ +----\n\ + 22 \ +""" + expr = oo + ascii_str = \ +"""\ +oo\ +""" + ucode_str = \ +"""\ +∞\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (x**2) + ascii_str = \ +"""\ + 2\n\ +x \ +""" + ucode_str = \ +"""\ + 2\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 1/x + ascii_str = \ +"""\ +1\n\ +-\n\ +x\ +""" + ucode_str = \ +"""\ +1\n\ +─\n\ +x\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + # not the same as 1/x + expr = x**-1.0 + ascii_str = \ +"""\ + -1.0\n\ +x \ +""" + ucode_str = \ +"""\ + -1.0\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + # see issue #2860 + expr = Pow(S(2), -1.0, evaluate=False) + ascii_str = \ +"""\ + -1.0\n\ +2 \ +""" + ucode_str = \ +"""\ + -1.0\n\ +2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = y*x**-2 + ascii_str = \ +"""\ +y \n\ +--\n\ + 2\n\ +x \ +""" + ucode_str = \ +"""\ +y \n\ +──\n\ + 2\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + #see issue #14033 + expr = x**Rational(1, 3) + ascii_str = \ +"""\ + 1/3\n\ +x \ +""" + ucode_str = \ +"""\ + 1/3\n\ +x \ +""" + assert xpretty(expr, use_unicode=False, wrap_line=False,\ + root_notation = False) == ascii_str + assert xpretty(expr, use_unicode=True, wrap_line=False,\ + root_notation = False) == ucode_str + + expr = x**Rational(-5, 2) + ascii_str = \ +"""\ + 1 \n\ +----\n\ + 5/2\n\ +x \ +""" + ucode_str = \ +"""\ + 1 \n\ +────\n\ + 5/2\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (-2)**x + ascii_str = \ +"""\ + x\n\ +(-2) \ +""" + ucode_str = \ +"""\ + x\n\ +(-2) \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + # See issue 4923 + expr = Pow(3, 1, evaluate=False) + ascii_str = \ +"""\ + 1\n\ +3 \ +""" + ucode_str = \ +"""\ + 1\n\ +3 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (x**2 + x + 1) + ascii_str_1 = \ +"""\ + 2\n\ +1 + x + x \ +""" + ascii_str_2 = \ +"""\ + 2 \n\ +x + x + 1\ +""" + ascii_str_3 = \ +"""\ + 2 \n\ +x + 1 + x\ +""" + ucode_str_1 = \ +"""\ + 2\n\ +1 + x + x \ +""" + ucode_str_2 = \ +"""\ + 2 \n\ +x + x + 1\ +""" + ucode_str_3 = \ +"""\ + 2 \n\ +x + 1 + x\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] + assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] + + expr = 1 - x + ascii_str_1 = \ +"""\ +1 - x\ +""" + ascii_str_2 = \ +"""\ +-x + 1\ +""" + ucode_str_1 = \ +"""\ +1 - x\ +""" + ucode_str_2 = \ +"""\ +-x + 1\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = 1 - 2*x + ascii_str_1 = \ +"""\ +1 - 2*x\ +""" + ascii_str_2 = \ +"""\ +-2*x + 1\ +""" + ucode_str_1 = \ +"""\ +1 - 2⋅x\ +""" + ucode_str_2 = \ +"""\ +-2⋅x + 1\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = x/y + ascii_str = \ +"""\ +x\n\ +-\n\ +y\ +""" + ucode_str = \ +"""\ +x\n\ +─\n\ +y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = -x/y + ascii_str = \ +"""\ +-x \n\ +---\n\ + y \ +""" + ucode_str = \ +"""\ +-x \n\ +───\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (x + 2)/y + ascii_str_1 = \ +"""\ +2 + x\n\ +-----\n\ + y \ +""" + ascii_str_2 = \ +"""\ +x + 2\n\ +-----\n\ + y \ +""" + ucode_str_1 = \ +"""\ +2 + x\n\ +─────\n\ + y \ +""" + ucode_str_2 = \ +"""\ +x + 2\n\ +─────\n\ + y \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = (1 + x)*y + ascii_str_1 = \ +"""\ +y*(1 + x)\ +""" + ascii_str_2 = \ +"""\ +(1 + x)*y\ +""" + ascii_str_3 = \ +"""\ +y*(x + 1)\ +""" + ucode_str_1 = \ +"""\ +y⋅(1 + x)\ +""" + ucode_str_2 = \ +"""\ +(1 + x)⋅y\ +""" + ucode_str_3 = \ +"""\ +y⋅(x + 1)\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] + assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] + + # Test for correct placement of the negative sign + expr = -5*x/(x + 10) + ascii_str_1 = \ +"""\ +-5*x \n\ +------\n\ +10 + x\ +""" + ascii_str_2 = \ +"""\ +-5*x \n\ +------\n\ +x + 10\ +""" + ucode_str_1 = \ +"""\ +-5⋅x \n\ +──────\n\ +10 + x\ +""" + ucode_str_2 = \ +"""\ +-5⋅x \n\ +──────\n\ +x + 10\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = -S.Half - 3*x + ascii_str = \ +"""\ +-3*x - 1/2\ +""" + ucode_str = \ +"""\ +-3⋅x - 1/2\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = S.Half - 3*x + ascii_str = \ +"""\ +1/2 - 3*x\ +""" + ucode_str = \ +"""\ +1/2 - 3⋅x\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = -S.Half - 3*x/2 + ascii_str = \ +"""\ + 3*x 1\n\ +- --- - -\n\ + 2 2\ +""" + ucode_str = \ +"""\ + 3⋅x 1\n\ +- ─── - ─\n\ + 2 2\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = S.Half - 3*x/2 + ascii_str = \ +"""\ +1 3*x\n\ +- - ---\n\ +2 2 \ +""" + ucode_str = \ +"""\ +1 3⋅x\n\ +─ - ───\n\ +2 2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_negative_fractions(): + expr = -x/y + ascii_str =\ +"""\ +-x \n\ +---\n\ + y \ +""" + ucode_str =\ +"""\ +-x \n\ +───\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -x*z/y + ascii_str =\ +"""\ +-x*z \n\ +-----\n\ + y \ +""" + ucode_str =\ +"""\ +-x⋅z \n\ +─────\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = x**2/y + ascii_str =\ +"""\ + 2\n\ +x \n\ +--\n\ +y \ +""" + ucode_str =\ +"""\ + 2\n\ +x \n\ +──\n\ +y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -x**2/y + ascii_str =\ +"""\ + 2 \n\ +-x \n\ +----\n\ + y \ +""" + ucode_str =\ +"""\ + 2 \n\ +-x \n\ +────\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -x/(y*z) + ascii_str =\ +"""\ +-x \n\ +---\n\ +y*z\ +""" + ucode_str =\ +"""\ +-x \n\ +───\n\ +y⋅z\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -a/y**2 + ascii_str =\ +"""\ +-a \n\ +---\n\ + 2\n\ + y \ +""" + ucode_str =\ +"""\ +-a \n\ +───\n\ + 2\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = y**(-a/b) + ascii_str =\ +"""\ + -a \n\ + ---\n\ + b \n\ +y \ +""" + ucode_str =\ +"""\ + -a \n\ + ───\n\ + b \n\ +y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -1/y**2 + ascii_str =\ +"""\ +-1 \n\ +---\n\ + 2\n\ + y \ +""" + ucode_str =\ +"""\ +-1 \n\ +───\n\ + 2\n\ + y \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = -10/b**2 + ascii_str =\ +"""\ +-10 \n\ +----\n\ + 2 \n\ + b \ +""" + ucode_str =\ +"""\ +-10 \n\ +────\n\ + 2 \n\ + b \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + expr = Rational(-200, 37) + ascii_str =\ +"""\ +-200 \n\ +-----\n\ + 37 \ +""" + ucode_str =\ +"""\ +-200 \n\ +─────\n\ + 37 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + +def test_Mul(): + expr = Mul(0, 1, evaluate=False) + assert pretty(expr) == "0*1" + assert upretty(expr) == "0⋅1" + expr = Mul(1, 0, evaluate=False) + assert pretty(expr) == "1*0" + assert upretty(expr) == "1⋅0" + expr = Mul(1, 1, evaluate=False) + assert pretty(expr) == "1*1" + assert upretty(expr) == "1⋅1" + expr = Mul(1, 1, 1, evaluate=False) + assert pretty(expr) == "1*1*1" + assert upretty(expr) == "1⋅1⋅1" + expr = Mul(1, 2, evaluate=False) + assert pretty(expr) == "1*2" + assert upretty(expr) == "1⋅2" + expr = Add(0, 1, evaluate=False) + assert pretty(expr) == "0 + 1" + assert upretty(expr) == "0 + 1" + expr = Mul(1, 1, 2, evaluate=False) + assert pretty(expr) == "1*1*2" + assert upretty(expr) == "1⋅1⋅2" + expr = Add(0, 0, 1, evaluate=False) + assert pretty(expr) == "0 + 0 + 1" + assert upretty(expr) == "0 + 0 + 1" + expr = Mul(1, -1, evaluate=False) + assert pretty(expr) == "1*-1" + assert upretty(expr) == "1⋅-1" + expr = Mul(1.0, x, evaluate=False) + assert pretty(expr) == "1.0*x" + assert upretty(expr) == "1.0⋅x" + expr = Mul(1, 1, 2, 3, x, evaluate=False) + assert pretty(expr) == "1*1*2*3*x" + assert upretty(expr) == "1⋅1⋅2⋅3⋅x" + expr = Mul(-1, 1, evaluate=False) + assert pretty(expr) == "-1*1" + assert upretty(expr) == "-1⋅1" + expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False) + assert pretty(expr) == "4*3*2*1*0*y*x" + assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x" + expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False) + assert pretty(expr) == "4*3*2*(z + 1)*0*y*x" + assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x" + expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False) + assert pretty(expr) == "2/3*5/7" + assert upretty(expr) == "2/3⋅5/7" + expr = Mul(x + y, Rational(1, 2), evaluate=False) + assert pretty(expr) == "(x + y)*1/2" + assert upretty(expr) == "(x + y)⋅1/2" + expr = Mul(Rational(1, 2), x + y, evaluate=False) + assert pretty(expr) == "x + y\n-----\n 2 " + assert upretty(expr) == "x + y\n─────\n 2 " + expr = Mul(S.One, x + y, evaluate=False) + assert pretty(expr) == "1*(x + y)" + assert upretty(expr) == "1⋅(x + y)" + expr = Mul(x - y, S.One, evaluate=False) + assert pretty(expr) == "(x - y)*1" + assert upretty(expr) == "(x - y)⋅1" + expr = Mul(Rational(1, 2), x - y, S.One, x + y, evaluate=False) + assert pretty(expr) == "1/2*(x - y)*1*(x + y)" + assert upretty(expr) == "1/2⋅(x - y)⋅1⋅(x + y)" + expr = Mul(x + y, Rational(3, 4), S.One, y - z, evaluate=False) + assert pretty(expr) == "(x + y)*3/4*1*(y - z)" + assert upretty(expr) == "(x + y)⋅3/4⋅1⋅(y - z)" + expr = Mul(x + y, Rational(1, 1), Rational(3, 4), Rational(5, 6),evaluate=False) + assert pretty(expr) == "(x + y)*1*3/4*5/6" + assert upretty(expr) == "(x + y)⋅1⋅3/4⋅5/6" + expr = Mul(Rational(3, 4), x + y, S.One, y - z, evaluate=False) + assert pretty(expr) == "3/4*(x + y)*1*(y - z)" + assert upretty(expr) == "3/4⋅(x + y)⋅1⋅(y - z)" + +def test_issue_5524(): + assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ +"""\ + 2 / ___ \\\n\ +- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ +""" + + assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ +"""\ + 2 \n\ +- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ +""" + +def test_pretty_ordering(): + assert pretty(x**2 + x + 1, order='lex') == \ +"""\ + 2 \n\ +x + x + 1\ +""" + assert pretty(x**2 + x + 1, order='rev-lex') == \ +"""\ + 2\n\ +1 + x + x \ +""" + assert pretty(1 - x, order='lex') == '-x + 1' + assert pretty(1 - x, order='rev-lex') == '1 - x' + + assert pretty(1 - 2*x, order='lex') == '-2*x + 1' + assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' + + f = 2*x**4 + y**2 - x**2 + y**3 + assert pretty(f, order=None) == \ +"""\ + 4 2 3 2\n\ +2*x - x + y + y \ +""" + assert pretty(f, order='lex') == \ +"""\ + 4 2 3 2\n\ +2*x - x + y + y \ +""" + assert pretty(f, order='rev-lex') == \ +"""\ + 2 3 2 4\n\ +y + y - x + 2*x \ +""" + + expr = x - x**3/6 + x**5/120 + O(x**6) + ascii_str = \ +"""\ + 3 5 \n\ + x x / 6\\\n\ +x - -- + --- + O\\x /\n\ + 6 120 \ +""" + ucode_str = \ +"""\ + 3 5 \n\ + x x ⎛ 6⎞\n\ +x - ── + ─── + O⎝x ⎠\n\ + 6 120 \ +""" + assert pretty(expr, order=None) == ascii_str + assert upretty(expr, order=None) == ucode_str + + assert pretty(expr, order='lex') == ascii_str + assert upretty(expr, order='lex') == ucode_str + + assert pretty(expr, order='rev-lex') == ascii_str + assert upretty(expr, order='rev-lex') == ucode_str + +def test_EulerGamma(): + assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" + assert upretty(EulerGamma) == "γ" + +def test_GoldenRatio(): + assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" + assert upretty(GoldenRatio) == "φ" + + +def test_Catalan(): + assert pretty(Catalan) == upretty(Catalan) == "G" + + +def test_pretty_relational(): + expr = Eq(x, y) + ascii_str = \ +"""\ +x = y\ +""" + ucode_str = \ +"""\ +x = y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Lt(x, y) + ascii_str = \ +"""\ +x < y\ +""" + ucode_str = \ +"""\ +x < y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Gt(x, y) + ascii_str = \ +"""\ +x > y\ +""" + ucode_str = \ +"""\ +x > y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Le(x, y) + ascii_str = \ +"""\ +x <= y\ +""" + ucode_str = \ +"""\ +x ≤ y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Ge(x, y) + ascii_str = \ +"""\ +x >= y\ +""" + ucode_str = \ +"""\ +x ≥ y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Ne(x/(y + 1), y**2) + ascii_str_1 = \ +"""\ + x 2\n\ +----- != y \n\ +1 + y \ +""" + ascii_str_2 = \ +"""\ + x 2\n\ +----- != y \n\ +y + 1 \ +""" + ucode_str_1 = \ +"""\ + x 2\n\ +───── ≠ y \n\ +1 + y \ +""" + ucode_str_2 = \ +"""\ + x 2\n\ +───── ≠ y \n\ +y + 1 \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + +def test_Assignment(): + expr = Assignment(x, y) + ascii_str = \ +"""\ +x := y\ +""" + ucode_str = \ +"""\ +x := y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + +def test_AugmentedAssignment(): + expr = AddAugmentedAssignment(x, y) + ascii_str = \ +"""\ +x += y\ +""" + ucode_str = \ +"""\ +x += y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = SubAugmentedAssignment(x, y) + ascii_str = \ +"""\ +x -= y\ +""" + ucode_str = \ +"""\ +x -= y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = MulAugmentedAssignment(x, y) + ascii_str = \ +"""\ +x *= y\ +""" + ucode_str = \ +"""\ +x *= y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = DivAugmentedAssignment(x, y) + ascii_str = \ +"""\ +x /= y\ +""" + ucode_str = \ +"""\ +x /= y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = ModAugmentedAssignment(x, y) + ascii_str = \ +"""\ +x %= y\ +""" + ucode_str = \ +"""\ +x %= y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + +def test_pretty_rational(): + expr = y*x**-2 + ascii_str = \ +"""\ +y \n\ +--\n\ + 2\n\ +x \ +""" + ucode_str = \ +"""\ +y \n\ +──\n\ + 2\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = y**Rational(3, 2) * x**Rational(-5, 2) + ascii_str = \ +"""\ + 3/2\n\ +y \n\ +----\n\ + 5/2\n\ +x \ +""" + ucode_str = \ +"""\ + 3/2\n\ +y \n\ +────\n\ + 5/2\n\ +x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = sin(x)**3/tan(x)**2 + ascii_str = \ +"""\ + 3 \n\ +sin (x)\n\ +-------\n\ + 2 \n\ +tan (x)\ +""" + ucode_str = \ +"""\ + 3 \n\ +sin (x)\n\ +───────\n\ + 2 \n\ +tan (x)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +@_both_exp_pow +def test_pretty_functions(): + """Tests for Abs, conjugate, exp, function braces, and factorial.""" + expr = (2*x + exp(x)) + ascii_str_1 = \ +"""\ + x\n\ +2*x + e \ +""" + ascii_str_2 = \ +"""\ + x \n\ +e + 2*x\ +""" + ucode_str_1 = \ +"""\ + x\n\ +2⋅x + ℯ \ +""" + ucode_str_2 = \ +"""\ + x \n\ +ℯ + 2⋅x\ +""" + ucode_str_3 = \ +"""\ + x \n\ +ℯ + 2⋅x\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] + + expr = Abs(x) + ascii_str = \ +"""\ +|x|\ +""" + ucode_str = \ +"""\ +│x│\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Abs(x/(x**2 + 1)) + ascii_str_1 = \ +"""\ +| x |\n\ +|------|\n\ +| 2|\n\ +|1 + x |\ +""" + ascii_str_2 = \ +"""\ +| x |\n\ +|------|\n\ +| 2 |\n\ +|x + 1|\ +""" + ucode_str_1 = \ +"""\ +│ x │\n\ +│──────│\n\ +│ 2│\n\ +│1 + x │\ +""" + ucode_str_2 = \ +"""\ +│ x │\n\ +│──────│\n\ +│ 2 │\n\ +│x + 1│\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = Abs(1 / (y - Abs(x))) + ascii_str = \ +"""\ + 1 \n\ +---------\n\ +|y - |x||\ +""" + ucode_str = \ +"""\ + 1 \n\ +─────────\n\ +│y - │x││\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + n = Symbol('n', integer=True) + expr = factorial(n) + ascii_str = \ +"""\ +n!\ +""" + ucode_str = \ +"""\ +n!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial(2*n) + ascii_str = \ +"""\ +(2*n)!\ +""" + ucode_str = \ +"""\ +(2⋅n)!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial(factorial(factorial(n))) + ascii_str = \ +"""\ +((n!)!)!\ +""" + ucode_str = \ +"""\ +((n!)!)!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial(n + 1) + ascii_str_1 = \ +"""\ +(1 + n)!\ +""" + ascii_str_2 = \ +"""\ +(n + 1)!\ +""" + ucode_str_1 = \ +"""\ +(1 + n)!\ +""" + ucode_str_2 = \ +"""\ +(n + 1)!\ +""" + + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = subfactorial(n) + ascii_str = \ +"""\ +!n\ +""" + ucode_str = \ +"""\ +!n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = subfactorial(2*n) + ascii_str = \ +"""\ +!(2*n)\ +""" + ucode_str = \ +"""\ +!(2⋅n)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + n = Symbol('n', integer=True) + expr = factorial2(n) + ascii_str = \ +"""\ +n!!\ +""" + ucode_str = \ +"""\ +n!!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial2(2*n) + ascii_str = \ +"""\ +(2*n)!!\ +""" + ucode_str = \ +"""\ +(2⋅n)!!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial2(factorial2(factorial2(n))) + ascii_str = \ +"""\ +((n!!)!!)!!\ +""" + ucode_str = \ +"""\ +((n!!)!!)!!\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = factorial2(n + 1) + ascii_str_1 = \ +"""\ +(1 + n)!!\ +""" + ascii_str_2 = \ +"""\ +(n + 1)!!\ +""" + ucode_str_1 = \ +"""\ +(1 + n)!!\ +""" + ucode_str_2 = \ +"""\ +(n + 1)!!\ +""" + + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = 2*binomial(n, k) + ascii_str = \ +"""\ + /n\\\n\ +2*| |\n\ + \\k/\ +""" + ucode_str = \ +"""\ + ⎛n⎞\n\ +2⋅⎜ ⎟\n\ + ⎝k⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2*binomial(2*n, k) + ascii_str = \ +"""\ + /2*n\\\n\ +2*| |\n\ + \\ k /\ +""" + ucode_str = \ +"""\ + ⎛2⋅n⎞\n\ +2⋅⎜ ⎟\n\ + ⎝ k ⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2*binomial(n**2, k) + ascii_str = \ +"""\ + / 2\\\n\ + |n |\n\ +2*| |\n\ + \\k /\ +""" + ucode_str = \ +"""\ + ⎛ 2⎞\n\ + ⎜n ⎟\n\ +2⋅⎜ ⎟\n\ + ⎝k ⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = catalan(n) + ascii_str = \ +"""\ +C \n\ + n\ +""" + ucode_str = \ +"""\ +C \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = catalan(n) + ascii_str = \ +"""\ +C \n\ + n\ +""" + ucode_str = \ +"""\ +C \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = bell(n) + ascii_str = \ +"""\ +B \n\ + n\ +""" + ucode_str = \ +"""\ +B \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = bernoulli(n) + ascii_str = \ +"""\ +B \n\ + n\ +""" + ucode_str = \ +"""\ +B \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = bernoulli(n, x) + ascii_str = \ +"""\ +B (x)\n\ + n \ +""" + ucode_str = \ +"""\ +B (x)\n\ + n \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = fibonacci(n) + ascii_str = \ +"""\ +F \n\ + n\ +""" + ucode_str = \ +"""\ +F \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = lucas(n) + ascii_str = \ +"""\ +L \n\ + n\ +""" + ucode_str = \ +"""\ +L \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = tribonacci(n) + ascii_str = \ +"""\ +T \n\ + n\ +""" + ucode_str = \ +"""\ +T \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = stieltjes(n) + ascii_str = \ +"""\ +stieltjes \n\ + n\ +""" + ucode_str = \ +"""\ +γ \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = stieltjes(n, x) + ascii_str = \ +"""\ +stieltjes (x)\n\ + n \ +""" + ucode_str = \ +"""\ +γ (x)\n\ + n \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = mathieuc(x, y, z) + ascii_str = 'C(x, y, z)' + ucode_str = 'C(x, y, z)' + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = mathieus(x, y, z) + ascii_str = 'S(x, y, z)' + ucode_str = 'S(x, y, z)' + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = mathieucprime(x, y, z) + ascii_str = "C'(x, y, z)" + ucode_str = "C'(x, y, z)" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = mathieusprime(x, y, z) + ascii_str = "S'(x, y, z)" + ucode_str = "S'(x, y, z)" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = conjugate(x) + ascii_str = \ +"""\ +_\n\ +x\ +""" + ucode_str = \ +"""\ +_\n\ +x\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + f = Function('f') + expr = conjugate(f(x + 1)) + ascii_str_1 = \ +"""\ +________\n\ +f(1 + x)\ +""" + ascii_str_2 = \ +"""\ +________\n\ +f(x + 1)\ +""" + ucode_str_1 = \ +"""\ +________\n\ +f(1 + x)\ +""" + ucode_str_2 = \ +"""\ +________\n\ +f(x + 1)\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = f(x) + ascii_str = \ +"""\ +f(x)\ +""" + ucode_str = \ +"""\ +f(x)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = f(x, y) + ascii_str = \ +"""\ +f(x, y)\ +""" + ucode_str = \ +"""\ +f(x, y)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = f(x/(y + 1), y) + ascii_str_1 = \ +"""\ + / x \\\n\ +f|-----, y|\n\ + \\1 + y /\ +""" + ascii_str_2 = \ +"""\ + / x \\\n\ +f|-----, y|\n\ + \\y + 1 /\ +""" + ucode_str_1 = \ +"""\ + ⎛ x ⎞\n\ +f⎜─────, y⎟\n\ + ⎝1 + y ⎠\ +""" + ucode_str_2 = \ +"""\ + ⎛ x ⎞\n\ +f⎜─────, y⎟\n\ + ⎝y + 1 ⎠\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = f(x**x**x**x**x**x) + ascii_str = \ +"""\ + / / / / / x\\\\\\\\\\ + | | | | \\x /|||| + | | | \\x /||| + | | \\x /|| + | \\x /| +f\\x /\ +""" + ucode_str = \ +"""\ + ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ + ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ + ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ + ⎜ ⎜ ⎝x ⎠⎟⎟ + ⎜ ⎝x ⎠⎟ +f⎝x ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = sin(x)**2 + ascii_str = \ +"""\ + 2 \n\ +sin (x)\ +""" + ucode_str = \ +"""\ + 2 \n\ +sin (x)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = conjugate(a + b*I) + ascii_str = \ +"""\ +_ _\n\ +a - I*b\ +""" + ucode_str = \ +"""\ +_ _\n\ +a - ⅈ⋅b\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = conjugate(exp(a + b*I)) + ascii_str = \ +"""\ + _ _\n\ + a - I*b\n\ +e \ +""" + ucode_str = \ +"""\ + _ _\n\ + a - ⅈ⋅b\n\ +ℯ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = conjugate( f(1 + conjugate(f(x))) ) + ascii_str_1 = \ +"""\ +___________\n\ + / ____\\\n\ +f\\1 + f(x)/\ +""" + ascii_str_2 = \ +"""\ +___________\n\ + /____ \\\n\ +f\\f(x) + 1/\ +""" + ucode_str_1 = \ +"""\ +___________\n\ + ⎛ ____⎞\n\ +f⎝1 + f(x)⎠\ +""" + ucode_str_2 = \ +"""\ +___________\n\ + ⎛____ ⎞\n\ +f⎝f(x) + 1⎠\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = f(x/(y + 1), y) + ascii_str_1 = \ +"""\ + / x \\\n\ +f|-----, y|\n\ + \\1 + y /\ +""" + ascii_str_2 = \ +"""\ + / x \\\n\ +f|-----, y|\n\ + \\y + 1 /\ +""" + ucode_str_1 = \ +"""\ + ⎛ x ⎞\n\ +f⎜─────, y⎟\n\ + ⎝1 + y ⎠\ +""" + ucode_str_2 = \ +"""\ + ⎛ x ⎞\n\ +f⎜─────, y⎟\n\ + ⎝y + 1 ⎠\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = floor(1 / (y - floor(x))) + ascii_str = \ +"""\ + / 1 \\\n\ +floor|------------|\n\ + \\y - floor(x)/\ +""" + ucode_str = \ +"""\ +⎢ 1 ⎥\n\ +⎢───────⎥\n\ +⎣y - ⌊x⌋⎦\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = ceiling(1 / (y - ceiling(x))) + ascii_str = \ +"""\ + / 1 \\\n\ +ceiling|--------------|\n\ + \\y - ceiling(x)/\ +""" + ucode_str = \ +"""\ +⎡ 1 ⎤\n\ +⎢───────⎥\n\ +⎢y - ⌈x⌉⎥\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = euler(n) + ascii_str = \ +"""\ +E \n\ + n\ +""" + ucode_str = \ +"""\ +E \n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = euler(1/(1 + 1/(1 + 1/n))) + ascii_str = \ +"""\ +E \n\ + 1 \n\ + ---------\n\ + 1 \n\ + 1 + -----\n\ + 1\n\ + 1 + -\n\ + n\ +""" + + ucode_str = \ +"""\ +E \n\ + 1 \n\ + ─────────\n\ + 1 \n\ + 1 + ─────\n\ + 1\n\ + 1 + ─\n\ + n\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = euler(n, x) + ascii_str = \ +"""\ +E (x)\n\ + n \ +""" + ucode_str = \ +"""\ +E (x)\n\ + n \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = euler(n, x/2) + ascii_str = \ +"""\ + /x\\\n\ +E |-|\n\ + n\\2/\ +""" + ucode_str = \ +"""\ + ⎛x⎞\n\ +E ⎜─⎟\n\ + n⎝2⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_sqrt(): + expr = sqrt(2) + ascii_str = \ +"""\ + ___\n\ +\\/ 2 \ +""" + ucode_str = \ +"√2" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2**Rational(1, 3) + ascii_str = \ +"""\ +3 ___\n\ +\\/ 2 \ +""" + ucode_str = \ +"""\ +3 ___\n\ +╲╱ 2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2**Rational(1, 1000) + ascii_str = \ +"""\ +1000___\n\ + \\/ 2 \ +""" + ucode_str = \ +"""\ +1000___\n\ + ╲╱ 2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = sqrt(x**2 + 1) + ascii_str = \ +"""\ + ________\n\ + / 2 \n\ +\\/ x + 1 \ +""" + ucode_str = \ +"""\ + ________\n\ + ╱ 2 \n\ +╲╱ x + 1 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (1 + sqrt(5))**Rational(1, 3) + ascii_str = \ +"""\ + ___________\n\ +3 / ___ \n\ +\\/ 1 + \\/ 5 \ +""" + ucode_str = \ +"""\ +3 ________\n\ +╲╱ 1 + √5 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2**(1/x) + ascii_str = \ +"""\ +x ___\n\ +\\/ 2 \ +""" + ucode_str = \ +"""\ +x ___\n\ +╲╱ 2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = sqrt(2 + pi) + ascii_str = \ +"""\ + ________\n\ +\\/ 2 + pi \ +""" + ucode_str = \ +"""\ + _______\n\ +╲╱ 2 + π \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (2 + ( + 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) + ascii_str = \ +"""\ + ____________ \n\ + / 2 1000___ \n\ + / x + 1 \\/ x + 1\n\ +4 / 2 + ------ + -----------\n\ +\\/ x + 2 ________\n\ + / 2 \n\ + \\/ x + 3 \ +""" + ucode_str = \ +"""\ + ____________ \n\ + ╱ 2 1000___ \n\ + ╱ x + 1 ╲╱ x + 1\n\ +4 ╱ 2 + ────── + ───────────\n\ +╲╱ x + 2 ________\n\ + ╱ 2 \n\ + ╲╱ x + 3 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_sqrt_char_knob(): + # See PR #9234. + expr = sqrt(2) + ucode_str1 = \ +"""\ + ___\n\ +╲╱ 2 \ +""" + ucode_str2 = \ +"√2" + assert xpretty(expr, use_unicode=True, + use_unicode_sqrt_char=False) == ucode_str1 + assert xpretty(expr, use_unicode=True, + use_unicode_sqrt_char=True) == ucode_str2 + + +def test_pretty_sqrt_longsymbol_no_sqrt_char(): + # Do not use unicode sqrt char for long symbols (see PR #9234). + expr = sqrt(Symbol('C1')) + ucode_str = \ +"""\ + ____\n\ +╲╱ C₁ \ +""" + assert upretty(expr) == ucode_str + + +def test_pretty_KroneckerDelta(): + x, y = symbols("x, y") + expr = KroneckerDelta(x, y) + ascii_str = \ +"""\ +d \n\ + x,y\ +""" + ucode_str = \ +"""\ +δ \n\ + x,y\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_product(): + n, m, k, l = symbols('n m k l') + f = symbols('f', cls=Function) + expr = Product(f((n/3)**2), (n, k**2, l)) + + unicode_str = \ +"""\ + l \n\ +─┬──────┬─ \n\ + │ │ ⎛ 2⎞\n\ + │ │ ⎜n ⎟\n\ + │ │ f⎜──⎟\n\ + │ │ ⎝9 ⎠\n\ + │ │ \n\ + 2 \n\ + n = k """ + ascii_str = \ +"""\ + l \n\ +__________ \n\ + | | / 2\\\n\ + | | |n |\n\ + | | f|--|\n\ + | | \\9 /\n\ + | | \n\ + 2 \n\ + n = k """ + + expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) + + unicode_str = \ +"""\ + m l \n\ +─┬──────┬─ ─┬──────┬─ \n\ + │ │ │ │ ⎛ 2⎞\n\ + │ │ │ │ ⎜n ⎟\n\ + │ │ │ │ f⎜──⎟\n\ + │ │ │ │ ⎝9 ⎠\n\ + │ │ │ │ \n\ + l = 1 2 \n\ + n = k """ + ascii_str = \ +"""\ + m l \n\ +__________ __________ \n\ + | | | | / 2\\\n\ + | | | | |n |\n\ + | | | | f|--|\n\ + | | | | \\9 /\n\ + | | | | \n\ + l = 1 2 \n\ + n = k """ + + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + + +def test_pretty_Lambda(): + # S.IdentityFunction is a special case + expr = Lambda(y, y) + assert pretty(expr) == "x -> x" + assert upretty(expr) == "x ↦ x" + + expr = Lambda(x, x+1) + assert pretty(expr) == "x -> x + 1" + assert upretty(expr) == "x ↦ x + 1" + + expr = Lambda(x, x**2) + ascii_str = \ +"""\ + 2\n\ +x -> x \ +""" + ucode_str = \ +"""\ + 2\n\ +x ↦ x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Lambda(x, x**2)**2 + ascii_str = \ +"""\ + 2 +/ 2\\ \n\ +\\x -> x / \ +""" + ucode_str = \ +"""\ + 2 +⎛ 2⎞ \n\ +⎝x ↦ x ⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Lambda((x, y), x) + ascii_str = "(x, y) -> x" + ucode_str = "(x, y) ↦ x" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Lambda((x, y), x**2) + ascii_str = \ +"""\ + 2\n\ +(x, y) -> x \ +""" + ucode_str = \ +"""\ + 2\n\ +(x, y) ↦ x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Lambda(((x, y),), x**2) + ascii_str = \ +"""\ + 2\n\ +((x, y),) -> x \ +""" + ucode_str = \ +"""\ + 2\n\ +((x, y),) ↦ x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_TransferFunction(): + tf1 = TransferFunction(s - 1, s + 1, s) + assert upretty(tf1) == "s - 1\n─────\ns + 1" + tf2 = TransferFunction(2*s + 1, 3 - p, s) + assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p " + tf3 = TransferFunction(p, p + 1, p) + assert upretty(tf3) == " p \n─────\np + 1" + + +def test_pretty_Series(): + tf1 = TransferFunction(x + y, x - 2*y, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(x**2 + y, y - x, y) + tf4 = TransferFunction(2, 3, y) + + tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) + tfm2 = TransferFunctionMatrix([[tf3], [-tf4]]) + tfm3 = TransferFunctionMatrix([[tf1, -tf2, -tf3], [tf3, -tf4, tf2]]) + tfm4 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]]) + tfm5 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]]) + + expected1 = \ +"""\ + ⎛ 2 ⎞\n\ +⎛ x + y ⎞ ⎜x + y⎟\n\ +⎜───────⎟⋅⎜──────⎟\n\ +⎝x - 2⋅y⎠ ⎝-x + y⎠\ +""" + expected2 = \ +"""\ +⎛-x + y⎞ ⎛ -x - y⎞\n\ +⎜──────⎟⋅⎜───────⎟\n\ +⎝x + y ⎠ ⎝x - 2⋅y⎠\ +""" + expected3 = \ +"""\ +⎛ 2 ⎞ \n\ +⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\ +⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\ +⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\ +""" + expected4 = \ +"""\ + ⎛ 2 ⎞\n\ +⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\ +⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\ +⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\ +""" + expected5 = \ +"""\ +⎡ x + y x - y⎤ ⎡ 2 ⎤ \n\ +⎢─────── ─────⎥ ⎢x + y⎥ \n\ +⎢x - 2⋅y x + y⎥ ⎢──────⎥ \n\ +⎢ ⎥ ⎢-x + y⎥ \n\ +⎢ 2 ⎥ ⋅⎢ ⎥ \n\ +⎢x + y 2 ⎥ ⎢ -2 ⎥ \n\ +⎢────── ─ ⎥ ⎢ ─── ⎥ \n\ +⎣-x + y 3 ⎦τ ⎣ 3 ⎦τ\ +""" + expected6 = \ +"""\ + ⎛⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞\n\ + ⎜⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟\n\ +⎡ x + y x - y⎤ ⎡ 2 ⎤ ⎜⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟\n\ +⎢─────── ─────⎥ ⎢ x + y -x + y - x - y⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\ +⎢x - 2⋅y x + y⎥ ⎢─────── ────── ────────⎥ ⎜⎢ 2 ⎥ ⎢ 2 ⎥ ⎟\n\ +⎢ ⎥ ⎢x - 2⋅y x + y -x + y ⎥ ⎜⎢x + y -2 ⎥ ⎢ -2 x + y ⎥ ⎟\n\ +⎢ 2 ⎥ ⋅⎢ ⎥ ⋅⎜⎢────── ─── ⎥ + ⎢ ─── ────── ⎥ ⎟\n\ +⎢x + y 2 ⎥ ⎢ 2 ⎥ ⎜⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎟\n\ +⎢────── ─ ⎥ ⎢x + y -2 x - y ⎥ ⎜⎢ ⎥ ⎢ ⎥ ⎟\n\ +⎣-x + y 3 ⎦τ ⎢────── ─── ───── ⎥ ⎜⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎟\n\ + ⎣-x + y 3 x + y ⎦τ ⎜⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎟\n\ + ⎝⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠\ +""" + + assert upretty(Series(tf1, tf3)) == expected1 + assert upretty(Series(-tf2, -tf1)) == expected2 + assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3 + assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4 + assert upretty(MIMOSeries(tfm2, tfm1)) == expected5 + assert upretty(MIMOSeries(MIMOParallel(tfm4, -tfm5), tfm3, tfm1)) == expected6 + + +def test_pretty_Parallel(): + tf1 = TransferFunction(x + y, x - 2*y, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(x**2 + y, y - x, y) + tf4 = TransferFunction(y**2 - x, x**3 + x, y) + + tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf3, -tf4], [-tf2, -tf1]]) + tfm2 = TransferFunctionMatrix([[-tf2, -tf1], [tf4, -tf3], [tf1, tf2]]) + tfm3 = TransferFunctionMatrix([[-tf1, tf2], [-tf3, tf4], [tf2, tf1]]) + tfm4 = TransferFunctionMatrix([[-tf1, -tf2], [-tf3, -tf4]]) + + expected1 = \ +"""\ + x + y x - y\n\ +─────── + ─────\n\ +x - 2⋅y x + y\ +""" + expected2 = \ +"""\ +-x + y -x - y\n\ +────── + ───────\n\ +x + y x - 2⋅y\ +""" + expected3 = \ +"""\ + 2 \n\ +x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\ +────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\ +-x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\ +""" + expected4 = \ +"""\ + ⎛ 2 ⎞\n\ +⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\ +⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\ +⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\ +""" + expected5 = \ +"""\ +⎡ x + y -x + y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x - y ⎤ \n\ +⎢─────── ────── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\ +⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x + y ⎥ \n\ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\ +⎢ 2 2 ⎥ ⎢ 2 2 ⎥ ⎢ 2 2 ⎥ \n\ +⎢x + y x - y ⎥ ⎢x - y x + y ⎥ ⎢x + y x - y ⎥ \n\ +⎢────── ────── ⎥ + ⎢────── ────── ⎥ + ⎢────── ────── ⎥ \n\ +⎢-x + y 3 ⎥ ⎢ 3 -x + y ⎥ ⎢-x + y 3 ⎥ \n\ +⎢ x + x ⎥ ⎢x + x ⎥ ⎢ x + x ⎥ \n\ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ \n\ +⎢-x + y -x - y⎥ ⎢ -x - y -x + y ⎥ ⎢-x + y -x - y⎥ \n\ +⎢────── ───────⎥ ⎢─────── ────── ⎥ ⎢────── ───────⎥ \n\ +⎣x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣x + y x - 2⋅y⎦τ\ +""" + expected6 = \ +"""\ +⎡ x - y x + y ⎤ ⎡-x + y -x - y ⎤ \n\ +⎢ ───── ───────⎥ ⎢────── ─────── ⎥ \n\ +⎢ x + y x - 2⋅y⎥ ⎡ -x - y -x + y⎤ ⎢x + y x - 2⋅y ⎥ \n\ +⎢ ⎥ ⎢─────── ──────⎥ ⎢ ⎥ \n\ +⎢ 2 2 ⎥ ⎢x - 2⋅y x + y ⎥ ⎢ 2 2 ⎥ \n\ +⎢x - y x + y ⎥ ⎢ ⎥ ⎢-x + y - x - y⎥ \n\ +⎢────── ────── ⎥ ⋅⎢ 2 2⎥ + ⎢─────── ────────⎥ \n\ +⎢ 3 -x + y ⎥ ⎢- x - y x - y ⎥ ⎢ 3 -x + y ⎥ \n\ +⎢x + x ⎥ ⎢──────── ──────⎥ ⎢ x + x ⎥ \n\ +⎢ ⎥ ⎢ -x + y 3 ⎥ ⎢ ⎥ \n\ +⎢ -x - y -x + y ⎥ ⎣ x + x⎦τ ⎢ x + y x - y ⎥ \n\ +⎢─────── ────── ⎥ ⎢─────── ───── ⎥ \n\ +⎣x - 2⋅y x + y ⎦τ ⎣x - 2⋅y x + y ⎦τ\ +""" + + assert upretty(Parallel(tf1, tf2)) == expected1 + assert upretty(Parallel(-tf2, -tf1)) == expected2 + assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3 + assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4 + assert upretty(MIMOParallel(-tfm3, -tfm2, tfm1)) == expected5 + assert upretty(MIMOParallel(MIMOSeries(tfm4, -tfm2), tfm2)) == expected6 + + +def test_pretty_Feedback(): + tf = TransferFunction(1, 1, y) + tf1 = TransferFunction(x + y, x - 2*y, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) + tf4 = TransferFunction(x - 2*y**3, x + y, x) + tf5 = TransferFunction(1 - x, x - y, y) + tf6 = TransferFunction(2, 2, x) + expected1 = \ +"""\ + ⎛1⎞ \n\ + ⎜─⎟ \n\ + ⎝1⎠ \n\ +─────────────\n\ +1 ⎛ x + y ⎞\n\ +─ + ⎜───────⎟\n\ +1 ⎝x - 2⋅y⎠\ +""" + expected2 = \ +"""\ + ⎛1⎞ \n\ + ⎜─⎟ \n\ + ⎝1⎠ \n\ +────────────────────────────────────\n\ + ⎛ 2 ⎞\n\ +1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\ +─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\ +1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\ +""" + expected3 = \ +"""\ + ⎛ x + y ⎞ \n\ + ⎜───────⎟ \n\ + ⎝x - 2⋅y⎠ \n\ +────────────────────────────────────────────\n\ + ⎛ 2 ⎞ \n\ +1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\ +─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\ +1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\ +""" + expected4 = \ +"""\ + ⎛ x + y ⎞ ⎛x - y⎞ \n\ + ⎜───────⎟⋅⎜─────⎟ \n\ + ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ +─────────────────────\n\ +1 ⎛ x + y ⎞ ⎛x - y⎞\n\ +─ + ⎜───────⎟⋅⎜─────⎟\n\ +1 ⎝x - 2⋅y⎠ ⎝x + y⎠\ +""" + expected5 = \ +"""\ + ⎛ x + y ⎞ ⎛x - y⎞ \n\ + ⎜───────⎟⋅⎜─────⎟ \n\ + ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ +─────────────────────────────\n\ +1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ +─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ +1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ +""" + expected6 = \ +"""\ + ⎛ 2 ⎞ \n\ + ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\ + ⎜────────────⎟⋅⎜─────⎟ \n\ + ⎝ y + 5 ⎠ ⎝x - y⎠ \n\ +────────────────────────────────────────────\n\ + ⎛ 2 ⎞ \n\ +1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\ +─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\ +1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\ +""" + expected7 = \ +"""\ + ⎛ 3⎞ \n\ + ⎜x - 2⋅y ⎟ \n\ + ⎜────────⎟ \n\ + ⎝ x + y ⎠ \n\ +──────────────────\n\ + ⎛ 3⎞ \n\ +1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\ +─ + ⎜────────⎟⋅⎜─⎟\n\ +1 ⎝ x + y ⎠ ⎝2⎠\ +""" + expected8 = \ +"""\ + ⎛1 - x⎞ \n\ + ⎜─────⎟ \n\ + ⎝x - y⎠ \n\ +───────────\n\ +1 ⎛1 - x⎞\n\ +─ + ⎜─────⎟\n\ +1 ⎝x - y⎠\ +""" + expected9 = \ +"""\ + ⎛ x + y ⎞ ⎛x - y⎞ \n\ + ⎜───────⎟⋅⎜─────⎟ \n\ + ⎝x - 2⋅y⎠ ⎝x + y⎠ \n\ +─────────────────────────────\n\ +1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\ +─ - ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\ +1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\ +""" + expected10 = \ +"""\ + ⎛1 - x⎞ \n\ + ⎜─────⎟ \n\ + ⎝x - y⎠ \n\ +───────────\n\ +1 ⎛1 - x⎞\n\ +─ - ⎜─────⎟\n\ +1 ⎝x - y⎠\ +""" + assert upretty(Feedback(tf, tf1)) == expected1 + assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2 + assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3 + assert upretty(Feedback(tf1*tf2, tf)) == expected4 + assert upretty(Feedback(tf1*tf2, tf5)) == expected5 + assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6 + assert upretty(Feedback(tf4, tf6)) == expected7 + assert upretty(Feedback(tf5, tf)) == expected8 + + assert upretty(Feedback(tf1*tf2, tf5, 1)) == expected9 + assert upretty(Feedback(tf5, tf, 1)) == expected10 + + +def test_pretty_MIMOFeedback(): + tf1 = TransferFunction(x + y, x - 2*y, y) + tf2 = TransferFunction(x - y, x + y, y) + tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) + tfm_3 = TransferFunctionMatrix([[tf1, tf1], [tf2, tf2]]) + + expected1 = \ +"""\ +⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ \n\ +⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎟ ⎢─────── ───── ⎥ \n\ +⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ \n\ +⎜I - ⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ \n\ +⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ \n\ +⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎟ ⎢ ───── ───────⎥ \n\ +⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ\ +""" + expected2 = \ +"""\ +⎛ ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ ⎡ x + y x + y ⎤ ⎞-1 ⎡ x + y x - y ⎤ ⎡ x - y x + y ⎤ \n\ +⎜ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ ⎢─────── ───────⎥ ⎟ ⎢─────── ───── ⎥ ⎢ ───── ───────⎥ \n\ +⎜ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ ⎢x - 2⋅y x - 2⋅y⎥ ⎟ ⎢x - 2⋅y x + y ⎥ ⎢ x + y x - 2⋅y⎥ \n\ +⎜I + ⎢ ⎥ ⋅⎢ ⎥ ⋅⎢ ⎥ ⎟ ⋅ ⎢ ⎥ ⋅⎢ ⎥ \n\ +⎜ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ ⎢ x - y x - y ⎥ ⎟ ⎢ x - y x + y ⎥ ⎢ x + y x - y ⎥ \n\ +⎜ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ ⎢ ───── ───── ⎥ ⎟ ⎢ ───── ───────⎥ ⎢─────── ───── ⎥ \n\ +⎝ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ ⎣ x + y x + y ⎦τ⎠ ⎣ x + y x - 2⋅y⎦τ ⎣x - 2⋅y x + y ⎦τ\ +""" + + assert upretty(MIMOFeedback(tfm_1, tfm_2, 1)) == \ + expected1 # Positive MIMOFeedback + assert upretty(MIMOFeedback(tfm_1*tfm_2, tfm_3)) == \ + expected2 # Negative MIMOFeedback (Default) + + +def test_pretty_TransferFunctionMatrix(): + tf1 = TransferFunction(x + y, x - 2*y, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y) + tf4 = TransferFunction(y, x**2 + x + 1, y) + tf5 = TransferFunction(1 - x, x - y, y) + tf6 = TransferFunction(2, 2, y) + expected1 = \ +"""\ +⎡ x + y ⎤ \n\ +⎢───────⎥ \n\ +⎢x - 2⋅y⎥ \n\ +⎢ ⎥ \n\ +⎢ x - y ⎥ \n\ +⎢ ───── ⎥ \n\ +⎣ x + y ⎦τ\ +""" + expected2 = \ +"""\ +⎡ x + y ⎤ \n\ +⎢ ─────── ⎥ \n\ +⎢ x - 2⋅y ⎥ \n\ +⎢ ⎥ \n\ +⎢ x - y ⎥ \n\ +⎢ ───── ⎥ \n\ +⎢ x + y ⎥ \n\ +⎢ ⎥ \n\ +⎢ 2 ⎥ \n\ +⎢- y + 2⋅y - 1⎥ \n\ +⎢──────────────⎥ \n\ +⎣ y + 5 ⎦τ\ +""" + expected3 = \ +"""\ +⎡ x + y x - y ⎤ \n\ +⎢ ─────── ───── ⎥ \n\ +⎢ x - 2⋅y x + y ⎥ \n\ +⎢ ⎥ \n\ +⎢ 2 ⎥ \n\ +⎢y - 2⋅y + 1 y ⎥ \n\ +⎢──────────── ──────────⎥ \n\ +⎢ y + 5 2 ⎥ \n\ +⎢ x + x + 1⎥ \n\ +⎢ ⎥ \n\ +⎢ 1 - x 2 ⎥ \n\ +⎢ ───── ─ ⎥ \n\ +⎣ x - y 2 ⎦τ\ +""" + expected4 = \ +"""\ +⎡ x - y x + y y ⎤ \n\ +⎢ ───── ─────── ──────────⎥ \n\ +⎢ x + y x - 2⋅y 2 ⎥ \n\ +⎢ x + x + 1⎥ \n\ +⎢ ⎥ \n\ +⎢ 2 ⎥ \n\ +⎢- y + 2⋅y - 1 x - 1 -2 ⎥ \n\ +⎢────────────── ───── ─── ⎥ \n\ +⎣ y + 5 x - y 2 ⎦τ\ +""" + expected5 = \ +"""\ +⎡ x + y x - y x + y y ⎤ \n\ +⎢───────⋅───── ─────── ──────────⎥ \n\ +⎢x - 2⋅y x + y x - 2⋅y 2 ⎥ \n\ +⎢ x + x + 1⎥ \n\ +⎢ ⎥ \n\ +⎢ 1 - x 2 x + y -2 ⎥ \n\ +⎢ ───── + ─ ─────── ─── ⎥ \n\ +⎣ x - y 2 x - 2⋅y 2 ⎦τ\ +""" + + assert upretty(TransferFunctionMatrix([[tf1], [tf2]])) == expected1 + assert upretty(TransferFunctionMatrix([[tf1], [tf2], [-tf3]])) == expected2 + assert upretty(TransferFunctionMatrix([[tf1, tf2], [tf3, tf4], [tf5, tf6]])) == expected3 + assert upretty(TransferFunctionMatrix([[tf2, tf1, tf4], [-tf3, -tf5, -tf6]])) == expected4 + assert upretty(TransferFunctionMatrix([[Series(tf2, tf1), tf1, tf4], [Parallel(tf6, tf5), tf1, -tf6]])) == \ + expected5 + + +def test_pretty_order(): + expr = O(1) + ascii_str = \ +"""\ +O(1)\ +""" + ucode_str = \ +"""\ +O(1)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = O(1/x) + ascii_str = \ +"""\ + /1\\\n\ +O|-|\n\ + \\x/\ +""" + ucode_str = \ +"""\ + ⎛1⎞\n\ +O⎜─⎟\n\ + ⎝x⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = O(x**2 + y**2) + ascii_str = \ +"""\ + / 2 2 \\\n\ +O\\x + y ; (x, y) -> (0, 0)/\ +""" + ucode_str = \ +"""\ + ⎛ 2 2 ⎞\n\ +O⎝x + y ; (x, y) → (0, 0)⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = O(1, (x, oo)) + ascii_str = \ +"""\ +O(1; x -> oo)\ +""" + ucode_str = \ +"""\ +O(1; x → ∞)\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = O(1/x, (x, oo)) + ascii_str = \ +"""\ + /1 \\\n\ +O|-; x -> oo|\n\ + \\x /\ +""" + ucode_str = \ +"""\ + ⎛1 ⎞\n\ +O⎜─; x → ∞⎟\n\ + ⎝x ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = O(x**2 + y**2, (x, oo), (y, oo)) + ascii_str = \ +"""\ + / 2 2 \\\n\ +O\\x + y ; (x, y) -> (oo, oo)/\ +""" + ucode_str = \ +"""\ + ⎛ 2 2 ⎞\n\ +O⎝x + y ; (x, y) → (∞, ∞)⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_derivatives(): + # Simple + expr = Derivative(log(x), x, evaluate=False) + ascii_str = \ +"""\ +d \n\ +--(log(x))\n\ +dx \ +""" + ucode_str = \ +"""\ +d \n\ +──(log(x))\n\ +dx \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Derivative(log(x), x, evaluate=False) + x + ascii_str_1 = \ +"""\ + d \n\ +x + --(log(x))\n\ + dx \ +""" + ascii_str_2 = \ +"""\ +d \n\ +--(log(x)) + x\n\ +dx \ +""" + ucode_str_1 = \ +"""\ + d \n\ +x + ──(log(x))\n\ + dx \ +""" + ucode_str_2 = \ +"""\ +d \n\ +──(log(x)) + x\n\ +dx \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + # basic partial derivatives + expr = Derivative(log(x + y) + x, x) + ascii_str_1 = \ +"""\ +d \n\ +--(log(x + y) + x)\n\ +dx \ +""" + ascii_str_2 = \ +"""\ +d \n\ +--(x + log(x + y))\n\ +dx \ +""" + ucode_str_1 = \ +"""\ +∂ \n\ +──(log(x + y) + x)\n\ +∂x \ +""" + ucode_str_2 = \ +"""\ +∂ \n\ +──(x + log(x + y))\n\ +∂x \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) + + # Multiple symbols + expr = Derivative(log(x) + x**2, x, y) + ascii_str_1 = \ +"""\ + 2 \n\ + d / 2\\\n\ +-----\\log(x) + x /\n\ +dy dx \ +""" + ascii_str_2 = \ +"""\ + 2 \n\ + d / 2 \\\n\ +-----\\x + log(x)/\n\ +dy dx \ +""" + ucode_str_1 = \ +"""\ + 2 \n\ + d ⎛ 2⎞\n\ +─────⎝log(x) + x ⎠\n\ +dy dx \ +""" + ucode_str_2 = \ +"""\ + 2 \n\ + d ⎛ 2 ⎞\n\ +─────⎝x + log(x)⎠\n\ +dy dx \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = Derivative(2*x*y, y, x) + x**2 + ascii_str_1 = \ +"""\ + 2 \n\ + d 2\n\ +-----(2*x*y) + x \n\ +dx dy \ +""" + ascii_str_2 = \ +"""\ + 2 \n\ + 2 d \n\ +x + -----(2*x*y)\n\ + dx dy \ +""" + ucode_str_1 = \ +"""\ + 2 \n\ + ∂ 2\n\ +─────(2⋅x⋅y) + x \n\ +∂x ∂y \ +""" + ucode_str_2 = \ +"""\ + 2 \n\ + 2 ∂ \n\ +x + ─────(2⋅x⋅y)\n\ + ∂x ∂y \ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = Derivative(2*x*y, x, x) + ascii_str = \ +"""\ + 2 \n\ + d \n\ +---(2*x*y)\n\ + 2 \n\ +dx \ +""" + ucode_str = \ +"""\ + 2 \n\ + ∂ \n\ +───(2⋅x⋅y)\n\ + 2 \n\ +∂x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Derivative(2*x*y, x, 17) + ascii_str = \ +"""\ + 17 \n\ +d \n\ +----(2*x*y)\n\ + 17 \n\ +dx \ +""" + ucode_str = \ +"""\ + 17 \n\ +∂ \n\ +────(2⋅x⋅y)\n\ + 17 \n\ +∂x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Derivative(2*x*y, x, x, y) + ascii_str = \ +"""\ + 3 \n\ + d \n\ +------(2*x*y)\n\ + 2 \n\ +dy dx \ +""" + ucode_str = \ +"""\ + 3 \n\ + ∂ \n\ +──────(2⋅x⋅y)\n\ + 2 \n\ +∂y ∂x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + # Greek letters + alpha = Symbol('alpha') + beta = Function('beta') + expr = beta(alpha).diff(alpha) + ascii_str = \ +"""\ + d \n\ +------(beta(alpha))\n\ +dalpha \ +""" + ucode_str = \ +"""\ +d \n\ +──(β(α))\n\ +dα \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Derivative(f(x), (x, n)) + + ascii_str = \ +"""\ + n \n\ + d \n\ +---(f(x))\n\ + n \n\ +dx \ +""" + ucode_str = \ +"""\ + n \n\ + d \n\ +───(f(x))\n\ + n \n\ +dx \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_integrals(): + expr = Integral(log(x), x) + ascii_str = \ +"""\ + / \n\ + | \n\ + | log(x) dx\n\ + | \n\ +/ \ +""" + ucode_str = \ +"""\ +⌠ \n\ +⎮ log(x) dx\n\ +⌡ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(x**2, x) + ascii_str = \ +"""\ + / \n\ + | \n\ + | 2 \n\ + | x dx\n\ + | \n\ +/ \ +""" + ucode_str = \ +"""\ +⌠ \n\ +⎮ 2 \n\ +⎮ x dx\n\ +⌡ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral((sin(x))**2 / (tan(x))**2) + ascii_str = \ +"""\ + / \n\ + | \n\ + | 2 \n\ + | sin (x) \n\ + | ------- dx\n\ + | 2 \n\ + | tan (x) \n\ + | \n\ +/ \ +""" + ucode_str = \ +"""\ +⌠ \n\ +⎮ 2 \n\ +⎮ sin (x) \n\ +⎮ ─────── dx\n\ +⎮ 2 \n\ +⎮ tan (x) \n\ +⌡ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(x**(2**x), x) + ascii_str = \ +"""\ + / \n\ + | \n\ + | / x\\ \n\ + | \\2 / \n\ + | x dx\n\ + | \n\ +/ \ +""" + ucode_str = \ +"""\ +⌠ \n\ +⎮ ⎛ x⎞ \n\ +⎮ ⎝2 ⎠ \n\ +⎮ x dx\n\ +⌡ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(x**2, (x, 1, 2)) + ascii_str = \ +"""\ + 2 \n\ + / \n\ + | \n\ + | 2 \n\ + | x dx\n\ + | \n\ +/ \n\ +1 \ +""" + ucode_str = \ +"""\ +2 \n\ +⌠ \n\ +⎮ 2 \n\ +⎮ x dx\n\ +⌡ \n\ +1 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(x**2, (x, Rational(1, 2), 10)) + ascii_str = \ +"""\ + 10 \n\ + / \n\ + | \n\ + | 2 \n\ + | x dx\n\ + | \n\ +/ \n\ +1/2 \ +""" + ucode_str = \ +"""\ + 10 \n\ + ⌠ \n\ + ⎮ 2 \n\ + ⎮ x dx\n\ + ⌡ \n\ +1/2 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(x**2*y**2, x, y) + ascii_str = \ +"""\ + / / \n\ + | | \n\ + | | 2 2 \n\ + | | x *y dx dy\n\ + | | \n\ +/ / \ +""" + ucode_str = \ +"""\ +⌠ ⌠ \n\ +⎮ ⎮ 2 2 \n\ +⎮ ⎮ x ⋅y dx dy\n\ +⌡ ⌡ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) + ascii_str = \ +"""\ + 2*pi pi \n\ + / / \n\ + | | \n\ + | | sin(theta) \n\ + | | ---------- d(theta) d(phi)\n\ + | | cos(phi) \n\ + | | \n\ + / / \n\ + 0 0 \ +""" + ucode_str = \ +"""\ +2⋅π π \n\ + ⌠ ⌠ \n\ + ⎮ ⎮ sin(θ) \n\ + ⎮ ⎮ ────── dθ dφ\n\ + ⎮ ⎮ cos(φ) \n\ + ⌡ ⌡ \n\ + 0 0 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_matrix(): + # Empty Matrix + expr = Matrix() + ascii_str = "[]" + unicode_str = "[]" + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + expr = Matrix(2, 0, lambda i, j: 0) + ascii_str = "[]" + unicode_str = "[]" + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + expr = Matrix(0, 2, lambda i, j: 0) + ascii_str = "[]" + unicode_str = "[]" + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + expr = Matrix([[x**2 + 1, 1], [y, x + y]]) + ascii_str_1 = \ +"""\ +[ 2 ] +[1 + x 1 ] +[ ] +[ y x + y]\ +""" + ascii_str_2 = \ +"""\ +[ 2 ] +[x + 1 1 ] +[ ] +[ y x + y]\ +""" + ucode_str_1 = \ +"""\ +⎡ 2 ⎤ +⎢1 + x 1 ⎥ +⎢ ⎥ +⎣ y x + y⎦\ +""" + ucode_str_2 = \ +"""\ +⎡ 2 ⎤ +⎢x + 1 1 ⎥ +⎢ ⎥ +⎣ y x + y⎦\ +""" + assert pretty(expr) in [ascii_str_1, ascii_str_2] + assert upretty(expr) in [ucode_str_1, ucode_str_2] + + expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) + ascii_str = \ +"""\ +[x ] +[- y theta] +[y ] +[ ] +[ I*k*phi ] +[0 e 1 ]\ +""" + ucode_str = \ +"""\ +⎡x ⎤ +⎢─ y θ⎥ +⎢y ⎥ +⎢ ⎥ +⎢ ⅈ⋅k⋅φ ⎥ +⎣0 ℯ 1⎦\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + unicode_str = \ +"""\ +⎡v̇_msc_00 0 0 ⎤ +⎢ ⎥ +⎢ 0 v̇_msc_01 0 ⎥ +⎢ ⎥ +⎣ 0 0 v̇_msc_02⎦\ +""" + + expr = diag(*MatrixSymbol('vdot_msc',1,3)) + assert upretty(expr) == unicode_str + +def test_pretty_ndim_arrays(): + x, y, z, w = symbols("x y z w") + + for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): + # Basic: scalar array + M = ArrayType(x) + + assert pretty(M) == "x" + assert upretty(M) == "x" + + M = ArrayType([[1/x, y], [z, w]]) + M1 = ArrayType([1/x, y, z]) + + M2 = tensorproduct(M1, M) + M3 = tensorproduct(M, M) + + ascii_str = \ +"""\ +[1 ]\n\ +[- y]\n\ +[x ]\n\ +[ ]\n\ +[z w]\ +""" + ucode_str = \ +"""\ +⎡1 ⎤\n\ +⎢─ y⎥\n\ +⎢x ⎥\n\ +⎢ ⎥\n\ +⎣z w⎦\ +""" + assert pretty(M) == ascii_str + assert upretty(M) == ucode_str + + ascii_str = \ +"""\ +[1 ]\n\ +[- y z]\n\ +[x ]\ +""" + ucode_str = \ +"""\ +⎡1 ⎤\n\ +⎢─ y z⎥\n\ +⎣x ⎦\ +""" + assert pretty(M1) == ascii_str + assert upretty(M1) == ucode_str + + ascii_str = \ +"""\ +[[1 y] ]\n\ +[[-- -] [z ]]\n\ +[[ 2 x] [ y 2 ] [- y*z]]\n\ +[[x ] [ - y ] [x ]]\n\ +[[ ] [ x ] [ ]]\n\ +[[z w] [ ] [ 2 ]]\n\ +[[- -] [y*z w*y] [z w*z]]\n\ +[[x x] ]\ +""" + ucode_str = \ +"""\ +⎡⎡1 y⎤ ⎤\n\ +⎢⎢── ─⎥ ⎡z ⎤⎥\n\ +⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ +⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ +⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ +⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ +⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ +⎣⎣x x⎦ ⎦\ +""" + assert pretty(M2) == ascii_str + assert upretty(M2) == ucode_str + + ascii_str = \ +"""\ +[ [1 y] ]\n\ +[ [-- -] ]\n\ +[ [ 2 x] [ y 2 ]]\n\ +[ [x ] [ - y ]]\n\ +[ [ ] [ x ]]\n\ +[ [z w] [ ]]\n\ +[ [- -] [y*z w*y]]\n\ +[ [x x] ]\n\ +[ ]\n\ +[[z ] [ w ]]\n\ +[[- y*z] [ - w*y]]\n\ +[[x ] [ x ]]\n\ +[[ ] [ ]]\n\ +[[ 2 ] [ 2 ]]\n\ +[[z w*z] [w*z w ]]\ +""" + ucode_str = \ +"""\ +⎡ ⎡1 y⎤ ⎤\n\ +⎢ ⎢── ─⎥ ⎥\n\ +⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ +⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ +⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ +⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ +⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ +⎢ ⎣x x⎦ ⎥\n\ +⎢ ⎥\n\ +⎢⎡z ⎤ ⎡ w ⎤⎥\n\ +⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ +⎢⎢x ⎥ ⎢ x ⎥⎥\n\ +⎢⎢ ⎥ ⎢ ⎥⎥\n\ +⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ +⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ +""" + assert pretty(M3) == ascii_str + assert upretty(M3) == ucode_str + + Mrow = ArrayType([[x, y, 1 / z]]) + Mcolumn = ArrayType([[x], [y], [1 / z]]) + Mcol2 = ArrayType([Mcolumn.tolist()]) + + ascii_str = \ +"""\ +[[ 1]]\n\ +[[x y -]]\n\ +[[ z]]\ +""" + ucode_str = \ +"""\ +⎡⎡ 1⎤⎤\n\ +⎢⎢x y ─⎥⎥\n\ +⎣⎣ z⎦⎦\ +""" + assert pretty(Mrow) == ascii_str + assert upretty(Mrow) == ucode_str + + ascii_str = \ +"""\ +[x]\n\ +[ ]\n\ +[y]\n\ +[ ]\n\ +[1]\n\ +[-]\n\ +[z]\ +""" + ucode_str = \ +"""\ +⎡x⎤\n\ +⎢ ⎥\n\ +⎢y⎥\n\ +⎢ ⎥\n\ +⎢1⎥\n\ +⎢─⎥\n\ +⎣z⎦\ +""" + assert pretty(Mcolumn) == ascii_str + assert upretty(Mcolumn) == ucode_str + + ascii_str = \ +"""\ +[[x]]\n\ +[[ ]]\n\ +[[y]]\n\ +[[ ]]\n\ +[[1]]\n\ +[[-]]\n\ +[[z]]\ +""" + ucode_str = \ +"""\ +⎡⎡x⎤⎤\n\ +⎢⎢ ⎥⎥\n\ +⎢⎢y⎥⎥\n\ +⎢⎢ ⎥⎥\n\ +⎢⎢1⎥⎥\n\ +⎢⎢─⎥⎥\n\ +⎣⎣z⎦⎦\ +""" + assert pretty(Mcol2) == ascii_str + assert upretty(Mcol2) == ucode_str + + +def test_tensor_TensorProduct(): + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + assert upretty(TensorProduct(A, B)) == "A\u2297B" + assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" + + +def test_diffgeom_print_WedgeProduct(): + from sympy.diffgeom.rn import R2 + from sympy.diffgeom import WedgeProduct + wp = WedgeProduct(R2.dx, R2.dy) + assert upretty(wp) == "ⅆ x∧ⅆ y" + assert pretty(wp) == r"d x/\d y" + + +def test_Adjoint(): + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert pretty(Adjoint(X)) == " +\nX " + assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " + assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " + assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " + assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " + assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " + assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " + assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " + assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " + assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " + assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " + assert upretty(Adjoint(X)) == " †\nX " + assert upretty(Adjoint(X + Y)) == " †\n(X + Y) " + assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y " + assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) " + assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X " + assert upretty(Adjoint(X**2)) == \ + " †\n⎛ 2⎞ \n⎝X ⎠ " + assert upretty(Adjoint(X)**2) == \ + " 2\n⎛ †⎞ \n⎝X ⎠ " + assert upretty(Adjoint(Inverse(X))) == \ + " †\n⎛ -1⎞ \n⎝X ⎠ " + assert upretty(Inverse(Adjoint(X))) == \ + " -1\n⎛ †⎞ \n⎝X ⎠ " + assert upretty(Adjoint(Transpose(X))) == \ + " †\n⎛ T⎞ \n⎝X ⎠ " + assert upretty(Transpose(Adjoint(X))) == \ + " T\n⎛ †⎞ \n⎝X ⎠ " + m = Matrix(((1, 2), (3, 4))) + assert upretty(Adjoint(m)) == \ + ' †\n'\ + '⎡1 2⎤ \n'\ + '⎢ ⎥ \n'\ + '⎣3 4⎦ ' + assert upretty(Adjoint(m+X)) == \ + ' †\n'\ + '⎛⎡1 2⎤ ⎞ \n'\ + '⎜⎢ ⎥ + X⎟ \n'\ + '⎝⎣3 4⎦ ⎠ ' + assert upretty(Adjoint(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + ' †\n'\ + '⎡ 𝟙 X⎤ \n'\ + '⎢ ⎥ \n'\ + '⎢⎡1 2⎤ ⎥ \n'\ + '⎢⎢ ⎥ 𝟘⎥ \n'\ + '⎣⎣3 4⎦ ⎦ ' + + +def test_Transpose(): + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert pretty(Transpose(X)) == " T\nX " + assert pretty(Transpose(X + Y)) == " T\n(X + Y) " + assert pretty(Transpose(X) + Transpose(Y)) == " T T\nX + Y " + assert pretty(Transpose(X*Y)) == " T\n(X*Y) " + assert pretty(Transpose(Y)*Transpose(X)) == " T T\nY *X " + assert pretty(Transpose(X**2)) == " T\n/ 2\\ \n\\X / " + assert pretty(Transpose(X)**2) == " 2\n/ T\\ \n\\X / " + assert pretty(Transpose(Inverse(X))) == " T\n/ -1\\ \n\\X / " + assert pretty(Inverse(Transpose(X))) == " -1\n/ T\\ \n\\X / " + assert upretty(Transpose(X)) == " T\nX " + assert upretty(Transpose(X + Y)) == " T\n(X + Y) " + assert upretty(Transpose(X) + Transpose(Y)) == " T T\nX + Y " + assert upretty(Transpose(X*Y)) == " T\n(X⋅Y) " + assert upretty(Transpose(Y)*Transpose(X)) == " T T\nY ⋅X " + assert upretty(Transpose(X**2)) == \ + " T\n⎛ 2⎞ \n⎝X ⎠ " + assert upretty(Transpose(X)**2) == \ + " 2\n⎛ T⎞ \n⎝X ⎠ " + assert upretty(Transpose(Inverse(X))) == \ + " T\n⎛ -1⎞ \n⎝X ⎠ " + assert upretty(Inverse(Transpose(X))) == \ + " -1\n⎛ T⎞ \n⎝X ⎠ " + m = Matrix(((1, 2), (3, 4))) + assert upretty(Transpose(m)) == \ + ' T\n'\ + '⎡1 2⎤ \n'\ + '⎢ ⎥ \n'\ + '⎣3 4⎦ ' + assert upretty(Transpose(m+X)) == \ + ' T\n'\ + '⎛⎡1 2⎤ ⎞ \n'\ + '⎜⎢ ⎥ + X⎟ \n'\ + '⎝⎣3 4⎦ ⎠ ' + assert upretty(Transpose(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + ' T\n'\ + '⎡ 𝟙 X⎤ \n'\ + '⎢ ⎥ \n'\ + '⎢⎡1 2⎤ ⎥ \n'\ + '⎢⎢ ⎥ 𝟘⎥ \n'\ + '⎣⎣3 4⎦ ⎦ ' + + +def test_pretty_Trace_issue_9044(): + X = Matrix([[1, 2], [3, 4]]) + Y = Matrix([[2, 4], [6, 8]]) + ascii_str_1 = \ +"""\ + /[1 2]\\ +tr|[ ]| + \\[3 4]/\ +""" + ucode_str_1 = \ +"""\ + ⎛⎡1 2⎤⎞ +tr⎜⎢ ⎥⎟ + ⎝⎣3 4⎦⎠\ +""" + ascii_str_2 = \ +"""\ + /[1 2]\\ /[2 4]\\ +tr|[ ]| + tr|[ ]| + \\[3 4]/ \\[6 8]/\ +""" + ucode_str_2 = \ +"""\ + ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ +tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ + ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ +""" + assert pretty(Trace(X)) == ascii_str_1 + assert upretty(Trace(X)) == ucode_str_1 + + assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 + assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 + + +def test_MatrixSlice(): + n = Symbol('n', integer=True) + x, y, z, w, t, = symbols('x y z w t') + X = MatrixSymbol('X', n, n) + Y = MatrixSymbol('Y', 10, 10) + Z = MatrixSymbol('Z', 10, 10) + + expr = MatrixSlice(X, (None, None, None), (None, None, None)) + assert pretty(expr) == upretty(expr) == 'X[:, :]' + expr = X[x:x + 1, y:y + 1] + assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]' + expr = X[x:x + 1:2, y:y + 1:2] + assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]' + expr = X[:x, y:] + assert pretty(expr) == upretty(expr) == 'X[:x, y:]' + expr = X[:x, y:] + assert pretty(expr) == upretty(expr) == 'X[:x, y:]' + expr = X[x:, :y] + assert pretty(expr) == upretty(expr) == 'X[x:, :y]' + expr = X[x:y, z:w] + assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]' + expr = X[x:y:t, w:t:x] + assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]' + expr = X[x::y, t::w] + assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]' + expr = X[:x:y, :t:w] + assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]' + expr = X[::x, ::y] + assert pretty(expr) == upretty(expr) == 'X[::x, ::y]' + expr = MatrixSlice(X, (0, None, None), (0, None, None)) + assert pretty(expr) == upretty(expr) == 'X[:, :]' + expr = MatrixSlice(X, (None, n, None), (None, n, None)) + assert pretty(expr) == upretty(expr) == 'X[:, :]' + expr = MatrixSlice(X, (0, n, None), (0, n, None)) + assert pretty(expr) == upretty(expr) == 'X[:, :]' + expr = MatrixSlice(X, (0, n, 2), (0, n, 2)) + assert pretty(expr) == upretty(expr) == 'X[::2, ::2]' + expr = X[1:2:3, 4:5:6] + assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]' + expr = X[1:3:5, 4:6:8] + assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]' + expr = X[1:10:2] + assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]' + expr = Y[:5, 1:9:2] + assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]' + expr = Y[:5, 1:10:2] + assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]' + expr = Y[5, :5:2] + assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]' + expr = X[0:1, 0:1] + assert pretty(expr) == upretty(expr) == 'X[:1, :1]' + expr = X[0:1:2, 0:1:2] + assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]' + expr = (Y + Z)[2:, 2:] + assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]' + + +def test_MatrixExpressions(): + n = Symbol('n', integer=True) + X = MatrixSymbol('X', n, n) + + assert pretty(X) == upretty(X) == "X" + + # Apply function elementwise (`ElementwiseApplyFunc`): + + expr = (X.T*X).applyfunc(sin) + + ascii_str = """\ + / T \\\n\ +(d -> sin(d)).\\X *X/\ +""" + ucode_str = """\ + ⎛ T ⎞\n\ +(d ↦ sin(d))˳⎝X ⋅X⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + lamda = Lambda(x, 1/x) + expr = (n*X).applyfunc(lamda) + ascii_str = """\ +/ 1\\ \n\ +|x -> -|.(n*X)\n\ +\\ x/ \ +""" + ucode_str = """\ +⎛ 1⎞ \n\ +⎜x ↦ ─⎟˳(n⋅X)\n\ +⎝ x⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_dotproduct(): + from sympy.matrices.expressions.dotproduct import DotProduct + n = symbols("n", integer=True) + A = MatrixSymbol('A', n, 1) + B = MatrixSymbol('B', n, 1) + C = Matrix(1, 3, [1, 2, 3]) + D = Matrix(1, 3, [1, 3, 4]) + + assert pretty(DotProduct(A, B)) == "A*B" + assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]" + assert upretty(DotProduct(A, B)) == "A⋅B" + assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]" + + +def test_pretty_Determinant(): + from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix + m = Matrix(((1, 2), (3, 4))) + assert upretty(Determinant(m)) == '│1 2│\n│ │\n│3 4│' + assert upretty(Determinant(Inverse(m))) == \ + '│ -1│\n'\ + '│⎡1 2⎤ │\n'\ + '│⎢ ⎥ │\n'\ + '│⎣3 4⎦ │' + X = MatrixSymbol('X', 2, 2) + assert upretty(Determinant(X)) == '│X│' + assert upretty(Determinant(X + m)) == \ + '│⎡1 2⎤ │\n'\ + '│⎢ ⎥ + X│\n'\ + '│⎣3 4⎦ │' + assert upretty(Determinant(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + '│ 𝟙 X│\n'\ + '│ │\n'\ + '│⎡1 2⎤ │\n'\ + '│⎢ ⎥ 𝟘│\n'\ + '│⎣3 4⎦ │' + + +def test_pretty_piecewise(): + expr = Piecewise((x, x < 1), (x**2, True)) + ascii_str = \ +"""\ +/x for x < 1\n\ +| \n\ +< 2 \n\ +|x otherwise\n\ +\\ \ +""" + ucode_str = \ +"""\ +⎧x for x < 1\n\ +⎪ \n\ +⎨ 2 \n\ +⎪x otherwise\n\ +⎩ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = -Piecewise((x, x < 1), (x**2, True)) + ascii_str = \ +"""\ + //x for x < 1\\\n\ + || |\n\ +-|< 2 |\n\ + ||x otherwise|\n\ + \\\\ /\ +""" + ucode_str = \ +"""\ + ⎛⎧x for x < 1⎞\n\ + ⎜⎪ ⎟\n\ +-⎜⎨ 2 ⎟\n\ + ⎜⎪x otherwise⎟\n\ + ⎝⎩ ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), + (y**2, x > 2), (1, True)) + 1 + ascii_str = \ +"""\ + //x \\ \n\ + ||- for x < 2| \n\ + ||y | \n\ + //x for x > 0\\ || | \n\ +x + |< | + |< 2 | + 1\n\ + \\\\y otherwise/ ||y for x > 2| \n\ + || | \n\ + ||1 otherwise| \n\ + \\\\ / \ +""" + ucode_str = \ +"""\ + ⎛⎧x ⎞ \n\ + ⎜⎪─ for x < 2⎟ \n\ + ⎜⎪y ⎟ \n\ + ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ +x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ + ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ + ⎜⎪ ⎟ \n\ + ⎜⎪1 otherwise⎟ \n\ + ⎝⎩ ⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), + (y**2, x > 2), (1, True)) + 1 + ascii_str = \ +"""\ + //x \\ \n\ + ||- for x < 2| \n\ + ||y | \n\ + //x for x > 0\\ || | \n\ +x - |< | + |< 2 | + 1\n\ + \\\\y otherwise/ ||y for x > 2| \n\ + || | \n\ + ||1 otherwise| \n\ + \\\\ / \ +""" + ucode_str = \ +"""\ + ⎛⎧x ⎞ \n\ + ⎜⎪─ for x < 2⎟ \n\ + ⎜⎪y ⎟ \n\ + ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ +x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ + ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ + ⎜⎪ ⎟ \n\ + ⎜⎪1 otherwise⎟ \n\ + ⎝⎩ ⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = x*Piecewise((x, x > 0), (y, True)) + ascii_str = \ +"""\ + //x for x > 0\\\n\ +x*|< |\n\ + \\\\y otherwise/\ +""" + ucode_str = \ +"""\ + ⎛⎧x for x > 0⎞\n\ +x⋅⎜⎨ ⎟\n\ + ⎝⎩y otherwise⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > + 2), (1, True)) + ascii_str = \ +"""\ + //x \\\n\ + ||- for x < 2|\n\ + ||y |\n\ +//x for x > 0\\ || |\n\ +|< |*|< 2 |\n\ +\\\\y otherwise/ ||y for x > 2|\n\ + || |\n\ + ||1 otherwise|\n\ + \\\\ /\ +""" + ucode_str = \ +"""\ + ⎛⎧x ⎞\n\ + ⎜⎪─ for x < 2⎟\n\ + ⎜⎪y ⎟\n\ +⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ +⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ +⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ + ⎜⎪ ⎟\n\ + ⎜⎪1 otherwise⎟\n\ + ⎝⎩ ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x + > 2), (1, True)) + ascii_str = \ +"""\ + //x \\\n\ + ||- for x < 2|\n\ + ||y |\n\ + //x for x > 0\\ || |\n\ +-|< |*|< 2 |\n\ + \\\\y otherwise/ ||y for x > 2|\n\ + || |\n\ + ||1 otherwise|\n\ + \\\\ /\ +""" + ucode_str = \ +"""\ + ⎛⎧x ⎞\n\ + ⎜⎪─ for x < 2⎟\n\ + ⎜⎪y ⎟\n\ + ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ +-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ + ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ + ⎜⎪ ⎟\n\ + ⎜⎪1 otherwise⎟\n\ + ⎝⎩ ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), + ()), ((), (1, 0)), 1/y), True)) + ascii_str = \ +"""\ +/ 1 \n\ +| 0 for --- < 1\n\ +| |y| \n\ +| \n\ +< 1 for |y| < 1\n\ +| \n\ +| __0, 2 /2, 1 | 1\\ \n\ +|y*/__ | | -| otherwise \n\ +\\ \\_|2, 2 \\ 1, 0 | y/ \ +""" + ucode_str = \ +"""\ +⎧ 1 \n\ +⎪ 0 for ─── < 1\n\ +⎪ │y│ \n\ +⎪ \n\ +⎨ 1 for │y│ < 1\n\ +⎪ \n\ +⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ +⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ +⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + # XXX: We have to use evaluate=False here because Piecewise._eval_power + # denests the power. + expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) + ascii_str = \ +"""\ + 2\n\ +//x for x > 0\\ \n\ +|< | \n\ +\\\\y otherwise/ \ +""" + ucode_str = \ +"""\ + 2\n\ +⎛⎧x for x > 0⎞ \n\ +⎜⎨ ⎟ \n\ +⎝⎩y otherwise⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_ITE(): + expr = ITE(x, y, z) + assert pretty(expr) == ( + '/y for x \n' + '< \n' + '\\z otherwise' + ) + assert upretty(expr) == """\ +⎧y for x \n\ +⎨ \n\ +⎩z otherwise\ +""" + + +def test_pretty_seq(): + expr = () + ascii_str = \ +"""\ +()\ +""" + ucode_str = \ +"""\ +()\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = [] + ascii_str = \ +"""\ +[]\ +""" + ucode_str = \ +"""\ +[]\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = {} + expr_2 = {} + ascii_str = \ +"""\ +{}\ +""" + ucode_str = \ +"""\ +{}\ +""" + assert pretty(expr) == ascii_str + assert pretty(expr_2) == ascii_str + assert upretty(expr) == ucode_str + assert upretty(expr_2) == ucode_str + + expr = (1/x,) + ascii_str = \ +"""\ + 1 \n\ +(-,)\n\ + x \ +""" + ucode_str = \ +"""\ +⎛1 ⎞\n\ +⎜─,⎟\n\ +⎝x ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] + ascii_str = \ +"""\ + 2 \n\ + 2 1 sin (theta) \n\ +[x , -, x, y, -----------]\n\ + x 2 \n\ + cos (phi) \ +""" + ucode_str = \ +"""\ +⎡ 2 ⎤\n\ +⎢ 2 1 sin (θ)⎥\n\ +⎢x , ─, x, y, ───────⎥\n\ +⎢ x 2 ⎥\n\ +⎣ cos (φ)⎦\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) + ascii_str = \ +"""\ + 2 \n\ + 2 1 sin (theta) \n\ +(x , -, x, y, -----------)\n\ + x 2 \n\ + cos (phi) \ +""" + ucode_str = \ +"""\ +⎛ 2 ⎞\n\ +⎜ 2 1 sin (θ)⎟\n\ +⎜x , ─, x, y, ───────⎟\n\ +⎜ x 2 ⎟\n\ +⎝ cos (φ)⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) + ascii_str = \ +"""\ + 2 \n\ + 2 1 sin (theta) \n\ +(x , -, x, y, -----------)\n\ + x 2 \n\ + cos (phi) \ +""" + ucode_str = \ +"""\ +⎛ 2 ⎞\n\ +⎜ 2 1 sin (θ)⎟\n\ +⎜x , ─, x, y, ───────⎟\n\ +⎜ x 2 ⎟\n\ +⎝ cos (φ)⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = {x: sin(x)} + expr_2 = Dict({x: sin(x)}) + ascii_str = \ +"""\ +{x: sin(x)}\ +""" + ucode_str = \ +"""\ +{x: sin(x)}\ +""" + assert pretty(expr) == ascii_str + assert pretty(expr_2) == ascii_str + assert upretty(expr) == ucode_str + assert upretty(expr_2) == ucode_str + + expr = {1/x: 1/y, x: sin(x)**2} + expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) + ascii_str = \ +"""\ + 1 1 2 \n\ +{-: -, x: sin (x)}\n\ + x y \ +""" + ucode_str = \ +"""\ +⎧1 1 2 ⎫\n\ +⎨─: ─, x: sin (x)⎬\n\ +⎩x y ⎭\ +""" + assert pretty(expr) == ascii_str + assert pretty(expr_2) == ascii_str + assert upretty(expr) == ucode_str + assert upretty(expr_2) == ucode_str + + # There used to be a bug with pretty-printing sequences of even height. + expr = [x**2] + ascii_str = \ +"""\ + 2 \n\ +[x ]\ +""" + ucode_str = \ +"""\ +⎡ 2⎤\n\ +⎣x ⎦\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (x**2,) + ascii_str = \ +"""\ + 2 \n\ +(x ,)\ +""" + ucode_str = \ +"""\ +⎛ 2 ⎞\n\ +⎝x ,⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Tuple(x**2) + ascii_str = \ +"""\ + 2 \n\ +(x ,)\ +""" + ucode_str = \ +"""\ +⎛ 2 ⎞\n\ +⎝x ,⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = {x**2: 1} + expr_2 = Dict({x**2: 1}) + ascii_str = \ +"""\ + 2 \n\ +{x : 1}\ +""" + ucode_str = \ +"""\ +⎧ 2 ⎫\n\ +⎨x : 1⎬\n\ +⎩ ⎭\ +""" + assert pretty(expr) == ascii_str + assert pretty(expr_2) == ascii_str + assert upretty(expr) == ucode_str + assert upretty(expr_2) == ucode_str + + +def test_any_object_in_sequence(): + # Cf. issue 5306 + b1 = Basic() + b2 = Basic(Basic()) + + expr = [b2, b1] + assert pretty(expr) == "[Basic(Basic()), Basic()]" + assert upretty(expr) == "[Basic(Basic()), Basic()]" + + expr = {b2, b1} + assert pretty(expr) == "{Basic(), Basic(Basic())}" + assert upretty(expr) == "{Basic(), Basic(Basic())}" + + expr = {b2: b1, b1: b2} + expr2 = Dict({b2: b1, b1: b2}) + assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" + assert pretty( + expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" + assert upretty( + expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" + assert upretty( + expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" + +def test_print_builtin_set(): + assert pretty(set()) == 'set()' + assert upretty(set()) == 'set()' + + assert pretty(frozenset()) == 'frozenset()' + assert upretty(frozenset()) == 'frozenset()' + + s1 = {1/x, x} + s2 = frozenset(s1) + + assert pretty(s1) == \ +"""\ + 1 \n\ +{-, x} + x \ +""" + assert upretty(s1) == \ +"""\ +⎧1 ⎫ +⎨─, x⎬ +⎩x ⎭\ +""" + + assert pretty(s2) == \ +"""\ + 1 \n\ +frozenset({-, x}) + x \ +""" + assert upretty(s2) == \ +"""\ + ⎛⎧1 ⎫⎞ +frozenset⎜⎨─, x⎬⎟ + ⎝⎩x ⎭⎠\ +""" + +def test_pretty_sets(): + s = FiniteSet + assert pretty(s(*[x*y, x**2])) == \ +"""\ + 2 \n\ +{x , x*y}\ +""" + assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" + assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" + + assert pretty({x*y, x**2}) == \ +"""\ + 2 \n\ +{x , x*y}\ +""" + assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" + assert pretty(set(range(1, 13))) == \ + "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" + + assert pretty(frozenset([x*y, x**2])) == \ +"""\ + 2 \n\ +frozenset({x , x*y})\ +""" + assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" + assert pretty(frozenset(range(1, 13))) == \ + "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" + + assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' + + ascii_str = '{0, 1, ..., 29}' + ucode_str = '{0, 1, …, 29}' + assert pretty(Range(0, 30, 1)) == ascii_str + assert upretty(Range(0, 30, 1)) == ucode_str + + ascii_str = '{30, 29, ..., 2}' + ucode_str = '{30, 29, …, 2}' + assert pretty(Range(30, 1, -1)) == ascii_str + assert upretty(Range(30, 1, -1)) == ucode_str + + ascii_str = '{0, 2, ...}' + ucode_str = '{0, 2, …}' + assert pretty(Range(0, oo, 2)) == ascii_str + assert upretty(Range(0, oo, 2)) == ucode_str + + ascii_str = '{..., 2, 0}' + ucode_str = '{…, 2, 0}' + assert pretty(Range(oo, -2, -2)) == ascii_str + assert upretty(Range(oo, -2, -2)) == ucode_str + + ascii_str = '{-2, -3, ...}' + ucode_str = '{-2, -3, …}' + assert pretty(Range(-2, -oo, -1)) == ascii_str + assert upretty(Range(-2, -oo, -1)) == ucode_str + + +def test_pretty_SetExpr(): + iv = Interval(1, 3) + se = SetExpr(iv) + ascii_str = "SetExpr([1, 3])" + ucode_str = "SetExpr([1, 3])" + assert pretty(se) == ascii_str + assert upretty(se) == ucode_str + + +def test_pretty_ImageSet(): + imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) + ascii_str = '{x + y | x in {1, 2, 3}, y in {3, 4}}' + ucode_str = '{x + y │ x ∊ {1, 2, 3}, y ∊ {3, 4}}' + assert pretty(imgset) == ascii_str + assert upretty(imgset) == ucode_str + + imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) + ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' + ucode_str = '{x + y │ (x, y) ∊ {1, 2, 3} × {3, 4}}' + assert pretty(imgset) == ascii_str + assert upretty(imgset) == ucode_str + + imgset = ImageSet(Lambda(x, x**2), S.Naturals) + ascii_str = '''\ + 2 \n\ +{x | x in Naturals}''' + ucode_str = '''\ +⎧ 2 │ ⎫\n\ +⎨x │ x ∊ ℕ⎬\n\ +⎩ │ ⎭''' + assert pretty(imgset) == ascii_str + assert upretty(imgset) == ucode_str + + # TODO: The "x in N" parts below should be centered independently of the + # 1/x**2 fraction + imgset = ImageSet(Lambda(x, 1/x**2), S.Naturals) + ascii_str = '''\ + 1 \n\ +{-- | x in Naturals} + 2 \n\ + x ''' + ucode_str = '''\ +⎧1 │ ⎫\n\ +⎪── │ x ∊ ℕ⎪\n\ +⎨ 2 │ ⎬\n\ +⎪x │ ⎪\n\ +⎩ │ ⎭''' + assert pretty(imgset) == ascii_str + assert upretty(imgset) == ucode_str + + imgset = ImageSet(Lambda((x, y), 1/(x + y)**2), S.Naturals, S.Naturals) + ascii_str = '''\ + 1 \n\ +{-------- | x in Naturals, y in Naturals} + 2 \n\ + (x + y) ''' + ucode_str = '''\ +⎧ 1 │ ⎫ +⎪──────── │ x ∊ ℕ, y ∊ ℕ⎪ +⎨ 2 │ ⎬ +⎪(x + y) │ ⎪ +⎩ │ ⎭''' + assert pretty(imgset) == ascii_str + assert upretty(imgset) == ucode_str + +def test_pretty_ConditionSet(): + ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' + ucode_str = '{x │ x ∊ ℝ ∧ (sin(x) = 0)}' + assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str + assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str + + assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' + assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' + + assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" + assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅" + + assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' + assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' + + condset = ConditionSet(x, 1/x**2 > 0) + ascii_str = '''\ + 1 \n\ +{x | -- > 0} + 2 \n\ + x ''' + ucode_str = '''\ +⎧ │ ⎛1 ⎞⎫ +⎪x │ ⎜── > 0⎟⎪ +⎨ │ ⎜ 2 ⎟⎬ +⎪ │ ⎝x ⎠⎪ +⎩ │ ⎭''' + assert pretty(condset) == ascii_str + assert upretty(condset) == ucode_str + + condset = ConditionSet(x, 1/x**2 > 0, S.Reals) + ascii_str = '''\ + 1 \n\ +{x | x in (-oo, oo) and -- > 0} + 2 \n\ + x ''' + ucode_str = '''\ +⎧ │ ⎛1 ⎞⎫ +⎪x │ x ∊ ℝ ∧ ⎜── > 0⎟⎪ +⎨ │ ⎜ 2 ⎟⎬ +⎪ │ ⎝x ⎠⎪ +⎩ │ ⎭''' + assert pretty(condset) == ascii_str + assert upretty(condset) == ucode_str + +def test_pretty_ComplexRegion(): + from sympy.sets.fancysets import ComplexRegion + cregion = ComplexRegion(Interval(3, 5)*Interval(4, 6)) + ascii_str = '{x + y*I | x, y in [3, 5] x [4, 6]}' + ucode_str = '{x + y⋅ⅈ │ x, y ∊ [3, 5] × [4, 6]}' + assert pretty(cregion) == ascii_str + assert upretty(cregion) == ucode_str + + cregion = ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True) + ascii_str = '{r*(I*sin(theta) + cos(theta)) | r, theta in [0, 1] x [0, 2*pi)}' + ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ [0, 1] × [0, 2⋅π)}' + assert pretty(cregion) == ascii_str + assert upretty(cregion) == ucode_str + + cregion = ComplexRegion(Interval(3, 1/a**2)*Interval(4, 6)) + ascii_str = '''\ + 1 \n\ +{x + y*I | x, y in [3, --] x [4, 6]} + 2 \n\ + a ''' + ucode_str = '''\ +⎧ │ ⎡ 1 ⎤ ⎫ +⎪x + y⋅ⅈ │ x, y ∊ ⎢3, ──⎥ × [4, 6]⎪ +⎨ │ ⎢ 2⎥ ⎬ +⎪ │ ⎣ a ⎦ ⎪ +⎩ │ ⎭''' + assert pretty(cregion) == ascii_str + assert upretty(cregion) == ucode_str + + cregion = ComplexRegion(Interval(0, 1/a**2)*Interval(0, 2*pi), polar=True) + ascii_str = '''\ + 1 \n\ +{r*(I*sin(theta) + cos(theta)) | r, theta in [0, --] x [0, 2*pi)} + 2 \n\ + a ''' + ucode_str = '''\ +⎧ │ ⎡ 1 ⎤ ⎫ +⎪r⋅(ⅈ⋅sin(θ) + cos(θ)) │ r, θ ∊ ⎢0, ──⎥ × [0, 2⋅π)⎪ +⎨ │ ⎢ 2⎥ ⎬ +⎪ │ ⎣ a ⎦ ⎪ +⎩ │ ⎭''' + assert pretty(cregion) == ascii_str + assert upretty(cregion) == ucode_str + +def test_pretty_Union_issue_10414(): + a, b = Interval(2, 3), Interval(4, 7) + ucode_str = '[2, 3] ∪ [4, 7]' + ascii_str = '[2, 3] U [4, 7]' + assert upretty(Union(a, b)) == ucode_str + assert pretty(Union(a, b)) == ascii_str + +def test_pretty_Intersection_issue_10414(): + x, y, z, w = symbols('x, y, z, w') + a, b = Interval(x, y), Interval(z, w) + ucode_str = '[x, y] ∩ [z, w]' + ascii_str = '[x, y] n [z, w]' + assert upretty(Intersection(a, b)) == ucode_str + assert pretty(Intersection(a, b)) == ascii_str + +def test_ProductSet_exponent(): + ucode_str = ' 1\n[0, 1] ' + assert upretty(Interval(0, 1)**1) == ucode_str + ucode_str = ' 2\n[0, 1] ' + assert upretty(Interval(0, 1)**2) == ucode_str + +def test_ProductSet_parenthesis(): + ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' + + a, b = Interval(2, 3), Interval(4, 7) + assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str + +def test_ProductSet_prod_char_issue_10413(): + ascii_str = '[2, 3] x [4, 7]' + ucode_str = '[2, 3] × [4, 7]' + + a, b = Interval(2, 3), Interval(4, 7) + assert pretty(a*b) == ascii_str + assert upretty(a*b) == ucode_str + +def test_pretty_sequences(): + s1 = SeqFormula(a**2, (0, oo)) + s2 = SeqPer((1, 2)) + + ascii_str = '[0, 1, 4, 9, ...]' + ucode_str = '[0, 1, 4, 9, …]' + + assert pretty(s1) == ascii_str + assert upretty(s1) == ucode_str + + ascii_str = '[1, 2, 1, 2, ...]' + ucode_str = '[1, 2, 1, 2, …]' + assert pretty(s2) == ascii_str + assert upretty(s2) == ucode_str + + s3 = SeqFormula(a**2, (0, 2)) + s4 = SeqPer((1, 2), (0, 2)) + + ascii_str = '[0, 1, 4]' + ucode_str = '[0, 1, 4]' + + assert pretty(s3) == ascii_str + assert upretty(s3) == ucode_str + + ascii_str = '[1, 2, 1]' + ucode_str = '[1, 2, 1]' + assert pretty(s4) == ascii_str + assert upretty(s4) == ucode_str + + s5 = SeqFormula(a**2, (-oo, 0)) + s6 = SeqPer((1, 2), (-oo, 0)) + + ascii_str = '[..., 9, 4, 1, 0]' + ucode_str = '[…, 9, 4, 1, 0]' + + assert pretty(s5) == ascii_str + assert upretty(s5) == ucode_str + + ascii_str = '[..., 2, 1, 2, 1]' + ucode_str = '[…, 2, 1, 2, 1]' + assert pretty(s6) == ascii_str + assert upretty(s6) == ucode_str + + ascii_str = '[1, 3, 5, 11, ...]' + ucode_str = '[1, 3, 5, 11, …]' + + assert pretty(SeqAdd(s1, s2)) == ascii_str + assert upretty(SeqAdd(s1, s2)) == ucode_str + + ascii_str = '[1, 3, 5]' + ucode_str = '[1, 3, 5]' + + assert pretty(SeqAdd(s3, s4)) == ascii_str + assert upretty(SeqAdd(s3, s4)) == ucode_str + + ascii_str = '[..., 11, 5, 3, 1]' + ucode_str = '[…, 11, 5, 3, 1]' + + assert pretty(SeqAdd(s5, s6)) == ascii_str + assert upretty(SeqAdd(s5, s6)) == ucode_str + + ascii_str = '[0, 2, 4, 18, ...]' + ucode_str = '[0, 2, 4, 18, …]' + + assert pretty(SeqMul(s1, s2)) == ascii_str + assert upretty(SeqMul(s1, s2)) == ucode_str + + ascii_str = '[0, 2, 4]' + ucode_str = '[0, 2, 4]' + + assert pretty(SeqMul(s3, s4)) == ascii_str + assert upretty(SeqMul(s3, s4)) == ucode_str + + ascii_str = '[..., 18, 4, 2, 0]' + ucode_str = '[…, 18, 4, 2, 0]' + + assert pretty(SeqMul(s5, s6)) == ascii_str + assert upretty(SeqMul(s5, s6)) == ucode_str + + # Sequences with symbolic limits, issue 12629 + s7 = SeqFormula(a**2, (a, 0, x)) + raises(NotImplementedError, lambda: pretty(s7)) + raises(NotImplementedError, lambda: upretty(s7)) + + b = Symbol('b') + s8 = SeqFormula(b*a**2, (a, 0, 2)) + ascii_str = '[0, b, 4*b]' + ucode_str = '[0, b, 4⋅b]' + assert pretty(s8) == ascii_str + assert upretty(s8) == ucode_str + + +def test_pretty_FourierSeries(): + f = fourier_series(x, (x, -pi, pi)) + + ascii_str = \ +"""\ + 2*sin(3*x) \n\ +2*sin(x) - sin(2*x) + ---------- + ...\n\ + 3 \ +""" + + ucode_str = \ +"""\ + 2⋅sin(3⋅x) \n\ +2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ + 3 \ +""" + + assert pretty(f) == ascii_str + assert upretty(f) == ucode_str + + +def test_pretty_FormalPowerSeries(): + f = fps(log(1 + x)) + + + ascii_str = \ +"""\ + oo \n\ +____ \n\ +\\ ` \n\ + \\ -k k \n\ + \\ -(-1) *x \n\ + / -----------\n\ + / k \n\ +/___, \n\ +k = 1 \ +""" + + ucode_str = \ +"""\ + ∞ \n\ + ____ \n\ + ╲ \n\ + ╲ -k k \n\ + ╲ -(-1) ⋅x \n\ + ╱ ───────────\n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾‾ \n\ +k = 1 \ +""" + + assert pretty(f) == ascii_str + assert upretty(f) == ucode_str + + +def test_pretty_limits(): + expr = Limit(x, x, oo) + ascii_str = \ +"""\ + lim x\n\ +x->oo \ +""" + ucode_str = \ +"""\ +lim x\n\ +x─→∞ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(x**2, x, 0) + ascii_str = \ +"""\ + 2\n\ + lim x \n\ +x->0+ \ +""" + ucode_str = \ +"""\ + 2\n\ + lim x \n\ +x─→0⁺ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(1/x, x, 0) + ascii_str = \ +"""\ + 1\n\ + lim -\n\ +x->0+x\ +""" + ucode_str = \ +"""\ + 1\n\ + lim ─\n\ +x─→0⁺x\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(sin(x)/x, x, 0) + ascii_str = \ +"""\ + /sin(x)\\\n\ + lim |------|\n\ +x->0+\\ x /\ +""" + ucode_str = \ +"""\ + ⎛sin(x)⎞\n\ + lim ⎜──────⎟\n\ +x─→0⁺⎝ x ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(sin(x)/x, x, 0, "-") + ascii_str = \ +"""\ + /sin(x)\\\n\ + lim |------|\n\ +x->0-\\ x /\ +""" + ucode_str = \ +"""\ + ⎛sin(x)⎞\n\ + lim ⎜──────⎟\n\ +x─→0⁻⎝ x ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(x + sin(x), x, 0) + ascii_str = \ +"""\ + lim (x + sin(x))\n\ +x->0+ \ +""" + ucode_str = \ +"""\ + lim (x + sin(x))\n\ +x─→0⁺ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(x, x, 0)**2 + ascii_str = \ +"""\ + 2\n\ +/ lim x\\ \n\ +\\x->0+ / \ +""" + ucode_str = \ +"""\ + 2\n\ +⎛ lim x⎞ \n\ +⎝x─→0⁺ ⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(x*Limit(y/2,y,0), x, 0) + ascii_str = \ +"""\ + / /y\\\\\n\ + lim |x* lim |-||\n\ +x->0+\\ y->0+\\2//\ +""" + ucode_str = \ +"""\ + ⎛ ⎛y⎞⎞\n\ + lim ⎜x⋅ lim ⎜─⎟⎟\n\ +x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = 2*Limit(x*Limit(y/2,y,0), x, 0) + ascii_str = \ +"""\ + / /y\\\\\n\ +2* lim |x* lim |-||\n\ + x->0+\\ y->0+\\2//\ +""" + ucode_str = \ +"""\ + ⎛ ⎛y⎞⎞\n\ +2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ + x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Limit(sin(x), x, 0, dir='+-') + ascii_str = \ +"""\ +lim sin(x)\n\ +x->0 \ +""" + ucode_str = \ +"""\ +lim sin(x)\n\ +x─→0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_ComplexRootOf(): + expr = rootof(x**5 + 11*x - 2, 0) + ascii_str = \ +"""\ + / 5 \\\n\ +CRootOf\\x + 11*x - 2, 0/\ +""" + ucode_str = \ +"""\ + ⎛ 5 ⎞\n\ +CRootOf⎝x + 11⋅x - 2, 0⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_RootSum(): + expr = RootSum(x**5 + 11*x - 2, auto=False) + ascii_str = \ +"""\ + / 5 \\\n\ +RootSum\\x + 11*x - 2/\ +""" + ucode_str = \ +"""\ + ⎛ 5 ⎞\n\ +RootSum⎝x + 11⋅x - 2⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) + ascii_str = \ +"""\ + / 5 z\\\n\ +RootSum\\x + 11*x - 2, z -> e /\ +""" + ucode_str = \ +"""\ + ⎛ 5 z⎞\n\ +RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_GroebnerBasis(): + expr = groebner([], x, y) + + ascii_str = \ +"""\ +GroebnerBasis([], x, y, domain=ZZ, order=lex)\ +""" + ucode_str = \ +"""\ +GroebnerBasis([], x, y, domain=ℤ, order=lex)\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] + expr = groebner(F, x, y, order='grlex') + + ascii_str = \ +"""\ + /[ 2 2 ] \\\n\ +GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ +""" + ucode_str = \ +"""\ + ⎛⎡ 2 2 ⎤ ⎞\n\ +GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = expr.fglm('lex') + + ascii_str = \ +"""\ + /[ 2 4 3 2 ] \\\n\ +GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ +""" + ucode_str = \ +"""\ + ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ +GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_UniversalSet(): + assert pretty(S.UniversalSet) == "UniversalSet" + assert upretty(S.UniversalSet) == '𝕌' + + +def test_pretty_Boolean(): + expr = Not(x, evaluate=False) + + assert pretty(expr) == "Not(x)" + assert upretty(expr) == "¬x" + + expr = And(x, y) + + assert pretty(expr) == "And(x, y)" + assert upretty(expr) == "x ∧ y" + + expr = Or(x, y) + + assert pretty(expr) == "Or(x, y)" + assert upretty(expr) == "x ∨ y" + + syms = symbols('a:f') + expr = And(*syms) + + assert pretty(expr) == "And(a, b, c, d, e, f)" + assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f" + + expr = Or(*syms) + + assert pretty(expr) == "Or(a, b, c, d, e, f)" + assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f" + + expr = Xor(x, y, evaluate=False) + + assert pretty(expr) == "Xor(x, y)" + assert upretty(expr) == "x ⊻ y" + + expr = Nand(x, y, evaluate=False) + + assert pretty(expr) == "Nand(x, y)" + assert upretty(expr) == "x ⊼ y" + + expr = Nor(x, y, evaluate=False) + + assert pretty(expr) == "Nor(x, y)" + assert upretty(expr) == "x ⊽ y" + + expr = Implies(x, y, evaluate=False) + + assert pretty(expr) == "Implies(x, y)" + assert upretty(expr) == "x → y" + + # don't sort args + expr = Implies(y, x, evaluate=False) + + assert pretty(expr) == "Implies(y, x)" + assert upretty(expr) == "y → x" + + expr = Equivalent(x, y, evaluate=False) + + assert pretty(expr) == "Equivalent(x, y)" + assert upretty(expr) == "x ⇔ y" + + expr = Equivalent(y, x, evaluate=False) + + assert pretty(expr) == "Equivalent(x, y)" + assert upretty(expr) == "x ⇔ y" + + +def test_pretty_Domain(): + expr = FF(23) + + assert pretty(expr) == "GF(23)" + assert upretty(expr) == "ℤ₂₃" + + expr = ZZ + + assert pretty(expr) == "ZZ" + assert upretty(expr) == "ℤ" + + expr = QQ + + assert pretty(expr) == "QQ" + assert upretty(expr) == "ℚ" + + expr = RR + + assert pretty(expr) == "RR" + assert upretty(expr) == "ℝ" + + expr = QQ[x] + + assert pretty(expr) == "QQ[x]" + assert upretty(expr) == "ℚ[x]" + + expr = QQ[x, y] + + assert pretty(expr) == "QQ[x, y]" + assert upretty(expr) == "ℚ[x, y]" + + expr = ZZ.frac_field(x) + + assert pretty(expr) == "ZZ(x)" + assert upretty(expr) == "ℤ(x)" + + expr = ZZ.frac_field(x, y) + + assert pretty(expr) == "ZZ(x, y)" + assert upretty(expr) == "ℤ(x, y)" + + expr = QQ.poly_ring(x, y, order=grlex) + + assert pretty(expr) == "QQ[x, y, order=grlex]" + assert upretty(expr) == "ℚ[x, y, order=grlex]" + + expr = QQ.poly_ring(x, y, order=ilex) + + assert pretty(expr) == "QQ[x, y, order=ilex]" + assert upretty(expr) == "ℚ[x, y, order=ilex]" + + +def test_pretty_prec(): + assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" + assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" + assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" + assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ + "0.300000000000000*x", + "x*0.300000000000000" + ] + assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ + "0.3*x", + "x*0.3" + ] + assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ + "0.3*x", + "x*0.3" + ] + + +def test_pprint(): + import sys + from io import StringIO + fd = StringIO() + sso = sys.stdout + sys.stdout = fd + try: + pprint(pi, use_unicode=False, wrap_line=False) + finally: + sys.stdout = sso + assert fd.getvalue() == 'pi\n' + + +def test_pretty_class(): + """Test that the printer dispatcher correctly handles classes.""" + class C: + pass # C has no .__class__ and this was causing problems + + class D: + pass + + assert pretty( C ) == str( C ) + assert pretty( D ) == str( D ) + + +def test_pretty_no_wrap_line(): + huge_expr = 0 + for i in range(20): + huge_expr += i*sin(i + x) + assert xpretty(huge_expr ).find('\n') != -1 + assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 + + +def test_settings(): + raises(TypeError, lambda: pretty(S(4), method="garbage")) + + +def test_pretty_sum(): + from sympy.abc import x, a, b, k, m, n + + expr = Sum(k**k, (k, 0, n)) + ascii_str = \ +"""\ + n \n\ + ___ \n\ + \\ ` \n\ + \\ k\n\ + / k \n\ + /__, \n\ +k = 0 \ +""" + ucode_str = \ +"""\ + n \n\ + ___ \n\ + ╲ \n\ + ╲ k\n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾ \n\ +k = 0 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(k**k, (k, oo, n)) + ascii_str = \ +"""\ + n \n\ + ___ \n\ + \\ ` \n\ + \\ k\n\ + / k \n\ + /__, \n\ +k = oo \ +""" + ucode_str = \ +"""\ + n \n\ + ___ \n\ + ╲ \n\ + ╲ k\n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾ \n\ +k = ∞ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) + ascii_str = \ +"""\ + n \n\ + n \n\ +______ \n\ +\\ ` \n\ + \\ oo \n\ + \\ / \n\ + \\ | \n\ + \\ | n \n\ + ) | x dx\n\ + / | \n\ + / / \n\ + / -oo \n\ + / k \n\ +/_____, \n\ + k = 0 \ +""" + ucode_str = \ +"""\ + n \n\ + n \n\ +______ \n\ +╲ \n\ + ╲ \n\ + ╲ ∞ \n\ + ╲ ⌠ \n\ + ╲ ⎮ n \n\ + ╱ ⎮ x dx\n\ + ╱ ⌡ \n\ + ╱ -∞ \n\ + ╱ k \n\ +╱ \n\ +‾‾‾‾‾‾ \n\ +k = 0 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(k**( + Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) + ascii_str = \ +"""\ + oo \n\ + / \n\ + | \n\ + | x \n\ + | x dx \n\ + | \n\ +/ \n\ +-oo \n\ + ______ \n\ + \\ ` \n\ + \\ oo \n\ + \\ / \n\ + \\ | \n\ + \\ | n \n\ + ) | x dx\n\ + / | \n\ + / / \n\ + / -oo \n\ + / k \n\ + /_____, \n\ + k = 0 \ +""" + ucode_str = \ +"""\ +∞ \n\ +⌠ \n\ +⎮ x \n\ +⎮ x dx \n\ +⌡ \n\ +-∞ \n\ + ______ \n\ + ╲ \n\ + ╲ \n\ + ╲ ∞ \n\ + ╲ ⌠ \n\ + ╲ ⎮ n \n\ + ╱ ⎮ x dx\n\ + ╱ ⌡ \n\ + ╱ -∞ \n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾‾‾‾ \n\ + k = 0 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( + k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) + ascii_str = \ +"""\ + oo \n\ + / \n\ + | \n\ + | x \n\ + | x dx \n\ + | \n\ + / \n\ + -oo \n\ + ______ \n\ + \\ ` \n\ + \\ oo \n\ + \\ / \n\ + \\ | \n\ + \\ | n \n\ + ) | x dx\n\ + / | \n\ + / / \n\ + / -oo \n\ + / k \n\ + /_____, \n\ + 2 2 1 x \n\ +k = n + n + x + x + - + - \n\ + x n \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ⌠ \n\ + ⎮ x \n\ + ⎮ x dx \n\ + ⌡ \n\ + -∞ \n\ + ______ \n\ + ╲ \n\ + ╲ \n\ + ╲ ∞ \n\ + ╲ ⌠ \n\ + ╲ ⎮ n \n\ + ╱ ⎮ x dx\n\ + ╱ ⌡ \n\ + ╱ -∞ \n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾‾‾‾ \n\ + 2 2 1 x \n\ +k = n + n + x + x + ─ + ─ \n\ + x n \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(k**( + Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) + ascii_str = \ +"""\ + 2 2 1 x \n\ +n + n + x + x + - + - \n\ + x n \n\ + ______ \n\ + \\ ` \n\ + \\ oo \n\ + \\ / \n\ + \\ | \n\ + \\ | n \n\ + ) | x dx\n\ + / | \n\ + / / \n\ + / -oo \n\ + / k \n\ + /_____, \n\ + k = 0 \ +""" + ucode_str = \ +"""\ + 2 2 1 x \n\ +n + n + x + x + ─ + ─ \n\ + x n \n\ + ______ \n\ + ╲ \n\ + ╲ \n\ + ╲ ∞ \n\ + ╲ ⌠ \n\ + ╲ ⎮ n \n\ + ╱ ⎮ x dx\n\ + ╱ ⌡ \n\ + ╱ -∞ \n\ + ╱ k \n\ + ╱ \n\ + ‾‾‾‾‾‾ \n\ + k = 0 \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(x, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ + __ \n\ + \\ ` \n\ + ) x\n\ + /_, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ___ \n\ + ╲ \n\ + ╲ \n\ + ╱ x\n\ + ╱ \n\ + ‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(x**2, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ + ___ \n\ + \\ ` \n\ + \\ 2\n\ + / x \n\ + /__, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ___ \n\ + ╲ \n\ + ╲ 2\n\ + ╱ x \n\ + ╱ \n\ + ‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(x/2, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ + ___ \n\ + \\ ` \n\ + \\ x\n\ + ) -\n\ + / 2\n\ + /__, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ____ \n\ + ╲ \n\ + ╲ \n\ + ╲ x\n\ + ╱ ─\n\ + ╱ 2\n\ + ╱ \n\ + ‾‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(x**3/2, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ +____ \n\ +\\ ` \n\ + \\ 3\n\ + \\ x \n\ + / --\n\ + / 2 \n\ +/___, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ____ \n\ + ╲ \n\ + ╲ 3\n\ + ╲ x \n\ + ╱ ──\n\ + ╱ 2 \n\ + ╱ \n\ + ‾‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ +____ \n\ +\\ ` \n\ + \\ n\n\ + \\ / x\\ \n\ + ) | -| \n\ + / | 3 2| \n\ + / \\x *y / \n\ +/___, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ +_____ \n\ +╲ \n\ + ╲ \n\ + ╲ n\n\ + ╲ ⎛ x⎞ \n\ + ╱ ⎜ ─⎟ \n\ + ╱ ⎜ 3 2⎟ \n\ + ╱ ⎝x ⋅y ⎠ \n\ +╱ \n\ +‾‾‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(1/x**2, (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ +____ \n\ +\\ ` \n\ + \\ 1 \n\ + \\ --\n\ + / 2\n\ + / x \n\ +/___, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ____ \n\ + ╲ \n\ + ╲ 1 \n\ + ╲ ──\n\ + ╱ 2\n\ + ╱ x \n\ + ╱ \n\ + ‾‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(1/y**(a/b), (x, 0, oo)) + ascii_str = \ +"""\ + oo \n\ +____ \n\ +\\ ` \n\ + \\ -a \n\ + \\ ---\n\ + / b \n\ + / y \n\ +/___, \n\ +x = 0 \ +""" + ucode_str = \ +"""\ + ∞ \n\ + ____ \n\ + ╲ \n\ + ╲ -a \n\ + ╲ ───\n\ + ╱ b \n\ + ╱ y \n\ + ╱ \n\ + ‾‾‾‾ \n\ +x = 0 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) + ascii_str = \ +"""\ + 2 oo \n\ +____ ____ \n\ +\\ ` \\ ` \n\ + \\ \\ -a\n\ + \\ \\ --\n\ + / / b \n\ + / / y \n\ +/___, /___, \n\ +y = 1 x = 0 \ +""" + ucode_str = \ +"""\ + 2 ∞ \n\ +____ ____ \n\ +╲ ╲ \n\ + ╲ ╲ -a\n\ + ╲ ╲ ──\n\ + ╱ ╱ b \n\ + ╱ ╱ y \n\ +╱ ╱ \n\ +‾‾‾‾ ‾‾‾‾ \n\ +y = 1 x = 0 \ +""" + expr = Sum(1/(1 + 1/( + 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) + ascii_str = \ +"""\ + 1 \n\ + 1 + - \n\ + oo n \n\ + _____ _____ \n\ + \\ ` \\ ` \n\ + \\ \\ / 1 \\ \n\ + \\ \\ |1 + ---------| \n\ + \\ \\ | 1 | 1 \n\ + ) ) | 1 + -----| + -----\n\ + / / | 1| 1\n\ + / / | 1 + -| 1 + -\n\ + / / \\ k/ k\n\ + /____, /____, \n\ + 1 k = 111 \n\ +k = ----- \n\ + m + 1 \ +""" + ucode_str = \ +"""\ + 1 \n\ + 1 + ─ \n\ + ∞ n \n\ + ______ ______ \n\ + ╲ ╲ \n\ + ╲ ╲ \n\ + ╲ ╲ ⎛ 1 ⎞ \n\ + ╲ ╲ ⎜1 + ─────────⎟ \n\ + ╲ ╲ ⎜ 1 ⎟ 1 \n\ + ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ + ╱ ╱ ⎜ 1⎟ 1\n\ + ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ + ╱ ╱ ⎝ k⎠ k\n\ + ╱ ╱ \n\ + ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ + 1 k = 111 \n\ +k = ───── \n\ + m + 1 \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_units(): + expr = joule + ascii_str1 = \ +"""\ + 2\n\ +kilogram*meter \n\ +---------------\n\ + 2 \n\ + second \ +""" + unicode_str1 = \ +"""\ + 2\n\ +kilogram⋅meter \n\ +───────────────\n\ + 2 \n\ + second \ +""" + + ascii_str2 = \ +"""\ + 2\n\ +3*x*y*kilogram*meter \n\ +---------------------\n\ + 2 \n\ + second \ +""" + unicode_str2 = \ +"""\ + 2\n\ +3⋅x⋅y⋅kilogram⋅meter \n\ +─────────────────────\n\ + 2 \n\ + second \ +""" + + from sympy.physics.units import kg, m, s + assert upretty(expr) == "joule" + assert pretty(expr) == "joule" + assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 + assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 + assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 + assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 + +def test_pretty_Subs(): + f = Function('f') + expr = Subs(f(x), x, ph**2) + ascii_str = \ +"""\ +(f(x))| 2\n\ + |x=phi \ +""" + unicode_str = \ +"""\ +(f(x))│ 2\n\ + │x=φ \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + + expr = Subs(f(x).diff(x), x, 0) + ascii_str = \ +"""\ +/d \\| \n\ +|--(f(x))|| \n\ +\\dx /|x=0\ +""" + unicode_str = \ +"""\ +⎛d ⎞│ \n\ +⎜──(f(x))⎟│ \n\ +⎝dx ⎠│x=0\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + + expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) + ascii_str = \ +"""\ +/d \\| \n\ +|--(f(x))|| \n\ +|dx || \n\ +|--------|| \n\ +\\ y /|x=0, y=1/2\ +""" + unicode_str = \ +"""\ +⎛d ⎞│ \n\ +⎜──(f(x))⎟│ \n\ +⎜dx ⎟│ \n\ +⎜────────⎟│ \n\ +⎝ y ⎠│x=0, y=1/2\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == unicode_str + + +def test_gammas(): + assert upretty(lowergamma(x, y)) == "γ(x, y)" + assert upretty(uppergamma(x, y)) == "Γ(x, y)" + assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)' + assert xpretty(gamma, use_unicode=True) == 'Γ' + assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)' + assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ' + + +def test_beta(): + assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)' + assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)' + assert xpretty(beta, use_unicode=True) == 'Β' + assert xpretty(beta, use_unicode=False) == 'B' + mybeta = Function('beta') + assert xpretty(mybeta(x), use_unicode=True) == 'β(x)' + assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)' + assert xpretty(mybeta, use_unicode=True) == 'β' + + +# test that notation passes to subclasses of the same name only +def test_function_subclass_different_name(): + class mygamma(gamma): + pass + assert xpretty(mygamma, use_unicode=True) == r"mygamma" + assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" + + +def test_SingularityFunction(): + assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( +"""\ + n\n\ +<-a + x> \ +""") + assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( +"""\ + n\n\ + \ +""") + assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( +"""\ + n\n\ +<-a + x> \ +""") + assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( +"""\ + n\n\ + \ +""") + + +def test_deltas(): + assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)' + assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ +"""\ + (1) \n\ +δ (x)\ +""" + assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ +"""\ + (1) \n\ +x⋅δ (x)\ +""" + + +def test_hyper(): + expr = hyper((), (), z) + ucode_str = \ +"""\ + ┌─ ⎛ │ ⎞\n\ + ├─ ⎜ │ z⎟\n\ +0╵ 0 ⎝ │ ⎠\ +""" + ascii_str = \ +"""\ + _ \n\ + |_ / | \\\n\ + | | | z|\n\ +0 0 \\ | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hyper((), (1,), x) + ucode_str = \ +"""\ + ┌─ ⎛ │ ⎞\n\ + ├─ ⎜ │ x⎟\n\ +0╵ 1 ⎝1 │ ⎠\ +""" + ascii_str = \ +"""\ + _ \n\ + |_ / | \\\n\ + | | | x|\n\ +0 1 \\1 | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hyper([2], [1], x) + ucode_str = \ +"""\ + ┌─ ⎛2 │ ⎞\n\ + ├─ ⎜ │ x⎟\n\ +1╵ 1 ⎝1 │ ⎠\ +""" + ascii_str = \ +"""\ + _ \n\ + |_ /2 | \\\n\ + | | | x|\n\ +1 1 \\1 | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) + ucode_str = \ +"""\ + ⎛ π │ ⎞\n\ + ┌─ ⎜ ─, -2⋅k │ ⎟\n\ + ├─ ⎜ 3 │ x⎟\n\ +2╵ 4 ⎜ │ ⎟\n\ + ⎝3, 4, 5, -3 │ ⎠\ +""" + ascii_str = \ +"""\ + \n\ + _ / pi | \\\n\ + |_ | --, -2*k | |\n\ + | | 3 | x|\n\ +2 4 | | |\n\ + \\3, 4, 5, -3 | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) + ucode_str = \ +"""\ + ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ + ├─ ⎜ │ x ⎟\n\ +3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ +""" + ascii_str = \ +"""\ + _ \n\ + |_ /pi, 2/3, -2*k | 2\\\n\ + | | | x |\n\ +3 4 \\ 3, 4, 5, -3 | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) + ucode_str = \ +"""\ + ⎛ │ 1 ⎞\n\ + ⎜ │ ─────────────⎟\n\ + ⎜ │ 1 ⎟\n\ + ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ + ├─ ⎜ │ 1 ⎟\n\ +2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ + ⎜ │ 1⎟\n\ + ⎜ │ 1 + ─⎟\n\ + ⎝ │ x⎠\ +""" + + ascii_str = \ +"""\ + \n\ + / | 1 \\\n\ + | | -------------|\n\ + _ | | 1 |\n\ + |_ |1, 2 | 1 + ---------|\n\ + | | | 1 |\n\ +2 2 |3, 4 | 1 + -----|\n\ + | | 1|\n\ + | | 1 + -|\n\ + \\ | x/\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_meijerg(): + expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) + ucode_str = \ +"""\ +╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ +│╶┐ ⎜ │ z⎟\n\ +╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ +""" + ascii_str = \ +"""\ + __2, 3 /pi, pi, x 1 | \\\n\ +/__ | | z|\n\ +\\_|4, 5 \\ 0, 1 1, 2, 3 | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) + ucode_str = \ +"""\ + ⎛ π │ ⎞\n\ +╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ +│╶┐ ⎜ 7 │ z ⎟\n\ +╰─╯5, 0 ⎜ │ ⎟\n\ + ⎝ │ ⎠\ +""" + ascii_str = \ +"""\ + / pi | \\\n\ + __0, 2 |1, -- 2, pi, 5 | 2|\n\ +/__ | 7 | z |\n\ +\\_|5, 0 | | |\n\ + \\ | /\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ucode_str = \ +"""\ +╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ +│╶┐ ⎜ │ z⎟\n\ +╰─╯11, 2 ⎝ 1 1 │ ⎠\ +""" + ascii_str = \ +"""\ + __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ +/__ | | z|\n\ +\\_|11, 2 \\ 1 1 | /\ +""" + + expr = meijerg([1]*10, [1], [1], [1], z) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) + + ucode_str = \ +"""\ + ⎛ │ 1 ⎞\n\ + ⎜ │ ─────────────⎟\n\ + ⎜ │ 1 ⎟\n\ +╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ +│╶┐ ⎜ │ 1 ⎟\n\ +╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ + ⎜ │ 1⎟\n\ + ⎜ │ 1 + ─⎟\n\ + ⎝ │ x⎠\ +""" + + ascii_str = \ +"""\ + / | 1 \\\n\ + | | -------------|\n\ + | | 1 |\n\ + __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ +/__ | | 1 |\n\ +\\_|4, 3 | 3 4, 5 | 1 + -----|\n\ + | | 1|\n\ + | | 1 + -|\n\ + \\ | x/\ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = Integral(expr, x) + + ucode_str = \ +"""\ +⌠ \n\ +⎮ ⎛ │ 1 ⎞ \n\ +⎮ ⎜ │ ─────────────⎟ \n\ +⎮ ⎜ │ 1 ⎟ \n\ +⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ +⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ +⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ +⎮ ⎜ │ 1⎟ \n\ +⎮ ⎜ │ 1 + ─⎟ \n\ +⎮ ⎝ │ x⎠ \n\ +⌡ \ +""" + + ascii_str = \ +"""\ + / \n\ + | \n\ + | / | 1 \\ \n\ + | | | -------------| \n\ + | | | 1 | \n\ + | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ + | /__ | | 1 | dx\n\ + | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ + | | | 1| \n\ + | | | 1 + -| \n\ + | \\ | x/ \n\ + | \n\ +/ \ +""" + + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_noncommutative(): + A, B, C = symbols('A,B,C', commutative=False) + + expr = A*B*C**-1 + ascii_str = \ +"""\ + -1\n\ +A*B*C \ +""" + ucode_str = \ +"""\ + -1\n\ +A⋅B⋅C \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = C**-1*A*B + ascii_str = \ +"""\ + -1 \n\ +C *A*B\ +""" + ucode_str = \ +"""\ + -1 \n\ +C ⋅A⋅B\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A*C**-1*B + ascii_str = \ +"""\ + -1 \n\ +A*C *B\ +""" + ucode_str = \ +"""\ + -1 \n\ +A⋅C ⋅B\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A*C**-1*B/x + ascii_str = \ +"""\ + -1 \n\ +A*C *B\n\ +-------\n\ + x \ +""" + ucode_str = \ +"""\ + -1 \n\ +A⋅C ⋅B\n\ +───────\n\ + x \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_special_functions(): + x, y = symbols("x y") + + # atan2 + expr = atan2(y/sqrt(200), sqrt(x)) + ascii_str = \ +"""\ + / ___ \\\n\ + |\\/ 2 *y ___|\n\ +atan2|-------, \\/ x |\n\ + \\ 20 /\ +""" + ucode_str = \ +"""\ + ⎛√2⋅y ⎞\n\ +atan2⎜────, √x⎟\n\ + ⎝ 20 ⎠\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_geometry(): + e = Segment((0, 1), (0, 2)) + assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' + e = Ray((1, 1), angle=4.02*pi) + assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' + + +def test_expint(): + expr = Ei(x) + string = 'Ei(x)' + assert pretty(expr) == string + assert upretty(expr) == string + + expr = expint(1, z) + ucode_str = "E₁(z)" + ascii_str = "expint(1, z)" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + assert pretty(Shi(x)) == 'Shi(x)' + assert pretty(Si(x)) == 'Si(x)' + assert pretty(Ci(x)) == 'Ci(x)' + assert pretty(Chi(x)) == 'Chi(x)' + assert upretty(Shi(x)) == 'Shi(x)' + assert upretty(Si(x)) == 'Si(x)' + assert upretty(Ci(x)) == 'Ci(x)' + assert upretty(Chi(x)) == 'Chi(x)' + + +def test_elliptic_functions(): + ascii_str = \ +"""\ + / 1 \\\n\ +K|-----|\n\ + \\z + 1/\ +""" + ucode_str = \ +"""\ + ⎛ 1 ⎞\n\ +K⎜─────⎟\n\ + ⎝z + 1⎠\ +""" + expr = elliptic_k(1/(z + 1)) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ascii_str = \ +"""\ + / | 1 \\\n\ +F|1|-----|\n\ + \\ |z + 1/\ +""" + ucode_str = \ +"""\ + ⎛ │ 1 ⎞\n\ +F⎜1│─────⎟\n\ + ⎝ │z + 1⎠\ +""" + expr = elliptic_f(1, 1/(1 + z)) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ascii_str = \ +"""\ + / 1 \\\n\ +E|-----|\n\ + \\z + 1/\ +""" + ucode_str = \ +"""\ + ⎛ 1 ⎞\n\ +E⎜─────⎟\n\ + ⎝z + 1⎠\ +""" + expr = elliptic_e(1/(z + 1)) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ascii_str = \ +"""\ + / | 1 \\\n\ +E|1|-----|\n\ + \\ |z + 1/\ +""" + ucode_str = \ +"""\ + ⎛ │ 1 ⎞\n\ +E⎜1│─────⎟\n\ + ⎝ │z + 1⎠\ +""" + expr = elliptic_e(1, 1/(1 + z)) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ascii_str = \ +"""\ + / |4\\\n\ +Pi|3|-|\n\ + \\ |x/\ +""" + ucode_str = \ +"""\ + ⎛ │4⎞\n\ +Π⎜3│─⎟\n\ + ⎝ │x⎠\ +""" + expr = elliptic_pi(3, 4/x) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + ascii_str = \ +"""\ + / 4| \\\n\ +Pi|3; -|6|\n\ + \\ x| /\ +""" + ucode_str = \ +"""\ + ⎛ 4│ ⎞\n\ +Π⎜3; ─│6⎟\n\ + ⎝ x│ ⎠\ +""" + expr = elliptic_pi(3, 4/x, 6) + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_RandomDomain(): + from sympy.stats import Normal, Die, Exponential, pspace, where + X = Normal('x1', 0, 1) + assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞" + + D = Die('d1', 6) + assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6' + + A = Exponential('a', 1) + B = Exponential('b', 1) + assert upretty(pspace(Tuple(A, B)).domain) == \ + 'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' + + +def test_PrettyPoly(): + F = QQ.frac_field(x, y) + R = QQ.poly_ring(x, y) + + expr = F.convert(x/(x + y)) + assert pretty(expr) == "x/(x + y)" + assert upretty(expr) == "x/(x + y)" + + expr = R.convert(x + y) + assert pretty(expr) == "x + y" + assert upretty(expr) == "x + y" + + +def test_issue_6285(): + assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' + assert pretty(Pow(x, (1/pi))) == \ + ' 1 \n'\ + ' --\n'\ + ' pi\n'\ + 'x ' + + +def test_issue_6359(): + assert pretty(Integral(x**2, x)**2) == \ +"""\ + 2 +/ / \\ \n\ +| | | \n\ +| | 2 | \n\ +| | x dx| \n\ +| | | \n\ +\\/ / \ +""" + assert upretty(Integral(x**2, x)**2) == \ +"""\ + 2 +⎛⌠ ⎞ \n\ +⎜⎮ 2 ⎟ \n\ +⎜⎮ x dx⎟ \n\ +⎝⌡ ⎠ \ +""" + + assert pretty(Sum(x**2, (x, 0, 1))**2) == \ +"""\ + 2 +/ 1 \\ \n\ +| ___ | \n\ +| \\ ` | \n\ +| \\ 2| \n\ +| / x | \n\ +| /__, | \n\ +\\x = 0 / \ +""" + assert upretty(Sum(x**2, (x, 0, 1))**2) == \ +"""\ + 2 +⎛ 1 ⎞ \n\ +⎜ ___ ⎟ \n\ +⎜ ╲ ⎟ \n\ +⎜ ╲ 2⎟ \n\ +⎜ ╱ x ⎟ \n\ +⎜ ╱ ⎟ \n\ +⎜ ‾‾‾ ⎟ \n\ +⎝x = 0 ⎠ \ +""" + + assert pretty(Product(x**2, (x, 1, 2))**2) == \ +"""\ + 2 +/ 2 \\ \n\ +|______ | \n\ +| | | 2| \n\ +| | | x | \n\ +| | | | \n\ +\\x = 1 / \ +""" + assert upretty(Product(x**2, (x, 1, 2))**2) == \ +"""\ + 2 +⎛ 2 ⎞ \n\ +⎜─┬──┬─ ⎟ \n\ +⎜ │ │ 2⎟ \n\ +⎜ │ │ x ⎟ \n\ +⎜ │ │ ⎟ \n\ +⎝x = 1 ⎠ \ +""" + + f = Function('f') + assert pretty(Derivative(f(x), x)**2) == \ +"""\ + 2 +/d \\ \n\ +|--(f(x))| \n\ +\\dx / \ +""" + assert upretty(Derivative(f(x), x)**2) == \ +"""\ + 2 +⎛d ⎞ \n\ +⎜──(f(x))⎟ \n\ +⎝dx ⎠ \ +""" + +def test_issue_6739(): + ascii_str = \ +"""\ + 1 \n\ +-----\n\ + ___\n\ +\\/ x \ +""" + ucode_str = \ +"""\ +1 \n\ +──\n\ +√x\ +""" + assert pretty(1/sqrt(x)) == ascii_str + assert upretty(1/sqrt(x)) == ucode_str + + +def test_complicated_symbol_unchanged(): + for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: + assert pretty(Symbol(symb_name)) == symb_name + + +def test_categories(): + from sympy.categories import (Object, IdentityMorphism, + NamedMorphism, Category, Diagram, DiagramGrid) + + A1 = Object("A1") + A2 = Object("A2") + A3 = Object("A3") + + f1 = NamedMorphism(A1, A2, "f1") + f2 = NamedMorphism(A2, A3, "f2") + id_A1 = IdentityMorphism(A1) + + K1 = Category("K1") + + assert pretty(A1) == "A1" + assert upretty(A1) == "A₁" + + assert pretty(f1) == "f1:A1-->A2" + assert upretty(f1) == "f₁:A₁——▶A₂" + assert pretty(id_A1) == "id:A1-->A1" + assert upretty(id_A1) == "id:A₁——▶A₁" + + assert pretty(f2*f1) == "f2*f1:A1-->A3" + assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃" + + assert pretty(K1) == "K1" + assert upretty(K1) == "K₁" + + # Test how diagrams are printed. + d = Diagram() + assert pretty(d) == "EmptySet" + assert upretty(d) == "∅" + + d = Diagram({f1: "unique", f2: S.EmptySet}) + assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ + "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ + "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" + + assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ + "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" + + d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) + assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ + "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ + "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ + " ==> {f2*f1:A1-->A3: {unique}}" + assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ + "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ + " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}" + + grid = DiagramGrid(d) + assert pretty(grid) == "A1 A2\n \nA3 " + assert upretty(grid) == "A₁ A₂\n \nA₃ " + + +def test_PrettyModules(): + R = QQ.old_poly_ring(x, y) + F = R.free_module(2) + M = F.submodule([x, y], [1, x**2]) + + ucode_str = \ +"""\ + 2\n\ +ℚ[x, y] \ +""" + ascii_str = \ +"""\ + 2\n\ +QQ[x, y] \ +""" + + assert upretty(F) == ucode_str + assert pretty(F) == ascii_str + + ucode_str = \ +"""\ +╱ ⎡ 2⎤╲\n\ +╲[x, y], ⎣1, x ⎦╱\ +""" + ascii_str = \ +"""\ + 2 \n\ +<[x, y], [1, x ]>\ +""" + + assert upretty(M) == ucode_str + assert pretty(M) == ascii_str + + I = R.ideal(x**2, y) + + ucode_str = \ +"""\ +╱ 2 ╲\n\ +╲x , y╱\ +""" + + ascii_str = \ +"""\ + 2 \n\ +\ +""" + + assert upretty(I) == ucode_str + assert pretty(I) == ascii_str + + Q = F / M + + ucode_str = \ +"""\ + 2 \n\ + ℚ[x, y] \n\ +─────────────────\n\ +╱ ⎡ 2⎤╲\n\ +╲[x, y], ⎣1, x ⎦╱\ +""" + + ascii_str = \ +"""\ + 2 \n\ + QQ[x, y] \n\ +-----------------\n\ + 2 \n\ +<[x, y], [1, x ]>\ +""" + + assert upretty(Q) == ucode_str + assert pretty(Q) == ascii_str + + ucode_str = \ +"""\ +╱⎡ 3⎤ ╲\n\ +│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ +│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ +╲⎣ 2 ⎦ ╱\ +""" + + ascii_str = \ +"""\ + 3 \n\ + x 2 2 \n\ +<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ + 2 \ +""" + + +def test_QuotientRing(): + R = QQ.old_poly_ring(x)/[x**2 + 1] + + ucode_str = \ +"""\ + ℚ[x] \n\ +────────\n\ +╱ 2 ╲\n\ +╲x + 1╱\ +""" + + ascii_str = \ +"""\ + QQ[x] \n\ +--------\n\ + 2 \n\ +\ +""" + + assert upretty(R) == ucode_str + assert pretty(R) == ascii_str + + ucode_str = \ +"""\ + ╱ 2 ╲\n\ +1 + ╲x + 1╱\ +""" + + ascii_str = \ +"""\ + 2 \n\ +1 + \ +""" + + assert upretty(R.one) == ucode_str + assert pretty(R.one) == ascii_str + + +def test_Homomorphism(): + from sympy.polys.agca import homomorphism + + R = QQ.old_poly_ring(x) + + expr = homomorphism(R.free_module(1), R.free_module(1), [0]) + + ucode_str = \ +"""\ + 1 1\n\ +[0] : ℚ[x] ──> ℚ[x] \ +""" + + ascii_str = \ +"""\ + 1 1\n\ +[0] : QQ[x] --> QQ[x] \ +""" + + assert upretty(expr) == ucode_str + assert pretty(expr) == ascii_str + + expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) + + ucode_str = \ +"""\ +⎡0 0⎤ 2 2\n\ +⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ +⎣0 0⎦ \ +""" + + ascii_str = \ +"""\ +[0 0] 2 2\n\ +[ ] : QQ[x] --> QQ[x] \n\ +[0 0] \ +""" + + assert upretty(expr) == ucode_str + assert pretty(expr) == ascii_str + + expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) + + ucode_str = \ +"""\ + 1\n\ + 1 ℚ[x] \n\ +[0] : ℚ[x] ──> ─────\n\ + <[x]>\ +""" + + ascii_str = \ +"""\ + 1\n\ + 1 QQ[x] \n\ +[0] : QQ[x] --> ------\n\ + <[x]> \ +""" + + assert upretty(expr) == ucode_str + assert pretty(expr) == ascii_str + + +def test_Tr(): + A, B = symbols('A B', commutative=False) + t = Tr(A*B) + assert pretty(t) == r'Tr(A*B)' + assert upretty(t) == 'Tr(A⋅B)' + + +def test_pretty_Add(): + eq = Mul(-2, x - 2, evaluate=False) + 5 + assert pretty(eq) == '5 - 2*(x - 2)' + + +def test_issue_7179(): + assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y' + assert upretty(Not(Implies(x, y))) == 'x ↛ y' + + +def test_issue_7180(): + assert upretty(Equivalent(x, y)) == 'x ⇔ y' + + +def test_pretty_Complement(): + assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' + assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ' + assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' + assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀' + + +def test_pretty_SymmetricDifference(): + from sympy.sets.sets import SymmetricDifference + assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ + evaluate = False)) == '[2, 3] ∆ [3, 5]' + with raises(NotImplementedError): + pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) + + +def test_pretty_Contains(): + assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' + assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ' + + +def test_issue_8292(): + from sympy.core import sympify + e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) + ucode_str = \ +"""\ + 4 4 \n\ + 2⋅(x - 1) x + x\n\ +- ────────── + ──────\n\ + 4 x - 1 \n\ + (x - 1) \ +""" + ascii_str = \ +"""\ + 4 4 \n\ + 2*(x - 1) x + x\n\ +- ---------- + ------\n\ + 4 x - 1 \n\ + (x - 1) \ +""" + assert pretty(e) == ascii_str + assert upretty(e) == ucode_str + + +def test_issue_4335(): + y = Function('y') + expr = -y(x).diff(x) + ucode_str = \ +"""\ + d \n\ +-──(y(x))\n\ + dx \ +""" + ascii_str = \ +"""\ + d \n\ +- --(y(x))\n\ + dx \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_issue_8344(): + from sympy.core import sympify + e = sympify('2*x*y**2/1**2 + 1', evaluate=False) + ucode_str = \ +"""\ + 2 \n\ +2⋅x⋅y \n\ +────── + 1\n\ + 2 \n\ + 1 \ +""" + assert upretty(e) == ucode_str + + +def test_issue_6324(): + x = Pow(2, 3, evaluate=False) + y = Pow(10, -2, evaluate=False) + e = Mul(x, y, evaluate=False) + ucode_str = \ +"""\ + 3\n\ + 2 \n\ +───\n\ + 2\n\ +10 \ +""" + assert upretty(e) == ucode_str + + +def test_issue_7927(): + e = sin(x/2)**cos(x/2) + ucode_str = \ +"""\ + ⎛x⎞\n\ + cos⎜─⎟\n\ + ⎝2⎠\n\ +⎛ ⎛x⎞⎞ \n\ +⎜sin⎜─⎟⎟ \n\ +⎝ ⎝2⎠⎠ \ +""" + assert upretty(e) == ucode_str + e = sin(x)**(S(11)/13) + ucode_str = \ +"""\ + 11\n\ + ──\n\ + 13\n\ +(sin(x)) \ +""" + assert upretty(e) == ucode_str + + +def test_issue_6134(): + from sympy.abc import lamda, t + phi = Function('phi') + + e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) + ucode_str = \ +"""\ + 1 1 \n\ + 2 ⌠ ⌠ \n\ +λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ + ⌡ ⌡ \n\ + 0 0 \ +""" + assert upretty(e) == ucode_str + + +def test_issue_9877(): + ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})' + a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) + assert upretty(Union(a, Complement(b, c))) == ucode_str1 + + ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])' + d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) + assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 + + +def test_issue_13651(): + expr1 = c + Mul(-1, a + b, evaluate=False) + assert pretty(expr1) == 'c - (a + b)' + expr2 = c + Mul(-1, a - b + d, evaluate=False) + assert pretty(expr2) == 'c - (a - b + d)' + + +def test_pretty_primenu(): + from sympy.ntheory.factor_ import primenu + + ascii_str1 = "nu(n)" + ucode_str1 = "ν(n)" + + n = symbols('n', integer=True) + assert pretty(primenu(n)) == ascii_str1 + assert upretty(primenu(n)) == ucode_str1 + + +def test_pretty_primeomega(): + from sympy.ntheory.factor_ import primeomega + + ascii_str1 = "Omega(n)" + ucode_str1 = "Ω(n)" + + n = symbols('n', integer=True) + assert pretty(primeomega(n)) == ascii_str1 + assert upretty(primeomega(n)) == ucode_str1 + + +def test_pretty_Mod(): + from sympy.core import Mod + + ascii_str1 = "x mod 7" + ucode_str1 = "x mod 7" + + ascii_str2 = "(x + 1) mod 7" + ucode_str2 = "(x + 1) mod 7" + + ascii_str3 = "2*x mod 7" + ucode_str3 = "2⋅x mod 7" + + ascii_str4 = "(x mod 7) + 1" + ucode_str4 = "(x mod 7) + 1" + + ascii_str5 = "2*(x mod 7)" + ucode_str5 = "2⋅(x mod 7)" + + x = symbols('x', integer=True) + assert pretty(Mod(x, 7)) == ascii_str1 + assert upretty(Mod(x, 7)) == ucode_str1 + assert pretty(Mod(x + 1, 7)) == ascii_str2 + assert upretty(Mod(x + 1, 7)) == ucode_str2 + assert pretty(Mod(2 * x, 7)) == ascii_str3 + assert upretty(Mod(2 * x, 7)) == ucode_str3 + assert pretty(Mod(x, 7) + 1) == ascii_str4 + assert upretty(Mod(x, 7) + 1) == ucode_str4 + assert pretty(2 * Mod(x, 7)) == ascii_str5 + assert upretty(2 * Mod(x, 7)) == ucode_str5 + + +def test_issue_11801(): + assert pretty(Symbol("")) == "" + assert upretty(Symbol("")) == "" + + +def test_pretty_UnevaluatedExpr(): + x = symbols('x') + he = UnevaluatedExpr(1/x) + + ucode_str = \ +"""\ +1\n\ +─\n\ +x\ +""" + + assert upretty(he) == ucode_str + + ucode_str = \ +"""\ + 2\n\ +⎛1⎞ \n\ +⎜─⎟ \n\ +⎝x⎠ \ +""" + + assert upretty(he**2) == ucode_str + + ucode_str = \ +"""\ + 1\n\ +1 + ─\n\ + x\ +""" + + assert upretty(he + 1) == ucode_str + + ucode_str = \ +('''\ + 1\n\ +x⋅─\n\ + x\ +''') + assert upretty(x*he) == ucode_str + + +def test_issue_10472(): + M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) + + ucode_str = \ +"""\ +⎛⎡0 0⎤ ⎡0⎤⎞ +⎜⎢ ⎥, ⎢ ⎥⎟ +⎝⎣0 0⎦ ⎣0⎦⎠\ +""" + assert upretty(M) == ucode_str + + +def test_MatrixElement_printing(): + # test cases for issue #11821 + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + ascii_str1 = "A_00" + ucode_str1 = "A₀₀" + assert pretty(A[0, 0]) == ascii_str1 + assert upretty(A[0, 0]) == ucode_str1 + + ascii_str1 = "3*A_00" + ucode_str1 = "3⋅A₀₀" + assert pretty(3*A[0, 0]) == ascii_str1 + assert upretty(3*A[0, 0]) == ucode_str1 + + ascii_str1 = "(-B + A)[0, 0]" + ucode_str1 = "(-B + A)[0, 0]" + F = C[0, 0].subs(C, A - B) + assert pretty(F) == ascii_str1 + assert upretty(F) == ucode_str1 + + +def test_issue_12675(): + x, y, t, j = symbols('x y t j') + e = CoordSys3D('e') + + ucode_str = \ +"""\ +⎛ t⎞ \n\ +⎜⎛x⎞ ⎟ j_e\n\ +⎜⎜─⎟ ⎟ \n\ +⎝⎝y⎠ ⎠ \ +""" + assert upretty((x/y)**t*e.j) == ucode_str + ucode_str = \ +"""\ +⎛1⎞ \n\ +⎜─⎟ j_e\n\ +⎝y⎠ \ +""" + assert upretty((1/y)*e.j) == ucode_str + + +def test_MatrixSymbol_printing(): + # test cases for issue #14237 + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + C = MatrixSymbol("C", 3, 3) + assert pretty(-A*B*C) == "-A*B*C" + assert pretty(A - B) == "-B + A" + assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" + + # issue #14814 + x = MatrixSymbol('x', n, n) + y = MatrixSymbol('y*', n, n) + assert pretty(x + y) == "x + y*" + ascii_str = \ +"""\ + 2 \n\ +-2*y* -a*x\ +""" + assert pretty(-a*x + -2*y*y) == ascii_str + + +def test_degree_printing(): + expr1 = 90*degree + assert pretty(expr1) == '90°' + expr2 = x*degree + assert pretty(expr2) == 'x°' + expr3 = cos(x*degree + 90*degree) + assert pretty(expr3) == 'cos(x° + 90°)' + + +def test_vector_expr_pretty_printing(): + A = CoordSys3D('A') + + assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)" + assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)' + + assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)" + + assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)" + + assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)" + + assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)" + assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)" + # TODO: add support for ASCII pretty. + + +def test_pretty_print_tensor_expr(): + L = TensorIndexType("L") + i, j, k = tensor_indices("i j k", L) + i0 = tensor_indices("i_0", L) + A, B, C, D = tensor_heads("A B C D", [L]) + H = TensorHead("H", [L, L]) + + expr = -i + ascii_str = \ +"""\ +-i\ +""" + ucode_str = \ +"""\ +-i\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(i) + ascii_str = \ +"""\ + i\n\ +A \n\ + \ +""" + ucode_str = \ +"""\ + i\n\ +A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(i0) + ascii_str = \ +"""\ + i_0\n\ +A \n\ + \ +""" + ucode_str = \ +"""\ + i₀\n\ +A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(-i) + ascii_str = \ +"""\ + \n\ +A \n\ + i\ +""" + ucode_str = \ +"""\ + \n\ +A \n\ + i\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = -3*A(-i) + ascii_str = \ +"""\ + \n\ +-3*A \n\ + i\ +""" + ucode_str = \ +"""\ + \n\ +-3⋅A \n\ + i\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = H(i, -j) + ascii_str = \ +"""\ + i \n\ +H \n\ + j\ +""" + ucode_str = \ +"""\ + i \n\ +H \n\ + j\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = H(i, -i) + ascii_str = \ +"""\ + L_0 \n\ +H \n\ + L_0\ +""" + ucode_str = \ +"""\ + L₀ \n\ +H \n\ + L₀\ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = H(i, -j)*A(j)*B(k) + ascii_str = \ +"""\ + i L_0 k\n\ +H *A *B \n\ + L_0 \ +""" + ucode_str = \ +"""\ + i L₀ k\n\ +H ⋅A ⋅B \n\ + L₀ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (1+x)*A(i) + ascii_str = \ +"""\ + i\n\ +(x + 1)*A \n\ + \ +""" + ucode_str = \ +"""\ + i\n\ +(x + 1)⋅A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(i) + 3*B(i) + ascii_str = \ +"""\ + i i\n\ +3*B + A \n\ + \ +""" + ucode_str = \ +"""\ + i i\n\ +3⋅B + A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_pretty_print_tensor_partial_deriv(): + from sympy.tensor.toperators import PartialDerivative + + L = TensorIndexType("L") + i, j, k = tensor_indices("i j k", L) + + A, B, C, D = tensor_heads("A B C D", [L]) + + H = TensorHead("H", [L, L]) + + expr = PartialDerivative(A(i), A(j)) + ascii_str = \ +"""\ + d / i\\\n\ +---|A |\n\ + j\\ /\n\ +dA \n\ + \ +""" + ucode_str = \ +"""\ + ∂ ⎛ i⎞\n\ +───⎜A ⎟\n\ + j⎝ ⎠\n\ +∂A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(i)*PartialDerivative(H(k, -i), A(j)) + ascii_str = \ +"""\ + L_0 d / k \\\n\ +A *---|H |\n\ + j\\ L_0/\n\ + dA \n\ + \ +""" + ucode_str = \ +"""\ + L₀ ∂ ⎛ k ⎞\n\ +A ⋅───⎜H ⎟\n\ + j⎝ L₀⎠\n\ + ∂A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) + ascii_str = \ +"""\ + L_0 d / k k \\\n\ +A *---|3*H + B *C |\n\ + j\\ L_0 L_0/\n\ + dA \n\ + \ +""" + ucode_str = \ +"""\ + L₀ ∂ ⎛ k k ⎞\n\ +A ⋅───⎜3⋅H + B ⋅C ⎟\n\ + j⎝ L₀ L₀⎠\n\ + ∂A \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (A(i) + B(i))*PartialDerivative(C(j), D(j)) + ascii_str = \ +"""\ +/ i i\\ d / L_0\\\n\ +|A + B |*-----|C |\n\ +\\ / L_0\\ /\n\ + dD \n\ + \ +""" + ucode_str = \ +"""\ +⎛ i i⎞ ∂ ⎛ L₀⎞\n\ +⎜A + B ⎟⋅────⎜C ⎟\n\ +⎝ ⎠ L₀⎝ ⎠\n\ + ∂D \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) + ascii_str = \ +"""\ +/ L_0 L_0\\ d / \\\n\ +|A + B |*---|C |\n\ +\\ / j\\ L_0/\n\ + dD \n\ + \ +""" + ucode_str = \ +"""\ +⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ +⎜A + B ⎟⋅───⎜C ⎟\n\ +⎝ ⎠ j⎝ L₀⎠\n\ + ∂D \n\ + \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) + ucode_str = """\ + 2 \n\ + ∂ ⎛ ⎞\n\ +───────⎜A + B ⎟\n\ + ⎝ i i⎠\n\ +∂A ∂A \n\ + n j \ +""" + assert upretty(expr) == ucode_str + + expr = PartialDerivative(3*A(-i), A(-j), A(-n)) + ucode_str = """\ + 2 \n\ + ∂ ⎛ ⎞\n\ +───────⎜3⋅A ⎟\n\ + ⎝ i⎠\n\ +∂A ∂A \n\ + n j \ +""" + assert upretty(expr) == ucode_str + + expr = TensorElement(H(i, j), {i:1}) + ascii_str = \ +"""\ + i=1,j\n\ +H \n\ + \ +""" + ucode_str = ascii_str + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = TensorElement(H(i, j), {i: 1, j: 1}) + ascii_str = \ +"""\ + i=1,j=1\n\ +H \n\ + \ +""" + ucode_str = ascii_str + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = TensorElement(H(i, j), {j: 1}) + ascii_str = \ +"""\ + i,j=1\n\ +H \n\ + \ +""" + ucode_str = ascii_str + + expr = TensorElement(H(-i, j), {-i: 1}) + ascii_str = \ +"""\ + j\n\ +H \n\ + i=1 \ +""" + ucode_str = ascii_str + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_issue_15560(): + a = MatrixSymbol('a', 1, 1) + e = pretty(a*(KroneckerProduct(a, a))) + result = 'a*(a x a)' + assert e == result + + +def test_print_lerchphi(): + # Part of issue 6013 + a = Symbol('a') + pretty(lerchphi(a, 1, 2)) + uresult = 'Φ(a, 1, 2)' + aresult = 'lerchphi(a, 1, 2)' + assert pretty(lerchphi(a, 1, 2)) == aresult + assert upretty(lerchphi(a, 1, 2)) == uresult + +def test_issue_15583(): + + N = mechanics.ReferenceFrame('N') + result = '(n_x, n_y, n_z)' + e = pretty((N.x, N.y, N.z)) + assert e == result + + +def test_matrixSymbolBold(): + # Issue 15871 + def boldpretty(expr): + return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") + + from sympy.matrices.expressions.trace import trace + A = MatrixSymbol("A", 2, 2) + assert boldpretty(trace(A)) == 'tr(𝐀)' + + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + C = MatrixSymbol("C", 3, 3) + + assert boldpretty(-A) == '-𝐀' + assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀' + assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' + + A = MatrixSymbol("Addot", 3, 3) + assert boldpretty(A) == '𝐀̈' + omega = MatrixSymbol("omega", 3, 3) + assert boldpretty(omega) == 'ω' + omega = MatrixSymbol("omeganorm", 3, 3) + assert boldpretty(omega) == '‖ω‖' + + a = Symbol('alpha') + b = Symbol('b') + c = MatrixSymbol("c", 3, 1) + d = MatrixSymbol("d", 3, 1) + + assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜' + + d = MatrixSymbol("delta", 3, 1) + B = MatrixSymbol("Beta", 3, 3) + + assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜' + + A = MatrixSymbol("A_2", 3, 3) + assert boldpretty(A) == '𝐀₂' + + +def test_center_accent(): + assert center_accent('a', '\N{COMBINING TILDE}') == 'ã' + assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã' + assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa' + assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa' + assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa' + assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg' + + +def test_imaginary_unit(): + from sympy.printing.pretty import pretty # b/c it was redefined above + assert pretty(1 + I, use_unicode=False) == '1 + I' + assert pretty(1 + I, use_unicode=True) == '1 + ⅈ' + assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' + assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ' + + raises(TypeError, lambda: pretty(I, imaginary_unit=I)) + raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) + + +def test_str_special_matrices(): + from sympy.matrices import Identity, ZeroMatrix, OneMatrix + assert pretty(Identity(4)) == 'I' + assert upretty(Identity(4)) == '𝕀' + assert pretty(ZeroMatrix(2, 2)) == '0' + assert upretty(ZeroMatrix(2, 2)) == '𝟘' + assert pretty(OneMatrix(2, 2)) == '1' + assert upretty(OneMatrix(2, 2)) == '𝟙' + + +def test_pretty_misc_functions(): + assert pretty(LambertW(x)) == 'W(x)' + assert upretty(LambertW(x)) == 'W(x)' + assert pretty(LambertW(x, y)) == 'W(x, y)' + assert upretty(LambertW(x, y)) == 'W(x, y)' + assert pretty(airyai(x)) == 'Ai(x)' + assert upretty(airyai(x)) == 'Ai(x)' + assert pretty(airybi(x)) == 'Bi(x)' + assert upretty(airybi(x)) == 'Bi(x)' + assert pretty(airyaiprime(x)) == "Ai'(x)" + assert upretty(airyaiprime(x)) == "Ai'(x)" + assert pretty(airybiprime(x)) == "Bi'(x)" + assert upretty(airybiprime(x)) == "Bi'(x)" + assert pretty(fresnelc(x)) == 'C(x)' + assert upretty(fresnelc(x)) == 'C(x)' + assert pretty(fresnels(x)) == 'S(x)' + assert upretty(fresnels(x)) == 'S(x)' + assert pretty(Heaviside(x)) == 'Heaviside(x)' + assert upretty(Heaviside(x)) == 'θ(x)' + assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' + assert upretty(Heaviside(x, y)) == 'θ(x, y)' + assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' + assert upretty(dirichlet_eta(x)) == 'η(x)' + + +def test_hadamard_power(): + m, n, p = symbols('m, n, p', integer=True) + A = MatrixSymbol('A', m, n) + B = MatrixSymbol('B', m, n) + + # Testing printer: + expr = hadamard_power(A, n) + ascii_str = \ +"""\ + .n\n\ +A \ +""" + ucode_str = \ +"""\ + ∘n\n\ +A \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hadamard_power(A, 1+n) + ascii_str = \ +"""\ + .(n + 1)\n\ +A \ +""" + ucode_str = \ +"""\ + ∘(n + 1)\n\ +A \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + expr = hadamard_power(A*B.T, 1+n) + ascii_str = \ +"""\ + .(n + 1)\n\ +/ T\\ \n\ +\\A*B / \ +""" + ucode_str = \ +"""\ + ∘(n + 1)\n\ +⎛ T⎞ \n\ +⎝A⋅B ⎠ \ +""" + assert pretty(expr) == ascii_str + assert upretty(expr) == ucode_str + + +def test_issue_17258(): + n = Symbol('n', integer=True) + assert pretty(Sum(n, (n, -oo, 1))) == \ + ' 1 \n'\ + ' __ \n'\ + ' \\ ` \n'\ + ' ) n\n'\ + ' /_, \n'\ + 'n = -oo ' + + assert upretty(Sum(n, (n, -oo, 1))) == \ +"""\ + 1 \n\ + ___ \n\ + ╲ \n\ + ╲ \n\ + ╱ n\n\ + ╱ \n\ + ‾‾‾ \n\ +n = -∞ \ +""" + +def test_is_combining(): + line = "v̇_m" + assert [is_combining(sym) for sym in line] == \ + [False, True, False, False] + + +def test_issue_17616(): + assert pretty(pi**(1/exp(1))) == \ + ' / -1\\\n'\ + ' \\e /\n'\ + 'pi ' + + assert upretty(pi**(1/exp(1))) == \ + ' ⎛ -1⎞\n'\ + ' ⎝ℯ ⎠\n'\ + 'π ' + + assert pretty(pi**(1/pi)) == \ + ' 1 \n'\ + ' --\n'\ + ' pi\n'\ + 'pi ' + + assert upretty(pi**(1/pi)) == \ + ' 1\n'\ + ' ─\n'\ + ' π\n'\ + 'π ' + + assert pretty(pi**(1/EulerGamma)) == \ + ' 1 \n'\ + ' ----------\n'\ + ' EulerGamma\n'\ + 'pi ' + + assert upretty(pi**(1/EulerGamma)) == \ + ' 1\n'\ + ' ─\n'\ + ' γ\n'\ + 'π ' + + z = Symbol("x_17") + assert upretty(7**(1/z)) == \ + 'x₁₇___\n'\ + ' ╲╱ 7 ' + + assert pretty(7**(1/z)) == \ + 'x_17___\n'\ + ' \\/ 7 ' + + +def test_issue_17857(): + assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' + assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}' + + +def test_issue_18272(): + x = Symbol('x') + n = Symbol('n') + + assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \ + '⎧ │ ⎛ x ⎞⎫\n'\ + '⎨x │ x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\ + '⎩ │ ⎭' + assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \ + '⎧ │ ⎧-n n⎫ ⎛n ⎞⎫\n'\ + '⎨x │ x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\ + '⎩ │ ⎩ 2 2⎭ ⎝2 ⎠⎭' + assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1), + (x/2, True)) - 1/2, 0), Interval(0, 3))) == \ + '⎧ │ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\ + '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪x ⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪2 ⎟ ⎟⎪\n'\ + '⎨x │ x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\ + '⎪ │ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪ ⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪ x ⎟ ⎟⎪\n'\ + '⎪ │ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\ + '⎩ │ ⎝⎝⎩ 2 ⎠ ⎠⎭' + +def test_Str(): + from sympy.core.symbol import Str + assert pretty(Str('x')) == 'x' + + +def test_symbolic_probability(): + mu = symbols("mu") + sigma = symbols("sigma", positive=True) + X = Normal("X", mu, sigma) + assert pretty(Expectation(X)) == r'E[X]' + assert pretty(Variance(X)) == r'Var(X)' + assert pretty(Probability(X > 0)) == r'P(X > 0)' + Y = Normal("Y", mu, sigma) + assert pretty(Covariance(X, Y)) == 'Cov(X, Y)' + + +def test_issue_21758(): + from sympy.functions.elementary.piecewise import piecewise_fold + from sympy.series.fourier import FourierSeries + x = Symbol('x') + k, n = symbols('k n') + fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula( + Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)), + (0, True))*sin(n*x)/pi, (n, 1, oo)))) + assert upretty(piecewise_fold(fo)) == \ + '⎧ 2⋅sin(3⋅x) \n'\ + '⎪2⋅sin(x) - sin(2⋅x) + ────────── + … for n > -∞ ∧ n < ∞ ∧ n ≠ 0\n'\ + '⎨ 3 \n'\ + '⎪ \n'\ + '⎩ 0 otherwise ' + assert pretty(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), + SeqFormula(0, (n, 1, oo))))) == '0' + + +def test_diffgeom(): + from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField + x,y = symbols('x y', real=True) + m = Manifold('M', 2) + assert pretty(m) == 'M' + p = Patch('P', m) + assert pretty(p) == "P" + rect = CoordSystem('rect', p, [x, y]) + assert pretty(rect) == "rect" + b = BaseScalarField(rect, 0) + assert pretty(b) == "x" + +def test_deprecated_prettyForm(): + with warns_deprecated_sympy(): + from sympy.printing.pretty.pretty_symbology import xstr + assert xstr(1) == '1' + + with warns_deprecated_sympy(): + from sympy.printing.pretty.stringpict import prettyForm + p = prettyForm('s', unicode='s') + + with warns_deprecated_sympy(): + assert p.unicode == p.s == 's' diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/__init__.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_c.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_c.py new file mode 100644 index 0000000000000000000000000000000000000000..029294d6c3191b5555df7acb25b133a313bbb05e --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_c.py @@ -0,0 +1,875 @@ +from sympy.core import ( + S, pi, oo, Symbol, symbols, Rational, Integer, Float, Function, Mod, GoldenRatio, EulerGamma, Catalan, + Lambda, Dummy, nan, Mul, Pow, UnevaluatedExpr +) +from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) +from sympy.functions import ( + Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf, + erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh, + sqrt, tan, tanh, fibonacci, lucas +) +from sympy.sets import Range +from sympy.logic import ITE, Implies, Equivalent +from sympy.codegen import For, aug_assign, Assignment +from sympy.testing.pytest import raises, XFAIL +from sympy.printing.c import C89CodePrinter, C99CodePrinter, get_math_macros +from sympy.codegen.ast import ( + AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const, + While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return, + real, float32, float64, float80, float128, intc, Comment, CodeBlock +) +from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt +from sympy.codegen.cnodes import restrict +from sympy.utilities.lambdify import implemented_function +from sympy.tensor import IndexedBase, Idx +from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix + +from sympy.printing.codeprinter import ccode + +x, y, z = symbols('x,y,z') + + +def test_printmethod(): + class fabs(Abs): + def _ccode(self, printer): + return "fabs(%s)" % printer._print(self.args[0]) + + assert ccode(fabs(x)) == "fabs(x)" + + +def test_ccode_sqrt(): + assert ccode(sqrt(x)) == "sqrt(x)" + assert ccode(x**0.5) == "sqrt(x)" + assert ccode(sqrt(x)) == "sqrt(x)" + + +def test_ccode_Pow(): + assert ccode(x**3) == "pow(x, 3)" + assert ccode(x**(y**3)) == "pow(x, pow(y, 3))" + g = implemented_function('g', Lambda(x, 2*x)) + assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ + "pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)" + assert ccode(x**-1.0) == '1.0/x' + assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)' + assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)' + _cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), + (lambda base, exp: not exp.is_integer, "pow")] + assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' + assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)' + assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)' + _cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp), + (lambda base, exp: base != 2, 'pow')] + # Related to gh-11353 + assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)' + assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)' + # For issue 14160 + assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), + evaluate=False)) == '-2*x/(y*y)' + + +def test_ccode_Max(): + # Test for gh-11926 + assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' + + +def test_ccode_Min_performance(): + #Shouldn't take more than a few seconds + big_min = Min(*symbols('a[0:50]')) + for curr_standard in ('c89', 'c99', 'c11'): + output = ccode(big_min, standard=curr_standard) + assert output.count('(') == output.count(')') + + +def test_ccode_constants_mathh(): + assert ccode(exp(1)) == "M_E" + assert ccode(pi) == "M_PI" + assert ccode(oo, standard='c89') == "HUGE_VAL" + assert ccode(-oo, standard='c89') == "-HUGE_VAL" + assert ccode(oo) == "INFINITY" + assert ccode(-oo, standard='c99') == "-INFINITY" + assert ccode(pi, type_aliases={real: float80}) == "M_PIl" + + +def test_ccode_constants_other(): + assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) + assert ccode( + 2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17) + assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17) + + +def test_ccode_Rational(): + assert ccode(Rational(3, 7)) == "3.0/7.0" + assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L" + assert ccode(Rational(18, 9)) == "2" + assert ccode(Rational(3, -7)) == "-3.0/7.0" + assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L" + assert ccode(Rational(-3, -7)) == "3.0/7.0" + assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L" + assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0" + assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L" + assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x" + assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x" + + +def test_ccode_Integer(): + assert ccode(Integer(67)) == "67" + assert ccode(Integer(-1)) == "-1" + + +def test_ccode_functions(): + assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))" + + +def test_ccode_inline_function(): + x = symbols('x') + g = implemented_function('g', Lambda(x, 2*x)) + assert ccode(g(x)) == "2*x" + g = implemented_function('g', Lambda(x, 2*x/Catalan)) + assert ccode( + g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17) + A = IndexedBase('A') + i = Idx('i', symbols('n', integer=True)) + g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) + assert ccode(g(A[i]), assign_to=A[i]) == ( + "for (int i=0; i y" + assert ccode(Ge(x, y)) == "x >= y" + + +def test_ccode_Piecewise(): + expr = Piecewise((x, x < 1), (x**2, True)) + assert ccode(expr) == ( + "((x < 1) ? (\n" + " x\n" + ")\n" + ": (\n" + " pow(x, 2)\n" + "))") + assert ccode(expr, assign_to="c") == ( + "if (x < 1) {\n" + " c = x;\n" + "}\n" + "else {\n" + " c = pow(x, 2);\n" + "}") + expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)) + assert ccode(expr) == ( + "((x < 1) ? (\n" + " x\n" + ")\n" + ": ((x < 2) ? (\n" + " x + 1\n" + ")\n" + ": (\n" + " pow(x, 2)\n" + ")))") + assert ccode(expr, assign_to='c') == ( + "if (x < 1) {\n" + " c = x;\n" + "}\n" + "else if (x < 2) {\n" + " c = x + 1;\n" + "}\n" + "else {\n" + " c = pow(x, 2);\n" + "}") + # Check that Piecewise without a True (default) condition error + expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) + raises(ValueError, lambda: ccode(expr)) + + +def test_ccode_sinc(): + from sympy.functions.elementary.trigonometric import sinc + expr = sinc(x) + assert ccode(expr) == ( + "((x != 0) ? (\n" + " sin(x)/x\n" + ")\n" + ": (\n" + " 1\n" + "))") + + +def test_ccode_Piecewise_deep(): + p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) + assert p == ( + "2*((x < 1) ? (\n" + " x\n" + ")\n" + ": ((x < 2) ? (\n" + " x + 1\n" + ")\n" + ": (\n" + " pow(x, 2)\n" + ")))") + expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 + assert ccode(expr) == ( + "pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" + " 0\n" + ")\n" + ": (\n" + " 1\n" + ")) + cos(z) - 1") + assert ccode(expr, assign_to='c') == ( + "c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" + " 0\n" + ")\n" + ": (\n" + " 1\n" + ")) + cos(z) - 1;") + + +def test_ccode_ITE(): + expr = ITE(x < 1, y, z) + assert ccode(expr) == ( + "((x < 1) ? (\n" + " y\n" + ")\n" + ": (\n" + " z\n" + "))") + + +def test_ccode_settings(): + raises(TypeError, lambda: ccode(sin(x), method="garbage")) + + +def test_ccode_Indexed(): + s, n, m, o = symbols('s n m o', integer=True) + i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) + + x = IndexedBase('x')[j] + A = IndexedBase('A')[i, j] + B = IndexedBase('B')[i, j, k] + + p = C99CodePrinter() + + assert p._print_Indexed(x) == 'x[j]' + assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) + assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) + + A = IndexedBase('A', shape=(5,3))[i, j] + assert p._print_Indexed(A) == 'A[%s]' % (3*i + j) + + A = IndexedBase('A', shape=(5,3), strides='F')[i, j] + assert ccode(A) == 'A[%s]' % (i + 5*j) + + A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j] + assert ccode(A) == 'A[o + s*j + i]' + + Abase = IndexedBase('A', strides=(s, m, n), offset=o) + assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]' + assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]' + + +def test_Element(): + assert ccode(Element('x', 'ij')) == 'x[i][j]' + assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]' + assert ccode(Element('x', (3,))) == 'x[3]' + assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]' + + +def test_ccode_Indexed_without_looking_for_contraction(): + len_y = 5 + y = IndexedBase('y', shape=(len_y,)) + x = IndexedBase('x', shape=(len_y,)) + Dy = IndexedBase('Dy', shape=(len_y-1,)) + i = Idx('i', len_y-1) + e = Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) + code0 = ccode(e.rhs, assign_to=e.lhs, contract=False) + assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) + + +def test_ccode_loops_matrix_vector(): + n, m = symbols('n m', integer=True) + A = IndexedBase('A') + x = IndexedBase('x') + y = IndexedBase('y') + i = Idx('i', m) + j = Idx('j', n) + + s = ( + 'for (int i=0; i0), (y, True)), sin(z)]) + A = MatrixSymbol('A', 3, 1) + assert ccode(mat, A) == ( + "A[0] = x*y;\n" + "if (y > 0) {\n" + " A[1] = x + 2;\n" + "}\n" + "else {\n" + " A[1] = y;\n" + "}\n" + "A[2] = sin(z);") + # Test using MatrixElements in expressions + expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] + assert ccode(expr) == ( + "((x > 0) ? (\n" + " 2*A[2]\n" + ")\n" + ": (\n" + " A[2]\n" + ")) + sin(A[1]) + A[0]") + # Test using MatrixElements in a Matrix + q = MatrixSymbol('q', 5, 1) + M = MatrixSymbol('M', 3, 3) + m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], + [q[1,0] + q[2,0], q[3, 0], 5], + [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) + assert ccode(m, M) == ( + "M[0] = sin(q[1]);\n" + "M[1] = 0;\n" + "M[2] = cos(q[2]);\n" + "M[3] = q[1] + q[2];\n" + "M[4] = q[3];\n" + "M[5] = 5;\n" + "M[6] = 2*q[4]/q[1];\n" + "M[7] = sqrt(q[0]) + 4;\n" + "M[8] = 0;") + + +def test_sparse_matrix(): + # gh-15791 + assert 'Not supported in C' in ccode(SparseMatrix([[1, 2, 3]])) + + +def test_ccode_reserved_words(): + x, y = symbols('x, if') + with raises(ValueError): + ccode(y**2, error_on_reserved=True, standard='C99') + assert ccode(y**2) == 'pow(if_, 2)' + assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x' + assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)' + + +def test_ccode_sign(): + expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))' + expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))' + expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))' + assert ccode(expr1) == ref1 + assert ccode(expr1, 'z') == 'z = %s;' % ref1 + assert ccode(expr2) == ref2 + assert ccode(expr3) == ref3 + +def test_ccode_Assignment(): + assert ccode(Assignment(x, y + z)) == 'x = y + z;' + assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;' + + +def test_ccode_For(): + f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) + assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n" + " y *= x;\n" + "}") + +def test_ccode_Max_Min(): + assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)' + assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)' + assert ccode(Min(x, 0, sqrt(x)), standard='c89') == ( + '((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))' + ) + +def test_ccode_standard(): + assert ccode(expm1(x), standard='c99') == 'expm1(x)' + assert ccode(nan, standard='c99') == 'NAN' + assert ccode(float('nan'), standard='c99') == 'NAN' + + +def test_C89CodePrinter(): + c89printer = C89CodePrinter() + assert c89printer.language == 'C' + assert c89printer.standard == 'C89' + assert 'void' in c89printer.reserved_words + assert 'template' not in c89printer.reserved_words + + +def test_C99CodePrinter(): + assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)' + assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)' + assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)' + assert C99CodePrinter().doprint(log2(x)) == 'log2(x)' + assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)' + assert C99CodePrinter().doprint(log10(x)) == 'log10(x)' + assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken. + assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)' + assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)' + assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))' + assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)' + c99printer = C99CodePrinter() + assert c99printer.language == 'C' + assert c99printer.standard == 'C99' + assert 'restrict' in c99printer.reserved_words + assert 'using' not in c99printer.reserved_words + + +@XFAIL +def test_C99CodePrinter__precision_f80(): + f80_printer = C99CodePrinter({"type_aliases": {real: float80}}) + assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)' + + +def test_C99CodePrinter__precision(): + n = symbols('n', integer=True) + p = symbols('p', integer=True, positive=True) + f32_printer = C99CodePrinter({"type_aliases": {real: float32}}) + f64_printer = C99CodePrinter({"type_aliases": {real: float64}}) + f80_printer = C99CodePrinter({"type_aliases": {real: float80}}) + assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)' + assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)' + assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)' + + for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']): + def check(expr, ref): + assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) + check(Abs(n), 'abs(n)') + check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})') + check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))') + check(exp(x*8.0), 'exp{s}(8.0{S}*x)') + check(exp2(x), 'exp2{s}(x)') + check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)') + check(Mod(p, 2), 'p % 2') + check(Mod(2*p + 3, 3*p + 5, evaluate=False), '(2*p + 3) % (3*p + 5)') + check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})') + check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})') + check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)') + check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)') + check(log2(x*8.0), 'log2{s}(8.0{S}*x)') + check(log1p(x), 'log1p{s}(x)') + check(2**x, 'pow{s}(2, x)') + check(2.0**x, 'pow{s}(2.0{S}, x)') + check(x**3, 'pow{s}(x, 3)') + check(x**4.0, 'pow{s}(x, 4.0{S})') + check(sqrt(3+x), 'sqrt{s}(x + 3)') + check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})') + check(hypot(x, y), 'hypot{s}(x, y)') + check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})') + check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})') + check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})') + check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})') + check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})') + check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})') + check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)') + + check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})') + check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})') + check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})') + check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})') + check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})') + check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})') + check(erf(42.*x), 'erf{s}(42.0{S}*x)') + check(erfc(42.*x), 'erfc{s}(42.0{S}*x)') + check(gamma(x), 'tgamma{s}(x)') + check(loggamma(x), 'lgamma{s}(x)') + + check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})") + check(floor(x + 2.), "floor{s}(x + 2.0{S})") + check(fma(x, y, -z), 'fma{s}(x, y, -z)') + check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))') + check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)') + + +def test_get_math_macros(): + macros = get_math_macros() + assert macros[exp(1)] == 'M_E' + assert macros[1/Sqrt(2)] == 'M_SQRT1_2' + + +def test_ccode_Declaration(): + i = symbols('i', integer=True) + var1 = Variable(i, type=Type.from_expr(i)) + dcl1 = Declaration(var1) + assert ccode(dcl1) == 'int i' + + var2 = Variable(x, type=float32, attrs={value_const}) + dcl2a = Declaration(var2) + assert ccode(dcl2a) == 'const float x' + dcl2b = var2.as_Declaration(value=pi) + assert ccode(dcl2b) == 'const float x = M_PI' + + var3 = Variable(y, type=Type('bool')) + dcl3 = Declaration(var3) + printer = C89CodePrinter() + assert 'stdbool.h' not in printer.headers + assert printer.doprint(dcl3) == 'bool y' + assert 'stdbool.h' in printer.headers + + u = symbols('u', real=True) + ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict}) + dcl4 = Declaration(ptr4) + assert ccode(dcl4) == 'double * const restrict u' + + var5 = Variable(x, Type('__float128'), attrs={value_const}) + dcl5a = Declaration(var5) + assert ccode(dcl5a) == 'const __float128 x' + var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs) + dcl5b = Declaration(var5b) + assert ccode(dcl5b) == 'const __float128 x = M_PI' + + +def test_C99CodePrinter_custom_type(): + # We will look at __float128 (new in glibc 2.26) + f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp) + p128 = C99CodePrinter({ + "type_aliases": {real: f128}, + "type_literal_suffixes": {f128: 'Q'}, + "type_func_suffixes": {f128: 'f128'}, + "type_math_macro_suffixes": { + real: 'f128', + f128: 'f128' + }, + "type_macros": { + f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',) + } + }) + assert p128.doprint(x) == 'x' + assert not p128.headers + assert not p128.libraries + assert not p128.macros + assert p128.doprint(2.0) == '2.0Q' + assert not p128.headers + assert not p128.libraries + assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'} + + assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q' + assert p128.doprint(sin(x)) == 'sinf128(x)' + assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)' + assert p128.doprint(x**-1.0) == '1.0Q/x' + + var5 = Variable(x, f128, attrs={value_const}) + + dcl5a = Declaration(var5) + assert ccode(dcl5a) == 'const _Float128 x' + var5b = Variable(x, f128, pi, attrs={value_const}) + dcl5b = Declaration(var5b) + assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128' + var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const}) + dcl5c = Declaration(var5b) + assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig) + + +def test_MatrixElement_printing(): + # test cases for issue #11821 + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + assert(ccode(A[0, 0]) == "A[0]") + assert(ccode(3 * A[0, 0]) == "3*A[0]") + + F = C[0, 0].subs(C, A - B) + assert(ccode(F) == "(A - B)[0]") + +def test_ccode_math_macros(): + assert ccode(z + exp(1)) == 'z + M_E' + assert ccode(z + log2(exp(1))) == 'z + M_LOG2E' + assert ccode(z + 1/log(2)) == 'z + M_LOG2E' + assert ccode(z + log(2)) == 'z + M_LN2' + assert ccode(z + log(10)) == 'z + M_LN10' + assert ccode(z + pi) == 'z + M_PI' + assert ccode(z + pi/2) == 'z + M_PI_2' + assert ccode(z + pi/4) == 'z + M_PI_4' + assert ccode(z + 1/pi) == 'z + M_1_PI' + assert ccode(z + 2/pi) == 'z + M_2_PI' + assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI' + assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI' + assert ccode(z + sqrt(2)) == 'z + M_SQRT2' + assert ccode(z + Sqrt(2)) == 'z + M_SQRT2' + assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2' + assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2' + + +def test_ccode_Type(): + assert ccode(Type('float')) == 'float' + assert ccode(intc) == 'int' + + +def test_ccode_codegen_ast(): + # Note that C only allows comments of the form /* ... */, double forward + # slash is not standard C, and some C compilers will grind to a halt upon + # encountering them. + assert ccode(Comment("this is a comment")) == "/* this is a comment */" # not // + assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == ( + 'while (fabs(x) > 1) {\n' + ' x -= 1;\n' + '}' + ) + assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == ( + '{\n' + ' x += 1;\n' + '}' + ) + inp_x = Declaration(Variable(x, type=real)) + assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)' + assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == ( + 'double pwer(double x){\n' + ' x = pow(x, 2);\n' + '}' + ) + + # Elements of CodeBlock are formatted as statements: + block = CodeBlock( + x, + Print([x, y], "%d %d"), + FunctionCall('pwer', [x]), + Return(x), + ) + assert ccode(block) == '\n'.join([ + 'x;', + 'printf("%d %d", x, y);', + 'pwer(x);', + 'return x;', + ]) + +def test_ccode_UnevaluatedExpr(): + assert ccode(UnevaluatedExpr(y * x) + z) == "z + x*y" + assert ccode(UnevaluatedExpr(y + x) + z) == "z + (x + y)" # gh-21955 + w = symbols('w') + assert ccode(UnevaluatedExpr(y + x) + UnevaluatedExpr(z + w)) == "(w + z) + (x + y)" + + p, q, r = symbols("p q r", real=True) + q_r = UnevaluatedExpr(q + r) + expr = abs(exp(p+q_r)) + assert ccode(expr) == "exp(p + (q + r))" + + +def test_ccode_array_like_containers(): + assert ccode([2,3,4]) == "{2, 3, 4}" + assert ccode((2,3,4)) == "{2, 3, 4}" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_codeprinter.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_codeprinter.py new file mode 100644 index 0000000000000000000000000000000000000000..69389a811f4d71742307f5cd0be332e18cdc9582 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_codeprinter.py @@ -0,0 +1,55 @@ +from sympy.printing.codeprinter import CodePrinter +from sympy.core import symbols +from sympy.core.symbol import Dummy +from sympy.testing.pytest import raises + + +def setup_test_printer(**kwargs): + p = CodePrinter(settings=kwargs) + p._not_supported = set() + p._number_symbols = set() + return p + + +def test_print_Dummy(): + d = Dummy('d') + p = setup_test_printer() + assert p._print_Dummy(d) == "d_%i" % d.dummy_index + +def test_print_Symbol(): + + x, y = symbols('x, if') + + p = setup_test_printer() + assert p._print(x) == 'x' + assert p._print(y) == 'if' + + p.reserved_words.update(['if']) + assert p._print(y) == 'if_' + + p = setup_test_printer(error_on_reserved=True) + p.reserved_words.update(['if']) + with raises(ValueError): + p._print(y) + + p = setup_test_printer(reserved_word_suffix='_He_Man') + p.reserved_words.update(['if']) + assert p._print(y) == 'if_He_Man' + +def test_issue_15791(): + class CrashingCodePrinter(CodePrinter): + def emptyPrinter(self, obj): + raise NotImplementedError + + from sympy.matrices import ( + MutableSparseMatrix, + ImmutableSparseMatrix, + ) + + c = CrashingCodePrinter() + + # these should not silently succeed + with raises(NotImplementedError): + c.doprint(ImmutableSparseMatrix(2, 2, {})) + with raises(NotImplementedError): + c.doprint(MutableSparseMatrix(2, 2, {})) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_gtk.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_gtk.py new file mode 100644 index 0000000000000000000000000000000000000000..5a595ab04d3a29d23e06ec12207bf917392aebce --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_gtk.py @@ -0,0 +1,18 @@ +from sympy.functions.elementary.trigonometric import sin +from sympy.printing.gtk import print_gtk +from sympy.testing.pytest import XFAIL, raises + +# this test fails if python-lxml isn't installed. We don't want to depend on +# anything with SymPy + + +@XFAIL +def test_1(): + from sympy.abc import x + print_gtk(x**2, start_viewer=False) + print_gtk(x**2 + sin(x)/4, start_viewer=False) + + +def test_settings(): + from sympy.abc import x + raises(TypeError, lambda: print_gtk(x, method="garbage")) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_jax.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_jax.py new file mode 100644 index 0000000000000000000000000000000000000000..a8428d4faf7cecea3cb8900b9cb0af09ddc0e336 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_jax.py @@ -0,0 +1,347 @@ +from sympy.concrete.summations import Sum +from sympy.core.mod import Mod +from sympy.core.relational import (Equality, Unequality) +from sympy.functions.elementary.miscellaneous import sqrt +from sympy.functions.elementary.piecewise import Piecewise +from sympy.matrices.expressions.blockmatrix import BlockMatrix +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.matrices.expressions.special import Identity +from sympy.utilities.lambdify import lambdify + +from sympy.abc import x, i, j, a, b, c, d +from sympy.core import Pow +from sympy.codegen.matrix_nodes import MatrixSolve +from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 +from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt +from sympy.tensor.array import Array +from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ + PermuteDims, ArrayDiagonal +from sympy.printing.numpy import JaxPrinter, _jax_known_constants, _jax_known_functions +from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array + +from sympy.testing.pytest import skip, raises +from sympy.external import import_module + +# Unlike NumPy which will aggressively promote operands to double precision, +# jax always uses single precision. Double precision in jax can be +# configured before the call to `import jax`, however this must be explicitly +# configured and is not fully supported. Thus, the tests here have been modified +# from the tests in test_numpy.py, only in the fact that they assert lambdify +# function accuracy to only single precision accuracy. +# https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision + +jax = import_module('jax') + +if jax: + deafult_float_info = jax.numpy.finfo(jax.numpy.array([]).dtype) + JAX_DEFAULT_EPSILON = deafult_float_info.eps + +def test_jax_piecewise_regression(): + """ + NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid + breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. + See gh-9747 and gh-9749 for details. + """ + printer = JaxPrinter() + p = Piecewise((1, x < 0), (0, True)) + assert printer.doprint(p) == \ + 'jax.numpy.select([jax.numpy.less(x, 0),True], [1,0], default=jax.numpy.nan)' + assert printer.module_imports == {'jax.numpy': {'select', 'less', 'nan'}} + + +def test_jax_logaddexp(): + lae = logaddexp(a, b) + assert JaxPrinter().doprint(lae) == 'jax.numpy.logaddexp(a, b)' + lae2 = logaddexp2(a, b) + assert JaxPrinter().doprint(lae2) == 'jax.numpy.logaddexp2(a, b)' + + +def test_jax_sum(): + if not jax: + skip("JAX not installed") + + s = Sum(x ** i, (i, a, b)) + f = lambdify((a, b, x), s, 'jax') + + a_, b_ = 0, 10 + x_ = jax.numpy.linspace(-1, +1, 10) + assert jax.numpy.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) + + s = Sum(i * x, (i, a, b)) + f = lambdify((a, b, x), s, 'jax') + + a_, b_ = 0, 10 + x_ = jax.numpy.linspace(-1, +1, 10) + assert jax.numpy.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) + + +def test_jax_multiple_sums(): + if not jax: + skip("JAX not installed") + + s = Sum((x + j) * i, (i, a, b), (j, c, d)) + f = lambdify((a, b, c, d, x), s, 'jax') + + a_, b_ = 0, 10 + c_, d_ = 11, 21 + x_ = jax.numpy.linspace(-1, +1, 10) + assert jax.numpy.allclose(f(a_, b_, c_, d_, x_), + sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) + + +def test_jax_codegen_einsum(): + if not jax: + skip("JAX not installed") + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + + cg = convert_matrix_to_array(M * N) + f = lambdify((M, N), cg, 'jax') + + ma = jax.numpy.array([[1, 2], [3, 4]]) + mb = jax.numpy.array([[1,-2], [-1, 3]]) + assert (f(ma, mb) == jax.numpy.matmul(ma, mb)).all() + + +def test_jax_codegen_extra(): + if not jax: + skip("JAX not installed") + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + P = MatrixSymbol("P", 2, 2) + Q = MatrixSymbol("Q", 2, 2) + ma = jax.numpy.array([[1, 2], [3, 4]]) + mb = jax.numpy.array([[1,-2], [-1, 3]]) + mc = jax.numpy.array([[2, 0], [1, 2]]) + md = jax.numpy.array([[1,-1], [4, 7]]) + + cg = ArrayTensorProduct(M, N) + f = lambdify((M, N), cg, 'jax') + assert (f(ma, mb) == jax.numpy.einsum(ma, [0, 1], mb, [2, 3])).all() + + cg = ArrayAdd(M, N) + f = lambdify((M, N), cg, 'jax') + assert (f(ma, mb) == ma+mb).all() + + cg = ArrayAdd(M, N, P) + f = lambdify((M, N, P), cg, 'jax') + assert (f(ma, mb, mc) == ma+mb+mc).all() + + cg = ArrayAdd(M, N, P, Q) + f = lambdify((M, N, P, Q), cg, 'jax') + assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() + + cg = PermuteDims(M, [1, 0]) + f = lambdify((M,), cg, 'jax') + assert (f(ma) == ma.T).all() + + cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) + f = lambdify((M, N), cg, 'jax') + assert (f(ma, mb) == jax.numpy.transpose(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() + + cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) + f = lambdify((M, N), cg, 'jax') + assert (f(ma, mb) == jax.numpy.diagonal(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() + + +def test_jax_relational(): + if not jax: + skip("JAX not installed") + + e = Equality(x, 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [False, True, False]) + + e = Unequality(x, 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [True, False, True]) + + e = (x < 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [True, False, False]) + + e = (x <= 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [True, True, False]) + + e = (x > 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [False, False, True]) + + e = (x >= 1) + + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [False, True, True]) + + # Multi-condition expressions + e = (x >= 1) & (x < 2) + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [False, True, False]) + + e = (x >= 1) | (x < 2) + f = lambdify((x,), e, 'jax') + x_ = jax.numpy.array([0, 1, 2]) + assert jax.numpy.array_equal(f(x_), [True, True, True]) + +def test_jax_mod(): + if not jax: + skip("JAX not installed") + + e = Mod(a, b) + f = lambdify((a, b), e, 'jax') + + a_ = jax.numpy.array([0, 1, 2, 3]) + b_ = 2 + assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1]) + + a_ = jax.numpy.array([0, 1, 2, 3]) + b_ = jax.numpy.array([2, 2, 2, 2]) + assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1]) + + a_ = jax.numpy.array([2, 3, 4, 5]) + b_ = jax.numpy.array([2, 3, 4, 5]) + assert jax.numpy.array_equal(f(a_, b_), [0, 0, 0, 0]) + + +def test_jax_pow(): + if not jax: + skip('JAX not installed') + + expr = Pow(2, -1, evaluate=False) + f = lambdify([], expr, 'jax') + assert f() == 0.5 + + +def test_jax_expm1(): + if not jax: + skip("JAX not installed") + + f = lambdify((a,), expm1(a), 'jax') + assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * JAX_DEFAULT_EPSILON + + +def test_jax_log1p(): + if not jax: + skip("JAX not installed") + + f = lambdify((a,), log1p(a), 'jax') + assert abs(f(1e-99) - 1e-99) <= 1e-99 * JAX_DEFAULT_EPSILON + +def test_jax_hypot(): + if not jax: + skip("JAX not installed") + assert abs(lambdify((a, b), hypot(a, b), 'jax')(3, 4) - 5) <= JAX_DEFAULT_EPSILON + +def test_jax_log10(): + if not jax: + skip("JAX not installed") + + assert abs(lambdify((a,), log10(a), 'jax')(100) - 2) <= JAX_DEFAULT_EPSILON + + +def test_jax_exp2(): + if not jax: + skip("JAX not installed") + assert abs(lambdify((a,), exp2(a), 'jax')(5) - 32) <= JAX_DEFAULT_EPSILON + + +def test_jax_log2(): + if not jax: + skip("JAX not installed") + assert abs(lambdify((a,), log2(a), 'jax')(256) - 8) <= JAX_DEFAULT_EPSILON + + +def test_jax_Sqrt(): + if not jax: + skip("JAX not installed") + assert abs(lambdify((a,), Sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON + + +def test_jax_sqrt(): + if not jax: + skip("JAX not installed") + assert abs(lambdify((a,), sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON + + +def test_jax_matsolve(): + if not jax: + skip("JAX not installed") + + M = MatrixSymbol("M", 3, 3) + x = MatrixSymbol("x", 3, 1) + + expr = M**(-1) * x + x + matsolve_expr = MatrixSolve(M, x) + x + + f = lambdify((M, x), expr, 'jax') + f_matsolve = lambdify((M, x), matsolve_expr, 'jax') + + m0 = jax.numpy.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) + assert jax.numpy.linalg.matrix_rank(m0) == 3 + + x0 = jax.numpy.array([3, 4, 5]) + + assert jax.numpy.allclose(f_matsolve(m0, x0), f(m0, x0)) + + +def test_16857(): + if not jax: + skip("JAX not installed") + + a_1 = MatrixSymbol('a_1', 10, 3) + a_2 = MatrixSymbol('a_2', 10, 3) + a_3 = MatrixSymbol('a_3', 10, 3) + a_4 = MatrixSymbol('a_4', 10, 3) + A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) + assert A.shape == (20, 6) + + printer = JaxPrinter() + assert printer.doprint(A) == 'jax.numpy.block([[a_1, a_2], [a_3, a_4]])' + + +def test_issue_17006(): + if not jax: + skip("JAX not installed") + + M = MatrixSymbol("M", 2, 2) + + f = lambdify(M, M + Identity(2), 'jax') + ma = jax.numpy.array([[1, 2], [3, 4]]) + mr = jax.numpy.array([[2, 2], [3, 5]]) + + assert (f(ma) == mr).all() + + from sympy.core.symbol import symbols + n = symbols('n', integer=True) + N = MatrixSymbol("M", n, n) + raises(NotImplementedError, lambda: lambdify(N, N + Identity(n), 'jax')) + +def test_jax_array(): + assert JaxPrinter().doprint(Array(((1, 2), (3, 5)))) == 'jax.numpy.array([[1, 2], [3, 5]])' + assert JaxPrinter().doprint(Array((1, 2))) == 'jax.numpy.array((1, 2))' + +def test_jax_known_funcs_consts(): + assert _jax_known_constants['NaN'] == 'jax.numpy.nan' + assert _jax_known_constants['EulerGamma'] == 'jax.numpy.euler_gamma' + + assert _jax_known_functions['acos'] == 'jax.numpy.arccos' + assert _jax_known_functions['log'] == 'jax.numpy.log' + +def test_jax_print_methods(): + prntr = JaxPrinter() + assert hasattr(prntr, '_print_acos') + assert hasattr(prntr, '_print_log') diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_lambdarepr.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_lambdarepr.py new file mode 100644 index 0000000000000000000000000000000000000000..e027fc673d2ed69f36c73614d01a4d6f4ef331ad --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_lambdarepr.py @@ -0,0 +1,246 @@ +from sympy.concrete.summations import Sum +from sympy.core.expr import Expr +from sympy.core.symbol import symbols +from sympy.functions.elementary.miscellaneous import sqrt +from sympy.functions.elementary.piecewise import Piecewise +from sympy.functions.elementary.trigonometric import sin +from sympy.matrices.dense import MutableDenseMatrix as Matrix +from sympy.sets.sets import Interval +from sympy.utilities.lambdify import lambdify +from sympy.testing.pytest import raises + +from sympy.printing.tensorflow import TensorflowPrinter +from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter + + +x, y, z = symbols("x,y,z") +i, a, b = symbols("i,a,b") +j, c, d = symbols("j,c,d") + + +def test_basic(): + assert lambdarepr(x*y) == "x*y" + assert lambdarepr(x + y) in ["y + x", "x + y"] + assert lambdarepr(x**y) == "x**y" + + +def test_matrix(): + # Test printing a Matrix that has an element that is printed differently + # with the LambdaPrinter than with the StrPrinter. + e = x % 2 + assert lambdarepr(e) != str(e) + assert lambdarepr(Matrix([e])) == 'ImmutableDenseMatrix([[x % 2]])' + + +def test_piecewise(): + # In each case, test eval() the lambdarepr() to make sure there are a + # correct number of parentheses. It will give a SyntaxError if there aren't. + + h = "lambda x: " + + p = Piecewise((x, x < 0)) + l = lambdarepr(p) + eval(h + l) + assert l == "((x) if (x < 0) else None)" + + p = Piecewise( + (1, x < 1), + (2, x < 2), + (0, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))" + + p = Piecewise( + (1, x < 1), + (2, x < 2), + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((1) if (x < 1) else (2) if (x < 2) else None)" + + p = Piecewise( + (x, x < 1), + (x**2, Interval(3, 4, True, False).contains(x)), + (0, True), + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))" + + p = Piecewise( + (x**2, x < 0), + (x, x < 1), + (2 - x, x >= 1), + (0, True), evaluate=False + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ + " else (2 - x) if (x >= 1) else (0))" + + p = Piecewise( + (x**2, x < 0), + (x, x < 1), + (2 - x, x >= 1), evaluate=False + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ + " else (2 - x) if (x >= 1) else None)" + + p = Piecewise( + (1, x >= 1), + (2, x >= 2), + (3, x >= 3), + (4, x >= 4), + (5, x >= 5), + (6, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\ + " else (4) if (x >= 4) else (5) if (x >= 5) else (6))" + + p = Piecewise( + (1, x <= 1), + (2, x <= 2), + (3, x <= 3), + (4, x <= 4), + (5, x <= 5), + (6, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\ + " else (4) if (x <= 4) else (5) if (x <= 5) else (6))" + + p = Piecewise( + (1, x > 1), + (2, x > 2), + (3, x > 3), + (4, x > 4), + (5, x > 5), + (6, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\ + " else (4) if (x > 4) else (5) if (x > 5) else (6))" + + p = Piecewise( + (1, x < 1), + (2, x < 2), + (3, x < 3), + (4, x < 4), + (5, x < 5), + (6, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\ + " else (4) if (x < 4) else (5) if (x < 5) else (6))" + + p = Piecewise( + (Piecewise( + (1, x > 0), + (2, True) + ), y > 0), + (3, True) + ) + l = lambdarepr(p) + eval(h + l) + assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))" + + +def test_sum__1(): + # In each case, test eval() the lambdarepr() to make sure that + # it evaluates to the same results as the symbolic expression + s = Sum(x ** i, (i, a, b)) + l = lambdarepr(s) + assert l == "(builtins.sum(x**i for i in range(a, b+1)))" + + args = x, a, b + f = lambdify(args, s) + v = 2, 3, 8 + assert f(*v) == s.subs(zip(args, v)).doit() + +def test_sum__2(): + s = Sum(i * x, (i, a, b)) + l = lambdarepr(s) + assert l == "(builtins.sum(i*x for i in range(a, b+1)))" + + args = x, a, b + f = lambdify(args, s) + v = 2, 3, 8 + assert f(*v) == s.subs(zip(args, v)).doit() + + +def test_multiple_sums(): + s = Sum(i * x + j, (i, a, b), (j, c, d)) + + l = lambdarepr(s) + assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))" + + args = x, a, b, c, d + f = lambdify(args, s) + vals = 2, 3, 4, 5, 6 + f_ref = s.subs(zip(args, vals)).doit() + f_res = f(*vals) + assert f_res == f_ref + + +def test_sqrt(): + prntr = LambdaPrinter({'standard' : 'python3'}) + assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)' + assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' + + +def test_settings(): + raises(TypeError, lambda: lambdarepr(sin(x), method="garbage")) + + +def test_numexpr(): + # test ITE rewrite as Piecewise + from sympy.logic.boolalg import ITE + expr = ITE(x > 0, True, False, evaluate=False) + assert NumExprPrinter().doprint(expr) == \ + "numexpr.evaluate('where((x > 0), True, False)', truediv=True)" + + from sympy.codegen.ast import Return, FunctionDefinition, Variable, Assignment + func_def = FunctionDefinition(None, 'foo', [Variable(x)], [Assignment(y,x), Return(y**2)]) + expected = "def foo(x):\n"\ + " y = numexpr.evaluate('x', truediv=True)\n"\ + " return numexpr.evaluate('y**2', truediv=True)" + assert NumExprPrinter().doprint(func_def) == expected + + +class CustomPrintedObject(Expr): + def _lambdacode(self, printer): + return 'lambda' + + def _tensorflowcode(self, printer): + return 'tensorflow' + + def _numpycode(self, printer): + return 'numpy' + + def _numexprcode(self, printer): + return 'numexpr' + + def _mpmathcode(self, printer): + return 'mpmath' + + +def test_printmethod(): + # In each case, printmethod is called to test + # its working + + obj = CustomPrintedObject() + assert LambdaPrinter().doprint(obj) == 'lambda' + assert TensorflowPrinter().doprint(obj) == 'tensorflow' + assert NumExprPrinter().doprint(obj) == "numexpr.evaluate('numexpr', truediv=True)" + + assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \ + "numexpr.evaluate('where((x >= 0), y, z)', truediv=True)" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_latex.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_latex.py new file mode 100644 index 0000000000000000000000000000000000000000..09d19bdf2319684bf6284e0589d3d5f2bb3adcb1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_latex.py @@ -0,0 +1,3123 @@ +from sympy import MatAdd, MatMul, Array +from sympy.algebras.quaternion import Quaternion +from sympy.calculus.accumulationbounds import AccumBounds +from sympy.combinatorics.permutations import Cycle, Permutation, AppliedPermutation +from sympy.concrete.products import Product +from sympy.concrete.summations import Sum +from sympy.core.containers import Tuple, Dict +from sympy.core.expr import UnevaluatedExpr +from sympy.core.function import (Derivative, Function, Lambda, Subs, diff) +from sympy.core.mod import Mod +from sympy.core.mul import Mul +from sympy.core.numbers import (AlgebraicNumber, Float, I, Integer, Rational, oo, pi) +from sympy.core.parameters import evaluate +from sympy.core.power import Pow +from sympy.core.relational import Eq, Ne +from sympy.core.singleton import S +from sympy.core.symbol import (Symbol, Wild, symbols) +from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial, factorial2, subfactorial) +from sympy.functions.combinatorial.numbers import bernoulli, bell, catalan, euler, genocchi, lucas, fibonacci, tribonacci +from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, polar_lift, re) +from sympy.functions.elementary.exponential import (LambertW, exp, log) +from sympy.functions.elementary.hyperbolic import (asinh, coth) +from sympy.functions.elementary.integers import (ceiling, floor, frac) +from sympy.functions.elementary.miscellaneous import (Max, Min, root, sqrt) +from sympy.functions.elementary.piecewise import Piecewise +from sympy.functions.elementary.trigonometric import (acsc, asin, cos, cot, sin, tan) +from sympy.functions.special.beta_functions import beta +from sympy.functions.special.delta_functions import (DiracDelta, Heaviside) +from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f, elliptic_k, elliptic_pi) +from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint) +from sympy.functions.special.gamma_functions import (gamma, uppergamma) +from sympy.functions.special.hyper import (hyper, meijerg) +from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime) +from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre) +from sympy.functions.special.singularity_functions import SingularityFunction +from sympy.functions.special.spherical_harmonics import (Ynm, Znm) +from sympy.functions.special.tensor_functions import (KroneckerDelta, LeviCivita) +from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, stieltjes, zeta) +from sympy.integrals.integrals import Integral +from sympy.integrals.transforms import (CosineTransform, FourierTransform, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, LaplaceTransform, MellinTransform, SineTransform) +from sympy.logic import Implies +from sympy.logic.boolalg import (And, Or, Xor, Equivalent, false, Not, true) +from sympy.matrices.dense import Matrix +from sympy.matrices.expressions.kronecker import KroneckerProduct +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.matrices.expressions.permutation import PermutationMatrix +from sympy.matrices.expressions.slice import MatrixSlice +from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback +from sympy.ntheory.factor_ import (divisor_sigma, primenu, primeomega, reduced_totient, totient, udivisor_sigma) +from sympy.physics.quantum import Commutator, Operator +from sympy.physics.quantum.trace import Tr +from sympy.physics.units import meter, gibibyte, gram, microgram, second, milli, micro +from sympy.polys.domains.integerring import ZZ +from sympy.polys.fields import field +from sympy.polys.polytools import Poly +from sympy.polys.rings import ring +from sympy.polys.rootoftools import (RootSum, rootof) +from sympy.series.formal import fps +from sympy.series.fourier import fourier_series +from sympy.series.limits import Limit +from sympy.series.order import Order +from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer) +from sympy.sets.conditionset import ConditionSet +from sympy.sets.contains import Contains +from sympy.sets.fancysets import (ComplexRegion, ImageSet, Range) +from sympy.sets.ordinals import Ordinal, OrdinalOmega, OmegaPower +from sympy.sets.powerset import PowerSet +from sympy.sets.sets import (FiniteSet, Interval, Union, Intersection, Complement, SymmetricDifference, ProductSet) +from sympy.sets.setexpr import SetExpr +from sympy.stats.crv_types import Normal +from sympy.stats.symbolic_probability import (Covariance, Expectation, + Probability, Variance) +from sympy.tensor.array import (ImmutableDenseNDimArray, + ImmutableSparseNDimArray, + MutableSparseNDimArray, + MutableDenseNDimArray, + tensorproduct) +from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement +from sympy.tensor.indexed import (Idx, Indexed, IndexedBase) +from sympy.tensor.toperators import PartialDerivative +from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian + + +from sympy.testing.pytest import (XFAIL, raises, _both_exp_pow, + warns_deprecated_sympy) +from sympy.printing.latex import (latex, translate, greek_letters_set, + tex_greek_dictionary, multiline_latex, + latex_escape, LatexPrinter) + +import sympy as sym + +from sympy.abc import mu, tau + + +class lowergamma(sym.lowergamma): + pass # testing notation inheritance by a subclass with same name + + +x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p') +k, m, n = symbols('k m n', integer=True) + + +def test_printmethod(): + class R(Abs): + def _latex(self, printer): + return "foo(%s)" % printer._print(self.args[0]) + assert latex(R(x)) == r"foo(x)" + + class R(Abs): + def _latex(self, printer): + return "foo" + assert latex(R(x)) == r"foo" + + +def test_latex_basic(): + assert latex(1 + x) == r"x + 1" + assert latex(x**2) == r"x^{2}" + assert latex(x**(1 + x)) == r"x^{x + 1}" + assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1" + + assert latex(2*x*y) == r"2 x y" + assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y" + assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y" + assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}" + + assert latex(x**S.Half**5) == r"\sqrt[32]{x}" + assert latex(Mul(S.Half, x**2, -5, evaluate=False)) == r"\frac{1}{2} x^{2} \left(-5\right)" + assert latex(Mul(S.Half, x**2, 5, evaluate=False)) == r"\frac{1}{2} x^{2} \cdot 5" + assert latex(Mul(-5, -5, evaluate=False)) == r"\left(-5\right) \left(-5\right)" + assert latex(Mul(5, -5, evaluate=False)) == r"5 \left(-5\right)" + assert latex(Mul(S.Half, -5, S.Half, evaluate=False)) == r"\frac{1}{2} \left(-5\right) \frac{1}{2}" + assert latex(Mul(5, I, 5, evaluate=False)) == r"5 i 5" + assert latex(Mul(5, I, -5, evaluate=False)) == r"5 i \left(-5\right)" + + assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1' + assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0' + assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1' + assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1' + assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1' + assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2' + assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \cdot \frac{1}{2}' + assert latex(Mul(1, 1, S.Half, evaluate=False)) == \ + r'1 \cdot 1 \cdot \frac{1}{2}' + assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \ + r'1 \cdot 1 \cdot 2 \cdot 3 x' + assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)' + assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \ + r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x' + assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \ + r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x' + assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \ + r'\frac{2}{3} \cdot \frac{5}{7}' + + assert latex(1/x) == r"\frac{1}{x}" + assert latex(1/x, fold_short_frac=True) == r"1 / x" + assert latex(-S(3)/2) == r"- \frac{3}{2}" + assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2" + assert latex(1/x**2) == r"\frac{1}{x^{2}}" + assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}" + assert latex(x/2) == r"\frac{x}{2}" + assert latex(x/2, fold_short_frac=True) == r"x / 2" + assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}" + assert latex((x + y)/(2*x), fold_short_frac=True) == \ + r"\left(x + y\right) / 2 x" + assert latex((x + y)/(2*x), long_frac_ratio=0) == \ + r"\frac{1}{2 x} \left(x + y\right)" + assert latex((x + y)/x) == r"\frac{x + y}{x}" + assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}" + assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}" + assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \ + r"\frac{2 x}{3} \sqrt{2}" + assert latex(binomial(x, y)) == r"{\binom{x}{y}}" + + x_star = Symbol('x^*') + f = Function('f') + assert latex(x_star**2) == r"\left(x^{*}\right)^{2}" + assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}" + assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}" + assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}" + + assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}" + assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \ + r"\left(2 \int x\, dx\right) / 3" + + assert latex(sqrt(x)) == r"\sqrt{x}" + assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}" + assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}" + assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}" + assert latex(sqrt(x), itex=True) == r"\sqrt{x}" + assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}" + assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}" + assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}" + assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}" + assert latex((x + 1)**Rational(3, 4)) == \ + r"\left(x + 1\right)^{\frac{3}{4}}" + assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \ + r"\left(x + 1\right)^{3/4}" + assert latex(AlgebraicNumber(sqrt(2))) == r"\sqrt{2}" + assert latex(AlgebraicNumber(sqrt(2), [3, -7])) == r"-7 + 3 \sqrt{2}" + assert latex(AlgebraicNumber(sqrt(2), alias='alpha')) == r"\alpha" + assert latex(AlgebraicNumber(sqrt(2), [3, -7], alias='alpha')) == \ + r"3 \alpha - 7" + assert latex(AlgebraicNumber(2**(S(1)/3), [1, 3, -7], alias='beta')) == \ + r"\beta^{2} + 3 \beta - 7" + + k = ZZ.cyclotomic_field(5) + assert latex(k.ext.field_element([1, 2, 3, 4])) == \ + r"\zeta^{3} + 2 \zeta^{2} + 3 \zeta + 4" + assert latex(k.ext.field_element([1, 2, 3, 4]), order='old') == \ + r"4 + 3 \zeta + 2 \zeta^{2} + \zeta^{3}" + assert latex(k.primes_above(19)[0]) == \ + r"\left(19, \zeta^{2} + 5 \zeta + 1\right)" + assert latex(k.primes_above(19)[0], order='old') == \ + r"\left(19, 1 + 5 \zeta + \zeta^{2}\right)" + assert latex(k.primes_above(7)[0]) == r"\left(7\right)" + + assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x" + assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x" + assert latex(1.5e20*x, mul_symbol='times') == \ + r"1.5 \times 10^{20} \times x" + + assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}" + assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}" + assert latex(sin(x)**Rational(3, 2)) == \ + r"\sin^{\frac{3}{2}}{\left(x \right)}" + assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \ + r"\sin^{3/2}{\left(x \right)}" + + assert latex(~x) == r"\neg x" + assert latex(x & y) == r"x \wedge y" + assert latex(x & y & z) == r"x \wedge y \wedge z" + assert latex(x | y) == r"x \vee y" + assert latex(x | y | z) == r"x \vee y \vee z" + assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)" + assert latex(Implies(x, y)) == r"x \Rightarrow y" + assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y" + assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z" + assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)" + assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)" + + assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i" + assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \ + r"x_i \wedge y_i" + assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ + r"x_i \wedge y_i \wedge z_i" + assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i" + assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ + r"x_i \vee y_i \vee z_i" + assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ + r"z_i \vee \left(x_i \wedge y_i\right)" + assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \ + r"x_i \Rightarrow y_i" + assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}" + assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}" + assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}" + + + p = Symbol('p', positive=True) + assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}" + + +def test_latex_builtins(): + assert latex(True) == r"\text{True}" + assert latex(False) == r"\text{False}" + assert latex(None) == r"\text{None}" + assert latex(true) == r"\text{True}" + assert latex(false) == r'\text{False}' + + +def test_latex_SingularityFunction(): + assert latex(SingularityFunction(x, 4, 5)) == \ + r"{\left\langle x - 4 \right\rangle}^{5}" + assert latex(SingularityFunction(x, -3, 4)) == \ + r"{\left\langle x + 3 \right\rangle}^{4}" + assert latex(SingularityFunction(x, 0, 4)) == \ + r"{\left\langle x \right\rangle}^{4}" + assert latex(SingularityFunction(x, a, n)) == \ + r"{\left\langle - a + x \right\rangle}^{n}" + assert latex(SingularityFunction(x, 4, -2)) == \ + r"{\left\langle x - 4 \right\rangle}^{-2}" + assert latex(SingularityFunction(x, 4, -1)) == \ + r"{\left\langle x - 4 \right\rangle}^{-1}" + + assert latex(SingularityFunction(x, 4, 5)**3) == \ + r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}" + assert latex(SingularityFunction(x, -3, 4)**3) == \ + r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}" + assert latex(SingularityFunction(x, 0, 4)**3) == \ + r"{\left({\langle x \rangle}^{4}\right)}^{3}" + assert latex(SingularityFunction(x, a, n)**3) == \ + r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}" + assert latex(SingularityFunction(x, 4, -2)**3) == \ + r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}" + assert latex((SingularityFunction(x, 4, -1)**3)**3) == \ + r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}" + + +def test_latex_cycle(): + assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" + assert latex(Cycle(1, 2)(4, 5, 6)) == \ + r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" + assert latex(Cycle()) == r"\left( \right)" + + +def test_latex_permutation(): + assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" + assert latex(Permutation(1, 2)(4, 5, 6)) == \ + r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" + assert latex(Permutation()) == r"\left( \right)" + assert latex(Permutation(2, 4)*Permutation(5)) == \ + r"\left( 2\; 4\right)\left( 5\right)" + assert latex(Permutation(5)) == r"\left( 5\right)" + + assert latex(Permutation(0, 1), perm_cyclic=False) == \ + r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}" + assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \ + r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}" + assert latex(Permutation(), perm_cyclic=False) == \ + r"\left( \right)" + + with warns_deprecated_sympy(): + old_print_cyclic = Permutation.print_cyclic + Permutation.print_cyclic = False + assert latex(Permutation(0, 1)(2, 3)) == \ + r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}" + Permutation.print_cyclic = old_print_cyclic + +def test_latex_Float(): + assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}" + assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}" + assert latex(Float(1.0e-100), mul_symbol="times") == \ + r"1.0 \times 10^{-100}" + assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \ + r"1.0 \cdot 10^{4}" + assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \ + r"1.0 \cdot 10^{4}" + assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \ + r"10000.0" + assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \ + r"9.99990000000000 \cdot 10^{-2}" + + +def test_latex_vector_expressions(): + A = CoordSys3D('A') + + assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \ + r"\mathbf{\hat{i}_{A}} \times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" + assert latex(Cross(A.i, A.j)) == \ + r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}" + assert latex(x*Cross(A.i, A.j)) == \ + r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)" + assert latex(Cross(x*A.i, A.j)) == \ + r'- \mathbf{\hat{j}_{A}} \times \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)' + + assert latex(Curl(3*A.x*A.j)) == \ + r"\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)" + assert latex(Curl(3*A.x*A.j+A.i)) == \ + r"\nabla\times \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)" + assert latex(Curl(3*x*A.x*A.j)) == \ + r"\nabla\times \left(\left(3 \mathbf{{x}_{A}} x\right)\mathbf{\hat{j}_{A}}\right)" + assert latex(x*Curl(3*A.x*A.j)) == \ + r"x \left(\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)" + + assert latex(Divergence(3*A.x*A.j+A.i)) == \ + r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)" + assert latex(Divergence(3*A.x*A.j)) == \ + r"\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)" + assert latex(x*Divergence(3*A.x*A.j)) == \ + r"x \left(\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)" + + assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \ + r"\mathbf{\hat{i}_{A}} \cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" + assert latex(Dot(A.i, A.j)) == \ + r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}" + assert latex(Dot(x*A.i, A.j)) == \ + r"\mathbf{\hat{j}_{A}} \cdot \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)" + assert latex(x*Dot(A.i, A.j)) == \ + r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)" + + assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}" + assert latex(Gradient(A.x + 3*A.y)) == \ + r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" + assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)" + assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)" + + assert latex(Laplacian(A.x)) == r"\Delta \mathbf{{x}_{A}}" + assert latex(Laplacian(A.x + 3*A.y)) == \ + r"\Delta \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" + assert latex(x*Laplacian(A.x)) == r"x \left(\Delta \mathbf{{x}_{A}}\right)" + assert latex(Laplacian(x*A.x)) == r"\Delta \left(\mathbf{{x}_{A}} x\right)" + +def test_latex_symbols(): + Gamma, lmbda, rho = symbols('Gamma, lambda, rho') + tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU') + assert latex(tau) == r"\tau" + assert latex(Tau) == r"\mathrm{T}" + assert latex(TAU) == r"\tau" + assert latex(taU) == r"\tau" + # Check that all capitalized greek letters are handled explicitly + capitalized_letters = {l.capitalize() for l in greek_letters_set} + assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0 + assert latex(Gamma + lmbda) == r"\Gamma + \lambda" + assert latex(Gamma * lmbda) == r"\Gamma \lambda" + assert latex(Symbol('q1')) == r"q_{1}" + assert latex(Symbol('q21')) == r"q_{21}" + assert latex(Symbol('epsilon0')) == r"\epsilon_{0}" + assert latex(Symbol('omega1')) == r"\omega_{1}" + assert latex(Symbol('91')) == r"91" + assert latex(Symbol('alpha_new')) == r"\alpha_{new}" + assert latex(Symbol('C^orig')) == r"C^{orig}" + assert latex(Symbol('x^alpha')) == r"x^{\alpha}" + assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}" + assert latex(Symbol('e^Alpha')) == r"e^{\mathrm{A}}" + assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}" + assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}" + + +@XFAIL +def test_latex_symbols_failing(): + rho, mass, volume = symbols('rho, mass, volume') + assert latex( + volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}" + assert latex(volume / mass * rho == 1) == \ + r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1" + assert latex(mass**3 * volume**3) == \ + r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}" + + +@_both_exp_pow +def test_latex_functions(): + assert latex(exp(x)) == r"e^{x}" + assert latex(exp(1) + exp(2)) == r"e + e^{2}" + + f = Function('f') + assert latex(f(x)) == r'f{\left(x \right)}' + assert latex(f) == r'f' + + g = Function('g') + assert latex(g(x, y)) == r'g{\left(x,y \right)}' + assert latex(g) == r'g' + + h = Function('h') + assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}' + assert latex(h) == r'h' + + Li = Function('Li') + assert latex(Li) == r'\operatorname{Li}' + assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}' + + mybeta = Function('beta') + # not to be confused with the beta function + assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}" + assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)' + assert latex(beta(x, evaluate=False)) == r'\operatorname{B}\left(x, x\right)' + assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)' + assert latex(mybeta(x)) == r"\beta{\left(x \right)}" + assert latex(mybeta) == r"\beta" + + g = Function('gamma') + # not to be confused with the gamma function + assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}" + assert latex(g(x)) == r"\gamma{\left(x \right)}" + assert latex(g) == r"\gamma" + + a_1 = Function('a_1') + assert latex(a_1) == r"a_{1}" + assert latex(a_1(x)) == r"a_{1}{\left(x \right)}" + assert latex(Function('a_1')) == r"a_{1}" + + # Issue #16925 + # multi letter function names + # > simple + assert latex(Function('ab')) == r"\operatorname{ab}" + assert latex(Function('ab1')) == r"\operatorname{ab}_{1}" + assert latex(Function('ab12')) == r"\operatorname{ab}_{12}" + assert latex(Function('ab_1')) == r"\operatorname{ab}_{1}" + assert latex(Function('ab_12')) == r"\operatorname{ab}_{12}" + assert latex(Function('ab_c')) == r"\operatorname{ab}_{c}" + assert latex(Function('ab_cd')) == r"\operatorname{ab}_{cd}" + # > with argument + assert latex(Function('ab')(Symbol('x'))) == r"\operatorname{ab}{\left(x \right)}" + assert latex(Function('ab1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}" + assert latex(Function('ab12')(Symbol('x'))) == r"\operatorname{ab}_{12}{\left(x \right)}" + assert latex(Function('ab_1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}" + assert latex(Function('ab_c')(Symbol('x'))) == r"\operatorname{ab}_{c}{\left(x \right)}" + assert latex(Function('ab_cd')(Symbol('x'))) == r"\operatorname{ab}_{cd}{\left(x \right)}" + + # > with power + # does not work on functions without brackets + + # > with argument and power combined + assert latex(Function('ab')()**2) == r"\operatorname{ab}^{2}{\left( \right)}" + assert latex(Function('ab1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}" + assert latex(Function('ab12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}" + assert latex(Function('ab_1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}" + assert latex(Function('ab_12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}" + assert latex(Function('ab')(Symbol('x'))**2) == r"\operatorname{ab}^{2}{\left(x \right)}" + assert latex(Function('ab1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}" + assert latex(Function('ab12')(Symbol('x'))**2) == r"\operatorname{ab}_{12}^{2}{\left(x \right)}" + assert latex(Function('ab_1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}" + assert latex(Function('ab_12')(Symbol('x'))**2) == \ + r"\operatorname{ab}_{12}^{2}{\left(x \right)}" + + # single letter function names + # > simple + assert latex(Function('a')) == r"a" + assert latex(Function('a1')) == r"a_{1}" + assert latex(Function('a12')) == r"a_{12}" + assert latex(Function('a_1')) == r"a_{1}" + assert latex(Function('a_12')) == r"a_{12}" + + # > with argument + assert latex(Function('a')()) == r"a{\left( \right)}" + assert latex(Function('a1')()) == r"a_{1}{\left( \right)}" + assert latex(Function('a12')()) == r"a_{12}{\left( \right)}" + assert latex(Function('a_1')()) == r"a_{1}{\left( \right)}" + assert latex(Function('a_12')()) == r"a_{12}{\left( \right)}" + + # > with power + # does not work on functions without brackets + + # > with argument and power combined + assert latex(Function('a')()**2) == r"a^{2}{\left( \right)}" + assert latex(Function('a1')()**2) == r"a_{1}^{2}{\left( \right)}" + assert latex(Function('a12')()**2) == r"a_{12}^{2}{\left( \right)}" + assert latex(Function('a_1')()**2) == r"a_{1}^{2}{\left( \right)}" + assert latex(Function('a_12')()**2) == r"a_{12}^{2}{\left( \right)}" + assert latex(Function('a')(Symbol('x'))**2) == r"a^{2}{\left(x \right)}" + assert latex(Function('a1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}" + assert latex(Function('a12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}" + assert latex(Function('a_1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}" + assert latex(Function('a_12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}" + + assert latex(Function('a')()**32) == r"a^{32}{\left( \right)}" + assert latex(Function('a1')()**32) == r"a_{1}^{32}{\left( \right)}" + assert latex(Function('a12')()**32) == r"a_{12}^{32}{\left( \right)}" + assert latex(Function('a_1')()**32) == r"a_{1}^{32}{\left( \right)}" + assert latex(Function('a_12')()**32) == r"a_{12}^{32}{\left( \right)}" + assert latex(Function('a')(Symbol('x'))**32) == r"a^{32}{\left(x \right)}" + assert latex(Function('a1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}" + assert latex(Function('a12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}" + assert latex(Function('a_1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}" + assert latex(Function('a_12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}" + + assert latex(Function('a')()**a) == r"a^{a}{\left( \right)}" + assert latex(Function('a1')()**a) == r"a_{1}^{a}{\left( \right)}" + assert latex(Function('a12')()**a) == r"a_{12}^{a}{\left( \right)}" + assert latex(Function('a_1')()**a) == r"a_{1}^{a}{\left( \right)}" + assert latex(Function('a_12')()**a) == r"a_{12}^{a}{\left( \right)}" + assert latex(Function('a')(Symbol('x'))**a) == r"a^{a}{\left(x \right)}" + assert latex(Function('a1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}" + assert latex(Function('a12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}" + assert latex(Function('a_1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}" + assert latex(Function('a_12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}" + + ab = Symbol('ab') + assert latex(Function('a')()**ab) == r"a^{ab}{\left( \right)}" + assert latex(Function('a1')()**ab) == r"a_{1}^{ab}{\left( \right)}" + assert latex(Function('a12')()**ab) == r"a_{12}^{ab}{\left( \right)}" + assert latex(Function('a_1')()**ab) == r"a_{1}^{ab}{\left( \right)}" + assert latex(Function('a_12')()**ab) == r"a_{12}^{ab}{\left( \right)}" + assert latex(Function('a')(Symbol('x'))**ab) == r"a^{ab}{\left(x \right)}" + assert latex(Function('a1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}" + assert latex(Function('a12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}" + assert latex(Function('a_1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}" + assert latex(Function('a_12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}" + + assert latex(Function('a^12')(x)) == R"a^{12}{\left(x \right)}" + assert latex(Function('a^12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}" + assert latex(Function('a__12')(x)) == R"a^{12}{\left(x \right)}" + assert latex(Function('a__12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}" + assert latex(Function('a_1__1_2')(x)) == R"a^{1}_{1 2}{\left(x \right)}" + + # issue 5868 + omega1 = Function('omega1') + assert latex(omega1) == r"\omega_{1}" + assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}" + + assert latex(sin(x)) == r"\sin{\left(x \right)}" + assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" + assert latex(sin(2*x**2), fold_func_brackets=True) == \ + r"\sin {2 x^{2}}" + assert latex(sin(x**2), fold_func_brackets=True) == \ + r"\sin {x^{2}}" + + assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}" + assert latex(asin(x)**2, inv_trig_style="full") == \ + r"\arcsin^{2}{\left(x \right)}" + assert latex(asin(x)**2, inv_trig_style="power") == \ + r"\sin^{-1}{\left(x \right)}^{2}" + assert latex(asin(x**2), inv_trig_style="power", + fold_func_brackets=True) == \ + r"\sin^{-1} {x^{2}}" + assert latex(acsc(x), inv_trig_style="full") == \ + r"\operatorname{arccsc}{\left(x \right)}" + assert latex(asinh(x), inv_trig_style="full") == \ + r"\operatorname{arsinh}{\left(x \right)}" + + assert latex(factorial(k)) == r"k!" + assert latex(factorial(-k)) == r"\left(- k\right)!" + assert latex(factorial(k)**2) == r"k!^{2}" + + assert latex(subfactorial(k)) == r"!k" + assert latex(subfactorial(-k)) == r"!\left(- k\right)" + assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}" + + assert latex(factorial2(k)) == r"k!!" + assert latex(factorial2(-k)) == r"\left(- k\right)!!" + assert latex(factorial2(k)**2) == r"k!!^{2}" + + assert latex(binomial(2, k)) == r"{\binom{2}{k}}" + assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}" + + assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}" + assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}" + + assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor" + assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil" + assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}" + assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}" + assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}" + assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}" + + assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" + assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" + assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" + assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" + assert latex(Abs(x)) == r"\left|{x}\right|" + assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}" + assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}" + assert latex(re(x + y)) == \ + r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}" + assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}" + assert latex(conjugate(x)) == r"\overline{x}" + assert latex(conjugate(x)**2) == r"\overline{x}^{2}" + assert latex(conjugate(x**2)) == r"\overline{x}^{2}" + assert latex(gamma(x)) == r"\Gamma\left(x\right)" + w = Wild('w') + assert latex(gamma(w)) == r"\Gamma\left(w\right)" + assert latex(Order(x)) == r"O\left(x\right)" + assert latex(Order(x, x)) == r"O\left(x\right)" + assert latex(Order(x, (x, 0))) == r"O\left(x\right)" + assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)" + assert latex(Order(x - y, (x, y))) == \ + r"O\left(x - y; x\rightarrow y\right)" + assert latex(Order(x, x, y)) == \ + r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" + assert latex(Order(x, x, y)) == \ + r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)" + assert latex(Order(x, (x, oo), (y, oo))) == \ + r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)" + assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' + assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)' + assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' + assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)' + + assert latex(cot(x)) == r'\cot{\left(x \right)}' + assert latex(coth(x)) == r'\coth{\left(x \right)}' + assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}' + assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}' + assert latex(root(x, y)) == r'x^{\frac{1}{y}}' + assert latex(arg(x)) == r'\arg{\left(x \right)}' + + assert latex(zeta(x)) == r"\zeta\left(x\right)" + assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" + assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" + assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" + assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" + assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" + assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" + assert latex( + polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" + assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" + assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" + assert latex(stieltjes(x)) == r"\gamma_{x}" + assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}" + assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)" + assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}" + + assert latex(elliptic_k(z)) == r"K\left(z\right)" + assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" + assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" + assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" + assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" + assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" + assert latex(elliptic_e(z)) == r"E\left(z\right)" + assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" + assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" + assert latex(elliptic_pi(x, y, z)**2) == \ + r"\Pi^{2}\left(x; y\middle| z\right)" + assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" + assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" + + assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}' + assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}' + assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)' + assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' + assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}' + assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}' + assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}' + assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)' + assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)' + assert latex(jacobi(n, a, b, x)) == \ + r'P_{n}^{\left(a,b\right)}\left(x\right)' + assert latex(jacobi(n, a, b, x)**2) == \ + r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' + assert latex(gegenbauer(n, a, x)) == \ + r'C_{n}^{\left(a\right)}\left(x\right)' + assert latex(gegenbauer(n, a, x)**2) == \ + r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' + assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' + assert latex(chebyshevt(n, x)**2) == \ + r'\left(T_{n}\left(x\right)\right)^{2}' + assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' + assert latex(chebyshevu(n, x)**2) == \ + r'\left(U_{n}\left(x\right)\right)^{2}' + assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' + assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' + assert latex(assoc_legendre(n, a, x)) == \ + r'P_{n}^{\left(a\right)}\left(x\right)' + assert latex(assoc_legendre(n, a, x)**2) == \ + r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' + assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' + assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' + assert latex(assoc_laguerre(n, a, x)) == \ + r'L_{n}^{\left(a\right)}\left(x\right)' + assert latex(assoc_laguerre(n, a, x)**2) == \ + r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' + assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' + assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' + + theta = Symbol("theta", real=True) + phi = Symbol("phi", real=True) + assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' + assert latex(Ynm(n, m, theta, phi)**3) == \ + r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' + assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' + assert latex(Znm(n, m, theta, phi)**3) == \ + r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' + + # Test latex printing of function names with "_" + assert latex(polar_lift(0)) == \ + r"\operatorname{polar\_lift}{\left(0 \right)}" + assert latex(polar_lift(0)**3) == \ + r"\operatorname{polar\_lift}^{3}{\left(0 \right)}" + + assert latex(totient(n)) == r'\phi\left(n\right)' + assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}' + + assert latex(reduced_totient(n)) == r'\lambda\left(n\right)' + assert latex(reduced_totient(n) ** 2) == \ + r'\left(\lambda\left(n\right)\right)^{2}' + + assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)" + assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)" + assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)" + assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)" + + assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)" + assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)" + assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)" + assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)" + + assert latex(primenu(n)) == r'\nu\left(n\right)' + assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}' + + assert latex(primeomega(n)) == r'\Omega\left(n\right)' + assert latex(primeomega(n) ** 2) == \ + r'\left(\Omega\left(n\right)\right)^{2}' + + assert latex(LambertW(n)) == r'W\left(n\right)' + assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)' + assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)' + assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)" + assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)" + assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)" + assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)" + + assert latex(Mod(x, 7)) == r'x \bmod 7' + assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right) \bmod 7' + assert latex(Mod(7, x + 1)) == r'7 \bmod \left(x + 1\right)' + assert latex(Mod(2 * x, 7)) == r'2 x \bmod 7' + assert latex(Mod(7, 2 * x)) == r'7 \bmod 2 x' + assert latex(Mod(x, 7) + 1) == r'\left(x \bmod 7\right) + 1' + assert latex(2 * Mod(x, 7)) == r'2 \left(x \bmod 7\right)' + assert latex(Mod(7, 2 * x)**n) == r'\left(7 \bmod 2 x\right)^{n}' + + # some unknown function name should get rendered with \operatorname + fjlkd = Function('fjlkd') + assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}' + # even when it is referred to without an argument + assert latex(fjlkd) == r'\operatorname{fjlkd}' + + +# test that notation passes to subclasses of the same name only +def test_function_subclass_different_name(): + class mygamma(gamma): + pass + assert latex(mygamma) == r"\operatorname{mygamma}" + assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}" + + +def test_hyper_printing(): + from sympy.abc import x, z + + assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), + (0, 1), Tuple(1, 2, 3/pi), z)) == \ + r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\ + r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}' + assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \ + r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}' + assert latex(hyper((x, 2), (3,), z)) == \ + r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \ + r'\\ 3 \end{matrix}\middle| {z} \right)}' + assert latex(hyper(Tuple(), Tuple(1), z)) == \ + r'{{}_{0}F_{1}\left(\begin{matrix} ' \ + r'\\ 1 \end{matrix}\middle| {z} \right)}' + + +def test_latex_bessel(): + from sympy.functions.special.bessel import (besselj, bessely, besseli, + besselk, hankel1, hankel2, + jn, yn, hn1, hn2) + from sympy.abc import z + assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)' + assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)' + assert latex(besseli(n, z)) == r'I_{n}\left(z\right)' + assert latex(besselk(n, z)) == r'K_{n}\left(z\right)' + assert latex(hankel1(n, z**2)**2) == \ + r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}' + assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)' + assert latex(jn(n, z)) == r'j_{n}\left(z\right)' + assert latex(yn(n, z)) == r'y_{n}\left(z\right)' + assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)' + assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)' + + +def test_latex_fresnel(): + from sympy.functions.special.error_functions import (fresnels, fresnelc) + from sympy.abc import z + assert latex(fresnels(z)) == r'S\left(z\right)' + assert latex(fresnelc(z)) == r'C\left(z\right)' + assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)' + assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)' + + +def test_latex_brackets(): + assert latex((-1)**x) == r"\left(-1\right)^{x}" + + +def test_latex_indexed(): + Psi_symbol = Symbol('Psi_0', complex=True, real=False) + Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False)) + symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol)) + indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0])) + # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}} + assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}' + assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}' + + # Symbol('gamma') gives r'\gamma' + interval = '\\mathrel{..}\\nobreak ' + assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}' + assert latex(Indexed('x2', Idx('i'))) == r'{x_{2}}_{i}' + assert latex(Indexed('x3', Idx('i', Symbol('N')))) == r'{x_{3}}_{{i}_{0'+interval+'N - 1}}' + assert latex(Indexed('x3', Idx('i', Symbol('N')+1))) == r'{x_{3}}_{{i}_{0'+interval+'N}}' + assert latex(Indexed('x4', Idx('i', (Symbol('a'),Symbol('b'))))) == r'{x_{4}}_{{i}_{a'+interval+'b}}' + assert latex(IndexedBase('gamma')) == r'\gamma' + assert latex(IndexedBase('a b')) == r'a b' + assert latex(IndexedBase('a_b')) == r'a_{b}' + + +def test_latex_derivatives(): + # regular "d" for ordinary derivatives + assert latex(diff(x**3, x, evaluate=False)) == \ + r"\frac{d}{d x} x^{3}" + assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \ + r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)" + assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\ + == \ + r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)" + assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \ + r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)" + + # \partial for partial derivatives + assert latex(diff(sin(x * y), x, evaluate=False)) == \ + r"\frac{\partial}{\partial x} \sin{\left(x y \right)}" + assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \ + r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)" + assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \ + r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)" + assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \ + r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)" + + # mixed partial derivatives + f = Function("f") + assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \ + r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y)) + + assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \ + r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y)) + + # for negative nested Derivative + assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)' + assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \ + r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)' + + # use ordinary d when one of the variables has been integrated out + assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \ + r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx" + + # Derivative wrapped in power: + assert latex(diff(x, x, evaluate=False)**2) == \ + r"\left(\frac{d}{d x} x\right)^{2}" + + assert latex(diff(f(x), x)**2) == \ + r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}" + + assert latex(diff(f(x), (x, n))) == \ + r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}" + + x1 = Symbol('x1') + x2 = Symbol('x2') + assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}' + + n1 = Symbol('n1') + assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}' + + n2 = Symbol('n2') + assert latex(diff(f(x), (x, Max(n1, n2)))) == \ + r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}' + + # set diff operator + assert latex(diff(f(x), x), diff_operator="rd") == r'\frac{\mathrm{d}}{\mathrm{d} x} f{\left(x \right)}' + + +def test_latex_subs(): + assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}' + + +def test_latex_integrals(): + assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx" + assert latex(Integral(x**2, (x, 0, 1))) == \ + r"\int\limits_{0}^{1} x^{2}\, dx" + assert latex(Integral(x**2, (x, 10, 20))) == \ + r"\int\limits_{10}^{20} x^{2}\, dx" + assert latex(Integral(y*x**2, (x, 0, 1), y)) == \ + r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy" + assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \ + r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}" + assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \ + == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$" + assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx" + assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy" + assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz" + assert latex(Integral(x*y*z*t, x, y, z, t)) == \ + r"\iiiint t x y z\, dx\, dy\, dz\, dt" + assert latex(Integral(x, x, x, x, x, x, x)) == \ + r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx" + assert latex(Integral(x, x, y, (z, 0, 1))) == \ + r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz" + + # for negative nested Integral + assert latex(Integral(-Integral(y**2,x),x)) == \ + r'\int \left(- \int y^{2}\, dx\right)\, dx' + assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \ + r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx' + + # fix issue #10806 + assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}" + assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz" + assert latex(Integral(x+z/2, z)) == \ + r"\int \left(x + \frac{z}{2}\right)\, dz" + assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz" + + # set diff operator + assert latex(Integral(x, x), diff_operator="rd") == r'\int x\, \mathrm{d}x' + assert latex(Integral(x, (x, 0, 1)), diff_operator="rd") == r'\int\limits_{0}^{1} x\, \mathrm{d}x' + + +def test_latex_sets(): + for s in (frozenset, set): + assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}" + assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" + assert latex(s(range(1, 13))) == \ + r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" + + s = FiniteSet + assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}" + assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" + assert latex(s(*range(1, 13))) == \ + r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" + + +def test_latex_SetExpr(): + iv = Interval(1, 3) + se = SetExpr(iv) + assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)" + + +def test_latex_Range(): + assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}' + assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}' + assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}' + assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}' + assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}' + assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}' + assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}' + assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}' + assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}' + assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}' + + a, b, c = symbols('a:c') + assert latex(Range(a, b, c)) == r'\text{Range}\left(a, b, c\right)' + assert latex(Range(a, 10, 1)) == r'\text{Range}\left(a, 10\right)' + assert latex(Range(0, b, 1)) == r'\text{Range}\left(b\right)' + assert latex(Range(0, 10, c)) == r'\text{Range}\left(0, 10, c\right)' + + i = Symbol('i', integer=True) + n = Symbol('n', negative=True, integer=True) + p = Symbol('p', positive=True, integer=True) + + assert latex(Range(i, i + 3)) == r'\left\{i, i + 1, i + 2\right\}' + assert latex(Range(-oo, n, 2)) == r'\left\{\ldots, n - 4, n - 2\right\}' + assert latex(Range(p, oo)) == r'\left\{p, p + 1, \ldots\right\}' + # The following will work if __iter__ is improved + # assert latex(Range(-3, p + 7)) == r'\left\{-3, -2, \ldots, p + 6\right\}' + # Must have integer assumptions + assert latex(Range(a, a + 3)) == r'\text{Range}\left(a, a + 3\right)' + + +def test_latex_sequences(): + s1 = SeqFormula(a**2, (0, oo)) + s2 = SeqPer((1, 2)) + + latex_str = r'\left[0, 1, 4, 9, \ldots\right]' + assert latex(s1) == latex_str + + latex_str = r'\left[1, 2, 1, 2, \ldots\right]' + assert latex(s2) == latex_str + + s3 = SeqFormula(a**2, (0, 2)) + s4 = SeqPer((1, 2), (0, 2)) + + latex_str = r'\left[0, 1, 4\right]' + assert latex(s3) == latex_str + + latex_str = r'\left[1, 2, 1\right]' + assert latex(s4) == latex_str + + s5 = SeqFormula(a**2, (-oo, 0)) + s6 = SeqPer((1, 2), (-oo, 0)) + + latex_str = r'\left[\ldots, 9, 4, 1, 0\right]' + assert latex(s5) == latex_str + + latex_str = r'\left[\ldots, 2, 1, 2, 1\right]' + assert latex(s6) == latex_str + + latex_str = r'\left[1, 3, 5, 11, \ldots\right]' + assert latex(SeqAdd(s1, s2)) == latex_str + + latex_str = r'\left[1, 3, 5\right]' + assert latex(SeqAdd(s3, s4)) == latex_str + + latex_str = r'\left[\ldots, 11, 5, 3, 1\right]' + assert latex(SeqAdd(s5, s6)) == latex_str + + latex_str = r'\left[0, 2, 4, 18, \ldots\right]' + assert latex(SeqMul(s1, s2)) == latex_str + + latex_str = r'\left[0, 2, 4\right]' + assert latex(SeqMul(s3, s4)) == latex_str + + latex_str = r'\left[\ldots, 18, 4, 2, 0\right]' + assert latex(SeqMul(s5, s6)) == latex_str + + # Sequences with symbolic limits, issue 12629 + s7 = SeqFormula(a**2, (a, 0, x)) + latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}' + assert latex(s7) == latex_str + + b = Symbol('b') + s8 = SeqFormula(b*a**2, (a, 0, 2)) + latex_str = r'\left[0, b, 4 b\right]' + assert latex(s8) == latex_str + + +def test_latex_FourierSeries(): + latex_str = \ + r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots' + assert latex(fourier_series(x, (x, -pi, pi))) == latex_str + + +def test_latex_FormalPowerSeries(): + latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}' + assert latex(fps(log(1 + x))) == latex_str + + +def test_latex_intervals(): + a = Symbol('a', real=True) + assert latex(Interval(0, 0)) == r"\left\{0\right\}" + assert latex(Interval(0, a)) == r"\left[0, a\right]" + assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]" + assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]" + assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)" + assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)" + + +def test_latex_AccumuBounds(): + a = Symbol('a', real=True) + assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle" + assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle" + assert latex(AccumBounds(a + 1, a + 2)) == \ + r"\left\langle a + 1, a + 2\right\rangle" + + +def test_latex_emptyset(): + assert latex(S.EmptySet) == r"\emptyset" + + +def test_latex_universalset(): + assert latex(S.UniversalSet) == r"\mathbb{U}" + + +def test_latex_commutator(): + A = Operator('A') + B = Operator('B') + comm = Commutator(B, A) + assert latex(comm.doit()) == r"- (A B - B A)" + + +def test_latex_union(): + assert latex(Union(Interval(0, 1), Interval(2, 3))) == \ + r"\left[0, 1\right] \cup \left[2, 3\right]" + assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \ + r"\left\{1, 2\right\} \cup \left[3, 4\right]" + + +def test_latex_intersection(): + assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \ + r"\left[0, 1\right] \cap \left[x, y\right]" + + +def test_latex_symmetric_difference(): + assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7), + evaluate=False)) == \ + r'\left[2, 5\right] \triangle \left[4, 7\right]' + + +def test_latex_Complement(): + assert latex(Complement(S.Reals, S.Naturals)) == \ + r"\mathbb{R} \setminus \mathbb{N}" + + +def test_latex_productset(): + line = Interval(0, 1) + bigline = Interval(0, 10) + fset = FiniteSet(1, 2, 3) + assert latex(line**2) == r"%s^{2}" % latex(line) + assert latex(line**10) == r"%s^{10}" % latex(line) + assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % ( + latex(line), latex(bigline), latex(fset)) + + +def test_latex_powerset(): + fset = FiniteSet(1, 2, 3) + assert latex(PowerSet(fset)) == r'\mathcal{P}\left(\left\{1, 2, 3\right\}\right)' + + +def test_latex_ordinals(): + w = OrdinalOmega() + assert latex(w) == r"\omega" + wp = OmegaPower(2, 3) + assert latex(wp) == r'3 \omega^{2}' + assert latex(Ordinal(wp, OmegaPower(1, 1))) == r'3 \omega^{2} + \omega' + assert latex(Ordinal(OmegaPower(2, 1), OmegaPower(1, 2))) == r'\omega^{2} + 2 \omega' + + +def test_set_operators_parenthesis(): + a, b, c, d = symbols('a:d') + A = FiniteSet(a) + B = FiniteSet(b) + C = FiniteSet(c) + D = FiniteSet(d) + + U1 = Union(A, B, evaluate=False) + U2 = Union(C, D, evaluate=False) + I1 = Intersection(A, B, evaluate=False) + I2 = Intersection(C, D, evaluate=False) + C1 = Complement(A, B, evaluate=False) + C2 = Complement(C, D, evaluate=False) + D1 = SymmetricDifference(A, B, evaluate=False) + D2 = SymmetricDifference(C, D, evaluate=False) + # XXX ProductSet does not support evaluate keyword + P1 = ProductSet(A, B) + P2 = ProductSet(C, D) + + assert latex(Intersection(A, U2, evaluate=False)) == \ + r'\left\{a\right\} \cap ' \ + r'\left(\left\{c\right\} \cup \left\{d\right\}\right)' + assert latex(Intersection(U1, U2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \ + r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)' + assert latex(Intersection(C1, C2, evaluate=False)) == \ + r'\left(\left\{a\right\} \setminus ' \ + r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \ + r'\setminus \left\{d\right\}\right)' + assert latex(Intersection(D1, D2, evaluate=False)) == \ + r'\left(\left\{a\right\} \triangle ' \ + r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \ + r'\triangle \left\{d\right\}\right)' + assert latex(Intersection(P1, P2, evaluate=False)) == \ + r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \ + r'\cap \left(\left\{c\right\} \times ' \ + r'\left\{d\right\}\right)' + + assert latex(Union(A, I2, evaluate=False)) == \ + r'\left\{a\right\} \cup ' \ + r'\left(\left\{c\right\} \cap \left\{d\right\}\right)' + assert latex(Union(I1, I2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \ + r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)' + assert latex(Union(C1, C2, evaluate=False)) == \ + r'\left(\left\{a\right\} \setminus ' \ + r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \ + r'\setminus \left\{d\right\}\right)' + assert latex(Union(D1, D2, evaluate=False)) == \ + r'\left(\left\{a\right\} \triangle ' \ + r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \ + r'\triangle \left\{d\right\}\right)' + assert latex(Union(P1, P2, evaluate=False)) == \ + r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \ + r'\cup \left(\left\{c\right\} \times ' \ + r'\left\{d\right\}\right)' + + assert latex(Complement(A, C2, evaluate=False)) == \ + r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \ + r'\setminus \left\{d\right\}\right)' + assert latex(Complement(U1, U2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \ + r'\setminus \left(\left\{c\right\} \cup ' \ + r'\left\{d\right\}\right)' + assert latex(Complement(I1, I2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \ + r'\setminus \left(\left\{c\right\} \cap ' \ + r'\left\{d\right\}\right)' + assert latex(Complement(D1, D2, evaluate=False)) == \ + r'\left(\left\{a\right\} \triangle ' \ + r'\left\{b\right\}\right) \setminus ' \ + r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)' + assert latex(Complement(P1, P2, evaluate=False)) == \ + r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\ + r'\setminus \left(\left\{c\right\} \times '\ + r'\left\{d\right\}\right)' + + assert latex(SymmetricDifference(A, D2, evaluate=False)) == \ + r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \ + r'\triangle \left\{d\right\}\right)' + assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \ + r'\triangle \left(\left\{c\right\} \cup ' \ + r'\left\{d\right\}\right)' + assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \ + r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \ + r'\triangle \left(\left\{c\right\} \cap ' \ + r'\left\{d\right\}\right)' + assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \ + r'\left(\left\{a\right\} \setminus ' \ + r'\left\{b\right\}\right) \triangle ' \ + r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)' + assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \ + r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \ + r'\triangle \left(\left\{c\right\} \times ' \ + r'\left\{d\right\}\right)' + + # XXX This can be incorrect since cartesian product is not associative + assert latex(ProductSet(A, P2).flatten()) == \ + r'\left\{a\right\} \times \left\{c\right\} \times ' \ + r'\left\{d\right\}' + assert latex(ProductSet(U1, U2)) == \ + r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \ + r'\times \left(\left\{c\right\} \cup ' \ + r'\left\{d\right\}\right)' + assert latex(ProductSet(I1, I2)) == \ + r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \ + r'\times \left(\left\{c\right\} \cap ' \ + r'\left\{d\right\}\right)' + assert latex(ProductSet(C1, C2)) == \ + r'\left(\left\{a\right\} \setminus ' \ + r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \ + r'\setminus \left\{d\right\}\right)' + assert latex(ProductSet(D1, D2)) == \ + r'\left(\left\{a\right\} \triangle ' \ + r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \ + r'\triangle \left\{d\right\}\right)' + + +def test_latex_Complexes(): + assert latex(S.Complexes) == r"\mathbb{C}" + + +def test_latex_Naturals(): + assert latex(S.Naturals) == r"\mathbb{N}" + + +def test_latex_Naturals0(): + assert latex(S.Naturals0) == r"\mathbb{N}_0" + + +def test_latex_Integers(): + assert latex(S.Integers) == r"\mathbb{Z}" + + +def test_latex_ImageSet(): + x = Symbol('x') + assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \ + r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}" + + y = Symbol('y') + imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) + assert latex(imgset) == \ + r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}" + + imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) + assert latex(imgset) == \ + r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}" + + +def test_latex_ConditionSet(): + x = Symbol('x') + assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \ + r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}" + assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \ + r"\left\{x\; \middle|\; x^{2} = 1 \right\}" + + +def test_latex_ComplexRegion(): + assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \ + r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}" + assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \ + r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\ + r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}" + + +def test_latex_Contains(): + x = Symbol('x') + assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}" + + +def test_latex_sum(): + assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ + r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" + assert latex(Sum(x**2, (x, -2, 2))) == \ + r"\sum_{x=-2}^{2} x^{2}" + assert latex(Sum(x**2 + y, (x, -2, 2))) == \ + r"\sum_{x=-2}^{2} \left(x^{2} + y\right)" + assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \ + r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}" + + +def test_latex_product(): + assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \ + r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" + assert latex(Product(x**2, (x, -2, 2))) == \ + r"\prod_{x=-2}^{2} x^{2}" + assert latex(Product(x**2 + y, (x, -2, 2))) == \ + r"\prod_{x=-2}^{2} \left(x^{2} + y\right)" + + assert latex(Product(x, (x, -2, 2))**2) == \ + r"\left(\prod_{x=-2}^{2} x\right)^{2}" + + +def test_latex_limits(): + assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x" + + # issue 8175 + f = Function('f') + assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}" + assert latex(Limit(f(x), x, 0, "-")) == \ + r"\lim_{x \to 0^-} f{\left(x \right)}" + + # issue #10806 + assert latex(Limit(f(x), x, 0)**2) == \ + r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}" + # bi-directional limit + assert latex(Limit(f(x), x, 0, dir='+-')) == \ + r"\lim_{x \to 0} f{\left(x \right)}" + + +def test_latex_log(): + assert latex(log(x)) == r"\log{\left(x \right)}" + assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}" + assert latex(log(x) + log(y)) == \ + r"\log{\left(x \right)} + \log{\left(y \right)}" + assert latex(log(x) + log(y), ln_notation=True) == \ + r"\ln{\left(x \right)} + \ln{\left(y \right)}" + assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}" + assert latex(pow(log(x), x), ln_notation=True) == \ + r"\ln{\left(x \right)}^{x}" + + +def test_issue_3568(): + beta = Symbol(r'\beta') + y = beta + x + assert latex(y) in [r'\beta + x', r'x + \beta'] + + beta = Symbol(r'beta') + y = beta + x + assert latex(y) in [r'\beta + x', r'x + \beta'] + + +def test_latex(): + assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}" + assert latex((2*mu)**Rational(7, 2), mode='equation*') == \ + r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}" + assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \ + r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$" + assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]" + + +def test_latex_dict(): + d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4} + assert latex(d) == \ + r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' + D = Dict(d) + assert latex(D) == \ + r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}' + + +def test_latex_list(): + ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')] + assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]' + + +def test_latex_NumberSymbols(): + assert latex(S.Catalan) == "G" + assert latex(S.EulerGamma) == r"\gamma" + assert latex(S.Exp1) == "e" + assert latex(S.GoldenRatio) == r"\phi" + assert latex(S.Pi) == r"\pi" + assert latex(S.TribonacciConstant) == r"\text{TribonacciConstant}" + + +def test_latex_rational(): + # tests issue 3973 + assert latex(-Rational(1, 2)) == r"- \frac{1}{2}" + assert latex(Rational(-1, 2)) == r"- \frac{1}{2}" + assert latex(Rational(1, -2)) == r"- \frac{1}{2}" + assert latex(-Rational(-1, 2)) == r"\frac{1}{2}" + assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}" + assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \ + r"- \frac{x}{2} - \frac{2 y}{3}" + + +def test_latex_inverse(): + # tests issue 4129 + assert latex(1/x) == r"\frac{1}{x}" + assert latex(1/(x + y)) == r"\frac{1}{x + y}" + + +def test_latex_DiracDelta(): + assert latex(DiracDelta(x)) == r"\delta\left(x\right)" + assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}" + assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)" + assert latex(DiracDelta(x, 5)) == \ + r"\delta^{\left( 5 \right)}\left( x \right)" + assert latex(DiracDelta(x, 5)**2) == \ + r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}" + + +def test_latex_Heaviside(): + assert latex(Heaviside(x)) == r"\theta\left(x\right)" + assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}" + + +def test_latex_KroneckerDelta(): + assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}" + assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}" + # issue 6578 + assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}" + assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \ + r"\left(\delta_{x y}\right)^{2}" + + +def test_latex_LeviCivita(): + assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}" + assert latex(LeviCivita(x, y, z)**2) == \ + r"\left(\varepsilon_{x y z}\right)^{2}" + assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}" + assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}" + assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}" + + +def test_mode(): + expr = x + y + assert latex(expr) == r'x + y' + assert latex(expr, mode='plain') == r'x + y' + assert latex(expr, mode='inline') == r'$x + y$' + assert latex( + expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}' + assert latex( + expr, mode='equation') == r'\begin{equation}x + y\end{equation}' + raises(ValueError, lambda: latex(expr, mode='foo')) + + +def test_latex_mathieu(): + assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)" + assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)" + assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}" + assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}" + assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)" + assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)" + assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}" + assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}" + +def test_latex_Piecewise(): + p = Piecewise((x, x < 1), (x**2, True)) + assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \ + r" \text{otherwise} \end{cases}" + assert latex(p, itex=True) == \ + r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \ + r" \text{otherwise} \end{cases}" + p = Piecewise((x, x < 0), (0, x >= 0)) + assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \ + r' \text{otherwise} \end{cases}' + A, B = symbols("A B", commutative=False) + p = Piecewise((A**2, Eq(A, B)), (A*B, True)) + s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}" + assert latex(p) == s + assert latex(A*p) == r"A \left(%s\right)" % s + assert latex(p*A) == r"\left(%s\right) A" % s + assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \ + r'\begin{cases} x & ' \ + r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}' + + +def test_latex_Matrix(): + M = Matrix([[1 + x, y], [y, x - 1]]) + assert latex(M) == \ + r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]' + assert latex(M, mode='inline') == \ + r'$\left[\begin{smallmatrix}x + 1 & y\\' \ + r'y & x - 1\end{smallmatrix}\right]$' + assert latex(M, mat_str='array') == \ + r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]' + assert latex(M, mat_str='bmatrix') == \ + r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]' + assert latex(M, mat_delim=None, mat_str='bmatrix') == \ + r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}' + + M2 = Matrix(1, 11, range(11)) + assert latex(M2) == \ + r'\left[\begin{array}{ccccccccccc}' \ + r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' + + +def test_latex_matrix_with_functions(): + t = symbols('t') + theta1 = symbols('theta1', cls=Function) + + M = Matrix([[sin(theta1(t)), cos(theta1(t))], + [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]]) + + expected = (r'\left[\begin{matrix}\sin{\left(' + r'\theta_{1}{\left(t \right)} \right)} & ' + r'\cos{\left(\theta_{1}{\left(t \right)} \right)' + r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t ' + r'\right)} \right)} & \sin{\left(\frac{d}{d t} ' + r'\theta_{1}{\left(t \right)} \right' + r')}\end{matrix}\right]') + + assert latex(M) == expected + + +def test_latex_NDimArray(): + x, y, z, w = symbols("x y z w") + + for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, + MutableDenseNDimArray, MutableSparseNDimArray): + # Basic: scalar array + M = ArrayType(x) + + assert latex(M) == r"x" + + M = ArrayType([[1 / x, y], [z, w]]) + M1 = ArrayType([1 / x, y, z]) + + M2 = tensorproduct(M1, M) + M3 = tensorproduct(M, M) + + assert latex(M) == \ + r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]' + assert latex(M1) == \ + r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]" + assert latex(M2) == \ + r"\left[\begin{matrix}" \ + r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \ + r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \ + r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \ + r"\end{matrix}\right]" + assert latex(M3) == \ + r"""\left[\begin{matrix}"""\ + r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\ + r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\ + r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\ + r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\ + r"""\end{matrix}\right]""" + + Mrow = ArrayType([[x, y, 1/z]]) + Mcolumn = ArrayType([[x], [y], [1/z]]) + Mcol2 = ArrayType([Mcolumn.tolist()]) + + assert latex(Mrow) == \ + r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]" + assert latex(Mcolumn) == \ + r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]" + assert latex(Mcol2) == \ + r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]' + + +def test_latex_mul_symbol(): + assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}" + assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}" + assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}" + + assert latex(4*x, mul_symbol='times') == r"4 \times x" + assert latex(4*x, mul_symbol='dot') == r"4 \cdot x" + assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x" + + +def test_latex_issue_4381(): + y = 4*4**log(2) + assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}' + assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}' + + +def test_latex_issue_4576(): + assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}" + assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}" + assert latex(Symbol("beta_13")) == r"\beta_{13}" + assert latex(Symbol("x_a_b")) == r"x_{a b}" + assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}" + assert latex(Symbol("x_a_b1")) == r"x_{a b1}" + assert latex(Symbol("x_a_1")) == r"x_{a 1}" + assert latex(Symbol("x_1_a")) == r"x_{1 a}" + assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}" + assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}" + assert latex(Symbol("x_11^a")) == r"x^{a}_{11}" + assert latex(Symbol("x_11__a")) == r"x^{a}_{11}" + assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}" + assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}" + assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}" + assert latex(Symbol("alpha_11")) == r"\alpha_{11}" + assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}" + assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}" + assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}" + assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}" + + +def test_latex_pow_fraction(): + x = Symbol('x') + # Testing exp + assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace + + # Testing e^{-x} in case future changes alter behavior of muls or fracs + # In particular current output is \frac{1}{2}e^{- x} but perhaps this will + # change to \frac{e^{-x}}{2} + + # Testing general, non-exp, power + assert r'3^{-x}' in latex(3**-x/2).replace(' ', '') + + +def test_noncommutative(): + A, B, C = symbols('A,B,C', commutative=False) + + assert latex(A*B*C**-1) == r"A B C^{-1}" + assert latex(C**-1*A*B) == r"C^{-1} A B" + assert latex(A*C**-1*B) == r"A C^{-1} B" + + +def test_latex_order(): + expr = x**3 + x**2*y + y**4 + 3*x*y**3 + + assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}" + assert latex( + expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}" + assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}" + + +def test_latex_Lambda(): + assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)" + assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \ y\right) \mapsto x + 1 \right)" + assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)" + +def test_latex_PolyElement(): + Ruv, u, v = ring("u,v", ZZ) + Rxyz, x, y, z = ring("x,y,z", Ruv) + + assert latex(x - x) == r"0" + assert latex(x - 1) == r"x - 1" + assert latex(x + 1) == r"x + 1" + + assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \ + r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1" + assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \ + r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x" + assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \ + r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1" + assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \ + r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1" + + assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \ + r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1" + assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \ + r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1" + + +def test_latex_FracElement(): + Fuv, u, v = field("u,v", ZZ) + Fxyzt, x, y, z, t = field("x,y,z,t", Fuv) + + assert latex(x - x) == r"0" + assert latex(x - 1) == r"x - 1" + assert latex(x + 1) == r"x + 1" + + assert latex(x/3) == r"\frac{x}{3}" + assert latex(x/z) == r"\frac{x}{z}" + assert latex(x*y/z) == r"\frac{x y}{z}" + assert latex(x/(z*t)) == r"\frac{x}{z t}" + assert latex(x*y/(z*t)) == r"\frac{x y}{z t}" + + assert latex((x - 1)/y) == r"\frac{x - 1}{y}" + assert latex((x + 1)/y) == r"\frac{x + 1}{y}" + assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}" + assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}" + assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}" + assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}" + + assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \ + r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}" + assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \ + r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}" + + +def test_latex_Poly(): + assert latex(Poly(x**2 + 2 * x, x)) == \ + r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}" + assert latex(Poly(x/y, x)) == \ + r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}" + assert latex(Poly(2.0*x + y)) == \ + r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}" + + +def test_latex_Poly_order(): + assert latex(Poly([a, 1, b, 2, c, 3], x)) == \ + r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\ + r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}' + assert latex(Poly([a, 1, b+c, 2, 3], x)) == \ + r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\ + r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}' + assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b, + (x, y))) == \ + r'\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\ + r'a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}' + + +def test_latex_ComplexRootOf(): + assert latex(rootof(x**5 + x + 3, 0)) == \ + r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}" + + +def test_latex_RootSum(): + assert latex(RootSum(x**5 + x + 3, sin)) == \ + r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}" + + +def test_settings(): + raises(TypeError, lambda: latex(x*y, method="garbage")) + + +def test_latex_numbers(): + assert latex(catalan(n)) == r"C_{n}" + assert latex(catalan(n)**2) == r"C_{n}^{2}" + assert latex(bernoulli(n)) == r"B_{n}" + assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)" + assert latex(bernoulli(n)**2) == r"B_{n}^{2}" + assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)" + assert latex(genocchi(n)) == r"G_{n}" + assert latex(genocchi(n, x)) == r"G_{n}\left(x\right)" + assert latex(genocchi(n)**2) == r"G_{n}^{2}" + assert latex(genocchi(n, x)**2) == r"G_{n}^{2}\left(x\right)" + assert latex(bell(n)) == r"B_{n}" + assert latex(bell(n, x)) == r"B_{n}\left(x\right)" + assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)" + assert latex(bell(n)**2) == r"B_{n}^{2}" + assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)" + assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)" + assert latex(fibonacci(n)) == r"F_{n}" + assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)" + assert latex(fibonacci(n)**2) == r"F_{n}^{2}" + assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)" + assert latex(lucas(n)) == r"L_{n}" + assert latex(lucas(n)**2) == r"L_{n}^{2}" + assert latex(tribonacci(n)) == r"T_{n}" + assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)" + assert latex(tribonacci(n)**2) == r"T_{n}^{2}" + assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)" + + +def test_latex_euler(): + assert latex(euler(n)) == r"E_{n}" + assert latex(euler(n, x)) == r"E_{n}\left(x\right)" + assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)" + + +def test_lamda(): + assert latex(Symbol('lamda')) == r"\lambda" + assert latex(Symbol('Lamda')) == r"\Lambda" + + +def test_custom_symbol_names(): + x = Symbol('x') + y = Symbol('y') + assert latex(x) == r"x" + assert latex(x, symbol_names={x: "x_i"}) == r"x_i" + assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y" + assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}" + assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j" + + +def test_matAdd(): + C = MatrixSymbol('C', 5, 5) + B = MatrixSymbol('B', 5, 5) + + n = symbols("n") + h = MatrixSymbol("h", 1, 1) + + assert latex(C - 2*B) in [r'- 2 B + C', r'C -2 B'] + assert latex(C + 2*B) in [r'2 B + C', r'C + 2 B'] + assert latex(B - 2*C) in [r'B - 2 C', r'- 2 C + B'] + assert latex(B + 2*C) in [r'B + 2 C', r'2 C + B'] + + assert latex(n * h - (-h + h.T) * (h + h.T)) == 'n h - \\left(- h + h^{T}\\right) \\left(h + h^{T}\\right)' + assert latex(MatAdd(MatAdd(h, h), MatAdd(h, h))) == '\\left(h + h\\right) + \\left(h + h\\right)' + assert latex(MatMul(MatMul(h, h), MatMul(h, h))) == '\\left(h h\\right) \\left(h h\\right)' + + +def test_matMul(): + A = MatrixSymbol('A', 5, 5) + B = MatrixSymbol('B', 5, 5) + x = Symbol('x') + assert latex(2*A) == r'2 A' + assert latex(2*x*A) == r'2 x A' + assert latex(-2*A) == r'- 2 A' + assert latex(1.5*A) == r'1.5 A' + assert latex(sqrt(2)*A) == r'\sqrt{2} A' + assert latex(-sqrt(2)*A) == r'- \sqrt{2} A' + assert latex(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A' + assert latex(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)', + r'- 2 A \left(2 B + A\right)'] + + +def test_latex_MatrixSlice(): + n = Symbol('n', integer=True) + x, y, z, w, t, = symbols('x y z w t') + X = MatrixSymbol('X', n, n) + Y = MatrixSymbol('Y', 10, 10) + Z = MatrixSymbol('Z', 10, 10) + + assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]' + assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]' + assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]' + assert latex(X[:x, y:]) == r'X\left[:x, y:\right]' + assert latex(X[:x, y:]) == r'X\left[:x, y:\right]' + assert latex(X[x:, :y]) == r'X\left[x:, :y\right]' + assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]' + assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]' + assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]' + assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]' + assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]' + assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]' + assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]' + assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]' + assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]' + assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]' + assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]' + assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]' + assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]' + assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]' + assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]' + assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]' + assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]' + assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]' + + +def test_latex_RandomDomain(): + from sympy.stats import Normal, Die, Exponential, pspace, where + from sympy.stats.rv import RandomDomain + + X = Normal('x1', 0, 1) + assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty" + + D = Die('d1', 6) + assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6" + + A = Exponential('a', 1) + B = Exponential('b', 1) + assert latex( + pspace(Tuple(A, B)).domain) == \ + r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty" + + assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \ + r'\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}' + +def test_PrettyPoly(): + from sympy.polys.domains import QQ + F = QQ.frac_field(x, y) + R = QQ[x, y] + + assert latex(F.convert(x/(x + y))) == latex(x/(x + y)) + assert latex(R.convert(x + y)) == latex(x + y) + + +def test_integral_transforms(): + x = Symbol("x") + k = Symbol("k") + f = Function("f") + a = Symbol("a") + b = Symbol("b") + + assert latex(MellinTransform(f(x), x, k)) == \ + r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)" + assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \ + r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" + + assert latex(LaplaceTransform(f(x), x, k)) == \ + r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)" + assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \ + r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" + + assert latex(FourierTransform(f(x), x, k)) == \ + r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)" + assert latex(InverseFourierTransform(f(k), k, x)) == \ + r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" + + assert latex(CosineTransform(f(x), x, k)) == \ + r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)" + assert latex(InverseCosineTransform(f(k), k, x)) == \ + r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" + + assert latex(SineTransform(f(x), x, k)) == \ + r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)" + assert latex(InverseSineTransform(f(k), k, x)) == \ + r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)" + + +def test_PolynomialRingBase(): + from sympy.polys.domains import QQ + assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]" + assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \ + r"S_<^{-1}\mathbb{Q}\left[x, y\right]" + + +def test_categories(): + from sympy.categories import (Object, IdentityMorphism, + NamedMorphism, Category, Diagram, + DiagramGrid) + + A1 = Object("A1") + A2 = Object("A2") + A3 = Object("A3") + + f1 = NamedMorphism(A1, A2, "f1") + f2 = NamedMorphism(A2, A3, "f2") + id_A1 = IdentityMorphism(A1) + + K1 = Category("K1") + + assert latex(A1) == r"A_{1}" + assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}" + assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}" + assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}" + + assert latex(K1) == r"\mathbf{K_{1}}" + + d = Diagram() + assert latex(d) == r"\emptyset" + + d = Diagram({f1: "unique", f2: S.EmptySet}) + assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ + r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ + r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ + r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ + r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \ + r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" + + d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) + assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \ + r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \ + r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \ + r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \ + r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \ + r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \ + r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \ + r"\rightarrow A_{3} : \left\{unique\right\}\right\}" + + # A linear diagram. + A = Object("A") + B = Object("B") + C = Object("C") + f = NamedMorphism(A, B, "f") + g = NamedMorphism(B, C, "g") + d = Diagram([f, g]) + grid = DiagramGrid(d) + + assert latex(grid) == r"\begin{array}{cc}" + "\n" \ + r"A & B \\" + "\n" \ + r" & C " + "\n" \ + r"\end{array}" + "\n" + + +def test_Modules(): + from sympy.polys.domains import QQ + from sympy.polys.agca import homomorphism + + R = QQ.old_poly_ring(x, y) + F = R.free_module(2) + M = F.submodule([x, y], [1, x**2]) + + assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}" + assert latex(M) == \ + r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle" + + I = R.ideal(x**2, y) + assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle" + + Q = F / M + assert latex(Q) == \ + r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\ + r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}" + assert latex(Q.submodule([1, x**3/2], [2, y])) == \ + r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\ + r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\ + r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\ + r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle" + + h = homomorphism(QQ.old_poly_ring(x).free_module(2), + QQ.old_poly_ring(x).free_module(2), [0, 0]) + + assert latex(h) == \ + r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\ + r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}" + + +def test_QuotientRing(): + from sympy.polys.domains import QQ + R = QQ.old_poly_ring(x)/[x**2 + 1] + + assert latex(R) == \ + r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}" + assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}" + + +def test_Tr(): + #TODO: Handle indices + A, B = symbols('A B', commutative=False) + t = Tr(A*B) + assert latex(t) == r'\operatorname{tr}\left(A B\right)' + + +def test_Determinant(): + from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix + m = Matrix(((1, 2), (3, 4))) + assert latex(Determinant(m)) == '\\left|{\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}}\\right|' + assert latex(Determinant(Inverse(m))) == \ + '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{-1}}\\right|' + X = MatrixSymbol('X', 2, 2) + assert latex(Determinant(X)) == '\\left|{X}\\right|' + assert latex(Determinant(X + m)) == \ + '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X}\\right|' + assert latex(Determinant(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + '\\left|{\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}}\\right|' + + +def test_Adjoint(): + from sympy.matrices import Adjoint, Inverse, Transpose + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert latex(Adjoint(X)) == r'X^{\dagger}' + assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}' + assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}' + assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}' + assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}' + assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}' + assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}' + assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}' + assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}' + assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}' + assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}' + assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}' + m = Matrix(((1, 2), (3, 4))) + assert latex(Adjoint(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{\\dagger}' + assert latex(Adjoint(m+X)) == \ + '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{\\dagger}' + from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix + assert latex(Adjoint(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{\\dagger}' + # Issue 20959 + Mx = MatrixSymbol('M^x', 2, 2) + assert latex(Adjoint(Mx)) == r'\left(M^{x}\right)^{\dagger}' + + +def test_Transpose(): + from sympy.matrices import Transpose, MatPow, HadamardPower + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert latex(Transpose(X)) == r'X^{T}' + assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}' + + assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}' + assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}' + assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}' + assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}' + m = Matrix(((1, 2), (3, 4))) + assert latex(Transpose(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{T}' + assert latex(Transpose(m+X)) == \ + '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{T}' + from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix + assert latex(Transpose(BlockMatrix(((OneMatrix(2, 2), X), + (m, ZeroMatrix(2, 2)))))) == \ + '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{T}' + # Issue 20959 + Mx = MatrixSymbol('M^x', 2, 2) + assert latex(Transpose(Mx)) == r'\left(M^{x}\right)^{T}' + + +def test_Hadamard(): + from sympy.matrices import HadamardProduct, HadamardPower + from sympy.matrices.expressions import MatAdd, MatMul, MatPow + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}' + assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y' + + assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}' + assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}' + assert latex(HadamardPower(MatAdd(X, Y), 2)) == \ + r'\left(X + Y\right)^{\circ {2}}' + assert latex(HadamardPower(MatMul(X, Y), 2)) == \ + r'\left(X Y\right)^{\circ {2}}' + + assert latex(HadamardPower(MatPow(X, -1), -1)) == \ + r'\left(X^{-1}\right)^{\circ \left({-1}\right)}' + assert latex(MatPow(HadamardPower(X, -1), -1)) == \ + r'\left(X^{\circ \left({-1}\right)}\right)^{-1}' + + assert latex(HadamardPower(X, n+1)) == \ + r'X^{\circ \left({n + 1}\right)}' + + +def test_MatPow(): + from sympy.matrices.expressions import MatPow + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert latex(MatPow(X, 2)) == 'X^{2}' + assert latex(MatPow(X*X, 2)) == '\\left(X^{2}\\right)^{2}' + assert latex(MatPow(X*Y, 2)) == '\\left(X Y\\right)^{2}' + assert latex(MatPow(X + Y, 2)) == '\\left(X + Y\\right)^{2}' + assert latex(MatPow(X + X, 2)) == '\\left(2 X\\right)^{2}' + # Issue 20959 + Mx = MatrixSymbol('M^x', 2, 2) + assert latex(MatPow(Mx, 2)) == r'\left(M^{x}\right)^{2}' + + +def test_ElementwiseApplyFunction(): + X = MatrixSymbol('X', 2, 2) + expr = (X.T*X).applyfunc(sin) + assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)" + expr = X.applyfunc(Lambda(x, 1/x)) + assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)' + + +def test_ZeroMatrix(): + from sympy.matrices.expressions.special import ZeroMatrix + assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"0" + assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}" + + +def test_OneMatrix(): + from sympy.matrices.expressions.special import OneMatrix + assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"1" + assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}" + + +def test_Identity(): + from sympy.matrices.expressions.special import Identity + assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}" + assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}" + + +def test_latex_DFT_IDFT(): + from sympy.matrices.expressions.fourier import DFT, IDFT + assert latex(DFT(13)) == r"\text{DFT}_{13}" + assert latex(IDFT(x)) == r"\text{IDFT}_{x}" + + +def test_boolean_args_order(): + syms = symbols('a:f') + + expr = And(*syms) + assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f' + + expr = Or(*syms) + assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f' + + expr = Equivalent(*syms) + assert latex(expr) == \ + r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f' + + expr = Xor(*syms) + assert latex(expr) == \ + r'a \veebar b \veebar c \veebar d \veebar e \veebar f' + + +def test_imaginary(): + i = sqrt(-1) + assert latex(i) == r'i' + + +def test_builtins_without_args(): + assert latex(sin) == r'\sin' + assert latex(cos) == r'\cos' + assert latex(tan) == r'\tan' + assert latex(log) == r'\log' + assert latex(Ei) == r'\operatorname{Ei}' + assert latex(zeta) == r'\zeta' + + +def test_latex_greek_functions(): + # bug because capital greeks that have roman equivalents should not use + # \Alpha, \Beta, \Eta, etc. + s = Function('Alpha') + assert latex(s) == r'\mathrm{A}' + assert latex(s(x)) == r'\mathrm{A}{\left(x \right)}' + s = Function('Beta') + assert latex(s) == r'\mathrm{B}' + s = Function('Eta') + assert latex(s) == r'\mathrm{H}' + assert latex(s(x)) == r'\mathrm{H}{\left(x \right)}' + + # bug because sympy.core.numbers.Pi is special + p = Function('Pi') + # assert latex(p(x)) == r'\Pi{\left(x \right)}' + assert latex(p) == r'\Pi' + + # bug because not all greeks are included + c = Function('chi') + assert latex(c(x)) == r'\chi{\left(x \right)}' + assert latex(c) == r'\chi' + + +def test_translate(): + s = 'Alpha' + assert translate(s) == r'\mathrm{A}' + s = 'Beta' + assert translate(s) == r'\mathrm{B}' + s = 'Eta' + assert translate(s) == r'\mathrm{H}' + s = 'omicron' + assert translate(s) == r'o' + s = 'Pi' + assert translate(s) == r'\Pi' + s = 'pi' + assert translate(s) == r'\pi' + s = 'LamdaHatDOT' + assert translate(s) == r'\dot{\hat{\Lambda}}' + + +def test_other_symbols(): + from sympy.printing.latex import other_symbols + for s in other_symbols: + assert latex(symbols(s)) == r"" "\\" + s + + +def test_modifiers(): + # Test each modifier individually in the simplest case + # (with funny capitalizations) + assert latex(symbols("xMathring")) == r"\mathring{x}" + assert latex(symbols("xCheck")) == r"\check{x}" + assert latex(symbols("xBreve")) == r"\breve{x}" + assert latex(symbols("xAcute")) == r"\acute{x}" + assert latex(symbols("xGrave")) == r"\grave{x}" + assert latex(symbols("xTilde")) == r"\tilde{x}" + assert latex(symbols("xPrime")) == r"{x}'" + assert latex(symbols("xddDDot")) == r"\ddddot{x}" + assert latex(symbols("xDdDot")) == r"\dddot{x}" + assert latex(symbols("xDDot")) == r"\ddot{x}" + assert latex(symbols("xBold")) == r"\boldsymbol{x}" + assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|" + assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle" + assert latex(symbols("xHat")) == r"\hat{x}" + assert latex(symbols("xDot")) == r"\dot{x}" + assert latex(symbols("xBar")) == r"\bar{x}" + assert latex(symbols("xVec")) == r"\vec{x}" + assert latex(symbols("xAbs")) == r"\left|{x}\right|" + assert latex(symbols("xMag")) == r"\left|{x}\right|" + assert latex(symbols("xPrM")) == r"{x}'" + assert latex(symbols("xBM")) == r"\boldsymbol{x}" + # Test strings that are *only* the names of modifiers + assert latex(symbols("Mathring")) == r"Mathring" + assert latex(symbols("Check")) == r"Check" + assert latex(symbols("Breve")) == r"Breve" + assert latex(symbols("Acute")) == r"Acute" + assert latex(symbols("Grave")) == r"Grave" + assert latex(symbols("Tilde")) == r"Tilde" + assert latex(symbols("Prime")) == r"Prime" + assert latex(symbols("DDot")) == r"\dot{D}" + assert latex(symbols("Bold")) == r"Bold" + assert latex(symbols("NORm")) == r"NORm" + assert latex(symbols("AVG")) == r"AVG" + assert latex(symbols("Hat")) == r"Hat" + assert latex(symbols("Dot")) == r"Dot" + assert latex(symbols("Bar")) == r"Bar" + assert latex(symbols("Vec")) == r"Vec" + assert latex(symbols("Abs")) == r"Abs" + assert latex(symbols("Mag")) == r"Mag" + assert latex(symbols("PrM")) == r"PrM" + assert latex(symbols("BM")) == r"BM" + assert latex(symbols("hbar")) == r"\hbar" + # Check a few combinations + assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}" + assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}" + assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|" + # Check a couple big, ugly combinations + assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \ + r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}" + assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \ + r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}" + + +def test_greek_symbols(): + assert latex(Symbol('alpha')) == r'\alpha' + assert latex(Symbol('beta')) == r'\beta' + assert latex(Symbol('gamma')) == r'\gamma' + assert latex(Symbol('delta')) == r'\delta' + assert latex(Symbol('epsilon')) == r'\epsilon' + assert latex(Symbol('zeta')) == r'\zeta' + assert latex(Symbol('eta')) == r'\eta' + assert latex(Symbol('theta')) == r'\theta' + assert latex(Symbol('iota')) == r'\iota' + assert latex(Symbol('kappa')) == r'\kappa' + assert latex(Symbol('lambda')) == r'\lambda' + assert latex(Symbol('mu')) == r'\mu' + assert latex(Symbol('nu')) == r'\nu' + assert latex(Symbol('xi')) == r'\xi' + assert latex(Symbol('omicron')) == r'o' + assert latex(Symbol('pi')) == r'\pi' + assert latex(Symbol('rho')) == r'\rho' + assert latex(Symbol('sigma')) == r'\sigma' + assert latex(Symbol('tau')) == r'\tau' + assert latex(Symbol('upsilon')) == r'\upsilon' + assert latex(Symbol('phi')) == r'\phi' + assert latex(Symbol('chi')) == r'\chi' + assert latex(Symbol('psi')) == r'\psi' + assert latex(Symbol('omega')) == r'\omega' + + assert latex(Symbol('Alpha')) == r'\mathrm{A}' + assert latex(Symbol('Beta')) == r'\mathrm{B}' + assert latex(Symbol('Gamma')) == r'\Gamma' + assert latex(Symbol('Delta')) == r'\Delta' + assert latex(Symbol('Epsilon')) == r'\mathrm{E}' + assert latex(Symbol('Zeta')) == r'\mathrm{Z}' + assert latex(Symbol('Eta')) == r'\mathrm{H}' + assert latex(Symbol('Theta')) == r'\Theta' + assert latex(Symbol('Iota')) == r'\mathrm{I}' + assert latex(Symbol('Kappa')) == r'\mathrm{K}' + assert latex(Symbol('Lambda')) == r'\Lambda' + assert latex(Symbol('Mu')) == r'\mathrm{M}' + assert latex(Symbol('Nu')) == r'\mathrm{N}' + assert latex(Symbol('Xi')) == r'\Xi' + assert latex(Symbol('Omicron')) == r'\mathrm{O}' + assert latex(Symbol('Pi')) == r'\Pi' + assert latex(Symbol('Rho')) == r'\mathrm{P}' + assert latex(Symbol('Sigma')) == r'\Sigma' + assert latex(Symbol('Tau')) == r'\mathrm{T}' + assert latex(Symbol('Upsilon')) == r'\Upsilon' + assert latex(Symbol('Phi')) == r'\Phi' + assert latex(Symbol('Chi')) == r'\mathrm{X}' + assert latex(Symbol('Psi')) == r'\Psi' + assert latex(Symbol('Omega')) == r'\Omega' + + assert latex(Symbol('varepsilon')) == r'\varepsilon' + assert latex(Symbol('varkappa')) == r'\varkappa' + assert latex(Symbol('varphi')) == r'\varphi' + assert latex(Symbol('varpi')) == r'\varpi' + assert latex(Symbol('varrho')) == r'\varrho' + assert latex(Symbol('varsigma')) == r'\varsigma' + assert latex(Symbol('vartheta')) == r'\vartheta' + + +def test_fancyset_symbols(): + assert latex(S.Rationals) == r'\mathbb{Q}' + assert latex(S.Naturals) == r'\mathbb{N}' + assert latex(S.Naturals0) == r'\mathbb{N}_0' + assert latex(S.Integers) == r'\mathbb{Z}' + assert latex(S.Reals) == r'\mathbb{R}' + assert latex(S.Complexes) == r'\mathbb{C}' + + +@XFAIL +def test_builtin_without_args_mismatched_names(): + assert latex(CosineTransform) == r'\mathcal{COS}' + + +def test_builtin_no_args(): + assert latex(Chi) == r'\operatorname{Chi}' + assert latex(beta) == r'\operatorname{B}' + assert latex(gamma) == r'\Gamma' + assert latex(KroneckerDelta) == r'\delta' + assert latex(DiracDelta) == r'\delta' + assert latex(lowergamma) == r'\gamma' + + +def test_issue_6853(): + p = Function('Pi') + assert latex(p(x)) == r"\Pi{\left(x \right)}" + + +def test_Mul(): + e = Mul(-2, x + 1, evaluate=False) + assert latex(e) == r'- 2 \left(x + 1\right)' + e = Mul(2, x + 1, evaluate=False) + assert latex(e) == r'2 \left(x + 1\right)' + e = Mul(S.Half, x + 1, evaluate=False) + assert latex(e) == r'\frac{x + 1}{2}' + e = Mul(y, x + 1, evaluate=False) + assert latex(e) == r'y \left(x + 1\right)' + e = Mul(-y, x + 1, evaluate=False) + assert latex(e) == r'- y \left(x + 1\right)' + e = Mul(-2, x + 1) + assert latex(e) == r'- 2 x - 2' + e = Mul(2, x + 1) + assert latex(e) == r'2 x + 2' + + +def test_Pow(): + e = Pow(2, 2, evaluate=False) + assert latex(e) == r'2^{2}' + assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}' + x2 = Symbol(r'x^2') + assert latex(x2**2) == r'\left(x^{2}\right)^{2}' + + +def test_issue_7180(): + assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y" + assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y" + + +def test_issue_8409(): + assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}" + + +def test_issue_8470(): + from sympy.parsing.sympy_parser import parse_expr + e = parse_expr("-B*A", evaluate=False) + assert latex(e) == r"A \left(- B\right)" + + +def test_issue_15439(): + x = MatrixSymbol('x', 2, 2) + y = MatrixSymbol('y', 2, 2) + assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)" + assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)" + assert latex((x * y).subs(x, -x)) == r"\left(- x\right) y" + + +def test_issue_2934(): + assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}' + + +def test_issue_10489(): + latexSymbolWithBrace = r'C_{x_{0}}' + s = Symbol(latexSymbolWithBrace) + assert latex(s) == latexSymbolWithBrace + assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}' + + +def test_issue_12886(): + m__1, l__1 = symbols('m__1, l__1') + assert latex(m__1**2 + l__1**2) == \ + r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}' + + +def test_issue_13559(): + from sympy.parsing.sympy_parser import parse_expr + expr = parse_expr('5/1', evaluate=False) + assert latex(expr) == r"\frac{5}{1}" + + +def test_issue_13651(): + expr = c + Mul(-1, a + b, evaluate=False) + assert latex(expr) == r"c - \left(a + b\right)" + + +def test_latex_UnevaluatedExpr(): + x = symbols("x") + he = UnevaluatedExpr(1/x) + assert latex(he) == latex(1/x) == r"\frac{1}{x}" + assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}" + assert latex(he + 1) == r"1 + \frac{1}{x}" + assert latex(x*he) == r"x \frac{1}{x}" + + +def test_MatrixElement_printing(): + # test cases for issue #11821 + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + assert latex(A[0, 0]) == r"A_{0, 0}" + assert latex(3 * A[0, 0]) == r"3 A_{0, 0}" + + F = C[0, 0].subs(C, A - B) + assert latex(F) == r"\left(A - B\right)_{0, 0}" + + i, j, k = symbols("i j k") + M = MatrixSymbol("M", k, k) + N = MatrixSymbol("N", k, k) + assert latex((M*N)[i, j]) == \ + r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}' + + +def test_MatrixSymbol_printing(): + # test cases for issue #14237 + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + C = MatrixSymbol("C", 3, 3) + + assert latex(-A) == r"- A" + assert latex(A - A*B - B) == r"A - A B - B" + assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B" + + +def test_KroneckerProduct_printing(): + A = MatrixSymbol('A', 3, 3) + B = MatrixSymbol('B', 2, 2) + assert latex(KroneckerProduct(A, B)) == r'A \otimes B' + + +def test_Series_printing(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) + assert latex(Series(tf1, tf2)) == \ + r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)' + assert latex(Series(tf1, tf2, tf3)) == \ + r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)' + assert latex(Series(-tf2, tf1)) == \ + r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)' + + M_1 = Matrix([[5/s], [5/(2*s)]]) + T_1 = TransferFunctionMatrix.from_Matrix(M_1, s) + M_2 = Matrix([[5, 6*s**3]]) + T_2 = TransferFunctionMatrix.from_Matrix(M_2, s) + # Brackets + assert latex(T_1*(T_2 + T_2)) == \ + r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \ + r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \ + == latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1)) + # No Brackets + M_3 = Matrix([[5, 6], [6, 5/s]]) + T_3 = TransferFunctionMatrix.from_Matrix(M_3, s) + assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \ + r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \ + r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3)) + + +def test_TransferFunction_printing(): + tf1 = TransferFunction(x - 1, x + 1, x) + assert latex(tf1) == r"\frac{x - 1}{x + 1}" + tf2 = TransferFunction(x + 1, 2 - y, x) + assert latex(tf2) == r"\frac{x + 1}{2 - y}" + tf3 = TransferFunction(y, y**2 + 2*y + 3, y) + assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}" + + +def test_Parallel_printing(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + assert latex(Parallel(tf1, tf2)) == \ + r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}' + assert latex(Parallel(-tf2, tf1)) == \ + r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}' + + M_1 = Matrix([[5, 6], [6, 5/s]]) + T_1 = TransferFunctionMatrix.from_Matrix(M_1, s) + M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]]) + T_2 = TransferFunctionMatrix.from_Matrix(M_2, s) + M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]]) + T_3 = TransferFunctionMatrix.from_Matrix(M_3, s) + assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \ + r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \ + r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \ + == latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3)) + + +def test_TransferFunctionMatrix_printing(): + tf1 = TransferFunction(p, p + x, p) + tf2 = TransferFunction(-s + p, p + s, p) + tf3 = TransferFunction(p, y**2 + 2*y + 3, p) + assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \ + r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau' + assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \ + r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau' + + +def test_Feedback_printing(): + tf1 = TransferFunction(p, p + x, p) + tf2 = TransferFunction(-s + p, p + s, p) + # Negative Feedback (Default) + assert latex(Feedback(tf1, tf2)) == \ + r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}' + assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \ + r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}' + # Positive Feedback + assert latex(Feedback(tf1, tf2, 1)) == \ + r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}' + assert latex(Feedback(tf1*tf2, sign=1)) == \ + r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}' + + +def test_MIMOFeedback_printing(): + tf1 = TransferFunction(1, s, s) + tf2 = TransferFunction(s, s**2 - 1, s) + tf3 = TransferFunction(s, s - 1, s) + tf4 = TransferFunction(s**2, s**2 - 1, s) + + tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) + tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]]) + + # Negative Feedback (Default) + assert latex(MIMOFeedback(tfm_1, tfm_2)) == \ + r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \ + r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \ + r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau' + + # Positive Feedback + assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \ + r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \ + r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \ + r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \ + r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \ + r' & \frac{1}{s}\end{matrix}\right]_\tau' + + +def test_Quaternion_latex_printing(): + q = Quaternion(x, y, z, t) + assert latex(q) == r"x + y i + z j + t k" + q = Quaternion(x, y, z, x*t) + assert latex(q) == r"x + y i + z j + t x k" + q = Quaternion(x, y, z, x + t) + assert latex(q) == r"x + y i + z j + \left(t + x\right) k" + + +def test_TensorProduct_printing(): + from sympy.tensor.functions import TensorProduct + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + assert latex(TensorProduct(A, B)) == r"A \otimes B" + + +def test_WedgeProduct_printing(): + from sympy.diffgeom.rn import R2 + from sympy.diffgeom import WedgeProduct + wp = WedgeProduct(R2.dx, R2.dy) + assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y" + + +def test_issue_9216(): + expr_1 = Pow(1, -1, evaluate=False) + assert latex(expr_1) == r"1^{-1}" + + expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False) + assert latex(expr_2) == r"1^{1^{-1}}" + + expr_3 = Pow(3, -2, evaluate=False) + assert latex(expr_3) == r"\frac{1}{9}" + + expr_4 = Pow(1, -2, evaluate=False) + assert latex(expr_4) == r"1^{-2}" + + +def test_latex_printer_tensor(): + from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads + L = TensorIndexType("L") + i, j, k, l = tensor_indices("i j k l", L) + i0 = tensor_indices("i_0", L) + A, B, C, D = tensor_heads("A B C D", [L]) + H = TensorHead("H", [L, L]) + K = TensorHead("K", [L, L, L, L]) + + assert latex(i) == r"{}^{i}" + assert latex(-i) == r"{}_{i}" + + expr = A(i) + assert latex(expr) == r"A{}^{i}" + + expr = A(i0) + assert latex(expr) == r"A{}^{i_{0}}" + + expr = A(-i) + assert latex(expr) == r"A{}_{i}" + + expr = -3*A(i) + assert latex(expr) == r"-3A{}^{i}" + + expr = K(i, j, -k, -i0) + assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}" + + expr = K(i, -j, -k, i0) + assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}" + + expr = K(i, -j, k, -i0) + assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}" + + expr = H(i, -j) + assert latex(expr) == r"H{}^{i}{}_{j}" + + expr = H(i, j) + assert latex(expr) == r"H{}^{ij}" + + expr = H(-i, -j) + assert latex(expr) == r"H{}_{ij}" + + expr = (1+x)*A(i) + assert latex(expr) == r"\left(x + 1\right)A{}^{i}" + + expr = H(i, -i) + assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}" + + expr = H(i, -j)*A(j)*B(k) + assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}" + + expr = A(i) + 3*B(i) + assert latex(expr) == r"3B{}^{i} + A{}^{i}" + + # Test ``TensorElement``: + from sympy.tensor.tensor import TensorElement + + expr = TensorElement(K(i, j, k, l), {i: 3, k: 2}) + assert latex(expr) == r'K{}^{i=3,j,k=2,l}' + + expr = TensorElement(K(i, j, k, l), {i: 3}) + assert latex(expr) == r'K{}^{i=3,jkl}' + + expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2}) + assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}' + + expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2}) + assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}' + + expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2}) + assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}' + + expr = TensorElement(K(i, j, -k, -l), {i: 3}) + assert latex(expr) == r'K{}^{i=3,j}{}_{kl}' + + expr = PartialDerivative(A(i), A(i)) + assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}" + + expr = PartialDerivative(A(-i), A(-j)) + assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}" + + expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n)) + assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}" + + expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) + assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}" + + expr = PartialDerivative(3*A(-i), A(-j), A(-n)) + assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}" + + +def test_multiline_latex(): + a, b, c, d, e, f = symbols('a b c d e f') + expr = -a + 2*b -3*c +4*d -5*e + expected = r"\begin{eqnarray}" + "\n"\ + r"f & = &- a \nonumber\\" + "\n"\ + r"& & + 2 b \nonumber\\" + "\n"\ + r"& & - 3 c \nonumber\\" + "\n"\ + r"& & + 4 d \nonumber\\" + "\n"\ + r"& & - 5 e " + "\n"\ + r"\end{eqnarray}" + assert multiline_latex(f, expr, environment="eqnarray") == expected + + expected2 = r'\begin{eqnarray}' + '\n'\ + r'f & = &- a + 2 b \nonumber\\' + '\n'\ + r'& & - 3 c + 4 d \nonumber\\' + '\n'\ + r'& & - 5 e ' + '\n'\ + r'\end{eqnarray}' + + assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2 + + expected3 = r'\begin{eqnarray}' + '\n'\ + r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\ + r'& & + 4 d - 5 e ' + '\n'\ + r'\end{eqnarray}' + + assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3 + + expected3dots = r'\begin{eqnarray}' + '\n'\ + r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\ + r'& & + 4 d - 5 e ' + '\n'\ + r'\end{eqnarray}' + + assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots + + expected3align = r'\begin{align*}' + '\n'\ + r'f = &- a + 2 b - 3 c \\'+ '\n'\ + r'& + 4 d - 5 e ' + '\n'\ + r'\end{align*}' + + assert multiline_latex(f, expr, 3) == expected3align + assert multiline_latex(f, expr, 3, environment='align*') == expected3align + + expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\ + r'f & = &- a + 2 b \nonumber\\' + '\n'\ + r'& & - 3 c + 4 d \nonumber\\' + '\n'\ + r'& & - 5 e ' + '\n'\ + r'\end{IEEEeqnarray}' + + assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee + + raises(ValueError, lambda: multiline_latex(f, expr, environment="foo")) + +def test_issue_15353(): + a, x = symbols('a x') + # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a]) + sol = ConditionSet( + Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2) + assert latex(sol) == \ + r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \ + r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \ + r'\cos{\left(a x \right)} = 0 \right\}' + + +def test_latex_symbolic_probability(): + mu = symbols("mu") + sigma = symbols("sigma", positive=True) + X = Normal("X", mu, sigma) + assert latex(Expectation(X)) == r'\operatorname{E}\left[X\right]' + assert latex(Variance(X)) == r'\operatorname{Var}\left(X\right)' + assert latex(Probability(X > 0)) == r'\operatorname{P}\left(X > 0\right)' + Y = Normal("Y", mu, sigma) + assert latex(Covariance(X, Y)) == r'\operatorname{Cov}\left(X, Y\right)' + + +def test_trace(): + # Issue 15303 + from sympy.matrices.expressions.trace import trace + A = MatrixSymbol("A", 2, 2) + assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)" + assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)" + + +def test_print_basic(): + # Issue 15303 + from sympy.core.basic import Basic + from sympy.core.expr import Expr + + # dummy class for testing printing where the function is not + # implemented in latex.py + class UnimplementedExpr(Expr): + def __new__(cls, e): + return Basic.__new__(cls, e) + + # dummy function for testing + def unimplemented_expr(expr): + return UnimplementedExpr(expr).doit() + + # override class name to use superscript / subscript + def unimplemented_expr_sup_sub(expr): + result = UnimplementedExpr(expr) + result.__class__.__name__ = 'UnimplementedExpr_x^1' + return result + + assert latex(unimplemented_expr(x)) == r'\operatorname{UnimplementedExpr}\left(x\right)' + assert latex(unimplemented_expr(x**2)) == \ + r'\operatorname{UnimplementedExpr}\left(x^{2}\right)' + assert latex(unimplemented_expr_sup_sub(x)) == \ + r'\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right)' + + +def test_MatrixSymbol_bold(): + # Issue #15871 + from sympy.matrices.expressions.trace import trace + A = MatrixSymbol("A", 2, 2) + assert latex(trace(A), mat_symbol_style='bold') == \ + r"\operatorname{tr}\left(\mathbf{A} \right)" + assert latex(trace(A), mat_symbol_style='plain') == \ + r"\operatorname{tr}\left(A \right)" + + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + C = MatrixSymbol("C", 3, 3) + + assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}" + assert latex(A - A*B - B, mat_symbol_style='bold') == \ + r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}" + assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \ + r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}" + + A_k = MatrixSymbol("A_k", 3, 3) + assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}" + + A = MatrixSymbol(r"\nabla_k", 3, 3) + assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}" + +def test_AppliedPermutation(): + p = Permutation(0, 1, 2) + x = Symbol('x') + assert latex(AppliedPermutation(p, x)) == \ + r'\sigma_{\left( 0\; 1\; 2\right)}(x)' + + +def test_PermutationMatrix(): + p = Permutation(0, 1, 2) + assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}' + p = Permutation(0, 3)(1, 2) + assert latex(PermutationMatrix(p)) == \ + r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}' + + +def test_issue_21758(): + from sympy.functions.elementary.piecewise import piecewise_fold + from sympy.series.fourier import FourierSeries + x = Symbol('x') + k, n = symbols('k n') + fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula( + Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)), + (0, True))*sin(n*x)/pi, (n, 1, oo)))) + assert latex(piecewise_fold(fo)) == '\\begin{cases} 2 \\sin{\\left(x \\right)}' \ + ' - \\sin{\\left(2 x \\right)} + \\frac{2 \\sin{\\left(3 x \\right)}}{3} +' \ + ' \\ldots & \\text{for}\\: n > -\\infty \\wedge n < \\infty \\wedge ' \ + 'n \\neq 0 \\\\0 & \\text{otherwise} \\end{cases}' + assert latex(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), + SeqFormula(0, (n, 1, oo))))) == '0' + + +def test_imaginary_unit(): + assert latex(1 + I) == r'1 + i' + assert latex(1 + I, imaginary_unit='i') == r'1 + i' + assert latex(1 + I, imaginary_unit='j') == r'1 + j' + assert latex(1 + I, imaginary_unit='foo') == r'1 + foo' + assert latex(I, imaginary_unit="ti") == r'\text{i}' + assert latex(I, imaginary_unit="tj") == r'\text{j}' + + +def test_text_re_im(): + assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}' + assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}' + assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}' + assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}' + + +def test_latex_diffgeom(): + from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential + from sympy.diffgeom.rn import R2 + x,y = symbols('x y', real=True) + m = Manifold('M', 2) + assert latex(m) == r'\text{M}' + p = Patch('P', m) + assert latex(p) == r'\text{P}_{\text{M}}' + rect = CoordSystem('rect', p, [x, y]) + assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}' + b = BaseScalarField(rect, 0) + assert latex(b) == r'\mathbf{x}' + + g = Function('g') + s_field = g(R2.x, R2.y) + assert latex(Differential(s_field)) == \ + r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)' + + +def test_unit_printing(): + assert latex(5*meter) == r'5 \text{m}' + assert latex(3*gibibyte) == r'3 \text{gibibyte}' + assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}' + assert latex(4*micro*gram/second) == r'\frac{4 \mu \text{g}}{\text{s}}' + assert latex(5*milli*meter) == r'5 \text{m} \text{m}' + assert latex(milli) == r'\text{m}' + + +def test_issue_17092(): + x_star = Symbol('x^*') + assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}' + + +def test_latex_decimal_separator(): + + x, y, z, t = symbols('x y z t') + k, m, n = symbols('k m n', integer=True) + f, g, h = symbols('f g h', cls=Function) + + # comma decimal_separator + assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]') + assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}') + assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)') + assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)') + + # period decimal_separator + assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' ) + assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}') + assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)') + assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)') + + # default decimal_separator + assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]') + assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}') + assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)') + assert(latex((1,)) == r'\left( 1,\right)') + + assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02') + assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02') + x = symbols('x') + y = symbols('y') + z = symbols('z') + assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5') + + assert(latex(0.987, decimal_separator='comma') == r'0{,}987') + assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987') + assert(latex(.3, decimal_separator='comma') == r'0{,}3') + assert(latex(S(.3), decimal_separator='comma') == r'0{,}3') + + + assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}') + assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}') + assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}') + + x = symbols('x') + assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4') + assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}') + + # Error Handling tests + raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list')) + raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set')) + raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple')) + +def test_Str(): + from sympy.core.symbol import Str + assert str(Str('x')) == r'x' + +def test_latex_escape(): + assert latex_escape(r"~^\&%$#_{}") == "".join([ + r'\textasciitilde', + r'\textasciicircum', + r'\textbackslash', + r'\&', + r'\%', + r'\$', + r'\#', + r'\_', + r'\{', + r'\}', + ]) + +def test_emptyPrinter(): + class MyObject: + def __repr__(self): + return "" + + # unknown objects are monospaced + assert latex(MyObject()) == r"\mathtt{\text{}}" + + # even if they are nested within other objects + assert latex((MyObject(),)) == r"\left( \mathtt{\text{}},\right)" + +def test_global_settings(): + import inspect + + # settings should be visible in the signature of `latex` + assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i' + assert latex(I) == r'i' + try: + # but changing the defaults... + LatexPrinter.set_global_settings(imaginary_unit='j') + # ... should change the signature + assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j' + assert latex(I) == r'j' + finally: + # there's no public API to undo this, but we need to make sure we do + # so as not to impact other tests + del LatexPrinter._global_settings['imaginary_unit'] + + # check we really did undo it + assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i' + assert latex(I) == r'i' + +def test_pickleable(): + # this tests that the _PrintFunction instance is pickleable + import pickle + assert pickle.loads(pickle.dumps(latex)) is latex + +def test_printing_latex_array_expressions(): + assert latex(ArraySymbol("A", (2, 3, 4))) == "A" + assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}" + M = MatrixSymbol("M", 3, 3) + N = MatrixSymbol("N", 3, 3) + assert latex(ArrayElement(M*N, [x, 0])) == "{{\\left(M N\\right)}_{x, 0}}" + +def test_Array(): + arr = Array(range(10)) + assert latex(arr) == r'\left[\begin{matrix}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{matrix}\right]' + + arr = Array(range(11)) + # added empty arguments {} + assert latex(arr) == r'\left[\begin{array}{}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' + +def test_latex_with_unevaluated(): + with evaluate(False): + assert latex(a * a) == r"a a" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_llvmjit.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_llvmjit.py new file mode 100644 index 0000000000000000000000000000000000000000..709476f1d7517dc629210341594a70dc6f41808f --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_llvmjit.py @@ -0,0 +1,224 @@ +from sympy.external import import_module +from sympy.testing.pytest import raises +import ctypes + + +if import_module('llvmlite'): + import sympy.printing.llvmjitcode as g +else: + disabled = True + +import sympy +from sympy.abc import a, b, n + + +# copied from numpy.isclose documentation +def isclose(a, b): + rtol = 1e-5 + atol = 1e-8 + return abs(a-b) <= atol + rtol*abs(b) + + +def test_simple_expr(): + e = a + 1.0 + f = g.llvm_callable([a], e) + res = float(e.subs({a: 4.0}).evalf()) + jit_res = f(4.0) + + assert isclose(jit_res, res) + + +def test_two_arg(): + e = 4.0*a + b + 3.0 + f = g.llvm_callable([a, b], e) + res = float(e.subs({a: 4.0, b: 3.0}).evalf()) + jit_res = f(4.0, 3.0) + + assert isclose(jit_res, res) + + +def test_func(): + e = 4.0*sympy.exp(-a) + f = g.llvm_callable([a], e) + res = float(e.subs({a: 1.5}).evalf()) + jit_res = f(1.5) + + assert isclose(jit_res, res) + + +def test_two_func(): + e = 4.0*sympy.exp(-a) + sympy.exp(b) + f = g.llvm_callable([a, b], e) + res = float(e.subs({a: 1.5, b: 2.0}).evalf()) + jit_res = f(1.5, 2.0) + + assert isclose(jit_res, res) + + +def test_two_sqrt(): + e = 4.0*sympy.sqrt(a) + sympy.sqrt(b) + f = g.llvm_callable([a, b], e) + res = float(e.subs({a: 1.5, b: 2.0}).evalf()) + jit_res = f(1.5, 2.0) + + assert isclose(jit_res, res) + + +def test_two_pow(): + e = a**1.5 + b**7 + f = g.llvm_callable([a, b], e) + res = float(e.subs({a: 1.5, b: 2.0}).evalf()) + jit_res = f(1.5, 2.0) + + assert isclose(jit_res, res) + + +def test_callback(): + e = a + 1.2 + f = g.llvm_callable([a], e, callback_type='scipy.integrate.test') + m = ctypes.c_int(1) + array_type = ctypes.c_double * 1 + inp = {a: 2.2} + array = array_type(inp[a]) + jit_res = f(m, array) + + res = float(e.subs(inp).evalf()) + + assert isclose(jit_res, res) + + +def test_callback_cubature(): + e = a + 1.2 + f = g.llvm_callable([a], e, callback_type='cubature') + m = ctypes.c_int(1) + array_type = ctypes.c_double * 1 + inp = {a: 2.2} + array = array_type(inp[a]) + out_array = array_type(0.0) + jit_ret = f(m, array, None, m, out_array) + + assert jit_ret == 0 + + res = float(e.subs(inp).evalf()) + + assert isclose(out_array[0], res) + + +def test_callback_two(): + e = 3*a*b + f = g.llvm_callable([a, b], e, callback_type='scipy.integrate.test') + m = ctypes.c_int(2) + array_type = ctypes.c_double * 2 + inp = {a: 0.2, b: 1.7} + array = array_type(inp[a], inp[b]) + jit_res = f(m, array) + + res = float(e.subs(inp).evalf()) + + assert isclose(jit_res, res) + + +def test_callback_alt_two(): + d = sympy.IndexedBase('d') + e = 3*d[0]*d[1] + f = g.llvm_callable([n, d], e, callback_type='scipy.integrate.test') + m = ctypes.c_int(2) + array_type = ctypes.c_double * 2 + inp = {d[0]: 0.2, d[1]: 1.7} + array = array_type(inp[d[0]], inp[d[1]]) + jit_res = f(m, array) + + res = float(e.subs(inp).evalf()) + + assert isclose(jit_res, res) + + +def test_multiple_statements(): + # Match return from CSE + e = [[(b, 4.0*a)], [b + 5]] + f = g.llvm_callable([a], e) + b_val = e[0][0][1].subs({a: 1.5}) + res = float(e[1][0].subs({b: b_val}).evalf()) + jit_res = f(1.5) + assert isclose(jit_res, res) + + f_callback = g.llvm_callable([a], e, callback_type='scipy.integrate.test') + m = ctypes.c_int(1) + array_type = ctypes.c_double * 1 + array = array_type(1.5) + jit_callback_res = f_callback(m, array) + assert isclose(jit_callback_res, res) + + +def test_cse(): + e = a*a + b*b + sympy.exp(-a*a - b*b) + e2 = sympy.cse(e) + f = g.llvm_callable([a, b], e2) + res = float(e.subs({a: 2.3, b: 0.1}).evalf()) + jit_res = f(2.3, 0.1) + + assert isclose(jit_res, res) + + +def eval_cse(e, sub_dict): + tmp_dict = {} + for tmp_name, tmp_expr in e[0]: + e2 = tmp_expr.subs(sub_dict) + e3 = e2.subs(tmp_dict) + tmp_dict[tmp_name] = e3 + return [e.subs(sub_dict).subs(tmp_dict) for e in e[1]] + + +def test_cse_multiple(): + e1 = a*a + e2 = a*a + b*b + e3 = sympy.cse([e1, e2]) + + raises(NotImplementedError, + lambda: g.llvm_callable([a, b], e3, callback_type='scipy.integrate')) + + f = g.llvm_callable([a, b], e3) + jit_res = f(0.1, 1.5) + assert len(jit_res) == 2 + res = eval_cse(e3, {a: 0.1, b: 1.5}) + assert isclose(res[0], jit_res[0]) + assert isclose(res[1], jit_res[1]) + + +def test_callback_cubature_multiple(): + e1 = a*a + e2 = a*a + b*b + e3 = sympy.cse([e1, e2, 4*e2]) + f = g.llvm_callable([a, b], e3, callback_type='cubature') + + # Number of input variables + ndim = 2 + # Number of output expression values + outdim = 3 + + m = ctypes.c_int(ndim) + fdim = ctypes.c_int(outdim) + array_type = ctypes.c_double * ndim + out_array_type = ctypes.c_double * outdim + inp = {a: 0.2, b: 1.5} + array = array_type(inp[a], inp[b]) + out_array = out_array_type() + jit_ret = f(m, array, None, fdim, out_array) + + assert jit_ret == 0 + + res = eval_cse(e3, inp) + + assert isclose(out_array[0], res[0]) + assert isclose(out_array[1], res[1]) + assert isclose(out_array[2], res[2]) + + +def test_symbol_not_found(): + e = a*a + b + raises(LookupError, lambda: g.llvm_callable([a], e)) + + +def test_bad_callback(): + e = a + raises(ValueError, lambda: g.llvm_callable([a], e, callback_type='bad_callback')) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathematica.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathematica.py new file mode 100644 index 0000000000000000000000000000000000000000..5780ceb900ab5ad34ba0dccdb10281a3f1dc5d18 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathematica.py @@ -0,0 +1,287 @@ +from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, + Derivative, Eq, Ne, Le, Lt, Gt, Ge) +from sympy.integrals import Integral +from sympy.concrete import Sum +from sympy.functions import (exp, sin, cos, fresnelc, fresnels, conjugate, Max, + Min, gamma, polygamma, loggamma, erf, erfi, erfc, + erf2, expint, erfinv, erfcinv, Ei, Si, Ci, li, + Shi, Chi, uppergamma, beta, subfactorial, erf2inv, + factorial, factorial2, catalan, RisingFactorial, + FallingFactorial, harmonic, atan2, sec, acsc, + hermite, laguerre, assoc_laguerre, jacobi, + gegenbauer, chebyshevt, chebyshevu, legendre, + assoc_legendre, Li, LambertW) + +from sympy.printing.mathematica import mathematica_code as mcode + +x, y, z, w = symbols('x,y,z,w') +f = Function('f') + + +def test_Integer(): + assert mcode(Integer(67)) == "67" + assert mcode(Integer(-1)) == "-1" + + +def test_Rational(): + assert mcode(Rational(3, 7)) == "3/7" + assert mcode(Rational(18, 9)) == "2" + assert mcode(Rational(3, -7)) == "-3/7" + assert mcode(Rational(-3, -7)) == "3/7" + assert mcode(x + Rational(3, 7)) == "x + 3/7" + assert mcode(Rational(3, 7)*x) == "(3/7)*x" + + +def test_Relational(): + assert mcode(Eq(x, y)) == "x == y" + assert mcode(Ne(x, y)) == "x != y" + assert mcode(Le(x, y)) == "x <= y" + assert mcode(Lt(x, y)) == "x < y" + assert mcode(Gt(x, y)) == "x > y" + assert mcode(Ge(x, y)) == "x >= y" + + +def test_Function(): + assert mcode(f(x, y, z)) == "f[x, y, z]" + assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]" + assert mcode(sec(x) * acsc(x)) == "ArcCsc[x]*Sec[x]" + assert mcode(atan2(x, y)) == "ArcTan[x, y]" + assert mcode(conjugate(x)) == "Conjugate[x]" + assert mcode(Max(x, y, z)*Min(y, z)) == "Max[x, y, z]*Min[y, z]" + assert mcode(fresnelc(x)) == "FresnelC[x]" + assert mcode(fresnels(x)) == "FresnelS[x]" + assert mcode(gamma(x)) == "Gamma[x]" + assert mcode(uppergamma(x, y)) == "Gamma[x, y]" + assert mcode(polygamma(x, y)) == "PolyGamma[x, y]" + assert mcode(loggamma(x)) == "LogGamma[x]" + assert mcode(erf(x)) == "Erf[x]" + assert mcode(erfc(x)) == "Erfc[x]" + assert mcode(erfi(x)) == "Erfi[x]" + assert mcode(erf2(x, y)) == "Erf[x, y]" + assert mcode(expint(x, y)) == "ExpIntegralE[x, y]" + assert mcode(erfcinv(x)) == "InverseErfc[x]" + assert mcode(erfinv(x)) == "InverseErf[x]" + assert mcode(erf2inv(x, y)) == "InverseErf[x, y]" + assert mcode(Ei(x)) == "ExpIntegralEi[x]" + assert mcode(Ci(x)) == "CosIntegral[x]" + assert mcode(li(x)) == "LogIntegral[x]" + assert mcode(Si(x)) == "SinIntegral[x]" + assert mcode(Shi(x)) == "SinhIntegral[x]" + assert mcode(Chi(x)) == "CoshIntegral[x]" + assert mcode(beta(x, y)) == "Beta[x, y]" + assert mcode(factorial(x)) == "Factorial[x]" + assert mcode(factorial2(x)) == "Factorial2[x]" + assert mcode(subfactorial(x)) == "Subfactorial[x]" + assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]" + assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]" + assert mcode(catalan(x)) == "CatalanNumber[x]" + assert mcode(harmonic(x)) == "HarmonicNumber[x]" + assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]" + assert mcode(Li(x)) == "LogIntegral[x] - LogIntegral[2]" + assert mcode(LambertW(x)) == "ProductLog[x]" + assert mcode(LambertW(x, -1)) == "ProductLog[-1, x]" + assert mcode(LambertW(x, y)) == "ProductLog[y, x]" + + +def test_special_polynomials(): + assert mcode(hermite(x, y)) == "HermiteH[x, y]" + assert mcode(laguerre(x, y)) == "LaguerreL[x, y]" + assert mcode(assoc_laguerre(x, y, z)) == "LaguerreL[x, y, z]" + assert mcode(jacobi(x, y, z, w)) == "JacobiP[x, y, z, w]" + assert mcode(gegenbauer(x, y, z)) == "GegenbauerC[x, y, z]" + assert mcode(chebyshevt(x, y)) == "ChebyshevT[x, y]" + assert mcode(chebyshevu(x, y)) == "ChebyshevU[x, y]" + assert mcode(legendre(x, y)) == "LegendreP[x, y]" + assert mcode(assoc_legendre(x, y, z)) == "LegendreP[x, y, z]" + + +def test_Pow(): + assert mcode(x**3) == "x^3" + assert mcode(x**(y**3)) == "x^(y^3)" + assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \ + "(3.5*f[x])^(-x + y^x)/(x^2 + y)" + assert mcode(x**-1.0) == 'x^(-1.0)' + assert mcode(x**Rational(2, 3)) == 'x^(2/3)' + + +def test_Mul(): + A, B, C, D = symbols('A B C D', commutative=False) + assert mcode(x*y*z) == "x*y*z" + assert mcode(x*y*A) == "x*y*A" + assert mcode(x*y*A*B) == "x*y*A**B" + assert mcode(x*y*A*B*C) == "x*y*A**B**C" + assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A" + + +def test_constants(): + assert mcode(S.Zero) == "0" + assert mcode(S.One) == "1" + assert mcode(S.NegativeOne) == "-1" + assert mcode(S.Half) == "1/2" + assert mcode(S.ImaginaryUnit) == "I" + + assert mcode(oo) == "Infinity" + assert mcode(S.NegativeInfinity) == "-Infinity" + assert mcode(S.ComplexInfinity) == "ComplexInfinity" + assert mcode(S.NaN) == "Indeterminate" + + assert mcode(S.Exp1) == "E" + assert mcode(pi) == "Pi" + assert mcode(S.GoldenRatio) == "GoldenRatio" + assert mcode(S.TribonacciConstant) == \ + "(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \ + "(1/3)*(3*33^(1/2) + 19)^(1/3))" + assert mcode(2*S.TribonacciConstant) == \ + "2*(1/3 + (1/3)*(19 - 3*33^(1/2))^(1/3) + " \ + "(1/3)*(3*33^(1/2) + 19)^(1/3))" + assert mcode(S.EulerGamma) == "EulerGamma" + assert mcode(S.Catalan) == "Catalan" + + +def test_containers(): + assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ + "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}" + assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}" + assert mcode([1]) == "{1}" + assert mcode((1,)) == "{1}" + assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}" + + +def test_matrices(): + from sympy.matrices import MutableDenseMatrix, MutableSparseMatrix, \ + ImmutableDenseMatrix, ImmutableSparseMatrix + A = MutableDenseMatrix( + [[1, -1, 0, 0], + [0, 1, -1, 0], + [0, 0, 1, -1], + [0, 0, 0, 1]] + ) + B = MutableSparseMatrix(A) + C = ImmutableDenseMatrix(A) + D = ImmutableSparseMatrix(A) + + assert mcode(C) == mcode(A) == \ + "{{1, -1, 0, 0}, " \ + "{0, 1, -1, 0}, " \ + "{0, 0, 1, -1}, " \ + "{0, 0, 0, 1}}" + + assert mcode(D) == mcode(B) == \ + "SparseArray[{" \ + "{1, 1} -> 1, {1, 2} -> -1, {2, 2} -> 1, {2, 3} -> -1, " \ + "{3, 3} -> 1, {3, 4} -> -1, {4, 4} -> 1" \ + "}, {4, 4}]" + + # Trivial cases of matrices + assert mcode(MutableDenseMatrix(0, 0, [])) == '{}' + assert mcode(MutableSparseMatrix(0, 0, [])) == 'SparseArray[{}, {0, 0}]' + assert mcode(MutableDenseMatrix(0, 3, [])) == '{}' + assert mcode(MutableSparseMatrix(0, 3, [])) == 'SparseArray[{}, {0, 3}]' + assert mcode(MutableDenseMatrix(3, 0, [])) == '{{}, {}, {}}' + assert mcode(MutableSparseMatrix(3, 0, [])) == 'SparseArray[{}, {3, 0}]' + +def test_NDArray(): + from sympy.tensor.array import ( + MutableDenseNDimArray, ImmutableDenseNDimArray, + MutableSparseNDimArray, ImmutableSparseNDimArray) + + example = MutableDenseNDimArray( + [[[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]], + [[13, 14, 15, 16], + [17, 18, 19, 20], + [21, 22, 23, 24]]] + ) + + assert mcode(example) == \ + "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \ + "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}" + + example = ImmutableDenseNDimArray(example) + + assert mcode(example) == \ + "{{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, " \ + "{{13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}}}" + + example = MutableSparseNDimArray(example) + + assert mcode(example) == \ + "SparseArray[{" \ + "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \ + "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \ + "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \ + "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \ + "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \ + "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \ + "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \ + "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \ + "}, {2, 3, 4}]" + + example = ImmutableSparseNDimArray(example) + + assert mcode(example) == \ + "SparseArray[{" \ + "{1, 1, 1} -> 1, {1, 1, 2} -> 2, {1, 1, 3} -> 3, " \ + "{1, 1, 4} -> 4, {1, 2, 1} -> 5, {1, 2, 2} -> 6, " \ + "{1, 2, 3} -> 7, {1, 2, 4} -> 8, {1, 3, 1} -> 9, " \ + "{1, 3, 2} -> 10, {1, 3, 3} -> 11, {1, 3, 4} -> 12, " \ + "{2, 1, 1} -> 13, {2, 1, 2} -> 14, {2, 1, 3} -> 15, " \ + "{2, 1, 4} -> 16, {2, 2, 1} -> 17, {2, 2, 2} -> 18, " \ + "{2, 2, 3} -> 19, {2, 2, 4} -> 20, {2, 3, 1} -> 21, " \ + "{2, 3, 2} -> 22, {2, 3, 3} -> 23, {2, 3, 4} -> 24" \ + "}, {2, 3, 4}]" + + +def test_Integral(): + assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]" + assert mcode(Integral(exp(-x**2 - y**2), + (x, -oo, oo), + (y, -oo, oo))) == \ + "Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ + "{y, -Infinity, Infinity}]]" + + +def test_Derivative(): + assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]" + assert mcode(Derivative(x, x)) == "Hold[D[x, x]]" + assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]" + assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]" + assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]" + + +def test_Sum(): + assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]" + assert mcode(Sum(exp(-x**2 - y**2), + (x, -oo, oo), + (y, -oo, oo))) == \ + "Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ + "{y, -Infinity, Infinity}]]" + + +def test_comment(): + from sympy.printing.mathematica import MCodePrinter + assert MCodePrinter()._get_comment("Hello World") == \ + "(* Hello World *)" + + +def test_userfuncs(): + # Dictionary mutation test + some_function = symbols("some_function", cls=Function) + my_user_functions = {"some_function": "SomeFunction"} + assert mcode( + some_function(z), + user_functions=my_user_functions) == \ + 'SomeFunction[z]' + assert mcode( + some_function(z), + user_functions=my_user_functions) == \ + 'SomeFunction[z]' + + # List argument test + my_user_functions = \ + {"some_function": [(lambda x: True, "SomeOtherFunction")]} + assert mcode( + some_function(z), + user_functions=my_user_functions) == \ + 'SomeOtherFunction[z]' diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathml.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathml.py new file mode 100644 index 0000000000000000000000000000000000000000..8d5049de237a5c6ed1614b5b02ba4280184d9284 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_mathml.py @@ -0,0 +1,2046 @@ +from sympy.calculus.accumulationbounds import AccumBounds +from sympy.concrete.summations import Sum +from sympy.core.basic import Basic +from sympy.core.containers import Tuple +from sympy.core.function import Derivative, Lambda, diff, Function +from sympy.core.numbers import (zoo, Float, Integer, I, oo, pi, E, + Rational) +from sympy.core.relational import Lt, Ge, Ne, Eq +from sympy.core.singleton import S +from sympy.core.symbol import symbols, Symbol +from sympy.core.sympify import sympify +from sympy.functions.combinatorial.factorials import (factorial2, + binomial, factorial) +from sympy.functions.combinatorial.numbers import (lucas, bell, + catalan, euler, tribonacci, fibonacci, bernoulli) +from sympy.functions.elementary.complexes import re, im, conjugate, Abs +from sympy.functions.elementary.exponential import exp, LambertW, log +from sympy.functions.elementary.hyperbolic import (tanh, acoth, atanh, + coth, asinh, acsch, asech, acosh, csch, sinh, cosh, sech) +from sympy.functions.elementary.integers import ceiling, floor +from sympy.functions.elementary.miscellaneous import Max, Min +from sympy.functions.elementary.trigonometric import (csc, sec, tan, + atan, sin, asec, cot, cos, acot, acsc, asin, acos) +from sympy.functions.special.delta_functions import Heaviside +from sympy.functions.special.elliptic_integrals import (elliptic_pi, + elliptic_f, elliptic_k, elliptic_e) +from sympy.functions.special.error_functions import (fresnelc, + fresnels, Ei, expint) +from sympy.functions.special.gamma_functions import (gamma, uppergamma, + lowergamma) +from sympy.functions.special.mathieu_functions import (mathieusprime, + mathieus, mathieucprime, mathieuc) +from sympy.functions.special.polynomials import (jacobi, chebyshevu, + chebyshevt, hermite, assoc_legendre, gegenbauer, assoc_laguerre, + legendre, laguerre) +from sympy.functions.special.singularity_functions import SingularityFunction +from sympy.functions.special.zeta_functions import (polylog, stieltjes, + lerchphi, dirichlet_eta, zeta) +from sympy.integrals.integrals import Integral +from sympy.logic.boolalg import (Xor, Or, false, true, And, Equivalent, + Implies, Not) +from sympy.matrices.dense import Matrix +from sympy.matrices.expressions.determinant import Determinant +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.ntheory.factor_ import (totient, reduced_totient, primenu, + primeomega) +from sympy.physics.quantum import (ComplexSpace, FockSpace, hbar, + HilbertSpace, Dagger) +from sympy.printing.mathml import (MathMLPresentationPrinter, + MathMLPrinter, MathMLContentPrinter, mathml) +from sympy.series.limits import Limit +from sympy.sets.contains import Contains +from sympy.sets.fancysets import Range +from sympy.sets.sets import (Interval, Union, SymmetricDifference, + Complement, FiniteSet, Intersection, ProductSet) +from sympy.stats.rv import RandomSymbol +from sympy.tensor.indexed import IndexedBase +from sympy.vector import (Divergence, CoordSys3D, Cross, Curl, Dot, + Laplacian, Gradient) +from sympy.testing.pytest import raises + +x, y, z, a, b, c, d, e, n = symbols('x:z a:e n') +mp = MathMLContentPrinter() +mpp = MathMLPresentationPrinter() + + +def test_mathml_printer(): + m = MathMLPrinter() + assert m.doprint(1+x) == mp.doprint(1+x) + + +def test_content_printmethod(): + assert mp.doprint(1 + x) == 'x1' + + +def test_content_mathml_core(): + mml_1 = mp._print(1 + x) + assert mml_1.nodeName == 'apply' + nodes = mml_1.childNodes + assert len(nodes) == 3 + assert nodes[0].nodeName == 'plus' + assert nodes[0].hasChildNodes() is False + assert nodes[0].nodeValue is None + assert nodes[1].nodeName in ['cn', 'ci'] + if nodes[1].nodeName == 'cn': + assert nodes[1].childNodes[0].nodeValue == '1' + assert nodes[2].childNodes[0].nodeValue == 'x' + else: + assert nodes[1].childNodes[0].nodeValue == 'x' + assert nodes[2].childNodes[0].nodeValue == '1' + + mml_2 = mp._print(x**2) + assert mml_2.nodeName == 'apply' + nodes = mml_2.childNodes + assert nodes[1].childNodes[0].nodeValue == 'x' + assert nodes[2].childNodes[0].nodeValue == '2' + + mml_3 = mp._print(2*x) + assert mml_3.nodeName == 'apply' + nodes = mml_3.childNodes + assert nodes[0].nodeName == 'times' + assert nodes[1].childNodes[0].nodeValue == '2' + assert nodes[2].childNodes[0].nodeValue == 'x' + + mml = mp._print(Float(1.0, 2)*x) + assert mml.nodeName == 'apply' + nodes = mml.childNodes + assert nodes[0].nodeName == 'times' + assert nodes[1].childNodes[0].nodeValue == '1.0' + assert nodes[2].childNodes[0].nodeValue == 'x' + + +def test_content_mathml_functions(): + mml_1 = mp._print(sin(x)) + assert mml_1.nodeName == 'apply' + assert mml_1.childNodes[0].nodeName == 'sin' + assert mml_1.childNodes[1].nodeName == 'ci' + + mml_2 = mp._print(diff(sin(x), x, evaluate=False)) + assert mml_2.nodeName == 'apply' + assert mml_2.childNodes[0].nodeName == 'diff' + assert mml_2.childNodes[1].nodeName == 'bvar' + assert mml_2.childNodes[1].childNodes[ + 0].nodeName == 'ci' # below bvar there's x/ci> + + mml_3 = mp._print(diff(cos(x*y), x, evaluate=False)) + assert mml_3.nodeName == 'apply' + assert mml_3.childNodes[0].nodeName == 'partialdiff' + assert mml_3.childNodes[1].nodeName == 'bvar' + assert mml_3.childNodes[1].childNodes[ + 0].nodeName == 'ci' # below bvar there's x/ci> + + +def test_content_mathml_limits(): + # XXX No unevaluated limits + lim_fun = sin(x)/x + mml_1 = mp._print(Limit(lim_fun, x, 0)) + assert mml_1.childNodes[0].nodeName == 'limit' + assert mml_1.childNodes[1].nodeName == 'bvar' + assert mml_1.childNodes[2].nodeName == 'lowlimit' + assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml() + + +def test_content_mathml_integrals(): + integrand = x + mml_1 = mp._print(Integral(integrand, (x, 0, 1))) + assert mml_1.childNodes[0].nodeName == 'int' + assert mml_1.childNodes[1].nodeName == 'bvar' + assert mml_1.childNodes[2].nodeName == 'lowlimit' + assert mml_1.childNodes[3].nodeName == 'uplimit' + assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml() + + +def test_content_mathml_matrices(): + A = Matrix([1, 2, 3]) + B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) + mll_1 = mp._print(A) + assert mll_1.childNodes[0].nodeName == 'matrixrow' + assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn' + assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1' + assert mll_1.childNodes[1].nodeName == 'matrixrow' + assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn' + assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' + assert mll_1.childNodes[2].nodeName == 'matrixrow' + assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn' + assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3' + mll_2 = mp._print(B) + assert mll_2.childNodes[0].nodeName == 'matrixrow' + assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn' + assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0' + assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn' + assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5' + assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn' + assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4' + assert mll_2.childNodes[1].nodeName == 'matrixrow' + assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn' + assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' + assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn' + assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3' + assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn' + assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1' + assert mll_2.childNodes[2].nodeName == 'matrixrow' + assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn' + assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9' + assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn' + assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7' + assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn' + assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9' + + +def test_content_mathml_sums(): + summand = x + mml_1 = mp._print(Sum(summand, (x, 1, 10))) + assert mml_1.childNodes[0].nodeName == 'sum' + assert mml_1.childNodes[1].nodeName == 'bvar' + assert mml_1.childNodes[2].nodeName == 'lowlimit' + assert mml_1.childNodes[3].nodeName == 'uplimit' + assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml() + + +def test_content_mathml_tuples(): + mml_1 = mp._print([2]) + assert mml_1.nodeName == 'list' + assert mml_1.childNodes[0].nodeName == 'cn' + assert len(mml_1.childNodes) == 1 + + mml_2 = mp._print([2, Integer(1)]) + assert mml_2.nodeName == 'list' + assert mml_2.childNodes[0].nodeName == 'cn' + assert mml_2.childNodes[1].nodeName == 'cn' + assert len(mml_2.childNodes) == 2 + + +def test_content_mathml_add(): + mml = mp._print(x**5 - x**4 + x) + assert mml.childNodes[0].nodeName == 'plus' + assert mml.childNodes[1].childNodes[0].nodeName == 'minus' + assert mml.childNodes[1].childNodes[1].nodeName == 'apply' + + +def test_content_mathml_Rational(): + mml_1 = mp._print(Rational(1, 1)) + """should just return a number""" + assert mml_1.nodeName == 'cn' + + mml_2 = mp._print(Rational(2, 5)) + assert mml_2.childNodes[0].nodeName == 'divide' + + +def test_content_mathml_constants(): + mml = mp._print(I) + assert mml.nodeName == 'imaginaryi' + + mml = mp._print(E) + assert mml.nodeName == 'exponentiale' + + mml = mp._print(oo) + assert mml.nodeName == 'infinity' + + mml = mp._print(pi) + assert mml.nodeName == 'pi' + + assert mathml(hbar) == '' + assert mathml(S.TribonacciConstant) == '' + assert mathml(S.GoldenRatio) == 'φ' + mml = mathml(S.EulerGamma) + assert mml == '' + + mml = mathml(S.EmptySet) + assert mml == '' + + mml = mathml(S.true) + assert mml == '' + + mml = mathml(S.false) + assert mml == '' + + mml = mathml(S.NaN) + assert mml == '' + + +def test_content_mathml_trig(): + mml = mp._print(sin(x)) + assert mml.childNodes[0].nodeName == 'sin' + + mml = mp._print(cos(x)) + assert mml.childNodes[0].nodeName == 'cos' + + mml = mp._print(tan(x)) + assert mml.childNodes[0].nodeName == 'tan' + + mml = mp._print(cot(x)) + assert mml.childNodes[0].nodeName == 'cot' + + mml = mp._print(csc(x)) + assert mml.childNodes[0].nodeName == 'csc' + + mml = mp._print(sec(x)) + assert mml.childNodes[0].nodeName == 'sec' + + mml = mp._print(asin(x)) + assert mml.childNodes[0].nodeName == 'arcsin' + + mml = mp._print(acos(x)) + assert mml.childNodes[0].nodeName == 'arccos' + + mml = mp._print(atan(x)) + assert mml.childNodes[0].nodeName == 'arctan' + + mml = mp._print(acot(x)) + assert mml.childNodes[0].nodeName == 'arccot' + + mml = mp._print(acsc(x)) + assert mml.childNodes[0].nodeName == 'arccsc' + + mml = mp._print(asec(x)) + assert mml.childNodes[0].nodeName == 'arcsec' + + mml = mp._print(sinh(x)) + assert mml.childNodes[0].nodeName == 'sinh' + + mml = mp._print(cosh(x)) + assert mml.childNodes[0].nodeName == 'cosh' + + mml = mp._print(tanh(x)) + assert mml.childNodes[0].nodeName == 'tanh' + + mml = mp._print(coth(x)) + assert mml.childNodes[0].nodeName == 'coth' + + mml = mp._print(csch(x)) + assert mml.childNodes[0].nodeName == 'csch' + + mml = mp._print(sech(x)) + assert mml.childNodes[0].nodeName == 'sech' + + mml = mp._print(asinh(x)) + assert mml.childNodes[0].nodeName == 'arcsinh' + + mml = mp._print(atanh(x)) + assert mml.childNodes[0].nodeName == 'arctanh' + + mml = mp._print(acosh(x)) + assert mml.childNodes[0].nodeName == 'arccosh' + + mml = mp._print(acoth(x)) + assert mml.childNodes[0].nodeName == 'arccoth' + + mml = mp._print(acsch(x)) + assert mml.childNodes[0].nodeName == 'arccsch' + + mml = mp._print(asech(x)) + assert mml.childNodes[0].nodeName == 'arcsech' + + +def test_content_mathml_relational(): + mml_1 = mp._print(Eq(x, 1)) + assert mml_1.nodeName == 'apply' + assert mml_1.childNodes[0].nodeName == 'eq' + assert mml_1.childNodes[1].nodeName == 'ci' + assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' + assert mml_1.childNodes[2].nodeName == 'cn' + assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' + + mml_2 = mp._print(Ne(1, x)) + assert mml_2.nodeName == 'apply' + assert mml_2.childNodes[0].nodeName == 'neq' + assert mml_2.childNodes[1].nodeName == 'cn' + assert mml_2.childNodes[1].childNodes[0].nodeValue == '1' + assert mml_2.childNodes[2].nodeName == 'ci' + assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' + + mml_3 = mp._print(Ge(1, x)) + assert mml_3.nodeName == 'apply' + assert mml_3.childNodes[0].nodeName == 'geq' + assert mml_3.childNodes[1].nodeName == 'cn' + assert mml_3.childNodes[1].childNodes[0].nodeValue == '1' + assert mml_3.childNodes[2].nodeName == 'ci' + assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' + + mml_4 = mp._print(Lt(1, x)) + assert mml_4.nodeName == 'apply' + assert mml_4.childNodes[0].nodeName == 'lt' + assert mml_4.childNodes[1].nodeName == 'cn' + assert mml_4.childNodes[1].childNodes[0].nodeValue == '1' + assert mml_4.childNodes[2].nodeName == 'ci' + assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' + + +def test_content_symbol(): + mml = mp._print(x) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeValue == 'x' + del mml + + mml = mp._print(Symbol("x^2")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mp._print(Symbol("x__2")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mp._print(Symbol("x_2")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msub' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mp._print(Symbol("x^3_2")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msubsup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' + assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' + del mml + + mml = mp._print(Symbol("x__3_2")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msubsup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2' + assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3' + del mml + + mml = mp._print(Symbol("x_2_a")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msub' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ + 0].nodeValue == '2' + assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' + assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ + 0].nodeValue == ' ' + assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ + 0].nodeValue == 'a' + del mml + + mml = mp._print(Symbol("x^2^a")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ + 0].nodeValue == '2' + assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' + assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ + 0].nodeValue == ' ' + assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ + 0].nodeValue == 'a' + del mml + + mml = mp._print(Symbol("x__2__a")) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeName == 'mml:msup' + assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[ + 0].nodeValue == '2' + assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo' + assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[ + 0].nodeValue == ' ' + assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi' + assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[ + 0].nodeValue == 'a' + del mml + + +def test_content_mathml_greek(): + mml = mp._print(Symbol('alpha')) + assert mml.nodeName == 'ci' + assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' + + assert mp.doprint(Symbol('alpha')) == 'α' + assert mp.doprint(Symbol('beta')) == 'β' + assert mp.doprint(Symbol('gamma')) == 'γ' + assert mp.doprint(Symbol('delta')) == 'δ' + assert mp.doprint(Symbol('epsilon')) == 'ε' + assert mp.doprint(Symbol('zeta')) == 'ζ' + assert mp.doprint(Symbol('eta')) == 'η' + assert mp.doprint(Symbol('theta')) == 'θ' + assert mp.doprint(Symbol('iota')) == 'ι' + assert mp.doprint(Symbol('kappa')) == 'κ' + assert mp.doprint(Symbol('lambda')) == 'λ' + assert mp.doprint(Symbol('mu')) == 'μ' + assert mp.doprint(Symbol('nu')) == 'ν' + assert mp.doprint(Symbol('xi')) == 'ξ' + assert mp.doprint(Symbol('omicron')) == 'ο' + assert mp.doprint(Symbol('pi')) == 'π' + assert mp.doprint(Symbol('rho')) == 'ρ' + assert mp.doprint(Symbol('varsigma')) == 'ς' + assert mp.doprint(Symbol('sigma')) == 'σ' + assert mp.doprint(Symbol('tau')) == 'τ' + assert mp.doprint(Symbol('upsilon')) == 'υ' + assert mp.doprint(Symbol('phi')) == 'φ' + assert mp.doprint(Symbol('chi')) == 'χ' + assert mp.doprint(Symbol('psi')) == 'ψ' + assert mp.doprint(Symbol('omega')) == 'ω' + + assert mp.doprint(Symbol('Alpha')) == 'Α' + assert mp.doprint(Symbol('Beta')) == 'Β' + assert mp.doprint(Symbol('Gamma')) == 'Γ' + assert mp.doprint(Symbol('Delta')) == 'Δ' + assert mp.doprint(Symbol('Epsilon')) == 'Ε' + assert mp.doprint(Symbol('Zeta')) == 'Ζ' + assert mp.doprint(Symbol('Eta')) == 'Η' + assert mp.doprint(Symbol('Theta')) == 'Θ' + assert mp.doprint(Symbol('Iota')) == 'Ι' + assert mp.doprint(Symbol('Kappa')) == 'Κ' + assert mp.doprint(Symbol('Lambda')) == 'Λ' + assert mp.doprint(Symbol('Mu')) == 'Μ' + assert mp.doprint(Symbol('Nu')) == 'Ν' + assert mp.doprint(Symbol('Xi')) == 'Ξ' + assert mp.doprint(Symbol('Omicron')) == 'Ο' + assert mp.doprint(Symbol('Pi')) == 'Π' + assert mp.doprint(Symbol('Rho')) == 'Ρ' + assert mp.doprint(Symbol('Sigma')) == 'Σ' + assert mp.doprint(Symbol('Tau')) == 'Τ' + assert mp.doprint(Symbol('Upsilon')) == 'Υ' + assert mp.doprint(Symbol('Phi')) == 'Φ' + assert mp.doprint(Symbol('Chi')) == 'Χ' + assert mp.doprint(Symbol('Psi')) == 'Ψ' + assert mp.doprint(Symbol('Omega')) == 'Ω' + + +def test_content_mathml_order(): + expr = x**3 + x**2*y + 3*x*y**3 + y**4 + + mp = MathMLContentPrinter({'order': 'lex'}) + mml = mp._print(expr) + + assert mml.childNodes[1].childNodes[0].nodeName == 'power' + assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x' + assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3' + + assert mml.childNodes[4].childNodes[0].nodeName == 'power' + assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y' + assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4' + + mp = MathMLContentPrinter({'order': 'rev-lex'}) + mml = mp._print(expr) + + assert mml.childNodes[1].childNodes[0].nodeName == 'power' + assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y' + assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4' + + assert mml.childNodes[4].childNodes[0].nodeName == 'power' + assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x' + assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3' + + +def test_content_settings(): + raises(TypeError, lambda: mathml(x, method="garbage")) + + +def test_content_mathml_logic(): + assert mathml(And(x, y)) == 'xy' + assert mathml(Or(x, y)) == 'xy' + assert mathml(Xor(x, y)) == 'xy' + assert mathml(Implies(x, y)) == 'xy' + assert mathml(Not(x)) == 'x' + + +def test_content_finite_sets(): + assert mathml(FiniteSet(a)) == 'a' + assert mathml(FiniteSet(a, b)) == 'ab' + assert mathml(FiniteSet(FiniteSet(a, b), c)) == \ + 'cab' + + A = FiniteSet(a) + B = FiniteSet(b) + C = FiniteSet(c) + D = FiniteSet(d) + + U1 = Union(A, B, evaluate=False) + U2 = Union(C, D, evaluate=False) + I1 = Intersection(A, B, evaluate=False) + I2 = Intersection(C, D, evaluate=False) + C1 = Complement(A, B, evaluate=False) + C2 = Complement(C, D, evaluate=False) + # XXX ProductSet does not support evaluate keyword + P1 = ProductSet(A, B) + P2 = ProductSet(C, D) + + assert mathml(U1) == \ + 'ab' + assert mathml(I1) == \ + 'ab' \ + '' + assert mathml(C1) == \ + 'ab' + assert mathml(P1) == \ + 'ab' \ + '' + + assert mathml(Intersection(A, U2, evaluate=False)) == \ + 'a' \ + 'cd' + assert mathml(Intersection(U1, U2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + + # XXX Does the parenthesis appear correctly for these examples in mathjax? + assert mathml(Intersection(C1, C2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(Intersection(P1, P2, evaluate=False)) == \ + 'a' \ + 'b' \ + 'cd' + + assert mathml(Union(A, I2, evaluate=False)) == \ + 'a' \ + 'cd' + assert mathml(Union(I1, I2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(Union(C1, C2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(Union(P1, P2, evaluate=False)) == \ + 'a' \ + 'b' \ + 'cd' + + assert mathml(Complement(A, C2, evaluate=False)) == \ + 'a' \ + 'cd' + assert mathml(Complement(U1, U2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(Complement(I1, I2, evaluate=False)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(Complement(P1, P2, evaluate=False)) == \ + 'a' \ + 'b' \ + 'cd' + + assert mathml(ProductSet(A, P2)) == \ + 'a' \ + 'c' \ + 'd' + assert mathml(ProductSet(U1, U2)) == \ + 'a' \ + 'bc' \ + 'd' + assert mathml(ProductSet(I1, I2)) == \ + 'a' \ + 'b' \ + 'cd' + assert mathml(ProductSet(C1, C2)) == \ + 'a' \ + 'b' \ + 'cd' + + +def test_presentation_printmethod(): + assert mpp.doprint(1 + x) == 'x+1' + assert mpp.doprint(x**2) == 'x2' + assert mpp.doprint(x**-1) == '1x' + assert mpp.doprint(x**-2) == \ + '1x2' + assert mpp.doprint(2*x) == \ + '2x' + + +def test_presentation_mathml_core(): + mml_1 = mpp._print(1 + x) + assert mml_1.nodeName == 'mrow' + nodes = mml_1.childNodes + assert len(nodes) == 3 + assert nodes[0].nodeName in ['mi', 'mn'] + assert nodes[1].nodeName == 'mo' + if nodes[0].nodeName == 'mn': + assert nodes[0].childNodes[0].nodeValue == '1' + assert nodes[2].childNodes[0].nodeValue == 'x' + else: + assert nodes[0].childNodes[0].nodeValue == 'x' + assert nodes[2].childNodes[0].nodeValue == '1' + + mml_2 = mpp._print(x**2) + assert mml_2.nodeName == 'msup' + nodes = mml_2.childNodes + assert nodes[0].childNodes[0].nodeValue == 'x' + assert nodes[1].childNodes[0].nodeValue == '2' + + mml_3 = mpp._print(2*x) + assert mml_3.nodeName == 'mrow' + nodes = mml_3.childNodes + assert nodes[0].childNodes[0].nodeValue == '2' + assert nodes[1].childNodes[0].nodeValue == '⁢' + assert nodes[2].childNodes[0].nodeValue == 'x' + + mml = mpp._print(Float(1.0, 2)*x) + assert mml.nodeName == 'mrow' + nodes = mml.childNodes + assert nodes[0].childNodes[0].nodeValue == '1.0' + assert nodes[1].childNodes[0].nodeValue == '⁢' + assert nodes[2].childNodes[0].nodeValue == 'x' + + +def test_presentation_mathml_functions(): + mml_1 = mpp._print(sin(x)) + assert mml_1.childNodes[0].childNodes[0 + ].nodeValue == 'sin' + assert mml_1.childNodes[1].childNodes[0 + ].childNodes[0].nodeValue == 'x' + + mml_2 = mpp._print(diff(sin(x), x, evaluate=False)) + assert mml_2.nodeName == 'mrow' + assert mml_2.childNodes[0].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == 'ⅆ' + assert mml_2.childNodes[1].childNodes[1 + ].nodeName == 'mfenced' + assert mml_2.childNodes[0].childNodes[1 + ].childNodes[0].childNodes[0].nodeValue == 'ⅆ' + + mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False)) + assert mml_3.childNodes[0].nodeName == 'mfrac' + assert mml_3.childNodes[0].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '∂' + assert mml_3.childNodes[1].childNodes[0 + ].childNodes[0].nodeValue == 'cos' + + +def test_print_derivative(): + f = Function('f') + d = Derivative(f(x, y, z), x, z, x, z, z, y) + assert mathml(d) == \ + 'yz2xzxxyz' + assert mathml(d, printer='presentation') == \ + '6y2zxzxfxyz' + + +def test_presentation_mathml_limits(): + lim_fun = sin(x)/x + mml_1 = mpp._print(Limit(lim_fun, x, 0)) + assert mml_1.childNodes[0].nodeName == 'munder' + assert mml_1.childNodes[0].childNodes[0 + ].childNodes[0].nodeValue == 'lim' + assert mml_1.childNodes[0].childNodes[1 + ].childNodes[0].childNodes[0 + ].nodeValue == 'x' + assert mml_1.childNodes[0].childNodes[1 + ].childNodes[1].childNodes[0 + ].nodeValue == '→' + assert mml_1.childNodes[0].childNodes[1 + ].childNodes[2].childNodes[0 + ].nodeValue == '0' + + +def test_presentation_mathml_integrals(): + assert mpp.doprint(Integral(x, (x, 0, 1))) == \ + '01'\ + 'xx' + assert mpp.doprint(Integral(log(x), x)) == \ + 'logx'\ + 'x' + assert mpp.doprint(Integral(x*y, x, y)) == \ + 'x'\ + 'yyx' + z, w = symbols('z w') + assert mpp.doprint(Integral(x*y*z, x, y, z)) == \ + 'x'\ + 'yz'\ + 'zyx' + assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \ + ''\ + 'w'\ + 'xy'\ + 'zw'\ + 'zyx' + assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \ + '01'\ + 'xz'\ + 'yx' + assert mpp.doprint(Integral(x, (x, 0))) == \ + '0x'\ + 'x' + + +def test_presentation_mathml_matrices(): + A = Matrix([1, 2, 3]) + B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]]) + mll_1 = mpp._print(A) + assert mll_1.childNodes[0].nodeName == 'mtable' + assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr' + assert len(mll_1.childNodes[0].childNodes) == 3 + assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' + assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1 + assert mll_1.childNodes[0].childNodes[0].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '1' + assert mll_1.childNodes[0].childNodes[1].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '2' + assert mll_1.childNodes[0].childNodes[2].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '3' + mll_2 = mpp._print(B) + assert mll_2.childNodes[0].nodeName == 'mtable' + assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr' + assert len(mll_2.childNodes[0].childNodes) == 3 + assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd' + assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3 + assert mll_2.childNodes[0].childNodes[0].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '0' + assert mll_2.childNodes[0].childNodes[0].childNodes[1 + ].childNodes[0].childNodes[0].nodeValue == '5' + assert mll_2.childNodes[0].childNodes[0].childNodes[2 + ].childNodes[0].childNodes[0].nodeValue == '4' + assert mll_2.childNodes[0].childNodes[1].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '2' + assert mll_2.childNodes[0].childNodes[1].childNodes[1 + ].childNodes[0].childNodes[0].nodeValue == '3' + assert mll_2.childNodes[0].childNodes[1].childNodes[2 + ].childNodes[0].childNodes[0].nodeValue == '1' + assert mll_2.childNodes[0].childNodes[2].childNodes[0 + ].childNodes[0].childNodes[0].nodeValue == '9' + assert mll_2.childNodes[0].childNodes[2].childNodes[1 + ].childNodes[0].childNodes[0].nodeValue == '7' + assert mll_2.childNodes[0].childNodes[2].childNodes[2 + ].childNodes[0].childNodes[0].nodeValue == '9' + + +def test_presentation_mathml_sums(): + summand = x + mml_1 = mpp._print(Sum(summand, (x, 1, 10))) + assert mml_1.childNodes[0].nodeName == 'munderover' + assert len(mml_1.childNodes[0].childNodes) == 3 + assert mml_1.childNodes[0].childNodes[0].childNodes[0 + ].nodeValue == '∑' + assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3 + assert mml_1.childNodes[0].childNodes[2].childNodes[0 + ].nodeValue == '10' + assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x' + + +def test_presentation_mathml_add(): + mml = mpp._print(x**5 - x**4 + x) + assert len(mml.childNodes) == 5 + assert mml.childNodes[0].childNodes[0].childNodes[0 + ].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].childNodes[0 + ].nodeValue == '5' + assert mml.childNodes[1].childNodes[0].nodeValue == '-' + assert mml.childNodes[2].childNodes[0].childNodes[0 + ].nodeValue == 'x' + assert mml.childNodes[2].childNodes[1].childNodes[0 + ].nodeValue == '4' + assert mml.childNodes[3].childNodes[0].nodeValue == '+' + assert mml.childNodes[4].childNodes[0].nodeValue == 'x' + + +def test_presentation_mathml_Rational(): + mml_1 = mpp._print(Rational(1, 1)) + assert mml_1.nodeName == 'mn' + + mml_2 = mpp._print(Rational(2, 5)) + assert mml_2.nodeName == 'mfrac' + assert mml_2.childNodes[0].childNodes[0].nodeValue == '2' + assert mml_2.childNodes[1].childNodes[0].nodeValue == '5' + + +def test_presentation_mathml_constants(): + mml = mpp._print(I) + assert mml.childNodes[0].nodeValue == 'ⅈ' + + mml = mpp._print(E) + assert mml.childNodes[0].nodeValue == 'ⅇ' + + mml = mpp._print(oo) + assert mml.childNodes[0].nodeValue == '∞' + + mml = mpp._print(pi) + assert mml.childNodes[0].nodeValue == 'π' + + assert mathml(hbar, printer='presentation') == '' + assert mathml(S.TribonacciConstant, printer='presentation' + ) == 'TribonacciConstant' + assert mathml(S.EulerGamma, printer='presentation' + ) == 'γ' + assert mathml(S.GoldenRatio, printer='presentation' + ) == 'Φ' + + assert mathml(zoo, printer='presentation') == \ + '~' + + assert mathml(S.NaN, printer='presentation') == 'NaN' + +def test_presentation_mathml_trig(): + mml = mpp._print(sin(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'sin' + + mml = mpp._print(cos(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'cos' + + mml = mpp._print(tan(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'tan' + + mml = mpp._print(asin(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin' + + mml = mpp._print(acos(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos' + + mml = mpp._print(atan(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan' + + mml = mpp._print(sinh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh' + + mml = mpp._print(cosh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh' + + mml = mpp._print(tanh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh' + + mml = mpp._print(asinh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh' + + mml = mpp._print(atanh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh' + + mml = mpp._print(acosh(x)) + assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh' + + +def test_presentation_mathml_relational(): + mml_1 = mpp._print(Eq(x, 1)) + assert len(mml_1.childNodes) == 3 + assert mml_1.childNodes[0].nodeName == 'mi' + assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml_1.childNodes[1].nodeName == 'mo' + assert mml_1.childNodes[1].childNodes[0].nodeValue == '=' + assert mml_1.childNodes[2].nodeName == 'mn' + assert mml_1.childNodes[2].childNodes[0].nodeValue == '1' + + mml_2 = mpp._print(Ne(1, x)) + assert len(mml_2.childNodes) == 3 + assert mml_2.childNodes[0].nodeName == 'mn' + assert mml_2.childNodes[0].childNodes[0].nodeValue == '1' + assert mml_2.childNodes[1].nodeName == 'mo' + assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠' + assert mml_2.childNodes[2].nodeName == 'mi' + assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x' + + mml_3 = mpp._print(Ge(1, x)) + assert len(mml_3.childNodes) == 3 + assert mml_3.childNodes[0].nodeName == 'mn' + assert mml_3.childNodes[0].childNodes[0].nodeValue == '1' + assert mml_3.childNodes[1].nodeName == 'mo' + assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥' + assert mml_3.childNodes[2].nodeName == 'mi' + assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x' + + mml_4 = mpp._print(Lt(1, x)) + assert len(mml_4.childNodes) == 3 + assert mml_4.childNodes[0].nodeName == 'mn' + assert mml_4.childNodes[0].childNodes[0].nodeValue == '1' + assert mml_4.childNodes[1].nodeName == 'mo' + assert mml_4.childNodes[1].childNodes[0].nodeValue == '<' + assert mml_4.childNodes[2].nodeName == 'mi' + assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x' + + +def test_presentation_symbol(): + mml = mpp._print(x) + assert mml.nodeName == 'mi' + assert mml.childNodes[0].nodeValue == 'x' + del mml + + mml = mpp._print(Symbol("x^2")) + assert mml.nodeName == 'msup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mpp._print(Symbol("x__2")) + assert mml.nodeName == 'msup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mpp._print(Symbol("x_2")) + assert mml.nodeName == 'msub' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].nodeValue == '2' + del mml + + mml = mpp._print(Symbol("x^3_2")) + assert mml.nodeName == 'msubsup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].nodeValue == '2' + assert mml.childNodes[2].nodeName == 'mi' + assert mml.childNodes[2].childNodes[0].nodeValue == '3' + del mml + + mml = mpp._print(Symbol("x__3_2")) + assert mml.nodeName == 'msubsup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].nodeValue == '2' + assert mml.childNodes[2].nodeName == 'mi' + assert mml.childNodes[2].childNodes[0].nodeValue == '3' + del mml + + mml = mpp._print(Symbol("x_2_a")) + assert mml.nodeName == 'msub' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mrow' + assert mml.childNodes[1].childNodes[0].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' + assert mml.childNodes[1].childNodes[1].nodeName == 'mo' + assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' + assert mml.childNodes[1].childNodes[2].nodeName == 'mi' + assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' + del mml + + mml = mpp._print(Symbol("x^2^a")) + assert mml.nodeName == 'msup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mrow' + assert mml.childNodes[1].childNodes[0].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' + assert mml.childNodes[1].childNodes[1].nodeName == 'mo' + assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' + assert mml.childNodes[1].childNodes[2].nodeName == 'mi' + assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' + del mml + + mml = mpp._print(Symbol("x__2__a")) + assert mml.nodeName == 'msup' + assert mml.childNodes[0].nodeName == 'mi' + assert mml.childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[1].nodeName == 'mrow' + assert mml.childNodes[1].childNodes[0].nodeName == 'mi' + assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2' + assert mml.childNodes[1].childNodes[1].nodeName == 'mo' + assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' ' + assert mml.childNodes[1].childNodes[2].nodeName == 'mi' + assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a' + del mml + + +def test_presentation_mathml_greek(): + mml = mpp._print(Symbol('alpha')) + assert mml.nodeName == 'mi' + assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}' + + assert mpp.doprint(Symbol('alpha')) == 'α' + assert mpp.doprint(Symbol('beta')) == 'β' + assert mpp.doprint(Symbol('gamma')) == 'γ' + assert mpp.doprint(Symbol('delta')) == 'δ' + assert mpp.doprint(Symbol('epsilon')) == 'ε' + assert mpp.doprint(Symbol('zeta')) == 'ζ' + assert mpp.doprint(Symbol('eta')) == 'η' + assert mpp.doprint(Symbol('theta')) == 'θ' + assert mpp.doprint(Symbol('iota')) == 'ι' + assert mpp.doprint(Symbol('kappa')) == 'κ' + assert mpp.doprint(Symbol('lambda')) == 'λ' + assert mpp.doprint(Symbol('mu')) == 'μ' + assert mpp.doprint(Symbol('nu')) == 'ν' + assert mpp.doprint(Symbol('xi')) == 'ξ' + assert mpp.doprint(Symbol('omicron')) == 'ο' + assert mpp.doprint(Symbol('pi')) == 'π' + assert mpp.doprint(Symbol('rho')) == 'ρ' + assert mpp.doprint(Symbol('varsigma')) == 'ς' + assert mpp.doprint(Symbol('sigma')) == 'σ' + assert mpp.doprint(Symbol('tau')) == 'τ' + assert mpp.doprint(Symbol('upsilon')) == 'υ' + assert mpp.doprint(Symbol('phi')) == 'φ' + assert mpp.doprint(Symbol('chi')) == 'χ' + assert mpp.doprint(Symbol('psi')) == 'ψ' + assert mpp.doprint(Symbol('omega')) == 'ω' + + assert mpp.doprint(Symbol('Alpha')) == 'Α' + assert mpp.doprint(Symbol('Beta')) == 'Β' + assert mpp.doprint(Symbol('Gamma')) == 'Γ' + assert mpp.doprint(Symbol('Delta')) == 'Δ' + assert mpp.doprint(Symbol('Epsilon')) == 'Ε' + assert mpp.doprint(Symbol('Zeta')) == 'Ζ' + assert mpp.doprint(Symbol('Eta')) == 'Η' + assert mpp.doprint(Symbol('Theta')) == 'Θ' + assert mpp.doprint(Symbol('Iota')) == 'Ι' + assert mpp.doprint(Symbol('Kappa')) == 'Κ' + assert mpp.doprint(Symbol('Lambda')) == 'Λ' + assert mpp.doprint(Symbol('Mu')) == 'Μ' + assert mpp.doprint(Symbol('Nu')) == 'Ν' + assert mpp.doprint(Symbol('Xi')) == 'Ξ' + assert mpp.doprint(Symbol('Omicron')) == 'Ο' + assert mpp.doprint(Symbol('Pi')) == 'Π' + assert mpp.doprint(Symbol('Rho')) == 'Ρ' + assert mpp.doprint(Symbol('Sigma')) == 'Σ' + assert mpp.doprint(Symbol('Tau')) == 'Τ' + assert mpp.doprint(Symbol('Upsilon')) == 'Υ' + assert mpp.doprint(Symbol('Phi')) == 'Φ' + assert mpp.doprint(Symbol('Chi')) == 'Χ' + assert mpp.doprint(Symbol('Psi')) == 'Ψ' + assert mpp.doprint(Symbol('Omega')) == 'Ω' + + +def test_presentation_mathml_order(): + expr = x**3 + x**2*y + 3*x*y**3 + y**4 + + mp = MathMLPresentationPrinter({'order': 'lex'}) + mml = mp._print(expr) + assert mml.childNodes[0].nodeName == 'msup' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3' + + assert mml.childNodes[6].nodeName == 'msup' + assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y' + assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4' + + mp = MathMLPresentationPrinter({'order': 'rev-lex'}) + mml = mp._print(expr) + + assert mml.childNodes[0].nodeName == 'msup' + assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y' + assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4' + + assert mml.childNodes[6].nodeName == 'msup' + assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x' + assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3' + + +def test_print_intervals(): + a = Symbol('a', real=True) + assert mpp.doprint(Interval(0, a)) == \ + '0a' + assert mpp.doprint(Interval(0, a, False, False)) == \ + '0a' + assert mpp.doprint(Interval(0, a, True, False)) == \ + '0a' + assert mpp.doprint(Interval(0, a, False, True)) == \ + '0a' + assert mpp.doprint(Interval(0, a, True, True)) == \ + '0a' + + +def test_print_tuples(): + assert mpp.doprint(Tuple(0,)) == \ + '0' + assert mpp.doprint(Tuple(0, a)) == \ + '0a' + assert mpp.doprint(Tuple(0, a, a)) == \ + '0aa' + assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \ + '01234' + assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \ + '0123'\ + '4' + + +def test_print_re_im(): + assert mpp.doprint(re(x)) == \ + 'Rx' + assert mpp.doprint(im(x)) == \ + 'Ix' + assert mpp.doprint(re(x + 1)) == \ + 'Rx'\ + '+1' + assert mpp.doprint(im(x + 1)) == \ + 'Ix' + + +def test_print_Abs(): + assert mpp.doprint(Abs(x)) == \ + 'x' + assert mpp.doprint(Abs(x + 1)) == \ + 'x+1' + + +def test_print_Determinant(): + assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \ + '1234' + + +def test_presentation_settings(): + raises(TypeError, lambda: mathml(x, printer='presentation', + method="garbage")) + + +def test_toprettyxml_hooking(): + # test that the patch doesn't influence the behavior of the standard + # library + import xml.dom.minidom + doc1 = xml.dom.minidom.parseString( + "x1") + doc2 = xml.dom.minidom.parseString( + "x+1") + prettyxml_old1 = doc1.toprettyxml() + prettyxml_old2 = doc2.toprettyxml() + + mp.apply_patch() + mp.restore_patch() + + assert prettyxml_old1 == doc1.toprettyxml() + assert prettyxml_old2 == doc2.toprettyxml() + + +def test_print_domains(): + from sympy.sets import Integers, Naturals, Naturals0, Reals, Complexes + + assert mpp.doprint(Complexes) == '' + assert mpp.doprint(Integers) == '' + assert mpp.doprint(Naturals) == '' + assert mpp.doprint(Naturals0) == \ + '0' + assert mpp.doprint(Reals) == '' + + +def test_print_expression_with_minus(): + assert mpp.doprint(-x) == '-x' + assert mpp.doprint(-x/y) == \ + '-xy' + assert mpp.doprint(-Rational(1, 2)) == \ + '-12' + + +def test_print_AssocOp(): + from sympy.core.operations import AssocOp + + class TestAssocOp(AssocOp): + identity = 0 + + expr = TestAssocOp(1, 2) + assert mpp.doprint(expr) == \ + 'testassocop12' + + +def test_print_basic(): + expr = Basic(S(1), S(2)) + assert mpp.doprint(expr) == \ + 'basic12' + assert mp.doprint(expr) == '12' + + +def test_mat_delim_print(): + expr = Matrix([[1, 2], [3, 4]]) + assert mathml(expr, printer='presentation', mat_delim='[') == \ + '1'\ + '234'\ + '' + assert mathml(expr, printer='presentation', mat_delim='(') == \ + '12'\ + '34' + assert mathml(expr, printer='presentation', mat_delim='') == \ + '12'\ + '34' + + +def test_ln_notation_print(): + expr = log(x) + assert mathml(expr, printer='presentation') == \ + 'logx' + assert mathml(expr, printer='presentation', ln_notation=False) == \ + 'logx' + assert mathml(expr, printer='presentation', ln_notation=True) == \ + 'lnx' + + +def test_mul_symbol_print(): + expr = x * y + assert mathml(expr, printer='presentation') == \ + 'xy' + assert mathml(expr, printer='presentation', mul_symbol=None) == \ + 'xy' + assert mathml(expr, printer='presentation', mul_symbol='dot') == \ + 'x·y' + assert mathml(expr, printer='presentation', mul_symbol='ldot') == \ + 'xy' + assert mathml(expr, printer='presentation', mul_symbol='times') == \ + 'x×y' + + +def test_print_lerchphi(): + assert mpp.doprint(lerchphi(1, 2, 3)) == \ + 'Φ123' + + +def test_print_polylog(): + assert mp.doprint(polylog(x, y)) == \ + 'xy' + assert mpp.doprint(polylog(x, y)) == \ + 'Lixy' + + +def test_print_set_frozenset(): + f = frozenset({1, 5, 3}) + assert mpp.doprint(f) == \ + '135' + s = set({1, 2, 3}) + assert mpp.doprint(s) == \ + '123' + + +def test_print_FiniteSet(): + f1 = FiniteSet(x, 1, 3) + assert mpp.doprint(f1) == \ + '13x' + + +def test_print_LambertW(): + assert mpp.doprint(LambertW(x)) == 'Wx' + assert mpp.doprint(LambertW(x, y)) == 'Wxy' + + +def test_print_EmptySet(): + assert mpp.doprint(S.EmptySet) == '' + + +def test_print_UniversalSet(): + assert mpp.doprint(S.UniversalSet) == '𝕌' + + +def test_print_spaces(): + assert mpp.doprint(HilbertSpace()) == '' + assert mpp.doprint(ComplexSpace(2)) == '𝒞2' + assert mpp.doprint(FockSpace()) == '' + + +def test_print_constants(): + assert mpp.doprint(hbar) == '' + assert mpp.doprint(S.TribonacciConstant) == 'TribonacciConstant' + assert mpp.doprint(S.GoldenRatio) == 'Φ' + assert mpp.doprint(S.EulerGamma) == 'γ' + + +def test_print_Contains(): + assert mpp.doprint(Contains(x, S.Naturals)) == \ + 'x' + + +def test_print_Dagger(): + assert mpp.doprint(Dagger(x)) == 'x' + + +def test_print_SetOp(): + f1 = FiniteSet(x, 1, 3) + f2 = FiniteSet(y, 2, 4) + + prntr = lambda x: mathml(x, printer='presentation') + + assert prntr(Union(f1, f2, evaluate=False)) == \ + '13x'\ + '2'\ + '4y' + assert prntr(Intersection(f1, f2, evaluate=False)) == \ + '13x'\ + '2'\ + '4y' + assert prntr(Complement(f1, f2, evaluate=False)) == \ + '13x'\ + '2'\ + '4y' + assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \ + '13x'\ + '2'\ + '4y' + + A = FiniteSet(a) + C = FiniteSet(c) + D = FiniteSet(d) + + U1 = Union(C, D, evaluate=False) + I1 = Intersection(C, D, evaluate=False) + C1 = Complement(C, D, evaluate=False) + D1 = SymmetricDifference(C, D, evaluate=False) + # XXX ProductSet does not support evaluate keyword + P1 = ProductSet(C, D) + + assert prntr(Union(A, I1, evaluate=False)) == \ + 'a' \ + '' \ + 'c' \ + 'd' + assert prntr(Intersection(A, C1, evaluate=False)) == \ + 'a' \ + '' \ + 'c' \ + 'd' + assert prntr(Complement(A, D1, evaluate=False)) == \ + 'a' \ + '' \ + 'c' \ + 'd' + assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \ + 'a' \ + '' \ + 'c×' \ + 'd' + assert prntr(ProductSet(A, U1)) == \ + 'a' \ + '×' \ + 'c' \ + 'd' + + +def test_print_logic(): + assert mpp.doprint(And(x, y)) == \ + 'xy' + assert mpp.doprint(Or(x, y)) == \ + 'xy' + assert mpp.doprint(Xor(x, y)) == \ + 'xy' + assert mpp.doprint(Implies(x, y)) == \ + 'xy' + assert mpp.doprint(Equivalent(x, y)) == \ + 'xy' + + assert mpp.doprint(And(Eq(x, y), x > 4)) == \ + 'x=y'\ + 'x>4' + assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \ + 'x=3'\ + 'x>y+1'\ + 'y<3' + assert mpp.doprint(Or(Eq(x, y), x > 4)) == \ + 'x=y'\ + 'x>4' + assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \ + 'x=3'\ + 'x>y+'\ + '1y<'\ + '3' + + assert mpp.doprint(Not(x)) == '¬x' + assert mpp.doprint(Not(And(x, y))) == \ + '¬x'\ + 'y' + + +def test_root_notation_print(): + assert mathml(x**(S.One/3), printer='presentation') == \ + 'x3' + assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\ + 'x13' + assert mathml(x**(S.One/3), printer='content') == \ + '3x' + assert mathml(x**(S.One/3), printer='content', root_notation=False) == \ + 'x13' + assert mathml(x**(Rational(-1, 3)), printer='presentation') == \ + '1x3' + assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \ + == '1x13' + + +def test_fold_frac_powers_print(): + expr = x ** Rational(5, 2) + assert mathml(expr, printer='presentation') == \ + 'x52' + assert mathml(expr, printer='presentation', fold_frac_powers=True) == \ + 'x52' + assert mathml(expr, printer='presentation', fold_frac_powers=False) == \ + 'x52' + + +def test_fold_short_frac_print(): + expr = Rational(2, 5) + assert mathml(expr, printer='presentation') == \ + '25' + assert mathml(expr, printer='presentation', fold_short_frac=True) == \ + '25' + assert mathml(expr, printer='presentation', fold_short_frac=False) == \ + '25' + + +def test_print_factorials(): + assert mpp.doprint(factorial(x)) == 'x!' + assert mpp.doprint(factorial(x + 1)) == \ + 'x+1!' + assert mpp.doprint(factorial2(x)) == 'x!!' + assert mpp.doprint(factorial2(x + 1)) == \ + 'x+1!!' + assert mpp.doprint(binomial(x, y)) == \ + 'xy' + assert mpp.doprint(binomial(4, x + y)) == \ + '4x'\ + '+y' + + +def test_print_floor(): + expr = floor(x) + assert mathml(expr, printer='presentation') == \ + 'x' + + +def test_print_ceiling(): + expr = ceiling(x) + assert mathml(expr, printer='presentation') == \ + 'x' + + +def test_print_Lambda(): + expr = Lambda(x, x+1) + assert mathml(expr, printer='presentation') == \ + 'xx+'\ + '1' + expr = Lambda((x, y), x + y) + assert mathml(expr, printer='presentation') == \ + 'xy'\ + 'x+y' + + +def test_print_conjugate(): + assert mpp.doprint(conjugate(x)) == \ + 'x' + assert mpp.doprint(conjugate(x + 1)) == \ + 'x+1' + + +def test_print_AccumBounds(): + a = Symbol('a', real=True) + assert mpp.doprint(AccumBounds(0, 1)) == '01' + assert mpp.doprint(AccumBounds(0, a)) == '0a' + assert mpp.doprint(AccumBounds(a + 1, a + 2)) == 'a+1a+2' + + +def test_print_Float(): + assert mpp.doprint(Float(1e100)) == '1.0·10100' + assert mpp.doprint(Float(1e-100)) == '1.0·10-100' + assert mpp.doprint(Float(-1e100)) == '-1.0·10100' + assert mpp.doprint(Float(1.0*oo)) == '' + assert mpp.doprint(Float(-1.0*oo)) == '-' + + +def test_print_different_functions(): + assert mpp.doprint(gamma(x)) == 'Γx' + assert mpp.doprint(lowergamma(x, y)) == 'γxy' + assert mpp.doprint(uppergamma(x, y)) == 'Γxy' + assert mpp.doprint(zeta(x)) == 'ζx' + assert mpp.doprint(zeta(x, y)) == 'ζxy' + assert mpp.doprint(dirichlet_eta(x)) == 'ηx' + assert mpp.doprint(elliptic_k(x)) == 'Κx' + assert mpp.doprint(totient(x)) == 'ϕx' + assert mpp.doprint(reduced_totient(x)) == 'λx' + assert mpp.doprint(primenu(x)) == 'νx' + assert mpp.doprint(primeomega(x)) == 'Ωx' + assert mpp.doprint(fresnels(x)) == 'Sx' + assert mpp.doprint(fresnelc(x)) == 'Cx' + assert mpp.doprint(Heaviside(x)) == 'Θx12' + + +def test_mathml_builtins(): + assert mpp.doprint(None) == 'None' + assert mpp.doprint(true) == 'True' + assert mpp.doprint(false) == 'False' + + +def test_mathml_Range(): + assert mpp.doprint(Range(1, 51)) == \ + '1250' + assert mpp.doprint(Range(1, 4)) == \ + '123' + assert mpp.doprint(Range(0, 3, 1)) == \ + '012' + assert mpp.doprint(Range(0, 30, 1)) == \ + '0129' + assert mpp.doprint(Range(30, 1, -1)) == \ + '3029'\ + '2' + assert mpp.doprint(Range(0, oo, 2)) == \ + '02' + assert mpp.doprint(Range(oo, -2, -2)) == \ + '20' + assert mpp.doprint(Range(-2, -oo, -1)) == \ + '-2-3' + + +def test_print_exp(): + assert mpp.doprint(exp(x)) == \ + 'x' + assert mpp.doprint(exp(1) + exp(2)) == \ + '+2' + + +def test_print_MinMax(): + assert mpp.doprint(Min(x, y)) == \ + 'minxy' + assert mpp.doprint(Min(x, 2, x**3)) == \ + 'min2xx'\ + '3' + assert mpp.doprint(Max(x, y)) == \ + 'maxxy' + assert mpp.doprint(Max(x, 2, x**3)) == \ + 'max2xx'\ + '3' + + +def test_mathml_presentation_numbers(): + n = Symbol('n') + assert mathml(catalan(n), printer='presentation') == \ + 'Cn' + assert mathml(bernoulli(n), printer='presentation') == \ + 'Bn' + assert mathml(bell(n), printer='presentation') == \ + 'Bn' + assert mathml(euler(n), printer='presentation') == \ + 'En' + assert mathml(fibonacci(n), printer='presentation') == \ + 'Fn' + assert mathml(lucas(n), printer='presentation') == \ + 'Ln' + assert mathml(tribonacci(n), printer='presentation') == \ + 'Tn' + assert mathml(bernoulli(n, x), printer='presentation') == \ + 'Bnx' + assert mathml(bell(n, x), printer='presentation') == \ + 'Bnx' + assert mathml(euler(n, x), printer='presentation') == \ + 'Enx' + assert mathml(fibonacci(n, x), printer='presentation') == \ + 'Fnx' + assert mathml(tribonacci(n, x), printer='presentation') == \ + 'Tnx' + + +def test_mathml_presentation_mathieu(): + assert mathml(mathieuc(x, y, z), printer='presentation') == \ + 'Cxyz' + assert mathml(mathieus(x, y, z), printer='presentation') == \ + 'Sxyz' + assert mathml(mathieucprime(x, y, z), printer='presentation') == \ + 'C′xyz' + assert mathml(mathieusprime(x, y, z), printer='presentation') == \ + 'S′xyz' + + +def test_mathml_presentation_stieltjes(): + assert mathml(stieltjes(n), printer='presentation') == \ + 'γn' + assert mathml(stieltjes(n, x), printer='presentation') == \ + 'γnx' + + +def test_print_matrix_symbol(): + A = MatrixSymbol('A', 1, 2) + assert mpp.doprint(A) == 'A' + assert mp.doprint(A) == 'A' + assert mathml(A, printer='presentation', mat_symbol_style="bold") == \ + 'A' + # No effect in content printer + assert mathml(A, mat_symbol_style="bold") == 'A' + + +def test_print_hadamard(): + from sympy.matrices.expressions import HadamardProduct + from sympy.matrices.expressions import Transpose + + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + + assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \ + '' \ + 'X' \ + '' \ + 'Y2' \ + '' + + assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \ + '' \ + '' \ + 'XY' \ + '' \ + 'Y' \ + '' + + assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \ + '' \ + 'X' \ + 'Y' \ + 'Y' \ + '' + + assert mathml( + Transpose(HadamardProduct(X, Y)), printer="presentation") == \ + '' \ + '' \ + 'XY' \ + '' \ + 'T' \ + '' + + +def test_print_random_symbol(): + R = RandomSymbol(Symbol('R')) + assert mpp.doprint(R) == 'R' + assert mp.doprint(R) == 'R' + + +def test_print_IndexedBase(): + assert mathml(IndexedBase(a)[b], printer='presentation') == \ + 'ab' + assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \ + 'abcd' + assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e), + printer='presentation') == \ + 'ab⁢'\ + 'cde' + + +def test_print_Indexed(): + assert mathml(IndexedBase(a), printer='presentation') == 'a' + assert mathml(IndexedBase(a/b), printer='presentation') == \ + 'ab' + assert mathml(IndexedBase((a, b)), printer='presentation') == \ + 'ab' + +def test_print_MatrixElement(): + i, j = symbols('i j') + A = MatrixSymbol('A', i, j) + assert mathml(A[0,0],printer = 'presentation') == \ + 'A00' + assert mathml(A[i,j], printer = 'presentation') == \ + 'Aij' + assert mathml(A[i*j,0], printer = 'presentation') == \ + 'Aij0' + + +def test_print_Vector(): + ACS = CoordSys3D('A') + assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \ + 'i^'\ + 'A×'\ + '3'\ + 'xA'\ + ''\ + 'j^'\ + 'A+'\ + 'k^'\ + 'A' + assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \ + 'i^'\ + 'A×'\ + 'j^'\ + 'A' + assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \ + 'x'\ + 'i^'\ + 'A×'\ + 'j^'\ + 'A' + assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \ + '-j'\ + '^A'\ + '×x'\ + 'i'\ + '^A'\ + '' + assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \ + '×'\ + '3'\ + 'xA'\ + ''\ + 'j^'\ + 'A' + assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \ + '×'\ + '3x'\ + 'A'\ + 'x'\ + 'j^'\ + 'A' + assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \ + 'x'\ + '×3'\ + 'x'\ + 'A'\ + 'j'\ + '^A'\ + '' + assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ + '×'\ + 'i^'\ + 'A+'\ + '3x'\ + 'A'\ + 'x'\ + 'j^'\ + 'A' + assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \ + '·'\ + '3x'\ + 'A'\ + 'j'\ + '^A' + assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \ + 'x'\ + '·3'\ + 'x'\ + 'A'\ + 'j'\ + '^A'\ + '' + assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \ + '·'\ + 'i^'\ + 'A+'\ + '3'\ + 'xA'\ + 'x'\ + 'j'\ + '^A' + assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \ + 'i^'\ + 'A·'\ + '3'\ + 'xA'\ + ''\ + 'j^'\ + 'A+'\ + 'k^'\ + 'A' + assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \ + 'i^'\ + 'A·'\ + 'j^'\ + 'A' + assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \ + 'j^'\ + 'A·'\ + 'x'\ + 'i^'\ + 'A' + assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \ + 'x'\ + 'i^'\ + 'A·'\ + 'j^'\ + 'A' + assert mathml(Gradient(ACS.x), printer='presentation') == \ + 'x'\ + 'A' + assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \ + ''\ + 'xA+3'\ + 'y'\ + 'A' + assert mathml(x*Gradient(ACS.x), printer='presentation') == \ + 'x'\ + 'xA'\ + '' + assert mathml(Gradient(x*ACS.x), printer='presentation') == \ + ''\ + 'xA'\ + 'x' + assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \ + '0^' + assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \ + '-x'\ + 'A×'\ + 'zA' + assert mathml(Laplacian(ACS.x), printer='presentation') == \ + 'x'\ + 'A' + assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \ + ''\ + 'xA+3'\ + 'y'\ + 'A' + assert mathml(x*Laplacian(ACS.x), printer='presentation') == \ + 'x'\ + 'xA'\ + '' + assert mathml(Laplacian(x*ACS.x), printer='presentation') == \ + ''\ + 'xA'\ + 'x' + +def test_print_elliptic_f(): + assert mathml(elliptic_f(x, y), printer = 'presentation') == \ + '𝖥xy' + assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \ + '𝖥xyy' + +def test_print_elliptic_e(): + assert mathml(elliptic_e(x), printer = 'presentation') == \ + '𝖤x' + assert mathml(elliptic_e(x, y), printer = 'presentation') == \ + '𝖤xy' + +def test_print_elliptic_pi(): + assert mathml(elliptic_pi(x, y), printer = 'presentation') == \ + '𝛱xy' + assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \ + '𝛱xyz' + +def test_print_Ei(): + assert mathml(Ei(x), printer = 'presentation') == \ + 'Eix' + assert mathml(Ei(x**y), printer = 'presentation') == \ + 'Eixy' + +def test_print_expint(): + assert mathml(expint(x, y), printer = 'presentation') == \ + 'Exy' + assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \ + 'Ex1x2' + +def test_print_jacobi(): + assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \ + 'Pnabx' + +def test_print_gegenbauer(): + assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \ + 'Cnax' + +def test_print_chebyshevt(): + assert mathml(chebyshevt(n, x), printer = 'presentation') == \ + 'Tnx' + +def test_print_chebyshevu(): + assert mathml(chebyshevu(n, x), printer = 'presentation') == \ + 'Unx' + +def test_print_legendre(): + assert mathml(legendre(n, x), printer = 'presentation') == \ + 'Pnx' + +def test_print_assoc_legendre(): + assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \ + 'Pnax' + +def test_print_laguerre(): + assert mathml(laguerre(n, x), printer = 'presentation') == \ + 'Lnx' + +def test_print_assoc_laguerre(): + assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \ + 'Lnax' + +def test_print_hermite(): + assert mathml(hermite(n, x), printer = 'presentation') == \ + 'Hnx' + +def test_mathml_SingularityFunction(): + assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \ + 'x' \ + '-45' + assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \ + 'x' \ + '+34' + assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \ + 'x' \ + '4' + assert mathml(SingularityFunction(x, a, n), printer='presentation') == \ + '' \ + '-a+x' \ + 'n' + assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \ + 'x' \ + '-4-2' + assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \ + 'x' \ + '-4-1' + + +def test_mathml_matrix_functions(): + from sympy.matrices import Adjoint, Inverse, Transpose + X = MatrixSymbol('X', 2, 2) + Y = MatrixSymbol('Y', 2, 2) + assert mathml(Adjoint(X), printer='presentation') == \ + 'X' + assert mathml(Adjoint(X + Y), printer='presentation') == \ + 'X+Y' + assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \ + 'X+' \ + 'Y' + assert mathml(Adjoint(X*Y), printer='presentation') == \ + 'X' \ + 'Y' + assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \ + 'Y⁢' \ + 'X' + assert mathml(Adjoint(X**2), printer='presentation') == \ + 'X2' + assert mathml(Adjoint(X)**2, printer='presentation') == \ + 'X2' + assert mathml(Adjoint(Inverse(X)), printer='presentation') == \ + 'X-1' + assert mathml(Inverse(Adjoint(X)), printer='presentation') == \ + 'X-1' + assert mathml(Adjoint(Transpose(X)), printer='presentation') == \ + 'XT' + assert mathml(Transpose(Adjoint(X)), printer='presentation') == \ + 'XT' + assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \ + 'X' \ + '+YT' + assert mathml(Transpose(X), printer='presentation') == \ + 'XT' + assert mathml(Transpose(X + Y), printer='presentation') == \ + 'X+YT' + + +def test_mathml_special_matrices(): + from sympy.matrices import Identity, ZeroMatrix, OneMatrix + assert mathml(Identity(4), printer='presentation') == '𝕀' + assert mathml(ZeroMatrix(2, 2), printer='presentation') == '𝟘' + assert mathml(OneMatrix(2, 2), printer='presentation') == '𝟙' + +def test_mathml_piecewise(): + from sympy.functions.elementary.piecewise import Piecewise + # Content MathML + assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \ + 'xx1x2' + + raises(ValueError, lambda: mathml(Piecewise((x, x <= 1)))) + + +def test_issue_17857(): + assert mathml(Range(-oo, oo), printer='presentation') == \ + '-101' + assert mathml(Range(oo, -oo, -1), printer='presentation') == \ + '10-1' + + +def test_float_roundtrip(): + x = sympify(0.8975979010256552) + y = float(mp.doprint(x).strip('')) + assert x == y diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_numpy.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..ae2a86676522f0339f284cc756cf7a7cae871d2a --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_numpy.py @@ -0,0 +1,351 @@ +from sympy.concrete.summations import Sum +from sympy.core.mod import Mod +from sympy.core.relational import (Equality, Unequality) +from sympy.core.symbol import Symbol +from sympy.functions.elementary.miscellaneous import sqrt +from sympy.functions.elementary.piecewise import Piecewise +from sympy.functions.special.gamma_functions import polygamma +from sympy.functions.special.error_functions import (Si, Ci) +from sympy.matrices.expressions.blockmatrix import BlockMatrix +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.matrices.expressions.special import Identity +from sympy.utilities.lambdify import lambdify + +from sympy.abc import x, i, j, a, b, c, d +from sympy.core import Pow +from sympy.codegen.matrix_nodes import MatrixSolve +from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 +from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt +from sympy.tensor.array import Array +from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ + PermuteDims, ArrayDiagonal +from sympy.printing.numpy import NumPyPrinter, SciPyPrinter, _numpy_known_constants, \ + _numpy_known_functions, _scipy_known_constants, _scipy_known_functions +from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array + +from sympy.testing.pytest import skip, raises +from sympy.external import import_module + +np = import_module('numpy') + +if np: + deafult_float_info = np.finfo(np.array([]).dtype) + NUMPY_DEFAULT_EPSILON = deafult_float_info.eps + +def test_numpy_piecewise_regression(): + """ + NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid + breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. + See gh-9747 and gh-9749 for details. + """ + printer = NumPyPrinter() + p = Piecewise((1, x < 0), (0, True)) + assert printer.doprint(p) == \ + 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' + assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}} + +def test_numpy_logaddexp(): + lae = logaddexp(a, b) + assert NumPyPrinter().doprint(lae) == 'numpy.logaddexp(a, b)' + lae2 = logaddexp2(a, b) + assert NumPyPrinter().doprint(lae2) == 'numpy.logaddexp2(a, b)' + + +def test_sum(): + if not np: + skip("NumPy not installed") + + s = Sum(x ** i, (i, a, b)) + f = lambdify((a, b, x), s, 'numpy') + + a_, b_ = 0, 10 + x_ = np.linspace(-1, +1, 10) + assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) + + s = Sum(i * x, (i, a, b)) + f = lambdify((a, b, x), s, 'numpy') + + a_, b_ = 0, 10 + x_ = np.linspace(-1, +1, 10) + assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) + + +def test_multiple_sums(): + if not np: + skip("NumPy not installed") + + s = Sum((x + j) * i, (i, a, b), (j, c, d)) + f = lambdify((a, b, c, d, x), s, 'numpy') + + a_, b_ = 0, 10 + c_, d_ = 11, 21 + x_ = np.linspace(-1, +1, 10) + assert np.allclose(f(a_, b_, c_, d_, x_), + sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) + + +def test_codegen_einsum(): + if not np: + skip("NumPy not installed") + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + + cg = convert_matrix_to_array(M * N) + f = lambdify((M, N), cg, 'numpy') + + ma = np.array([[1, 2], [3, 4]]) + mb = np.array([[1,-2], [-1, 3]]) + assert (f(ma, mb) == np.matmul(ma, mb)).all() + + +def test_codegen_extra(): + if not np: + skip("NumPy not installed") + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + P = MatrixSymbol("P", 2, 2) + Q = MatrixSymbol("Q", 2, 2) + ma = np.array([[1, 2], [3, 4]]) + mb = np.array([[1,-2], [-1, 3]]) + mc = np.array([[2, 0], [1, 2]]) + md = np.array([[1,-1], [4, 7]]) + + cg = ArrayTensorProduct(M, N) + f = lambdify((M, N), cg, 'numpy') + assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() + + cg = ArrayAdd(M, N) + f = lambdify((M, N), cg, 'numpy') + assert (f(ma, mb) == ma+mb).all() + + cg = ArrayAdd(M, N, P) + f = lambdify((M, N, P), cg, 'numpy') + assert (f(ma, mb, mc) == ma+mb+mc).all() + + cg = ArrayAdd(M, N, P, Q) + f = lambdify((M, N, P, Q), cg, 'numpy') + assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() + + cg = PermuteDims(M, [1, 0]) + f = lambdify((M,), cg, 'numpy') + assert (f(ma) == ma.T).all() + + cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) + f = lambdify((M, N), cg, 'numpy') + assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() + + cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) + f = lambdify((M, N), cg, 'numpy') + assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() + + +def test_relational(): + if not np: + skip("NumPy not installed") + + e = Equality(x, 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [False, True, False]) + + e = Unequality(x, 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [True, False, True]) + + e = (x < 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [True, False, False]) + + e = (x <= 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [True, True, False]) + + e = (x > 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [False, False, True]) + + e = (x >= 1) + + f = lambdify((x,), e) + x_ = np.array([0, 1, 2]) + assert np.array_equal(f(x_), [False, True, True]) + + +def test_mod(): + if not np: + skip("NumPy not installed") + + e = Mod(a, b) + f = lambdify((a, b), e) + + a_ = np.array([0, 1, 2, 3]) + b_ = 2 + assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) + + a_ = np.array([0, 1, 2, 3]) + b_ = np.array([2, 2, 2, 2]) + assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) + + a_ = np.array([2, 3, 4, 5]) + b_ = np.array([2, 3, 4, 5]) + assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) + + +def test_pow(): + if not np: + skip('NumPy not installed') + + expr = Pow(2, -1, evaluate=False) + f = lambdify([], expr, 'numpy') + assert f() == 0.5 + + +def test_expm1(): + if not np: + skip("NumPy not installed") + + f = lambdify((a,), expm1(a), 'numpy') + assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * NUMPY_DEFAULT_EPSILON + + +def test_log1p(): + if not np: + skip("NumPy not installed") + + f = lambdify((a,), log1p(a), 'numpy') + assert abs(f(1e-99) - 1e-99) <= 1e-99 * NUMPY_DEFAULT_EPSILON + +def test_hypot(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) <= NUMPY_DEFAULT_EPSILON + +def test_log10(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) <= NUMPY_DEFAULT_EPSILON + + +def test_exp2(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) <= NUMPY_DEFAULT_EPSILON + + +def test_log2(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) <= NUMPY_DEFAULT_EPSILON + + +def test_Sqrt(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON + + +def test_sqrt(): + if not np: + skip("NumPy not installed") + assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON + + +def test_matsolve(): + if not np: + skip("NumPy not installed") + + M = MatrixSymbol("M", 3, 3) + x = MatrixSymbol("x", 3, 1) + + expr = M**(-1) * x + x + matsolve_expr = MatrixSolve(M, x) + x + + f = lambdify((M, x), expr) + f_matsolve = lambdify((M, x), matsolve_expr) + + m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) + assert np.linalg.matrix_rank(m0) == 3 + + x0 = np.array([3, 4, 5]) + + assert np.allclose(f_matsolve(m0, x0), f(m0, x0)) + + +def test_16857(): + if not np: + skip("NumPy not installed") + + a_1 = MatrixSymbol('a_1', 10, 3) + a_2 = MatrixSymbol('a_2', 10, 3) + a_3 = MatrixSymbol('a_3', 10, 3) + a_4 = MatrixSymbol('a_4', 10, 3) + A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) + assert A.shape == (20, 6) + + printer = NumPyPrinter() + assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])' + + +def test_issue_17006(): + if not np: + skip("NumPy not installed") + + M = MatrixSymbol("M", 2, 2) + + f = lambdify(M, M + Identity(2)) + ma = np.array([[1, 2], [3, 4]]) + mr = np.array([[2, 2], [3, 5]]) + + assert (f(ma) == mr).all() + + from sympy.core.symbol import symbols + n = symbols('n', integer=True) + N = MatrixSymbol("M", n, n) + raises(NotImplementedError, lambda: lambdify(N, N + Identity(n))) + +def test_numpy_array(): + assert NumPyPrinter().doprint(Array(((1, 2), (3, 5)))) == 'numpy.array([[1, 2], [3, 5]])' + assert NumPyPrinter().doprint(Array((1, 2))) == 'numpy.array((1, 2))' + +def test_numpy_known_funcs_consts(): + assert _numpy_known_constants['NaN'] == 'numpy.nan' + assert _numpy_known_constants['EulerGamma'] == 'numpy.euler_gamma' + + assert _numpy_known_functions['acos'] == 'numpy.arccos' + assert _numpy_known_functions['log'] == 'numpy.log' + +def test_scipy_known_funcs_consts(): + assert _scipy_known_constants['GoldenRatio'] == 'scipy.constants.golden_ratio' + assert _scipy_known_constants['Pi'] == 'scipy.constants.pi' + + assert _scipy_known_functions['erf'] == 'scipy.special.erf' + assert _scipy_known_functions['factorial'] == 'scipy.special.factorial' + +def test_numpy_print_methods(): + prntr = NumPyPrinter() + assert hasattr(prntr, '_print_acos') + assert hasattr(prntr, '_print_log') + +def test_scipy_print_methods(): + prntr = SciPyPrinter() + assert hasattr(prntr, '_print_acos') + assert hasattr(prntr, '_print_log') + assert hasattr(prntr, '_print_erf') + assert hasattr(prntr, '_print_factorial') + assert hasattr(prntr, '_print_chebyshevt') + k = Symbol('k', integer=True, nonnegative=True) + x = Symbol('x', real=True) + assert prntr.doprint(polygamma(k, x)) == "scipy.special.polygamma(k, x)" + assert prntr.doprint(Si(x)) == "scipy.special.sici(x)[0]" + assert prntr.doprint(Ci(x)) == "scipy.special.sici(x)[1]" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_octave.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_octave.py new file mode 100644 index 0000000000000000000000000000000000000000..0af907eb89dd801a8d6135292d6a8aaf94399d4e --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_octave.py @@ -0,0 +1,523 @@ +from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, + Tuple, Symbol, EulerGamma, GoldenRatio, Catalan, + Lambda, Mul, Pow, Mod, Eq, Ne, Le, Lt, Gt, Ge) +from sympy.codegen.matrix_nodes import MatrixSolve +from sympy.functions import (arg, atan2, bernoulli, beta, ceiling, chebyshevu, + chebyshevt, conjugate, DiracDelta, exp, expint, + factorial, floor, harmonic, Heaviside, im, + laguerre, LambertW, log, Max, Min, Piecewise, + polylog, re, RisingFactorial, sign, sinc, sqrt, + zeta, binomial, legendre, dirichlet_eta, + riemann_xi) +from sympy.functions import (sin, cos, tan, cot, sec, csc, asin, acos, acot, + atan, asec, acsc, sinh, cosh, tanh, coth, csch, + sech, asinh, acosh, atanh, acoth, asech, acsch) +from sympy.testing.pytest import raises, XFAIL +from sympy.utilities.lambdify import implemented_function +from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity, + HadamardProduct, SparseMatrix, HadamardPower) +from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli, + besselk, hankel1, hankel2, airyai, + airybi, airyaiprime, airybiprime) +from sympy.functions.special.gamma_functions import (gamma, lowergamma, + uppergamma, loggamma, + polygamma) +from sympy.functions.special.error_functions import (Chi, Ci, erf, erfc, erfi, + erfcinv, erfinv, fresnelc, + fresnels, li, Shi, Si, Li, + erf2, Ei) +from sympy.printing.octave import octave_code, octave_code as mcode + +x, y, z = symbols('x,y,z') + + +def test_Integer(): + assert mcode(Integer(67)) == "67" + assert mcode(Integer(-1)) == "-1" + + +def test_Rational(): + assert mcode(Rational(3, 7)) == "3/7" + assert mcode(Rational(18, 9)) == "2" + assert mcode(Rational(3, -7)) == "-3/7" + assert mcode(Rational(-3, -7)) == "3/7" + assert mcode(x + Rational(3, 7)) == "x + 3/7" + assert mcode(Rational(3, 7)*x) == "3*x/7" + + +def test_Relational(): + assert mcode(Eq(x, y)) == "x == y" + assert mcode(Ne(x, y)) == "x != y" + assert mcode(Le(x, y)) == "x <= y" + assert mcode(Lt(x, y)) == "x < y" + assert mcode(Gt(x, y)) == "x > y" + assert mcode(Ge(x, y)) == "x >= y" + + +def test_Function(): + assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)" + assert mcode(sign(x)) == "sign(x)" + assert mcode(exp(x)) == "exp(x)" + assert mcode(log(x)) == "log(x)" + assert mcode(factorial(x)) == "factorial(x)" + assert mcode(floor(x)) == "floor(x)" + assert mcode(atan2(y, x)) == "atan2(y, x)" + assert mcode(beta(x, y)) == 'beta(x, y)' + assert mcode(polylog(x, y)) == 'polylog(x, y)' + assert mcode(harmonic(x)) == 'harmonic(x)' + assert mcode(bernoulli(x)) == "bernoulli(x)" + assert mcode(bernoulli(x, y)) == "bernoulli(x, y)" + assert mcode(legendre(x, y)) == "legendre(x, y)" + + +def test_Function_change_name(): + assert mcode(abs(x)) == "abs(x)" + assert mcode(ceiling(x)) == "ceil(x)" + assert mcode(arg(x)) == "angle(x)" + assert mcode(im(x)) == "imag(x)" + assert mcode(re(x)) == "real(x)" + assert mcode(conjugate(x)) == "conj(x)" + assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)" + assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)" + assert mcode(laguerre(x, y)) == "laguerreL(x, y)" + assert mcode(Chi(x)) == "coshint(x)" + assert mcode(Shi(x)) == "sinhint(x)" + assert mcode(Ci(x)) == "cosint(x)" + assert mcode(Si(x)) == "sinint(x)" + assert mcode(li(x)) == "logint(x)" + assert mcode(loggamma(x)) == "gammaln(x)" + assert mcode(polygamma(x, y)) == "psi(x, y)" + assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)" + assert mcode(DiracDelta(x)) == "dirac(x)" + assert mcode(DiracDelta(x, 3)) == "dirac(3, x)" + assert mcode(Heaviside(x)) == "heaviside(x, 1/2)" + assert mcode(Heaviside(x, y)) == "heaviside(x, y)" + assert mcode(binomial(x, y)) == "bincoeff(x, y)" + assert mcode(Mod(x, y)) == "mod(x, y)" + + +def test_minmax(): + assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)" + assert mcode(Max(x, y, z)) == "max(x, max(y, z))" + assert mcode(Min(x, y, z)) == "min(x, min(y, z))" + + +def test_Pow(): + assert mcode(x**3) == "x.^3" + assert mcode(x**(y**3)) == "x.^(y.^3)" + assert mcode(x**Rational(2, 3)) == 'x.^(2/3)' + g = implemented_function('g', Lambda(x, 2*x)) + assert mcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ + "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)" + # For issue 14160 + assert mcode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), + evaluate=False)) == '-2*x./(y.*y)' + + +def test_basic_ops(): + assert mcode(x*y) == "x.*y" + assert mcode(x + y) == "x + y" + assert mcode(x - y) == "x - y" + assert mcode(-x) == "-x" + + +def test_1_over_x_and_sqrt(): + # 1.0 and 0.5 would do something different in regular StrPrinter, + # but these are exact in IEEE floating point so no different here. + assert mcode(1/x) == '1./x' + assert mcode(x**-1) == mcode(x**-1.0) == '1./x' + assert mcode(1/sqrt(x)) == '1./sqrt(x)' + assert mcode(x**-S.Half) == mcode(x**-0.5) == '1./sqrt(x)' + assert mcode(sqrt(x)) == 'sqrt(x)' + assert mcode(x**S.Half) == mcode(x**0.5) == 'sqrt(x)' + assert mcode(1/pi) == '1/pi' + assert mcode(pi**-1) == mcode(pi**-1.0) == '1/pi' + assert mcode(pi**-0.5) == '1/sqrt(pi)' + + +def test_mix_number_mult_symbols(): + assert mcode(3*x) == "3*x" + assert mcode(pi*x) == "pi*x" + assert mcode(3/x) == "3./x" + assert mcode(pi/x) == "pi./x" + assert mcode(x/3) == "x/3" + assert mcode(x/pi) == "x/pi" + assert mcode(x*y) == "x.*y" + assert mcode(3*x*y) == "3*x.*y" + assert mcode(3*pi*x*y) == "3*pi*x.*y" + assert mcode(x/y) == "x./y" + assert mcode(3*x/y) == "3*x./y" + assert mcode(x*y/z) == "x.*y./z" + assert mcode(x/y*z) == "x.*z./y" + assert mcode(1/x/y) == "1./(x.*y)" + assert mcode(2*pi*x/y/z) == "2*pi*x./(y.*z)" + assert mcode(3*pi/x) == "3*pi./x" + assert mcode(S(3)/5) == "3/5" + assert mcode(S(3)/5*x) == "3*x/5" + assert mcode(x/y/z) == "x./(y.*z)" + assert mcode((x+y)/z) == "(x + y)./z" + assert mcode((x+y)/(z+x)) == "(x + y)./(x + z)" + assert mcode((x+y)/EulerGamma) == "(x + y)/%s" % EulerGamma.evalf(17) + assert mcode(x/3/pi) == "x/(3*pi)" + assert mcode(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)" + + +def test_mix_number_pow_symbols(): + assert mcode(pi**3) == 'pi^3' + assert mcode(x**2) == 'x.^2' + assert mcode(x**(pi**3)) == 'x.^(pi^3)' + assert mcode(x**y) == 'x.^y' + assert mcode(x**(y**z)) == 'x.^(y.^z)' + assert mcode((x**y)**z) == '(x.^y).^z' + + +def test_imag(): + I = S('I') + assert mcode(I) == "1i" + assert mcode(5*I) == "5i" + assert mcode((S(3)/2)*I) == "3*1i/2" + assert mcode(3+4*I) == "3 + 4i" + assert mcode(sqrt(3)*I) == "sqrt(3)*1i" + + +def test_constants(): + assert mcode(pi) == "pi" + assert mcode(oo) == "inf" + assert mcode(-oo) == "-inf" + assert mcode(S.NegativeInfinity) == "-inf" + assert mcode(S.NaN) == "NaN" + assert mcode(S.Exp1) == "exp(1)" + assert mcode(exp(1)) == "exp(1)" + + +def test_constants_other(): + assert mcode(2*GoldenRatio) == "2*(1+sqrt(5))/2" + assert mcode(2*Catalan) == "2*%s" % Catalan.evalf(17) + assert mcode(2*EulerGamma) == "2*%s" % EulerGamma.evalf(17) + + +def test_boolean(): + assert mcode(x & y) == "x & y" + assert mcode(x | y) == "x | y" + assert mcode(~x) == "~x" + assert mcode(x & y & z) == "x & y & z" + assert mcode(x | y | z) == "x | y | z" + assert mcode((x & y) | z) == "z | x & y" + assert mcode((x | y) & z) == "z & (x | y)" + + +def test_KroneckerDelta(): + from sympy.functions import KroneckerDelta + assert mcode(KroneckerDelta(x, y)) == "double(x == y)" + assert mcode(KroneckerDelta(x, y + 1)) == "double(x == (y + 1))" + assert mcode(KroneckerDelta(2**x, y)) == "double((2.^x) == y)" + + +def test_Matrices(): + assert mcode(Matrix(1, 1, [10])) == "10" + A = Matrix([[1, sin(x/2), abs(x)], + [0, 1, pi], + [0, exp(1), ceiling(x)]]); + expected = "[1 sin(x/2) abs(x); 0 1 pi; 0 exp(1) ceil(x)]" + assert mcode(A) == expected + # row and columns + assert mcode(A[:,0]) == "[1; 0; 0]" + assert mcode(A[0,:]) == "[1 sin(x/2) abs(x)]" + # empty matrices + assert mcode(Matrix(0, 0, [])) == '[]' + assert mcode(Matrix(0, 3, [])) == 'zeros(0, 3)' + # annoying to read but correct + assert mcode(Matrix([[x, x - y, -y]])) == "[x x - y -y]" + + +def test_vector_entries_hadamard(): + # For a row or column, user might to use the other dimension + A = Matrix([[1, sin(2/x), 3*pi/x/5]]) + assert mcode(A) == "[1 sin(2./x) 3*pi./(5*x)]" + assert mcode(A.T) == "[1; sin(2./x); 3*pi./(5*x)]" + + +@XFAIL +def test_Matrices_entries_not_hadamard(): + # For Matrix with col >= 2, row >= 2, they need to be scalars + # FIXME: is it worth worrying about this? Its not wrong, just + # leave it user's responsibility to put scalar data for x. + A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]]) + expected = ("[1 sin(2/x) 3*pi/(5*x);\n" + "1 2 x*y]") # <- we give x.*y + assert mcode(A) == expected + + +def test_MatrixSymbol(): + n = Symbol('n', integer=True) + A = MatrixSymbol('A', n, n) + B = MatrixSymbol('B', n, n) + assert mcode(A*B) == "A*B" + assert mcode(B*A) == "B*A" + assert mcode(2*A*B) == "2*A*B" + assert mcode(B*2*A) == "2*B*A" + assert mcode(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)" + assert mcode(A**(x**2)) == "A^(x.^2)" + assert mcode(A**3) == "A^3" + assert mcode(A**S.Half) == "A^(1/2)" + + +def test_MatrixSolve(): + n = Symbol('n', integer=True) + A = MatrixSymbol('A', n, n) + x = MatrixSymbol('x', n, 1) + assert mcode(MatrixSolve(A, x)) == "A \\ x" + +def test_special_matrices(): + assert mcode(6*Identity(3)) == "6*eye(3)" + + +def test_containers(): + assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ + "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}" + assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}" + assert mcode([1]) == "{1}" + assert mcode((1,)) == "{1}" + assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}" + assert mcode((1, x*y, (3, x**2))) == "{1, x.*y, {3, x.^2}}" + # scalar, matrix, empty matrix and empty list + assert mcode((1, eye(3), Matrix(0, 0, []), [])) == "{1, [1 0 0; 0 1 0; 0 0 1], [], {}}" + + +def test_octave_noninline(): + source = mcode((x+y)/Catalan, assign_to='me', inline=False) + expected = ( + "Catalan = %s;\n" + "me = (x + y)/Catalan;" + ) % Catalan.evalf(17) + assert source == expected + + +def test_octave_piecewise(): + expr = Piecewise((x, x < 1), (x**2, True)) + assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))" + assert mcode(expr, assign_to="r") == ( + "r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));") + assert mcode(expr, assign_to="r", inline=False) == ( + "if (x < 1)\n" + " r = x;\n" + "else\n" + " r = x.^2;\n" + "end") + expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True)) + expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n" + "(x < 2).*(x.^3) + (~(x < 2)).*( ...\n" + "(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))") + assert mcode(expr) == expected + assert mcode(expr, assign_to="r") == "r = " + expected + ";" + assert mcode(expr, assign_to="r", inline=False) == ( + "if (x < 1)\n" + " r = x.^2;\n" + "elseif (x < 2)\n" + " r = x.^3;\n" + "elseif (x < 3)\n" + " r = x.^4;\n" + "else\n" + " r = x.^5;\n" + "end") + # Check that Piecewise without a True (default) condition error + expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) + raises(ValueError, lambda: mcode(expr)) + + +def test_octave_piecewise_times_const(): + pw = Piecewise((x, x < 1), (x**2, True)) + assert mcode(2*pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))" + assert mcode(pw/x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x" + assert mcode(pw/(x*y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)" + assert mcode(pw/3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3" + + +def test_octave_matrix_assign_to(): + A = Matrix([[1, 2, 3]]) + assert mcode(A, assign_to='a') == "a = [1 2 3];" + A = Matrix([[1, 2], [3, 4]]) + assert mcode(A, assign_to='A') == "A = [1 2; 3 4];" + + +def test_octave_matrix_assign_to_more(): + # assigning to Symbol or MatrixSymbol requires lhs/rhs match + A = Matrix([[1, 2, 3]]) + B = MatrixSymbol('B', 1, 3) + C = MatrixSymbol('C', 2, 3) + assert mcode(A, assign_to=B) == "B = [1 2 3];" + raises(ValueError, lambda: mcode(A, assign_to=x)) + raises(ValueError, lambda: mcode(A, assign_to=C)) + + +def test_octave_matrix_1x1(): + A = Matrix([[3]]) + B = MatrixSymbol('B', 1, 1) + C = MatrixSymbol('C', 1, 2) + assert mcode(A, assign_to=B) == "B = 3;" + # FIXME? + #assert mcode(A, assign_to=x) == "x = 3;" + raises(ValueError, lambda: mcode(A, assign_to=C)) + + +def test_octave_matrix_elements(): + A = Matrix([[x, 2, x*y]]) + assert mcode(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2" + A = MatrixSymbol('AA', 1, 3) + assert mcode(A) == "AA" + assert mcode(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \ + "sin(AA(1, 2)) + AA(1, 1).^2 + AA(1, 3)" + assert mcode(sum(A)) == "AA(1, 1) + AA(1, 2) + AA(1, 3)" + + +def test_octave_boolean(): + assert mcode(True) == "true" + assert mcode(S.true) == "true" + assert mcode(False) == "false" + assert mcode(S.false) == "false" + + +def test_octave_not_supported(): + assert mcode(S.ComplexInfinity) == ( + "% Not supported in Octave:\n" + "% ComplexInfinity\n" + "zoo" + ) + f = Function('f') + assert mcode(f(x).diff(x)) == ( + "% Not supported in Octave:\n" + "% Derivative\n" + "Derivative(f(x), x)" + ) + + +def test_octave_not_supported_not_on_whitelist(): + from sympy.functions.special.polynomials import assoc_laguerre + assert mcode(assoc_laguerre(x, y, z)) == ( + "% Not supported in Octave:\n" + "% assoc_laguerre\n" + "assoc_laguerre(x, y, z)" + ) + + +def test_octave_expint(): + assert mcode(expint(1, x)) == "expint(x)" + assert mcode(expint(2, x)) == ( + "% Not supported in Octave:\n" + "% expint\n" + "expint(2, x)" + ) + assert mcode(expint(y, x)) == ( + "% Not supported in Octave:\n" + "% expint\n" + "expint(y, x)" + ) + + +def test_trick_indent_with_end_else_words(): + # words starting with "end" or "else" do not confuse the indenter + t1 = S('endless'); + t2 = S('elsewhere'); + pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True)) + assert mcode(pw, inline=False) == ( + "if (x < 0)\n" + " endless\n" + "elseif (x <= 1)\n" + " elsewhere\n" + "else\n" + " 1\n" + "end") + + +def test_hadamard(): + A = MatrixSymbol('A', 3, 3) + B = MatrixSymbol('B', 3, 3) + v = MatrixSymbol('v', 3, 1) + h = MatrixSymbol('h', 1, 3) + C = HadamardProduct(A, B) + n = Symbol('n') + assert mcode(C) == "A.*B" + assert mcode(C*v) == "(A.*B)*v" + assert mcode(h*C*v) == "h*(A.*B)*v" + assert mcode(C*A) == "(A.*B)*A" + # mixing Hadamard and scalar strange b/c we vectorize scalars + assert mcode(C*x*y) == "(x.*y)*(A.*B)" + + # Testing HadamardPower: + assert mcode(HadamardPower(A, n)) == "A.**n" + assert mcode(HadamardPower(A, 1+n)) == "A.**(n + 1)" + assert mcode(HadamardPower(A*B.T, 1+n)) == "(A*B.T).**(n + 1)" + + +def test_sparse(): + M = SparseMatrix(5, 6, {}) + M[2, 2] = 10; + M[1, 2] = 20; + M[1, 3] = 22; + M[0, 3] = 30; + M[3, 0] = x*y; + assert mcode(M) == ( + "sparse([4 2 3 1 2], [1 3 3 4 4], [x.*y 20 10 30 22], 5, 6)" + ) + + +def test_sinc(): + assert mcode(sinc(x)) == 'sinc(x/pi)' + assert mcode(sinc(x + 3)) == 'sinc((x + 3)/pi)' + assert mcode(sinc(pi*(x + 3))) == 'sinc(x + 3)' + + +def test_trigfun(): + for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc, + sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth, + asech, acsch): + assert octave_code(f(x) == f.__name__ + '(x)') + + +def test_specfun(): + n = Symbol('n') + for f in [besselj, bessely, besseli, besselk]: + assert octave_code(f(n, x)) == f.__name__ + '(n, x)' + for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma): + assert octave_code(f(x)) == f.__name__ + '(x)' + assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' + assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' + assert octave_code(airyai(x)) == 'airy(0, x)' + assert octave_code(airyaiprime(x)) == 'airy(1, x)' + assert octave_code(airybi(x)) == 'airy(2, x)' + assert octave_code(airybiprime(x)) == 'airy(3, x)' + assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))' + assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))' + assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))' + assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' + assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' + assert octave_code(LambertW(x)) == 'lambertw(x)' + assert octave_code(LambertW(x, n)) == 'lambertw(n, x)' + + # Automatic rewrite + assert octave_code(Ei(x)) == 'logint(exp(x))' + assert octave_code(dirichlet_eta(x)) == '((x == 1).*(log(2)) + (~(x == 1)).*((1 - 2.^(1 - x)).*zeta(x)))' + assert octave_code(riemann_xi(x)) == 'pi.^(-x/2).*x.*(x - 1).*gamma(x/2).*zeta(x)/2' + + +def test_MatrixElement_printing(): + # test cases for issue #11821 + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + assert mcode(A[0, 0]) == "A(1, 1)" + assert mcode(3 * A[0, 0]) == "3*A(1, 1)" + + F = C[0, 0].subs(C, A - B) + assert mcode(F) == "(A - B)(1, 1)" + + +def test_zeta_printing_issue_14820(): + assert octave_code(zeta(x)) == 'zeta(x)' + assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)' + + +def test_automatic_rewrite(): + assert octave_code(Li(x)) == 'logint(x) - logint(2)' + assert octave_code(erf2(x, y)) == '-erf(x) + erf(y)' diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_precedence.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_precedence.py new file mode 100644 index 0000000000000000000000000000000000000000..372a5b0356b7a7473ecf595df45ae31c3bfaff71 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_precedence.py @@ -0,0 +1,89 @@ +from sympy.concrete.products import Product +from sympy.concrete.summations import Sum +from sympy.core.function import Derivative +from sympy.core.numbers import Integer, Rational, Float, oo +from sympy.core.relational import Rel +from sympy.core.symbol import symbols +from sympy.functions import sin +from sympy.integrals.integrals import Integral +from sympy.series.order import Order + +from sympy.printing.precedence import precedence, PRECEDENCE + +x, y = symbols("x,y") + + +def test_Add(): + assert precedence(x + y) == PRECEDENCE["Add"] + assert precedence(x*y + 1) == PRECEDENCE["Add"] + + +def test_Function(): + assert precedence(sin(x)) == PRECEDENCE["Func"] + +def test_Derivative(): + assert precedence(Derivative(x, y)) == PRECEDENCE["Atom"] + +def test_Integral(): + assert precedence(Integral(x, y)) == PRECEDENCE["Atom"] + + +def test_Mul(): + assert precedence(x*y) == PRECEDENCE["Mul"] + assert precedence(-x*y) == PRECEDENCE["Add"] + + +def test_Number(): + assert precedence(Integer(0)) == PRECEDENCE["Atom"] + assert precedence(Integer(1)) == PRECEDENCE["Atom"] + assert precedence(Integer(-1)) == PRECEDENCE["Add"] + assert precedence(Integer(10)) == PRECEDENCE["Atom"] + assert precedence(Rational(5, 2)) == PRECEDENCE["Mul"] + assert precedence(Rational(-5, 2)) == PRECEDENCE["Add"] + assert precedence(Float(5)) == PRECEDENCE["Atom"] + assert precedence(Float(-5)) == PRECEDENCE["Add"] + assert precedence(oo) == PRECEDENCE["Atom"] + assert precedence(-oo) == PRECEDENCE["Add"] + + +def test_Order(): + assert precedence(Order(x)) == PRECEDENCE["Atom"] + + +def test_Pow(): + assert precedence(x**y) == PRECEDENCE["Pow"] + assert precedence(-x**y) == PRECEDENCE["Add"] + assert precedence(x**-y) == PRECEDENCE["Pow"] + + +def test_Product(): + assert precedence(Product(x, (x, y, y + 1))) == PRECEDENCE["Atom"] + + +def test_Relational(): + assert precedence(Rel(x + y, y, "<")) == PRECEDENCE["Relational"] + + +def test_Sum(): + assert precedence(Sum(x, (x, y, y + 1))) == PRECEDENCE["Atom"] + + +def test_Symbol(): + assert precedence(x) == PRECEDENCE["Atom"] + + +def test_And_Or(): + # precedence relations between logical operators, ... + assert precedence(x & y) > precedence(x | y) + assert precedence(~y) > precedence(x & y) + # ... and with other operators (cfr. other programming languages) + assert precedence(x + y) > precedence(x | y) + assert precedence(x + y) > precedence(x & y) + assert precedence(x*y) > precedence(x | y) + assert precedence(x*y) > precedence(x & y) + assert precedence(~y) > precedence(x*y) + assert precedence(~y) > precedence(x - y) + # double checks + assert precedence(x & y) == PRECEDENCE["And"] + assert precedence(x | y) == PRECEDENCE["Or"] + assert precedence(~y) == PRECEDENCE["Not"] diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_preview.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_preview.py new file mode 100644 index 0000000000000000000000000000000000000000..91771ceb0466d6b0fee00570426713d02da14872 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_preview.py @@ -0,0 +1,38 @@ +# -*- coding: utf-8 -*- + +from sympy.core.relational import Eq +from sympy.core.symbol import Symbol +from sympy.functions.elementary.piecewise import Piecewise +from sympy.printing.preview import preview + +from io import BytesIO + + +def test_preview(): + x = Symbol('x') + obj = BytesIO() + try: + preview(x, output='png', viewer='BytesIO', outputbuffer=obj) + except RuntimeError: + pass # latex not installed on CI server + + +def test_preview_unicode_symbol(): + # issue 9107 + a = Symbol('α') + obj = BytesIO() + try: + preview(a, output='png', viewer='BytesIO', outputbuffer=obj) + except RuntimeError: + pass # latex not installed on CI server + + +def test_preview_latex_construct_in_expr(): + # see PR 9801 + x = Symbol('x') + pw = Piecewise((1, Eq(x, 0)), (0, True)) + obj = BytesIO() + try: + preview(pw, output='png', viewer='BytesIO', outputbuffer=obj) + except RuntimeError: + pass # latex not installed on CI server diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_pycode.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_pycode.py new file mode 100644 index 0000000000000000000000000000000000000000..a800e765db38490b89b019cee3b3f88cab30d663 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_pycode.py @@ -0,0 +1,426 @@ +from sympy.codegen import Assignment +from sympy.codegen.ast import none +from sympy.codegen.cfunctions import expm1, log1p +from sympy.codegen.scipy_nodes import cosm1 +from sympy.codegen.matrix_nodes import MatrixSolve +from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow +from sympy.core.numbers import pi +from sympy.core.singleton import S +from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt, Min, Max, cot, acsch, asec, coth +from sympy.logic import And, Or +from sympy.matrices import SparseMatrix, MatrixSymbol, Identity +from sympy.printing.pycode import ( + MpmathPrinter, PythonCodePrinter, pycode, SymPyPrinter +) +from sympy.printing.tensorflow import TensorflowPrinter +from sympy.printing.numpy import NumPyPrinter, SciPyPrinter +from sympy.testing.pytest import raises, skip +from sympy.tensor import IndexedBase, Idx +from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayDiagonal, ArrayContraction, ZeroArray, OneArray +from sympy.external import import_module +from sympy.functions.special.gamma_functions import loggamma + + +x, y, z = symbols('x y z') +p = IndexedBase("p") + + +def test_PythonCodePrinter(): + prntr = PythonCodePrinter() + + assert not prntr.module_imports + + assert prntr.doprint(x**y) == 'x**y' + assert prntr.doprint(Mod(x, 2)) == 'x % 2' + assert prntr.doprint(-Mod(x, y)) == '-(x % y)' + assert prntr.doprint(Mod(-x, y)) == '(-x) % y' + assert prntr.doprint(And(x, y)) == 'x and y' + assert prntr.doprint(Or(x, y)) == 'x or y' + assert prntr.doprint(1/(x+y)) == '1/(x + y)' + assert not prntr.module_imports + + assert prntr.doprint(pi) == 'math.pi' + assert prntr.module_imports == {'math': {'pi'}} + + assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)' + assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)' + assert prntr.module_imports == {'math': {'pi', 'sqrt'}} + + assert prntr.doprint(acos(x)) == 'math.acos(x)' + assert prntr.doprint(cot(x)) == '1/math.tan(x)' + assert prntr.doprint(coth(x)) == '(math.exp(x) + math.exp(-x))/(math.exp(x) - math.exp(-x))' + assert prntr.doprint(asec(x)) == 'math.acos(1/x)' + assert prntr.doprint(acsch(x)) == 'math.log(math.sqrt(1 + x**(-2)) + 1/x)' + + assert prntr.doprint(Assignment(x, 2)) == 'x = 2' + assert prntr.doprint(Piecewise((1, Eq(x, 0)), + (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)' + assert prntr.doprint(Piecewise((2, Le(x, 0)), + (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\ + ' (3) if (x > 0) else None)' + assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))' + assert prntr.doprint(p[0, 1]) == 'p[0, 1]' + assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)' + + assert prntr.doprint((2,3)) == "(2, 3)" + assert prntr.doprint([2,3]) == "[2, 3]" + + assert prntr.doprint(Min(x, y)) == "min(x, y)" + assert prntr.doprint(Max(x, y)) == "max(x, y)" + + +def test_PythonCodePrinter_standard(): + prntr = PythonCodePrinter() + + assert prntr.standard == 'python3' + + raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'})) + + +def test_MpmathPrinter(): + p = MpmathPrinter() + assert p.doprint(sign(x)) == 'mpmath.sign(x)' + assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)' + + assert p.doprint(S.Exp1) == 'mpmath.e' + assert p.doprint(S.Pi) == 'mpmath.pi' + assert p.doprint(S.GoldenRatio) == 'mpmath.phi' + assert p.doprint(S.EulerGamma) == 'mpmath.euler' + assert p.doprint(S.NaN) == 'mpmath.nan' + assert p.doprint(S.Infinity) == 'mpmath.inf' + assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf' + assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)' + + +def test_NumPyPrinter(): + from sympy.core.function import Lambda + from sympy.matrices.expressions.adjoint import Adjoint + from sympy.matrices.expressions.diagonal import (DiagMatrix, DiagonalMatrix, DiagonalOf) + from sympy.matrices.expressions.funcmatrix import FunctionMatrix + from sympy.matrices.expressions.hadamard import HadamardProduct + from sympy.matrices.expressions.kronecker import KroneckerProduct + from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix) + from sympy.abc import a, b + p = NumPyPrinter() + assert p.doprint(sign(x)) == 'numpy.sign(x)' + A = MatrixSymbol("A", 2, 2) + B = MatrixSymbol("B", 2, 2) + C = MatrixSymbol("C", 1, 5) + D = MatrixSymbol("D", 3, 4) + assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)" + assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)" + assert p.doprint(Identity(3)) == "numpy.eye(3)" + + u = MatrixSymbol('x', 2, 1) + v = MatrixSymbol('y', 2, 1) + assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)' + assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y' + + assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))" + assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))" + assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \ + "numpy.fromfunction(lambda a, b: a + b, (4, 5))" + assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)" + assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)" + assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))" + assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))" + assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)" + assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))" + + # Workaround for numpy negative integer power errors + assert p.doprint(x**-1) == 'x**(-1.0)' + assert p.doprint(x**-2) == 'x**(-2.0)' + + expr = Pow(2, -1, evaluate=False) + assert p.doprint(expr) == "2**(-1.0)" + + assert p.doprint(S.Exp1) == 'numpy.e' + assert p.doprint(S.Pi) == 'numpy.pi' + assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma' + assert p.doprint(S.NaN) == 'numpy.nan' + assert p.doprint(S.Infinity) == 'numpy.PINF' + assert p.doprint(S.NegativeInfinity) == 'numpy.NINF' + + +def test_issue_18770(): + numpy = import_module('numpy') + if not numpy: + skip("numpy not installed.") + + from sympy.functions.elementary.miscellaneous import (Max, Min) + from sympy.utilities.lambdify import lambdify + + expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1) + func = lambdify(x, expr1, "numpy") + assert (func(numpy.linspace(0, 3, 3)) == [1.0, 1.75, 2.5 ]).all() + assert func(4) == 3 + + expr1 = Max(x**2, x**3) + func = lambdify(x,expr1, "numpy") + assert (func(numpy.linspace(-1, 2, 4)) == [1, 0, 1, 8] ).all() + assert func(4) == 64 + + +def test_SciPyPrinter(): + p = SciPyPrinter() + expr = acos(x) + assert 'numpy' not in p.module_imports + assert p.doprint(expr) == 'numpy.arccos(x)' + assert 'numpy' in p.module_imports + assert not any(m.startswith('scipy') for m in p.module_imports) + smat = SparseMatrix(2, 5, {(0, 1): 3}) + assert p.doprint(smat) == \ + 'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))' + assert 'scipy.sparse' in p.module_imports + + assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio' + assert p.doprint(S.Pi) == 'scipy.constants.pi' + assert p.doprint(S.Exp1) == 'numpy.e' + + +def test_pycode_reserved_words(): + s1, s2 = symbols('if else') + raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True)) + py_str = pycode(s1 + s2) + assert py_str in ('else_ + if_', 'if_ + else_') + + +def test_issue_20762(): + # Make sure pycode removes curly braces from subscripted variables + a_b, b, a_11 = symbols('a_{b} b a_{11}') + expr = a_b*b + assert pycode(expr) == 'a_b*b' + expr = a_11*b + assert pycode(expr) == 'a_11*b' + + +def test_sqrt(): + prntr = PythonCodePrinter() + assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)' + assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)' + + prntr = PythonCodePrinter({'standard' : 'python3'}) + assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' + assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)' + + prntr = MpmathPrinter() + assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)' + assert prntr._print_Pow(sqrt(x), rational=True) == \ + "x**(mpmath.mpf(1)/mpmath.mpf(2))" + + prntr = NumPyPrinter() + assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' + assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' + + prntr = SciPyPrinter() + assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)' + assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' + + prntr = SymPyPrinter() + assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)' + assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)' + + +def test_frac(): + from sympy.functions.elementary.integers import frac + + expr = frac(x) + prntr = NumPyPrinter() + assert prntr.doprint(expr) == 'numpy.mod(x, 1)' + + prntr = SciPyPrinter() + assert prntr.doprint(expr) == 'numpy.mod(x, 1)' + + prntr = PythonCodePrinter() + assert prntr.doprint(expr) == 'x % 1' + + prntr = MpmathPrinter() + assert prntr.doprint(expr) == 'mpmath.frac(x)' + + prntr = SymPyPrinter() + assert prntr.doprint(expr) == 'sympy.functions.elementary.integers.frac(x)' + + +class CustomPrintedObject(Expr): + def _numpycode(self, printer): + return 'numpy' + + def _mpmathcode(self, printer): + return 'mpmath' + + +def test_printmethod(): + obj = CustomPrintedObject() + assert NumPyPrinter().doprint(obj) == 'numpy' + assert MpmathPrinter().doprint(obj) == 'mpmath' + + +def test_codegen_ast_nodes(): + assert pycode(none) == 'None' + + +def test_issue_14283(): + prntr = PythonCodePrinter() + + assert prntr.doprint(zoo) == "math.nan" + assert prntr.doprint(-oo) == "float('-inf')" + + +def test_NumPyPrinter_print_seq(): + n = NumPyPrinter() + + assert n._print_seq(range(2)) == '(0, 1,)' + + +def test_issue_16535_16536(): + from sympy.functions.special.gamma_functions import (lowergamma, uppergamma) + + a = symbols('a') + expr1 = lowergamma(a, x) + expr2 = uppergamma(a, x) + + prntr = SciPyPrinter() + assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)' + assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)' + + prntr = NumPyPrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + prntr = PythonCodePrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + +def test_Integral(): + from sympy.functions.elementary.exponential import exp + from sympy.integrals.integrals import Integral + + single = Integral(exp(-x), (x, 0, oo)) + double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z)) + indefinite = Integral(x**2, x) + evaluateat = Integral(x**2, (x, 1)) + + prntr = SciPyPrinter() + assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.PINF)[0]' + assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]' + raises(NotImplementedError, lambda: prntr.doprint(indefinite)) + raises(NotImplementedError, lambda: prntr.doprint(evaluateat)) + + prntr = MpmathPrinter() + assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))' + assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))' + raises(NotImplementedError, lambda: prntr.doprint(indefinite)) + raises(NotImplementedError, lambda: prntr.doprint(evaluateat)) + + +def test_fresnel_integrals(): + from sympy.functions.special.error_functions import (fresnelc, fresnels) + + expr1 = fresnelc(x) + expr2 = fresnels(x) + + prntr = SciPyPrinter() + assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]' + assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]' + + prntr = NumPyPrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + prntr = PythonCodePrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + prntr = MpmathPrinter() + assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)' + assert prntr.doprint(expr2) == 'mpmath.fresnels(x)' + + +def test_beta(): + from sympy.functions.special.beta_functions import beta + + expr = beta(x, y) + + prntr = SciPyPrinter() + assert prntr.doprint(expr) == 'scipy.special.beta(x, y)' + + prntr = NumPyPrinter() + assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' + + prntr = PythonCodePrinter() + assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' + + prntr = PythonCodePrinter({'allow_unknown_functions': True}) + assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)' + + prntr = MpmathPrinter() + assert prntr.doprint(expr) == 'mpmath.beta(x, y)' + +def test_airy(): + from sympy.functions.special.bessel import (airyai, airybi) + + expr1 = airyai(x) + expr2 = airybi(x) + + prntr = SciPyPrinter() + assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]' + assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]' + + prntr = NumPyPrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + prntr = PythonCodePrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + +def test_airy_prime(): + from sympy.functions.special.bessel import (airyaiprime, airybiprime) + + expr1 = airyaiprime(x) + expr2 = airybiprime(x) + + prntr = SciPyPrinter() + assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]' + assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]' + + prntr = NumPyPrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + prntr = PythonCodePrinter() + assert "Not supported" in prntr.doprint(expr1) + assert "Not supported" in prntr.doprint(expr2) + + +def test_numerical_accuracy_functions(): + prntr = SciPyPrinter() + assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)' + assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)' + assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)' + +def test_array_printer(): + A = ArraySymbol('A', (4,4,6,6,6)) + I = IndexedBase('I') + i,j,k = Idx('i', (0,1)), Idx('j', (2,3)), Idx('k', (4,5)) + + prntr = NumPyPrinter() + assert prntr.doprint(ZeroArray(5)) == 'numpy.zeros((5,))' + assert prntr.doprint(OneArray(5)) == 'numpy.ones((5,))' + assert prntr.doprint(ArrayContraction(A, [2,3])) == 'numpy.einsum("abccd->abd", A)' + assert prntr.doprint(I) == 'I' + assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'numpy.einsum("abccc->abc", A)' + assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'numpy.einsum("aabbc->cab", A)' + assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'numpy.einsum("abcde->abe", A)' + assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I' + + prntr = TensorflowPrinter() + assert prntr.doprint(ZeroArray(5)) == 'tensorflow.zeros((5,))' + assert prntr.doprint(OneArray(5)) == 'tensorflow.ones((5,))' + assert prntr.doprint(ArrayContraction(A, [2,3])) == 'tensorflow.linalg.einsum("abccd->abd", A)' + assert prntr.doprint(I) == 'I' + assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'tensorflow.linalg.einsum("abccc->abc", A)' + assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'tensorflow.linalg.einsum("aabbc->cab", A)' + assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'tensorflow.linalg.einsum("abcde->abe", A)' + assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I' diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_repr.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_repr.py new file mode 100644 index 0000000000000000000000000000000000000000..b42f4c7e81a7271ed6a01bc6666b13f200c1adfe --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_repr.py @@ -0,0 +1,374 @@ +from __future__ import annotations +from typing import Any + +from sympy.testing.pytest import raises, warns_deprecated_sympy +from sympy.assumptions.ask import Q +from sympy.core.function import (Function, WildFunction) +from sympy.core.numbers import (AlgebraicNumber, Float, Integer, Rational) +from sympy.core.singleton import S +from sympy.core.symbol import (Dummy, Symbol, Wild, symbols) +from sympy.core.sympify import sympify +from sympy.functions.elementary.complexes import Abs +from sympy.functions.elementary.miscellaneous import (root, sqrt) +from sympy.functions.elementary.trigonometric import sin +from sympy.functions.special.delta_functions import Heaviside +from sympy.logic.boolalg import (false, true) +from sympy.matrices.dense import (Matrix, ones) +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.matrices.immutable import ImmutableDenseMatrix +from sympy.combinatorics import Cycle, Permutation +from sympy.core.symbol import Str +from sympy.geometry import Point, Ellipse +from sympy.printing import srepr +from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly +from sympy.polys.polyclasses import DMP +from sympy.polys.agca.extensions import FiniteExtension + +x, y = symbols('x,y') + +# eval(srepr(expr)) == expr has to succeed in the right environment. The right +# environment is the scope of "from sympy import *" for most cases. +ENV: dict[str, Any] = {"Str": Str} +exec("from sympy import *", ENV) + + +def sT(expr, string, import_stmt=None, **kwargs): + """ + sT := sreprTest + + Tests that srepr delivers the expected string and that + the condition eval(srepr(expr))==expr holds. + """ + if import_stmt is None: + ENV2 = ENV + else: + ENV2 = ENV.copy() + exec(import_stmt, ENV2) + + assert srepr(expr, **kwargs) == string + assert eval(string, ENV2) == expr + + +def test_printmethod(): + class R(Abs): + def _sympyrepr(self, printer): + return "foo(%s)" % printer._print(self.args[0]) + assert srepr(R(x)) == "foo(Symbol('x'))" + + +def test_Add(): + sT(x + y, "Add(Symbol('x'), Symbol('y'))") + assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))" + assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))" + assert srepr(sympify('x + 3 - 2', evaluate=False), order='none') == "Add(Symbol('x'), Integer(3), Mul(Integer(-1), Integer(2)))" + + +def test_more_than_255_args_issue_10259(): + from sympy.core.add import Add + from sympy.core.mul import Mul + for op in (Add, Mul): + expr = op(*symbols('x:256')) + assert eval(srepr(expr)) == expr + + +def test_Function(): + sT(Function("f")(x), "Function('f')(Symbol('x'))") + # test unapplied Function + sT(Function('f'), "Function('f')") + + sT(sin(x), "sin(Symbol('x'))") + sT(sin, "sin") + + +def test_Heaviside(): + sT(Heaviside(x), "Heaviside(Symbol('x'))") + sT(Heaviside(x, 1), "Heaviside(Symbol('x'), Integer(1))") + + +def test_Geometry(): + sT(Point(0, 0), "Point2D(Integer(0), Integer(0))") + sT(Ellipse(Point(0, 0), 5, 1), + "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))") + # TODO more tests + + +def test_Singletons(): + sT(S.Catalan, 'Catalan') + sT(S.ComplexInfinity, 'zoo') + sT(S.EulerGamma, 'EulerGamma') + sT(S.Exp1, 'E') + sT(S.GoldenRatio, 'GoldenRatio') + sT(S.TribonacciConstant, 'TribonacciConstant') + sT(S.Half, 'Rational(1, 2)') + sT(S.ImaginaryUnit, 'I') + sT(S.Infinity, 'oo') + sT(S.NaN, 'nan') + sT(S.NegativeInfinity, '-oo') + sT(S.NegativeOne, 'Integer(-1)') + sT(S.One, 'Integer(1)') + sT(S.Pi, 'pi') + sT(S.Zero, 'Integer(0)') + sT(S.Complexes, 'Complexes') + sT(S.EmptySequence, 'EmptySequence') + sT(S.EmptySet, 'EmptySet') + # sT(S.IdentityFunction, 'Lambda(_x, _x)') + sT(S.Naturals, 'Naturals') + sT(S.Naturals0, 'Naturals0') + sT(S.Rationals, 'Rationals') + sT(S.Reals, 'Reals') + sT(S.UniversalSet, 'UniversalSet') + + +def test_Integer(): + sT(Integer(4), "Integer(4)") + + +def test_list(): + sT([x, Integer(4)], "[Symbol('x'), Integer(4)]") + + +def test_Matrix(): + for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]: + sT(cls([[x**+1, 1], [y, x + y]]), + "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) + + sT(cls(), "%s([])" % name) + + sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name) + + +def test_empty_Matrix(): + sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])") + sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])") + sT(ones(0, 0), "MutableDenseMatrix([])") + + +def test_Rational(): + sT(Rational(1, 3), "Rational(1, 3)") + sT(Rational(-1, 3), "Rational(-1, 3)") + + +def test_Float(): + sT(Float('1.23', dps=3), "Float('1.22998', precision=13)") + sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)") + sT(Float('1.234567890123456789', dps=19), + "Float('1.234567890123456789013', precision=66)") + sT(Float('0.60038617995049726', dps=15), + "Float('0.60038617995049726', precision=53)") + + sT(Float('1.23', precision=13), "Float('1.22998', precision=13)") + sT(Float('1.23456789', precision=33), + "Float('1.23456788994', precision=33)") + sT(Float('1.234567890123456789', precision=66), + "Float('1.234567890123456789013', precision=66)") + sT(Float('0.60038617995049726', precision=53), + "Float('0.60038617995049726', precision=53)") + + sT(Float('0.60038617995049726', 15), + "Float('0.60038617995049726', precision=53)") + + +def test_Symbol(): + sT(x, "Symbol('x')") + sT(y, "Symbol('y')") + sT(Symbol('x', negative=True), "Symbol('x', negative=True)") + + +def test_Symbol_two_assumptions(): + x = Symbol('x', negative=0, integer=1) + # order could vary + s1 = "Symbol('x', integer=True, negative=False)" + s2 = "Symbol('x', negative=False, integer=True)" + assert srepr(x) in (s1, s2) + assert eval(srepr(x), ENV) == x + + +def test_Symbol_no_special_commutative_treatment(): + sT(Symbol('x'), "Symbol('x')") + sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)") + sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)") + sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)") + sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)") + + +def test_Wild(): + sT(Wild('x', even=True), "Wild('x', even=True)") + + +def test_Dummy(): + d = Dummy('d') + sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index)) + + +def test_Dummy_assumption(): + d = Dummy('d', nonzero=True) + assert d == eval(srepr(d)) + s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index) + s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index) + assert srepr(d) in (s1, s2) + + +def test_Dummy_from_Symbol(): + # should not get the full dictionary of assumptions + n = Symbol('n', integer=True) + d = n.as_dummy() + assert srepr(d + ) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index) + + +def test_tuple(): + sT((x,), "(Symbol('x'),)") + sT((x, y), "(Symbol('x'), Symbol('y'))") + + +def test_WildFunction(): + sT(WildFunction('w'), "WildFunction('w')") + + +def test_settins(): + raises(TypeError, lambda: srepr(x, method="garbage")) + + +def test_Mul(): + sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))") + assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))" + assert srepr(sympify('(x+4)*2*x*7', evaluate=False), order='none') == "Mul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))" + + +def test_AlgebraicNumber(): + a = AlgebraicNumber(sqrt(2)) + sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])") + a = AlgebraicNumber(root(-2, 3)) + sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])") + + +def test_PolyRing(): + assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)" + assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)" + assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" + + +def test_FracField(): + assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)" + assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)" + assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)" + + +def test_PolyElement(): + R, x, y = ring("x,y", ZZ) + assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])" + + +def test_FracElement(): + F, x, y = field("x,y", ZZ) + assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])" + + +def test_FractionField(): + assert srepr(QQ.frac_field(x)) == \ + "FractionField(FracField((Symbol('x'),), QQ, lex))" + assert srepr(QQ.frac_field(x, y, order=grlex)) == \ + "FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))" + + +def test_PolynomialRingBase(): + assert srepr(ZZ.old_poly_ring(x)) == \ + "GlobalPolynomialRing(ZZ, Symbol('x'))" + assert srepr(ZZ[x].old_poly_ring(y)) == \ + "GlobalPolynomialRing(ZZ[x], Symbol('y'))" + assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \ + "GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))" + + +def test_DMP(): + assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)' + assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \ + "DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))" + + +def test_FiniteExtension(): + assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \ + "FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))" + + +def test_ExtensionElement(): + A = FiniteExtension(Poly(x**2 + 1, x)) + assert srepr(A.generator) == \ + "ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))" + + +def test_BooleanAtom(): + assert srepr(true) == "true" + assert srepr(false) == "false" + + +def test_Integers(): + sT(S.Integers, "Integers") + + +def test_Naturals(): + sT(S.Naturals, "Naturals") + + +def test_Naturals0(): + sT(S.Naturals0, "Naturals0") + + +def test_Reals(): + sT(S.Reals, "Reals") + + +def test_matrix_expressions(): + n = symbols('n', integer=True) + A = MatrixSymbol("A", n, n) + B = MatrixSymbol("B", n, n) + sT(A, "MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))") + sT(A*B, "MatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") + sT(A + B, "MatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))") + + +def test_Cycle(): + # FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2)) + # adds keys to the Cycle dict (GH-17661) + #import_stmt = "from sympy.combinatorics import Cycle" + #sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt) + assert srepr(Cycle(1, 2)) == "Cycle(1, 2)" + + +def test_Permutation(): + import_stmt = "from sympy.combinatorics import Permutation" + sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt, perm_cyclic=False) + sT(Permutation(1, 2)(3, 4), "Permutation(1, 2)(3, 4)", import_stmt, perm_cyclic=True) + + with warns_deprecated_sympy(): + old_print_cyclic = Permutation.print_cyclic + Permutation.print_cyclic = False + sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt) + Permutation.print_cyclic = old_print_cyclic + +def test_dict(): + from sympy.abc import x, y, z + d = {} + assert srepr(d) == "{}" + d = {x: y} + assert srepr(d) == "{Symbol('x'): Symbol('y')}" + d = {x: y, y: z} + assert srepr(d) in ( + "{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}", + "{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}", + ) + d = {x: {y: z}} + assert srepr(d) == "{Symbol('x'): {Symbol('y'): Symbol('z')}}" + +def test_set(): + from sympy.abc import x, y + s = set() + assert srepr(s) == "set()" + s = {x, y} + assert srepr(s) in ("{Symbol('x'), Symbol('y')}", "{Symbol('y'), Symbol('x')}") + +def test_Predicate(): + sT(Q.even, "Q.even") + +def test_AppliedPredicate(): + sT(Q.even(Symbol('z')), "AppliedPredicate(Q.even, Symbol('z'))") diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_rust.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_rust.py new file mode 100644 index 0000000000000000000000000000000000000000..afa611cca1cc6e3417cadc61f63508d743f679ba --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_rust.py @@ -0,0 +1,359 @@ +from sympy.core import (S, pi, oo, symbols, Rational, Integer, + GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, + Eq, Ne, Le, Lt, Gt, Ge, Mod) +from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, + sign, floor) +from sympy.logic import ITE +from sympy.testing.pytest import raises +from sympy.utilities.lambdify import implemented_function +from sympy.tensor import IndexedBase, Idx +from sympy.matrices import MatrixSymbol, SparseMatrix, Matrix + +from sympy.printing.rust import rust_code + +x, y, z = symbols('x,y,z') + + +def test_Integer(): + assert rust_code(Integer(42)) == "42" + assert rust_code(Integer(-56)) == "-56" + + +def test_Relational(): + assert rust_code(Eq(x, y)) == "x == y" + assert rust_code(Ne(x, y)) == "x != y" + assert rust_code(Le(x, y)) == "x <= y" + assert rust_code(Lt(x, y)) == "x < y" + assert rust_code(Gt(x, y)) == "x > y" + assert rust_code(Ge(x, y)) == "x >= y" + + +def test_Rational(): + assert rust_code(Rational(3, 7)) == "3_f64/7.0" + assert rust_code(Rational(18, 9)) == "2" + assert rust_code(Rational(3, -7)) == "-3_f64/7.0" + assert rust_code(Rational(-3, -7)) == "3_f64/7.0" + assert rust_code(x + Rational(3, 7)) == "x + 3_f64/7.0" + assert rust_code(Rational(3, 7)*x) == "(3_f64/7.0)*x" + + +def test_basic_ops(): + assert rust_code(x + y) == "x + y" + assert rust_code(x - y) == "x - y" + assert rust_code(x * y) == "x*y" + assert rust_code(x / y) == "x/y" + assert rust_code(-x) == "-x" + + +def test_printmethod(): + class fabs(Abs): + def _rust_code(self, printer): + return "%s.fabs()" % printer._print(self.args[0]) + assert rust_code(fabs(x)) == "x.fabs()" + a = MatrixSymbol("a", 1, 3) + assert rust_code(a[0,0]) == 'a[0]' + + +def test_Functions(): + assert rust_code(sin(x) ** cos(x)) == "x.sin().powf(x.cos())" + assert rust_code(abs(x)) == "x.abs()" + assert rust_code(ceiling(x)) == "x.ceil()" + assert rust_code(floor(x)) == "x.floor()" + + # Automatic rewrite + assert rust_code(Mod(x, 3)) == 'x - 3*((1_f64/3.0)*x).floor()' + + +def test_Pow(): + assert rust_code(1/x) == "x.recip()" + assert rust_code(x**-1) == rust_code(x**-1.0) == "x.recip()" + assert rust_code(sqrt(x)) == "x.sqrt()" + assert rust_code(x**S.Half) == rust_code(x**0.5) == "x.sqrt()" + + assert rust_code(1/sqrt(x)) == "x.sqrt().recip()" + assert rust_code(x**-S.Half) == rust_code(x**-0.5) == "x.sqrt().recip()" + + assert rust_code(1/pi) == "PI.recip()" + assert rust_code(pi**-1) == rust_code(pi**-1.0) == "PI.recip()" + assert rust_code(pi**-0.5) == "PI.sqrt().recip()" + + assert rust_code(x**Rational(1, 3)) == "x.cbrt()" + assert rust_code(2**x) == "x.exp2()" + assert rust_code(exp(x)) == "x.exp()" + assert rust_code(x**3) == "x.powi(3)" + assert rust_code(x**(y**3)) == "x.powf(y.powi(3))" + assert rust_code(x**Rational(2, 3)) == "x.powf(2_f64/3.0)" + + g = implemented_function('g', Lambda(x, 2*x)) + assert rust_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ + "(3.5*2*x).powf(-x + y.powf(x))/(x.powi(2) + y)" + _cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi", 1), + (lambda base, exp: not exp.is_integer, "pow", 1)] + assert rust_code(x**3, user_functions={'Pow': _cond_cfunc}) == 'x.dpowi(3)' + assert rust_code(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'x.pow(3.2)' + + +def test_constants(): + assert rust_code(pi) == "PI" + assert rust_code(oo) == "INFINITY" + assert rust_code(S.Infinity) == "INFINITY" + assert rust_code(-oo) == "NEG_INFINITY" + assert rust_code(S.NegativeInfinity) == "NEG_INFINITY" + assert rust_code(S.NaN) == "NAN" + assert rust_code(exp(1)) == "E" + assert rust_code(S.Exp1) == "E" + + +def test_constants_other(): + assert rust_code(2*GoldenRatio) == "const GoldenRatio: f64 = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) + assert rust_code( + 2*Catalan) == "const Catalan: f64 = %s;\n2*Catalan" % Catalan.evalf(17) + assert rust_code(2*EulerGamma) == "const EulerGamma: f64 = %s;\n2*EulerGamma" % EulerGamma.evalf(17) + + +def test_boolean(): + assert rust_code(True) == "true" + assert rust_code(S.true) == "true" + assert rust_code(False) == "false" + assert rust_code(S.false) == "false" + assert rust_code(x & y) == "x && y" + assert rust_code(x | y) == "x || y" + assert rust_code(~x) == "!x" + assert rust_code(x & y & z) == "x && y && z" + assert rust_code(x | y | z) == "x || y || z" + assert rust_code((x & y) | z) == "z || x && y" + assert rust_code((x | y) & z) == "z && (x || y)" + + +def test_Piecewise(): + expr = Piecewise((x, x < 1), (x + 2, True)) + assert rust_code(expr) == ( + "if (x < 1) {\n" + " x\n" + "} else {\n" + " x + 2\n" + "}") + assert rust_code(expr, assign_to="r") == ( + "r = if (x < 1) {\n" + " x\n" + "} else {\n" + " x + 2\n" + "};") + assert rust_code(expr, assign_to="r", inline=True) == ( + "r = if (x < 1) { x } else { x + 2 };") + expr = Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True)) + assert rust_code(expr, inline=True) == ( + "if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }") + assert rust_code(expr, assign_to="r", inline=True) == ( + "r = if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 };") + assert rust_code(expr, assign_to="r") == ( + "r = if (x < 1) {\n" + " x\n" + "} else if (x < 5) {\n" + " x + 1\n" + "} else {\n" + " x + 2\n" + "};") + expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True)) + assert rust_code(expr, inline=True) == ( + "2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 }") + expr = 2*Piecewise((x, x < 1), (x + 1, x < 5), (x + 2, True)) - 42 + assert rust_code(expr, inline=True) == ( + "2*if (x < 1) { x } else if (x < 5) { x + 1 } else { x + 2 } - 42") + # Check that Piecewise without a True (default) condition error + expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) + raises(ValueError, lambda: rust_code(expr)) + + +def test_dereference_printing(): + expr = x + y + sin(z) + z + assert rust_code(expr, dereference=[z]) == "x + y + (*z) + (*z).sin()" + + +def test_sign(): + expr = sign(x) * y + assert rust_code(expr) == "y*x.signum()" + assert rust_code(expr, assign_to='r') == "r = y*x.signum();" + + expr = sign(x + y) + 42 + assert rust_code(expr) == "(x + y).signum() + 42" + assert rust_code(expr, assign_to='r') == "r = (x + y).signum() + 42;" + + expr = sign(cos(x)) + assert rust_code(expr) == "x.cos().signum()" + + +def test_reserved_words(): + + x, y = symbols("x if") + + expr = sin(y) + assert rust_code(expr) == "if_.sin()" + assert rust_code(expr, dereference=[y]) == "(*if_).sin()" + assert rust_code(expr, reserved_word_suffix='_unreserved') == "if_unreserved.sin()" + + with raises(ValueError): + rust_code(expr, error_on_reserved=True) + + +def test_ITE(): + expr = ITE(x < 1, y, z) + assert rust_code(expr) == ( + "if (x < 1) {\n" + " y\n" + "} else {\n" + " z\n" + "}") + + +def test_Indexed(): + n, m, o = symbols('n m o', integer=True) + i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) + + x = IndexedBase('x')[j] + assert rust_code(x) == "x[j]" + + A = IndexedBase('A')[i, j] + assert rust_code(A) == "A[m*i + j]" + + B = IndexedBase('B')[i, j, k] + assert rust_code(B) == "B[m*o*i + o*j + k]" + + +def test_dummy_loops(): + i, m = symbols('i m', integer=True, cls=Dummy) + x = IndexedBase('x') + y = IndexedBase('y') + i = Idx(i, m) + + assert rust_code(x[i], assign_to=y[i]) == ( + "for i in 0..m {\n" + " y[i] = x[i];\n" + "}") + + +def test_loops(): + m, n = symbols('m n', integer=True) + A = IndexedBase('A') + x = IndexedBase('x') + y = IndexedBase('y') + z = IndexedBase('z') + i = Idx('i', m) + j = Idx('j', n) + + assert rust_code(A[i, j]*x[j], assign_to=y[i]) == ( + "for i in 0..m {\n" + " y[i] = 0;\n" + "}\n" + "for i in 0..m {\n" + " for j in 0..n {\n" + " y[i] = A[n*i + j]*x[j] + y[i];\n" + " }\n" + "}") + + assert rust_code(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == ( + "for i in 0..m {\n" + " y[i] = x[i] + z[i];\n" + "}\n" + "for i in 0..m {\n" + " for j in 0..n {\n" + " y[i] = A[n*i + j]*x[j] + y[i];\n" + " }\n" + "}") + + +def test_loops_multiple_contractions(): + n, m, o, p = symbols('n m o p', integer=True) + a = IndexedBase('a') + b = IndexedBase('b') + y = IndexedBase('y') + i = Idx('i', m) + j = Idx('j', n) + k = Idx('k', o) + l = Idx('l', p) + + assert rust_code(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == ( + "for i in 0..m {\n" + " y[i] = 0;\n" + "}\n" + "for i in 0..m {\n" + " for j in 0..n {\n" + " for k in 0..o {\n" + " for l in 0..p {\n" + " y[i] = a[%s]*b[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ + " }\n" + " }\n" + " }\n" + "}") + + +def test_loops_addfactor(): + m, n, o, p = symbols('m n o p', integer=True) + a = IndexedBase('a') + b = IndexedBase('b') + c = IndexedBase('c') + y = IndexedBase('y') + i = Idx('i', m) + j = Idx('j', n) + k = Idx('k', o) + l = Idx('l', p) + + code = rust_code((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) + assert code == ( + "for i in 0..m {\n" + " y[i] = 0;\n" + "}\n" + "for i in 0..m {\n" + " for j in 0..n {\n" + " for k in 0..o {\n" + " for l in 0..p {\n" + " y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n" % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ + " }\n" + " }\n" + " }\n" + "}") + + +def test_settings(): + raises(TypeError, lambda: rust_code(sin(x), method="garbage")) + + +def test_inline_function(): + x = symbols('x') + g = implemented_function('g', Lambda(x, 2*x)) + assert rust_code(g(x)) == "2*x" + + g = implemented_function('g', Lambda(x, 2*x/Catalan)) + assert rust_code(g(x)) == ( + "const Catalan: f64 = %s;\n2*x/Catalan" % Catalan.evalf(17)) + + A = IndexedBase('A') + i = Idx('i', symbols('n', integer=True)) + g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) + assert rust_code(g(A[i]), assign_to=A[i]) == ( + "for i in 0..n {\n" + " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" + "}") + + +def test_user_functions(): + x = symbols('x', integer=False) + n = symbols('n', integer=True) + custom_functions = { + "ceiling": "ceil", + "Abs": [(lambda x: not x.is_integer, "fabs", 4), (lambda x: x.is_integer, "abs", 4)], + } + assert rust_code(ceiling(x), user_functions=custom_functions) == "x.ceil()" + assert rust_code(Abs(x), user_functions=custom_functions) == "fabs(x)" + assert rust_code(Abs(n), user_functions=custom_functions) == "abs(n)" + + +def test_matrix(): + assert rust_code(Matrix([1, 2, 3])) == '[1, 2, 3]' + with raises(ValueError): + rust_code(Matrix([[1, 2, 3]])) + + +def test_sparse_matrix(): + # gh-15791 + assert 'Not supported in Rust' in rust_code(SparseMatrix([[1, 2, 3]])) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_str.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_str.py new file mode 100644 index 0000000000000000000000000000000000000000..ed1fe27389a7de55ce4da4225ea3842153208996 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_str.py @@ -0,0 +1,1175 @@ +from sympy import MatAdd +from sympy.algebras.quaternion import Quaternion +from sympy.assumptions.ask import Q +from sympy.calculus.accumulationbounds import AccumBounds +from sympy.combinatorics.partitions import Partition +from sympy.concrete.summations import (Sum, summation) +from sympy.core.add import Add +from sympy.core.containers import (Dict, Tuple) +from sympy.core.expr import UnevaluatedExpr, Expr +from sympy.core.function import (Derivative, Function, Lambda, Subs, WildFunction) +from sympy.core.mul import Mul +from sympy.core import (Catalan, EulerGamma, GoldenRatio, TribonacciConstant) +from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi, zoo) +from sympy.core.parameters import _exp_is_pow +from sympy.core.power import Pow +from sympy.core.relational import (Eq, Rel, Ne) +from sympy.core.singleton import S +from sympy.core.symbol import (Dummy, Symbol, Wild, symbols) +from sympy.functions.combinatorial.factorials import (factorial, factorial2, subfactorial) +from sympy.functions.elementary.complexes import Abs +from sympy.functions.elementary.exponential import exp +from sympy.functions.elementary.miscellaneous import sqrt +from sympy.functions.elementary.trigonometric import (cos, sin) +from sympy.functions.special.delta_functions import Heaviside +from sympy.functions.special.zeta_functions import zeta +from sympy.integrals.integrals import Integral +from sympy.logic.boolalg import (Equivalent, false, true, Xor) +from sympy.matrices.dense import Matrix +from sympy.matrices.expressions.matexpr import MatrixSymbol +from sympy.matrices.expressions.slice import MatrixSlice +from sympy.matrices import SparseMatrix +from sympy.polys.polytools import factor +from sympy.series.limits import Limit +from sympy.series.order import O +from sympy.sets.sets import (Complement, FiniteSet, Interval, SymmetricDifference) +from sympy.external import import_module +from sympy.physics.control.lti import TransferFunction, Series, Parallel, \ + Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback +from sympy.physics.units import second, joule +from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, + ZZ_I, QQ_I, lex, grlex) +from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle +from sympy.tensor import NDimArray +from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement + +from sympy.testing.pytest import raises, warns_deprecated_sympy + +from sympy.printing import sstr, sstrrepr, StrPrinter +from sympy.physics.quantum.trace import Tr + +x, y, z, w, t = symbols('x,y,z,w,t') +d = Dummy('d') + + +def test_printmethod(): + class R(Abs): + def _sympystr(self, printer): + return "foo(%s)" % printer._print(self.args[0]) + assert sstr(R(x)) == "foo(x)" + + class R(Abs): + def _sympystr(self, printer): + return "foo" + assert sstr(R(x)) == "foo" + + +def test_Abs(): + assert str(Abs(x)) == "Abs(x)" + assert str(Abs(Rational(1, 6))) == "1/6" + assert str(Abs(Rational(-1, 6))) == "1/6" + + +def test_Add(): + assert str(x + y) == "x + y" + assert str(x + 1) == "x + 1" + assert str(x + x**2) == "x**2 + x" + assert str(Add(0, 1, evaluate=False)) == "0 + 1" + assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1" + assert str(1.0*x) == "1.0*x" + assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5" + assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1" + assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2" + assert str(x - y) == "x - y" + assert str(2 - x) == "2 - x" + assert str(x - 2) == "x - 2" + assert str(x - y - z - w) == "-w + x - y - z" + assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x" + assert str(x - 1*y*x*y) == "-x*y**2 + x" + assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)" + assert str(Add(Add(-w, x, evaluate=False), Add(-y, z, evaluate=False), evaluate=False)) == "(-w + x) + (-y + z)" + assert str(Add(Add(-x, -y, evaluate=False), -z, evaluate=False)) == "-z + (-x - y)" + assert str(Add(Add(Add(-x, -y, evaluate=False), -z, evaluate=False), -t, evaluate=False)) == "-t + (-z + (-x - y))" + + +def test_Catalan(): + assert str(Catalan) == "Catalan" + + +def test_ComplexInfinity(): + assert str(zoo) == "zoo" + + +def test_Derivative(): + assert str(Derivative(x, y)) == "Derivative(x, y)" + assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)" + assert str(Derivative( + x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)" + + +def test_dict(): + assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}" + assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") + assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}" + + +def test_Dict(): + assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}" + assert str(Dict({1: x**2, 2: y*x})) in ( + "{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}") + assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}" + + +def test_Dummy(): + assert str(d) == "_d" + assert str(d + x) == "_d + x" + + +def test_EulerGamma(): + assert str(EulerGamma) == "EulerGamma" + + +def test_Exp(): + assert str(E) == "E" + with _exp_is_pow(True): + assert str(exp(x)) == "E**x" + + +def test_factorial(): + n = Symbol('n', integer=True) + assert str(factorial(-2)) == "zoo" + assert str(factorial(0)) == "1" + assert str(factorial(7)) == "5040" + assert str(factorial(n)) == "factorial(n)" + assert str(factorial(2*n)) == "factorial(2*n)" + assert str(factorial(factorial(n))) == 'factorial(factorial(n))' + assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))' + assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))' + assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))' + assert str(subfactorial(3)) == "2" + assert str(subfactorial(n)) == "subfactorial(n)" + assert str(subfactorial(2*n)) == "subfactorial(2*n)" + + +def test_Function(): + f = Function('f') + fx = f(x) + w = WildFunction('w') + assert str(f) == "f" + assert str(fx) == "f(x)" + assert str(w) == "w_" + + +def test_Geometry(): + assert sstr(Point(0, 0)) == 'Point2D(0, 0)' + assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)' + assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)' + assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \ + 'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))' + assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \ + 'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))' + assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \ + 'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))' + assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \ + 'Ellipse(Point2D(S(1), S(2)), S(3), S(4))' + + +def test_GoldenRatio(): + assert str(GoldenRatio) == "GoldenRatio" + + +def test_Heaviside(): + assert str(Heaviside(x)) == str(Heaviside(x, S.Half)) == "Heaviside(x)" + assert str(Heaviside(x, 1)) == "Heaviside(x, 1)" + + +def test_TribonacciConstant(): + assert str(TribonacciConstant) == "TribonacciConstant" + + +def test_ImaginaryUnit(): + assert str(I) == "I" + + +def test_Infinity(): + assert str(oo) == "oo" + assert str(oo*I) == "oo*I" + + +def test_Integer(): + assert str(Integer(-1)) == "-1" + assert str(Integer(1)) == "1" + assert str(Integer(-3)) == "-3" + assert str(Integer(0)) == "0" + assert str(Integer(25)) == "25" + + +def test_Integral(): + assert str(Integral(sin(x), y)) == "Integral(sin(x), y)" + assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))" + + +def test_Interval(): + n = (S.NegativeInfinity, 1, 2, S.Infinity) + for i in range(len(n)): + for j in range(i + 1, len(n)): + for l in (True, False): + for r in (True, False): + ival = Interval(n[i], n[j], l, r) + assert S(str(ival)) == ival + + +def test_AccumBounds(): + a = Symbol('a', real=True) + assert str(AccumBounds(0, a)) == "AccumBounds(0, a)" + assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)" + + +def test_Lambda(): + assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)" + # issue 2908 + assert str(Lambda((), 1)) == "Lambda((), 1)" + assert str(Lambda((), x)) == "Lambda((), x)" + assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)" + assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)" + + +def test_Limit(): + assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y, dir='+')" + assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0, dir='+')" + assert str( + Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')" + + +def test_list(): + assert str([x]) == sstr([x]) == "[x]" + assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]" + assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]" + + +def test_Matrix_str(): + M = Matrix([[x**+1, 1], [y, x + y]]) + assert str(M) == "Matrix([[x, 1], [y, x + y]])" + assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" + M = Matrix([[1]]) + assert str(M) == sstr(M) == "Matrix([[1]])" + M = Matrix([[1, 2]]) + assert str(M) == sstr(M) == "Matrix([[1, 2]])" + M = Matrix() + assert str(M) == sstr(M) == "Matrix(0, 0, [])" + M = Matrix(0, 1, lambda i, j: 0) + assert str(M) == sstr(M) == "Matrix(0, 1, [])" + + +def test_Mul(): + assert str(x/y) == "x/y" + assert str(y/x) == "y/x" + assert str(x/y/z) == "x/(y*z)" + assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)" + assert str(2*x/3) == '2*x/3' + assert str(-2*x/3) == '-2*x/3' + assert str(-1.0*x) == '-1.0*x' + assert str(1.0*x) == '1.0*x' + assert str(Mul(0, 1, evaluate=False)) == '0*1' + assert str(Mul(1, 0, evaluate=False)) == '1*0' + assert str(Mul(1, 1, evaluate=False)) == '1*1' + assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1' + assert str(Mul(1, 2, evaluate=False)) == '1*2' + assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)' + assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)' + assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x' + assert str(Mul(1, -1, evaluate=False)) == '1*(-1)' + assert str(Mul(-1, 1, evaluate=False)) == '-1*1' + assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x' + assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x' + assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)' + # For issue 14160 + assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), + evaluate=False)) == '-2*x/(y*y)' + # issue 21537 + assert str(Mul(x, Pow(1/y, -1, evaluate=False), evaluate=False)) == 'x/(1/y)' + + # Issue 24108 + from sympy.core.parameters import evaluate + with evaluate(False): + assert str(Mul(Pow(Integer(2), Integer(-1)), Add(Integer(-1), Mul(Integer(-1), Integer(1))))) == "(-1 - 1*1)/2" + + class CustomClass1(Expr): + is_commutative = True + + class CustomClass2(Expr): + is_commutative = True + cc1 = CustomClass1() + cc2 = CustomClass2() + assert str(Rational(2)*cc1) == '2*CustomClass1()' + assert str(cc1*Rational(2)) == '2*CustomClass1()' + assert str(cc1*Float("1.5")) == '1.5*CustomClass1()' + assert str(cc2*Rational(2)) == '2*CustomClass2()' + assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()' + assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()' + + +def test_NaN(): + assert str(nan) == "nan" + + +def test_NegativeInfinity(): + assert str(-oo) == "-oo" + +def test_Order(): + assert str(O(x)) == "O(x)" + assert str(O(x**2)) == "O(x**2)" + assert str(O(x*y)) == "O(x*y, x, y)" + assert str(O(x, x)) == "O(x)" + assert str(O(x, (x, 0))) == "O(x)" + assert str(O(x, (x, oo))) == "O(x, (x, oo))" + assert str(O(x, x, y)) == "O(x, x, y)" + assert str(O(x, x, y)) == "O(x, x, y)" + assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))" + + +def test_Permutation_Cycle(): + from sympy.combinatorics import Permutation, Cycle + + # general principle: economically, canonically show all moved elements + # and the size of the permutation. + + for p, s in [ + (Cycle(), + '()'), + (Cycle(2), + '(2)'), + (Cycle(2, 1), + '(1 2)'), + (Cycle(1, 2)(5)(6, 7)(10), + '(1 2)(6 7)(10)'), + (Cycle(3, 4)(1, 2)(3, 4), + '(1 2)(4)'), + ]: + assert sstr(p) == s + + for p, s in [ + (Permutation([]), + 'Permutation([])'), + (Permutation([], size=1), + 'Permutation([0])'), + (Permutation([], size=2), + 'Permutation([0, 1])'), + (Permutation([], size=10), + 'Permutation([], size=10)'), + (Permutation([1, 0, 2]), + 'Permutation([1, 0, 2])'), + (Permutation([1, 0, 2, 3, 4, 5]), + 'Permutation([1, 0], size=6)'), + (Permutation([1, 0, 2, 3, 4, 5], size=10), + 'Permutation([1, 0], size=10)'), + ]: + assert sstr(p, perm_cyclic=False) == s + + for p, s in [ + (Permutation([]), + '()'), + (Permutation([], size=1), + '(0)'), + (Permutation([], size=2), + '(1)'), + (Permutation([], size=10), + '(9)'), + (Permutation([1, 0, 2]), + '(2)(0 1)'), + (Permutation([1, 0, 2, 3, 4, 5]), + '(5)(0 1)'), + (Permutation([1, 0, 2, 3, 4, 5], size=10), + '(9)(0 1)'), + (Permutation([0, 1, 3, 2, 4, 5], size=10), + '(9)(2 3)'), + ]: + assert sstr(p) == s + + + with warns_deprecated_sympy(): + old_print_cyclic = Permutation.print_cyclic + Permutation.print_cyclic = False + assert sstr(Permutation([1, 0, 2])) == 'Permutation([1, 0, 2])' + Permutation.print_cyclic = old_print_cyclic + +def test_Pi(): + assert str(pi) == "pi" + + +def test_Poly(): + assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')" + assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')" + assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')" + + assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')" + assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')" + + assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')" + assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')" + + assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')" + assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')" + + assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')" + assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')" + + assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')" + assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')" + + assert str(Poly((x + y)**3, (x + y), expand=False) + ) == "Poly((x + y)**3, x + y, domain='ZZ')" + assert str(Poly((x - 1)**2, (x - 1), expand=False) + ) == "Poly((x - 1)**2, x - 1, domain='ZZ')" + + assert str( + Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')" + assert str( + Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')" + + assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')" + assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')" + + assert str(Poly(-x*y*z + x*y - 1, x, y, z) + ) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')" + assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \ + "Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')" + + assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)" + assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)" + + +def test_PolyRing(): + assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order" + assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order" + assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order" + + +def test_FracField(): + assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order" + assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order" + assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order" + + +def test_PolyElement(): + Ruv, u,v = ring("u,v", ZZ) + Rxyz, x,y,z = ring("x,y,z", Ruv) + Rx_zzi, xz = ring("x", ZZ_I) + + assert str(x - x) == "0" + assert str(x - 1) == "x - 1" + assert str(x + 1) == "x + 1" + assert str(x**2) == "x**2" + assert str(x**(-2)) == "x**(-2)" + assert str(x**QQ(1, 2)) == "x**(1/2)" + + assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1" + assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x" + assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1" + assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1" + + assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1" + assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1" + + assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)" + + +def test_FracElement(): + Fuv, u,v = field("u,v", ZZ) + Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) + Rx_zzi, xz = field("x", QQ_I) + i = QQ_I(0, 1) + + assert str(x - x) == "0" + assert str(x - 1) == "x - 1" + assert str(x + 1) == "x + 1" + + assert str(x/3) == "x/3" + assert str(x/z) == "x/z" + assert str(x*y/z) == "x*y/z" + assert str(x/(z*t)) == "x/(z*t)" + assert str(x*y/(z*t)) == "x*y/(z*t)" + + assert str((x - 1)/y) == "(x - 1)/y" + assert str((x + 1)/y) == "(x + 1)/y" + assert str((-x - 1)/y) == "(-x - 1)/y" + assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)" + assert str(-y/(x + 1)) == "-y/(x + 1)" + assert str(y*z/(x + 1)) == "y*z/(x + 1)" + + assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)" + assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)" + + assert str((1+i)/xz) == "(1 + 1*I)/x" + assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x" + + +def test_GaussianInteger(): + assert str(ZZ_I(1, 0)) == "1" + assert str(ZZ_I(-1, 0)) == "-1" + assert str(ZZ_I(0, 1)) == "I" + assert str(ZZ_I(0, -1)) == "-I" + assert str(ZZ_I(0, 2)) == "2*I" + assert str(ZZ_I(0, -2)) == "-2*I" + assert str(ZZ_I(1, 1)) == "1 + I" + assert str(ZZ_I(-1, -1)) == "-1 - I" + assert str(ZZ_I(-1, -2)) == "-1 - 2*I" + + +def test_GaussianRational(): + assert str(QQ_I(1, 0)) == "1" + assert str(QQ_I(QQ(2, 3), 0)) == "2/3" + assert str(QQ_I(0, QQ(2, 3))) == "2*I/3" + assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3" + + +def test_Pow(): + assert str(x**-1) == "1/x" + assert str(x**-2) == "x**(-2)" + assert str(x**2) == "x**2" + assert str((x + y)**-1) == "1/(x + y)" + assert str((x + y)**-2) == "(x + y)**(-2)" + assert str((x + y)**2) == "(x + y)**2" + assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)" + assert str(x**Rational(1, 3)) == "x**(1/3)" + assert str(1/x**Rational(1, 3)) == "x**(-1/3)" + assert str(sqrt(sqrt(x))) == "x**(1/4)" + # not the same as x**-1 + assert str(x**-1.0) == 'x**(-1.0)' + # see issue #2860 + assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)' + + +def test_sqrt(): + assert str(sqrt(x)) == "sqrt(x)" + assert str(sqrt(x**2)) == "sqrt(x**2)" + assert str(1/sqrt(x)) == "1/sqrt(x)" + assert str(1/sqrt(x**2)) == "1/sqrt(x**2)" + assert str(y/sqrt(x)) == "y/sqrt(x)" + assert str(x**0.5) == "x**0.5" + assert str(1/x**0.5) == "x**(-0.5)" + + +def test_Rational(): + n1 = Rational(1, 4) + n2 = Rational(1, 3) + n3 = Rational(2, 4) + n4 = Rational(2, -4) + n5 = Rational(0) + n7 = Rational(3) + n8 = Rational(-3) + assert str(n1*n2) == "1/12" + assert str(n1*n2) == "1/12" + assert str(n3) == "1/2" + assert str(n1*n3) == "1/8" + assert str(n1 + n3) == "3/4" + assert str(n1 + n2) == "7/12" + assert str(n1 + n4) == "-1/4" + assert str(n4*n4) == "1/4" + assert str(n4 + n2) == "-1/6" + assert str(n4 + n5) == "-1/2" + assert str(n4*n5) == "0" + assert str(n3 + n4) == "0" + assert str(n1**n7) == "1/64" + assert str(n2**n7) == "1/27" + assert str(n2**n8) == "27" + assert str(n7**n8) == "1/27" + assert str(Rational("-25")) == "-25" + assert str(Rational("1.25")) == "5/4" + assert str(Rational("-2.6e-2")) == "-13/500" + assert str(S("25/7")) == "25/7" + assert str(S("-123/569")) == "-123/569" + assert str(S("0.1[23]", rational=1)) == "61/495" + assert str(S("5.1[666]", rational=1)) == "31/6" + assert str(S("-5.1[666]", rational=1)) == "-31/6" + assert str(S("0.[9]", rational=1)) == "1" + assert str(S("-0.[9]", rational=1)) == "-1" + + assert str(sqrt(Rational(1, 4))) == "1/2" + assert str(sqrt(Rational(1, 36))) == "1/6" + + assert str((123**25) ** Rational(1, 25)) == "123" + assert str((123**25 + 1)**Rational(1, 25)) != "123" + assert str((123**25 - 1)**Rational(1, 25)) != "123" + assert str((123**25 - 1)**Rational(1, 25)) != "122" + + assert str(sqrt(Rational(81, 36))**3) == "27/8" + assert str(1/sqrt(Rational(81, 36))**3) == "8/27" + + assert str(sqrt(-4)) == str(2*I) + assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)" + + assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3" + x = Symbol("x") + assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)" + assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)" + assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \ + "Limit(x, x, S(7)/2, dir='+')" + + +def test_Float(): + # NOTE dps is the whole number of decimal digits + assert str(Float('1.23', dps=1 + 2)) == '1.23' + assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789' + assert str( + Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789' + assert str(pi.evalf(1 + 2)) == '3.14' + assert str(pi.evalf(1 + 14)) == '3.14159265358979' + assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279' + '5028841971693993751058209749445923') + assert str(pi.round(-1)) == '0.0' + assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88' + assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2' + assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0' + assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1' + assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2' + + +def test_Relational(): + assert str(Rel(x, y, "<")) == "x < y" + assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)" + assert str(Rel(x, y, "!=")) == "Ne(x, y)" + assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)" + assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)" + + +def test_AppliedBinaryRelation(): + assert str(Q.eq(x, y)) == "Q.eq(x, y)" + assert str(Q.ne(x, y)) == "Q.ne(x, y)" + + +def test_CRootOf(): + assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)" + + +def test_RootSum(): + f = x**5 + 2*x - 1 + + assert str( + RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)" + assert str(RootSum(f, Lambda( + z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))" + + +def test_GroebnerBasis(): + assert str(groebner( + [], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')" + + F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] + + assert str(groebner(F, order='grlex')) == \ + "GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')" + assert str(groebner(F, order='lex')) == \ + "GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')" + +def test_set(): + assert sstr(set()) == 'set()' + assert sstr(frozenset()) == 'frozenset()' + + assert sstr({1}) == '{1}' + assert sstr(frozenset([1])) == 'frozenset({1})' + assert sstr({1, 2, 3}) == '{1, 2, 3}' + assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})' + + assert sstr( + {1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}' + assert sstr( + frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})' + + +def test_SparseMatrix(): + M = SparseMatrix([[x**+1, 1], [y, x + y]]) + assert str(M) == "Matrix([[x, 1], [y, x + y]])" + assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])" + + +def test_Sum(): + assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))" + assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ + "Sum(x*y**2, (x, -2, 2), (y, -5, 5))" + + +def test_Symbol(): + assert str(y) == "y" + assert str(x) == "x" + e = x + assert str(e) == "x" + + +def test_tuple(): + assert str((x,)) == sstr((x,)) == "(x,)" + assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)" + assert str((x + y, ( + 1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))" + + +def test_Series_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) + assert str(Series(tf1, tf2)) == \ + "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" + assert str(Series(tf1, tf2, tf3)) == \ + "Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" + assert str(Series(-tf2, tf1)) == \ + "Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" + + +def test_MIMOSeries_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) + assert str(MIMOSeries(tfm_1, tfm_2)) == \ + "MIMOSeries(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\ + "(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\ + "TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\ + "(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))" + + +def test_TransferFunction_str(): + tf1 = TransferFunction(x - 1, x + 1, x) + assert str(tf1) == "TransferFunction(x - 1, x + 1, x)" + tf2 = TransferFunction(x + 1, 2 - y, x) + assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)" + tf3 = TransferFunction(y, y**2 + 2*y + 3, y) + assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)" + + +def test_Parallel_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) + assert str(Parallel(tf1, tf2)) == \ + "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))" + assert str(Parallel(tf1, tf2, tf3)) == \ + "Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))" + assert str(Parallel(-tf2, tf1)) == \ + "Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))" + + +def test_MIMOParallel_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) + assert str(MIMOParallel(tfm_1, tfm_2)) == \ + "MIMOParallel(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\ + "(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\ + "TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\ + "(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))" + + +def test_Feedback_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) + assert str(Feedback(tf1*tf2, tf3)) == \ + "Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), " \ + "TransferFunction(t*x**2 - t**w*x + w, t - y, y), -1)" + assert str(Feedback(tf1, TransferFunction(1, 1, y), 1)) == \ + "Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y), 1)" + + +def test_MIMOFeedback_str(): + tf1 = TransferFunction(x**2 - y**3, y - z, x) + tf2 = TransferFunction(y - x, z + y, x) + tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) + tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) + assert (str(MIMOFeedback(tfm_1, tfm_2)) \ + == "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x))," \ + " (TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \ + "TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), " \ + "TransferFunction(-x + y, y + z, x)), (TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), -1)") + assert (str(MIMOFeedback(tfm_1, tfm_2, 1)) \ + == "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)), " \ + "(TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \ + "TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)), "\ + "(TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), 1)") + + +def test_TransferFunctionMatrix_str(): + tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y) + tf2 = TransferFunction(x - y, x + y, y) + tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y) + assert str(TransferFunctionMatrix([[tf1], [tf2]])) == \ + "TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y),), (TransferFunction(x - y, x + y, y),)))" + assert str(TransferFunctionMatrix([[tf1, tf2], [tf3, tf2]])) == \ + "TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), (TransferFunction(t*x**2 - t**w*x + w, t - y, y), TransferFunction(x - y, x + y, y))))" + + +def test_Quaternion_str_printer(): + q = Quaternion(x, y, z, t) + assert str(q) == "x + y*i + z*j + t*k" + q = Quaternion(x,y,z,x*t) + assert str(q) == "x + y*i + z*j + t*x*k" + q = Quaternion(x,y,z,x+t) + assert str(q) == "x + y*i + z*j + (t + x)*k" + + +def test_Quantity_str(): + assert sstr(second, abbrev=True) == "s" + assert sstr(joule, abbrev=True) == "J" + assert str(second) == "second" + assert str(joule) == "joule" + + +def test_wild_str(): + # Check expressions containing Wild not causing infinite recursion + w = Wild('x') + assert str(w + 1) == 'x_ + 1' + assert str(exp(2**w) + 5) == 'exp(2**x_) + 5' + assert str(3*w + 1) == '3*x_ + 1' + assert str(1/w + 1) == '1 + 1/x_' + assert str(w**2 + 1) == 'x_**2 + 1' + assert str(1/(1 - w)) == '1/(1 - x_)' + + +def test_wild_matchpy(): + from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar + + matchpy = import_module("matchpy") + + if matchpy is None: + return + + wd = WildDot('w_') + wp = WildPlus('w__') + ws = WildStar('w___') + + assert str(wd) == 'w_' + assert str(wp) == 'w__' + assert str(ws) == 'w___' + + assert str(wp/ws + 2**wd) == '2**w_ + w__/w___' + assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)' + + +def test_zeta(): + assert str(zeta(3)) == "zeta(3)" + + +def test_issue_3101(): + e = x - y + a = str(e) + b = str(e) + assert a == b + + +def test_issue_3103(): + e = -2*sqrt(x) - y/sqrt(x)/2 + assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y", + "-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"] + assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))" + + +def test_issue_4021(): + e = Integral(x, x) + 1 + assert str(e) == 'Integral(x, x) + 1' + + +def test_sstrrepr(): + assert sstr('abc') == 'abc' + assert sstrrepr('abc') == "'abc'" + + e = ['a', 'b', 'c', x] + assert sstr(e) == "[a, b, c, x]" + assert sstrrepr(e) == "['a', 'b', 'c', x]" + + +def test_infinity(): + assert sstr(oo*I) == "oo*I" + + +def test_full_prec(): + assert sstr(S("0.3"), full_prec=True) == "0.300000000000000" + assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000" + assert sstr(S("0.3"), full_prec=False) == "0.3" + assert sstr(S("0.3")*x, full_prec=True) in [ + "0.300000000000000*x", + "x*0.300000000000000" + ] + assert sstr(S("0.3")*x, full_prec="auto") in [ + "0.3*x", + "x*0.3" + ] + assert sstr(S("0.3")*x, full_prec=False) in [ + "0.3*x", + "x*0.3" + ] + + +def test_noncommutative(): + A, B, C = symbols('A,B,C', commutative=False) + + assert sstr(A*B*C**-1) == "A*B*C**(-1)" + assert sstr(C**-1*A*B) == "C**(-1)*A*B" + assert sstr(A*C**-1*B) == "A*C**(-1)*B" + assert sstr(sqrt(A)) == "sqrt(A)" + assert sstr(1/sqrt(A)) == "A**(-1/2)" + + +def test_empty_printer(): + str_printer = StrPrinter() + assert str_printer.emptyPrinter("foo") == "foo" + assert str_printer.emptyPrinter(x*y) == "x*y" + assert str_printer.emptyPrinter(32) == "32" + + +def test_settings(): + raises(TypeError, lambda: sstr(S(4), method="garbage")) + + +def test_RandomDomain(): + from sympy.stats import Normal, Die, Exponential, pspace, where + X = Normal('x1', 0, 1) + assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)" + + D = Die('d1', 6) + assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)" + + A = Exponential('a', 1) + B = Exponential('b', 1) + assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)" + + +def test_FiniteSet(): + assert str(FiniteSet(*range(1, 51))) == ( + '{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,' + ' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,' + ' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}' + ) + assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}' + assert str(FiniteSet(*[x*y, x**2])) == '{x**2, x*y}' + assert str(FiniteSet(FiniteSet(FiniteSet(x, y), 5), FiniteSet(x,y), 5) + ) == 'FiniteSet(5, FiniteSet(5, {x, y}), {x, y})' + + +def test_Partition(): + assert str(Partition(FiniteSet(x, y), {z})) == 'Partition({z}, {x, y})' + +def test_UniversalSet(): + assert str(S.UniversalSet) == 'UniversalSet' + + +def test_PrettyPoly(): + F = QQ.frac_field(x, y) + R = QQ[x, y] + assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y)) + assert sstr(R.convert(x + y)) == sstr(x + y) + + +def test_categories(): + from sympy.categories import (Object, NamedMorphism, + IdentityMorphism, Category) + + A = Object("A") + B = Object("B") + + f = NamedMorphism(A, B, "f") + id_A = IdentityMorphism(A) + + K = Category("K") + + assert str(A) == 'Object("A")' + assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")' + assert str(id_A) == 'IdentityMorphism(Object("A"))' + + assert str(K) == 'Category("K")' + + +def test_Tr(): + A, B = symbols('A B', commutative=False) + t = Tr(A*B) + assert str(t) == 'Tr(A*B)' + + +def test_issue_6387(): + assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)' + + +def test_MatMul_MatAdd(): + X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2) + assert str(2*(X + Y)) == "2*X + 2*Y" + + assert str(I*X) == "I*X" + assert str(-I*X) == "-I*X" + assert str((1 + I)*X) == '(1 + I)*X' + assert str(-(1 + I)*X) == '(-1 - I)*X' + assert str(MatAdd(MatAdd(X, Y), MatAdd(X, Y))) == '(X + Y) + (X + Y)' + + +def test_MatrixSlice(): + n = Symbol('n', integer=True) + X = MatrixSymbol('X', n, n) + Y = MatrixSymbol('Y', 10, 10) + Z = MatrixSymbol('Z', 10, 10) + + assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]' + assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]' + assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]' + assert str(X[:x, y:]) == 'X[:x, y:]' + assert str(X[:x, y:]) == 'X[:x, y:]' + assert str(X[x:, :y]) == 'X[x:, :y]' + assert str(X[x:y, z:w]) == 'X[x:y, z:w]' + assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]' + assert str(X[x::y, t::w]) == 'X[x::y, t::w]' + assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]' + assert str(X[::x, ::y]) == 'X[::x, ::y]' + assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]' + assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]' + assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]' + assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]' + assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]' + assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]' + assert str(X[1:10:2]) == 'X[1:10:2, :]' + assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]' + assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]' + assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]' + assert str(X[0:1, 0:1]) == 'X[:1, :1]' + assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]' + assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]' + +def test_true_false(): + assert str(true) == repr(true) == sstr(true) == "True" + assert str(false) == repr(false) == sstr(false) == "False" + +def test_Equivalent(): + assert str(Equivalent(y, x)) == "Equivalent(x, y)" + +def test_Xor(): + assert str(Xor(y, x, evaluate=False)) == "x ^ y" + +def test_Complement(): + assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)' + +def test_SymmetricDifference(): + assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \ + 'SymmetricDifference(Interval(2, 3), Interval(3, 4))' + + +def test_UnevaluatedExpr(): + a, b = symbols("a b") + expr1 = 2*UnevaluatedExpr(a+b) + assert str(expr1) == "2*(a + b)" + + +def test_MatrixElement_printing(): + # test cases for issue #11821 + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + assert(str(A[0, 0]) == "A[0, 0]") + assert(str(3 * A[0, 0]) == "3*A[0, 0]") + + F = C[0, 0].subs(C, A - B) + assert str(F) == "(A - B)[0, 0]" + + +def test_MatrixSymbol_printing(): + A = MatrixSymbol("A", 3, 3) + B = MatrixSymbol("B", 3, 3) + + assert str(A - A*B - B) == "A - A*B - B" + assert str(A*B - (A+B)) == "-A + A*B - B" + assert str(A**(-1)) == "A**(-1)" + assert str(A**3) == "A**3" + + +def test_MatrixExpressions(): + n = Symbol('n', integer=True) + X = MatrixSymbol('X', n, n) + + assert str(X) == "X" + + # Apply function elementwise (`ElementwiseApplyFunc`): + + expr = (X.T*X).applyfunc(sin) + assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)' + + lamda = Lambda(x, 1/x) + expr = (n*X).applyfunc(lamda) + assert str(expr) == 'Lambda(x, 1/x).(n*X)' + + +def test_Subs_printing(): + assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)' + assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))' + + +def test_issue_15716(): + e = Integral(factorial(x), (x, -oo, oo)) + assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e]) + + +def test_str_special_matrices(): + from sympy.matrices import Identity, ZeroMatrix, OneMatrix + assert str(Identity(4)) == 'I' + assert str(ZeroMatrix(2, 2)) == '0' + assert str(OneMatrix(2, 2)) == '1' + + +def test_issue_14567(): + assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error + + +def test_issue_21823(): + assert str(Partition([1, 2])) == 'Partition({1, 2})' + assert str(Partition({1, 2})) == 'Partition({1, 2})' + + +def test_issue_22689(): + assert str(Mul(Pow(x,-2, evaluate=False), Pow(3,-1,evaluate=False), evaluate=False)) == "1/(x**2*3)" + + +def test_issue_21119_21460(): + ss = lambda x: str(S(x, evaluate=False)) + assert ss('4/2') == '4/2' + assert ss('4/-2') == '4/(-2)' + assert ss('-4/2') == '-4/2' + assert ss('-4/-2') == '-4/(-2)' + assert ss('-2*3/-1') == '-2*3/(-1)' + assert ss('-2*3/-1/2') == '-2*3/(-1*2)' + assert ss('4/2/1') == '4/(2*1)' + assert ss('-2/-1/2') == '-2/(-1*2)' + assert ss('2*3*4**(-2*3)') == '2*3/4**(2*3)' + assert ss('2*3*1*4**(-2*3)') == '2*3*1/4**(2*3)' + + +def test_Str(): + from sympy.core.symbol import Str + assert str(Str('x')) == 'x' + assert sstrrepr(Str('x')) == "Str('x')" + + +def test_diffgeom(): + from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField + x,y = symbols('x y', real=True) + m = Manifold('M', 2) + assert str(m) == "M" + p = Patch('P', m) + assert str(p) == "P" + rect = CoordSystem('rect', p, [x, y]) + assert str(rect) == "rect" + b = BaseScalarField(rect, 0) + assert str(b) == "x" + +def test_NDimArray(): + assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000' + assert sstr(NDimArray(1.0), full_prec=False) == '1.0' + assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]' + assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]' + +def test_Predicate(): + assert sstr(Q.even) == 'Q.even' + +def test_AppliedPredicate(): + assert sstr(Q.even(x)) == 'Q.even(x)' + +def test_printing_str_array_expressions(): + assert sstr(ArraySymbol("A", (2, 3, 4))) == "A" + assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]" + M = MatrixSymbol("M", 3, 3) + N = MatrixSymbol("N", 3, 3) + assert sstr(ArrayElement(M*N, [x, 0])) == "(M*N)[x, 0]" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tableform.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tableform.py new file mode 100644 index 0000000000000000000000000000000000000000..05802dd104a12f2f53d137167ecf31d201ff8dfc --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tableform.py @@ -0,0 +1,182 @@ +from sympy.core.singleton import S +from sympy.printing.tableform import TableForm +from sympy.printing.latex import latex +from sympy.abc import x +from sympy.functions.elementary.miscellaneous import sqrt +from sympy.functions.elementary.trigonometric import sin +from sympy.testing.pytest import raises + +from textwrap import dedent + + +def test_TableForm(): + s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]], + headings="automatic")) + assert s == ( + ' | 1 2\n' + '-------\n' + '1 | a b\n' + '2 | c d\n' + '3 | e ' + ) + s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]], + headings="automatic", wipe_zeros=False)) + assert s == dedent('''\ + | 1 2 + ------- + 1 | a b + 2 | c d + 3 | e 0''') + s = str(TableForm([[x**2, "b"], ["c", x**2], ["e", "f"]], + headings=("automatic", None))) + assert s == ( + '1 | x**2 b \n' + '2 | c x**2\n' + '3 | e f ' + ) + s = str(TableForm([["a", "b"], ["c", "d"], ["e", "f"]], + headings=(None, "automatic"))) + assert s == dedent('''\ + 1 2 + --- + a b + c d + e f''') + s = str(TableForm([[5, 7], [4, 2], [10, 3]], + headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]])) + assert s == ( + ' | y1 y2\n' + '---------------\n' + 'Group A | 5 7 \n' + 'Group B | 4 2 \n' + 'Group C | 10 3 ' + ) + raises( + ValueError, + lambda: + TableForm( + [[5, 7], [4, 2], [10, 3]], + headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]], + alignments="middle") + ) + s = str(TableForm([[5, 7], [4, 2], [10, 3]], + headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]], + alignments="right")) + assert s == dedent('''\ + | y1 y2 + --------------- + Group A | 5 7 + Group B | 4 2 + Group C | 10 3''') + + # other alignment permutations + d = [[1, 100], [100, 1]] + s = TableForm(d, headings=(('xxx', 'x'), None), alignments='l') + assert str(s) == ( + 'xxx | 1 100\n' + ' x | 100 1 ' + ) + s = TableForm(d, headings=(('xxx', 'x'), None), alignments='lr') + assert str(s) == dedent('''\ + xxx | 1 100 + x | 100 1''') + s = TableForm(d, headings=(('xxx', 'x'), None), alignments='clr') + assert str(s) == dedent('''\ + xxx | 1 100 + x | 100 1''') + + s = TableForm(d, headings=(('xxx', 'x'), None)) + assert str(s) == ( + 'xxx | 1 100\n' + ' x | 100 1 ' + ) + + raises(ValueError, lambda: TableForm(d, alignments='clr')) + + #pad + s = str(TableForm([[None, "-", 2], [1]], pad='?')) + assert s == dedent('''\ + ? - 2 + 1 ? ?''') + + +def test_TableForm_latex(): + s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]], + wipe_zeros=True, headings=("automatic", "automatic"))) + assert s == ( + '\\begin{tabular}{r l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & & $x^{3}$ \\\\\n' + '2 & $c$ & $\\frac{1}{4}$ \\\\\n' + '3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) + s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]], + wipe_zeros=True, headings=("automatic", "automatic"), alignments='l')) + assert s == ( + '\\begin{tabular}{r l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & & $x^{3}$ \\\\\n' + '2 & $c$ & $\\frac{1}{4}$ \\\\\n' + '3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) + s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]], + wipe_zeros=True, headings=("automatic", "automatic"), alignments='l'*3)) + assert s == ( + '\\begin{tabular}{l l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & & $x^{3}$ \\\\\n' + '2 & $c$ & $\\frac{1}{4}$ \\\\\n' + '3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) + s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]], + headings=("automatic", "automatic"))) + assert s == ( + '\\begin{tabular}{r l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & $a$ & $x^{3}$ \\\\\n' + '2 & $c$ & $\\frac{1}{4}$ \\\\\n' + '3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) + s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]], + formats=['(%s)', None], headings=("automatic", "automatic"))) + assert s == ( + '\\begin{tabular}{r l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & (a) & $x^{3}$ \\\\\n' + '2 & (c) & $\\frac{1}{4}$ \\\\\n' + '3 & (sqrt(x)) & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) + + def neg_in_paren(x, i, j): + if i % 2: + return ('(%s)' if x < 0 else '%s') % x + else: + pass # use default print + s = latex(TableForm([[-1, 2], [-3, 4]], + formats=[neg_in_paren]*2, headings=("automatic", "automatic"))) + assert s == ( + '\\begin{tabular}{r l l}\n' + ' & 1 & 2 \\\\\n' + '\\hline\n' + '1 & -1 & 2 \\\\\n' + '2 & (-3) & 4 \\\\\n' + '\\end{tabular}' + ) + s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]])) + assert s == ( + '\\begin{tabular}{l l}\n' + '$a$ & $x^{3}$ \\\\\n' + '$c$ & $\\frac{1}{4}$ \\\\\n' + '$\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n' + '\\end{tabular}' + ) diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tensorflow.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tensorflow.py new file mode 100644 index 0000000000000000000000000000000000000000..5d0adf8b2e187bc33beb1914f7ff7022f5f814df --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tensorflow.py @@ -0,0 +1,465 @@ +import random +from sympy.core.function import Derivative +from sympy.core.symbol import symbols +from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \ + PermuteDims, ArrayDiagonal +from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt +from sympy.external import import_module +from sympy.functions import \ + Abs, ceiling, exp, floor, sign, sin, asin, sqrt, cos, \ + acos, tan, atan, atan2, cosh, acosh, sinh, asinh, tanh, atanh, \ + re, im, arg, erf, loggamma, log +from sympy.matrices import Matrix, MatrixBase, eye, randMatrix +from sympy.matrices.expressions import \ + Determinant, HadamardProduct, Inverse, MatrixSymbol, Trace +from sympy.printing.tensorflow import tensorflow_code +from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array +from sympy.utilities.lambdify import lambdify +from sympy.testing.pytest import skip +from sympy.testing.pytest import XFAIL + + +tf = tensorflow = import_module("tensorflow") + +if tensorflow: + # Hide Tensorflow warnings + import os + os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' + + +M = MatrixSymbol("M", 3, 3) +N = MatrixSymbol("N", 3, 3) +P = MatrixSymbol("P", 3, 3) +Q = MatrixSymbol("Q", 3, 3) + +x, y, z, t = symbols("x y z t") + +if tf is not None: + llo = [list(range(i, i+3)) for i in range(0, 9, 3)] + m3x3 = tf.constant(llo) + m3x3sympy = Matrix(llo) + + +def _compare_tensorflow_matrix(variables, expr, use_float=False): + f = lambdify(variables, expr, 'tensorflow') + if not use_float: + random_matrices = [randMatrix(v.rows, v.cols) for v in variables] + else: + random_matrices = [randMatrix(v.rows, v.cols)/100. for v in variables] + + graph = tf.Graph() + r = None + with graph.as_default(): + random_variables = [eval(tensorflow_code(i)) for i in random_matrices] + session = tf.compat.v1.Session(graph=graph) + r = session.run(f(*random_variables)) + + e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) + e = e.doit() + if e.is_Matrix: + if not isinstance(e, MatrixBase): + e = e.as_explicit() + e = e.tolist() + + if not use_float: + assert (r == e).all() + else: + r = [i for row in r for i in row] + e = [i for row in e for i in row] + assert all( + abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) + + +# Creating a custom inverse test. +# See https://github.com/sympy/sympy/issues/18469 +def _compare_tensorflow_matrix_inverse(variables, expr, use_float=False): + f = lambdify(variables, expr, 'tensorflow') + if not use_float: + random_matrices = [eye(v.rows, v.cols)*4 for v in variables] + else: + random_matrices = [eye(v.rows, v.cols)*3.14 for v in variables] + + graph = tf.Graph() + r = None + with graph.as_default(): + random_variables = [eval(tensorflow_code(i)) for i in random_matrices] + session = tf.compat.v1.Session(graph=graph) + r = session.run(f(*random_variables)) + + e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) + e = e.doit() + if e.is_Matrix: + if not isinstance(e, MatrixBase): + e = e.as_explicit() + e = e.tolist() + + if not use_float: + assert (r == e).all() + else: + r = [i for row in r for i in row] + e = [i for row in e for i in row] + assert all( + abs(a-b) < 10**-(4-int(log(abs(a), 10))) for a, b in zip(r, e)) + + +def _compare_tensorflow_matrix_scalar(variables, expr): + f = lambdify(variables, expr, 'tensorflow') + random_matrices = [ + randMatrix(v.rows, v.cols).evalf() / 100 for v in variables] + + graph = tf.Graph() + r = None + with graph.as_default(): + random_variables = [eval(tensorflow_code(i)) for i in random_matrices] + session = tf.compat.v1.Session(graph=graph) + r = session.run(f(*random_variables)) + + e = expr.subs({k: v for k, v in zip(variables, random_matrices)}) + e = e.doit() + assert abs(r-e) < 10**-6 + + +def _compare_tensorflow_scalar( + variables, expr, rng=lambda: random.randint(0, 10)): + f = lambdify(variables, expr, 'tensorflow') + rvs = [rng() for v in variables] + + graph = tf.Graph() + r = None + with graph.as_default(): + tf_rvs = [eval(tensorflow_code(i)) for i in rvs] + session = tf.compat.v1.Session(graph=graph) + r = session.run(f(*tf_rvs)) + + e = expr.subs({k: v for k, v in zip(variables, rvs)}).evalf().doit() + assert abs(r-e) < 10**-6 + + +def _compare_tensorflow_relational( + variables, expr, rng=lambda: random.randint(0, 10)): + f = lambdify(variables, expr, 'tensorflow') + rvs = [rng() for v in variables] + + graph = tf.Graph() + r = None + with graph.as_default(): + tf_rvs = [eval(tensorflow_code(i)) for i in rvs] + session = tf.compat.v1.Session(graph=graph) + r = session.run(f(*tf_rvs)) + + e = expr.subs({k: v for k, v in zip(variables, rvs)}).doit() + assert r == e + + +def test_tensorflow_printing(): + assert tensorflow_code(eye(3)) == \ + "tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" + + expr = Matrix([[x, sin(y)], [exp(z), -t]]) + assert tensorflow_code(expr) == \ + "tensorflow.Variable(" \ + "[[x, tensorflow.math.sin(y)]," \ + " [tensorflow.math.exp(z), -t]])" + + +# This (random) test is XFAIL because it fails occasionally +# See https://github.com/sympy/sympy/issues/18469 +@XFAIL +def test_tensorflow_math(): + if not tf: + skip("TensorFlow not installed") + + expr = Abs(x) + assert tensorflow_code(expr) == "tensorflow.math.abs(x)" + _compare_tensorflow_scalar((x,), expr) + + expr = sign(x) + assert tensorflow_code(expr) == "tensorflow.math.sign(x)" + _compare_tensorflow_scalar((x,), expr) + + expr = ceiling(x) + assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = floor(x) + assert tensorflow_code(expr) == "tensorflow.math.floor(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = exp(x) + assert tensorflow_code(expr) == "tensorflow.math.exp(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = sqrt(x) + assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = x ** 4 + assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = cos(x) + assert tensorflow_code(expr) == "tensorflow.math.cos(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = acos(x) + assert tensorflow_code(expr) == "tensorflow.math.acos(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(0, 0.95)) + + expr = sin(x) + assert tensorflow_code(expr) == "tensorflow.math.sin(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = asin(x) + assert tensorflow_code(expr) == "tensorflow.math.asin(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = tan(x) + assert tensorflow_code(expr) == "tensorflow.math.tan(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = atan(x) + assert tensorflow_code(expr) == "tensorflow.math.atan(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = atan2(y, x) + assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" + _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) + + expr = cosh(x) + assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.random()) + + expr = acosh(x) + assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) + + expr = sinh(x) + assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) + + expr = asinh(x) + assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) + + expr = tanh(x) + assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" + _compare_tensorflow_scalar((x,), expr, rng=lambda: random.uniform(1, 2)) + + expr = atanh(x) + assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" + _compare_tensorflow_scalar( + (x,), expr, rng=lambda: random.uniform(-.5, .5)) + + expr = erf(x) + assert tensorflow_code(expr) == "tensorflow.math.erf(x)" + _compare_tensorflow_scalar( + (x,), expr, rng=lambda: random.random()) + + expr = loggamma(x) + assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" + _compare_tensorflow_scalar( + (x,), expr, rng=lambda: random.random()) + + +def test_tensorflow_complexes(): + assert tensorflow_code(re(x)) == "tensorflow.math.real(x)" + assert tensorflow_code(im(x)) == "tensorflow.math.imag(x)" + assert tensorflow_code(arg(x)) == "tensorflow.math.angle(x)" + + +def test_tensorflow_relational(): + if not tf: + skip("TensorFlow not installed") + + expr = Eq(x, y) + assert tensorflow_code(expr) == "tensorflow.math.equal(x, y)" + _compare_tensorflow_relational((x, y), expr) + + expr = Ne(x, y) + assert tensorflow_code(expr) == "tensorflow.math.not_equal(x, y)" + _compare_tensorflow_relational((x, y), expr) + + expr = Ge(x, y) + assert tensorflow_code(expr) == "tensorflow.math.greater_equal(x, y)" + _compare_tensorflow_relational((x, y), expr) + + expr = Gt(x, y) + assert tensorflow_code(expr) == "tensorflow.math.greater(x, y)" + _compare_tensorflow_relational((x, y), expr) + + expr = Le(x, y) + assert tensorflow_code(expr) == "tensorflow.math.less_equal(x, y)" + _compare_tensorflow_relational((x, y), expr) + + expr = Lt(x, y) + assert tensorflow_code(expr) == "tensorflow.math.less(x, y)" + _compare_tensorflow_relational((x, y), expr) + + +# This (random) test is XFAIL because it fails occasionally +# See https://github.com/sympy/sympy/issues/18469 +@XFAIL +def test_tensorflow_matrices(): + if not tf: + skip("TensorFlow not installed") + + expr = M + assert tensorflow_code(expr) == "M" + _compare_tensorflow_matrix((M,), expr) + + expr = M + N + assert tensorflow_code(expr) == "tensorflow.math.add(M, N)" + _compare_tensorflow_matrix((M, N), expr) + + expr = M * N + assert tensorflow_code(expr) == "tensorflow.linalg.matmul(M, N)" + _compare_tensorflow_matrix((M, N), expr) + + expr = HadamardProduct(M, N) + assert tensorflow_code(expr) == "tensorflow.math.multiply(M, N)" + _compare_tensorflow_matrix((M, N), expr) + + expr = M*N*P*Q + assert tensorflow_code(expr) == \ + "tensorflow.linalg.matmul(" \ + "tensorflow.linalg.matmul(" \ + "tensorflow.linalg.matmul(M, N), P), Q)" + _compare_tensorflow_matrix((M, N, P, Q), expr) + + expr = M**3 + assert tensorflow_code(expr) == \ + "tensorflow.linalg.matmul(tensorflow.linalg.matmul(M, M), M)" + _compare_tensorflow_matrix((M,), expr) + + expr = Trace(M) + assert tensorflow_code(expr) == "tensorflow.linalg.trace(M)" + _compare_tensorflow_matrix((M,), expr) + + expr = Determinant(M) + assert tensorflow_code(expr) == "tensorflow.linalg.det(M)" + _compare_tensorflow_matrix_scalar((M,), expr) + + expr = Inverse(M) + assert tensorflow_code(expr) == "tensorflow.linalg.inv(M)" + _compare_tensorflow_matrix_inverse((M,), expr, use_float=True) + + expr = M.T + assert tensorflow_code(expr, tensorflow_version='1.14') == \ + "tensorflow.linalg.matrix_transpose(M)" + assert tensorflow_code(expr, tensorflow_version='1.13') == \ + "tensorflow.matrix_transpose(M)" + + _compare_tensorflow_matrix((M,), expr) + + +def test_codegen_einsum(): + if not tf: + skip("TensorFlow not installed") + + graph = tf.Graph() + with graph.as_default(): + session = tf.compat.v1.Session(graph=graph) + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + + cg = convert_matrix_to_array(M * N) + f = lambdify((M, N), cg, 'tensorflow') + + ma = tf.constant([[1, 2], [3, 4]]) + mb = tf.constant([[1,-2], [-1, 3]]) + y = session.run(f(ma, mb)) + c = session.run(tf.matmul(ma, mb)) + assert (y == c).all() + + +def test_codegen_extra(): + if not tf: + skip("TensorFlow not installed") + + graph = tf.Graph() + with graph.as_default(): + session = tf.compat.v1.Session() + + M = MatrixSymbol("M", 2, 2) + N = MatrixSymbol("N", 2, 2) + P = MatrixSymbol("P", 2, 2) + Q = MatrixSymbol("Q", 2, 2) + ma = tf.constant([[1, 2], [3, 4]]) + mb = tf.constant([[1,-2], [-1, 3]]) + mc = tf.constant([[2, 0], [1, 2]]) + md = tf.constant([[1,-1], [4, 7]]) + + cg = ArrayTensorProduct(M, N) + assert tensorflow_code(cg) == \ + 'tensorflow.linalg.einsum("ab,cd", M, N)' + f = lambdify((M, N), cg, 'tensorflow') + y = session.run(f(ma, mb)) + c = session.run(tf.einsum("ij,kl", ma, mb)) + assert (y == c).all() + + cg = ArrayAdd(M, N) + assert tensorflow_code(cg) == 'tensorflow.math.add(M, N)' + f = lambdify((M, N), cg, 'tensorflow') + y = session.run(f(ma, mb)) + c = session.run(ma + mb) + assert (y == c).all() + + cg = ArrayAdd(M, N, P) + assert tensorflow_code(cg) == \ + 'tensorflow.math.add(tensorflow.math.add(M, N), P)' + f = lambdify((M, N, P), cg, 'tensorflow') + y = session.run(f(ma, mb, mc)) + c = session.run(ma + mb + mc) + assert (y == c).all() + + cg = ArrayAdd(M, N, P, Q) + assert tensorflow_code(cg) == \ + 'tensorflow.math.add(' \ + 'tensorflow.math.add(tensorflow.math.add(M, N), P), Q)' + f = lambdify((M, N, P, Q), cg, 'tensorflow') + y = session.run(f(ma, mb, mc, md)) + c = session.run(ma + mb + mc + md) + assert (y == c).all() + + cg = PermuteDims(M, [1, 0]) + assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' + f = lambdify((M,), cg, 'tensorflow') + y = session.run(f(ma)) + c = session.run(tf.transpose(ma)) + assert (y == c).all() + + cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0]) + assert tensorflow_code(cg) == \ + 'tensorflow.transpose(' \ + 'tensorflow.linalg.einsum("ab,cd", M, N), [1, 2, 3, 0])' + f = lambdify((M, N), cg, 'tensorflow') + y = session.run(f(ma, mb)) + c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) + assert (y == c).all() + + cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)) + assert tensorflow_code(cg) == \ + 'tensorflow.linalg.einsum("ab,bc->acb", M, N)' + f = lambdify((M, N), cg, 'tensorflow') + y = session.run(f(ma, mb)) + c = session.run(tf.einsum("ab,bc->acb", ma, mb)) + assert (y == c).all() + + +def test_MatrixElement_printing(): + A = MatrixSymbol("A", 1, 3) + B = MatrixSymbol("B", 1, 3) + C = MatrixSymbol("C", 1, 3) + + assert tensorflow_code(A[0, 0]) == "A[0, 0]" + assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" + + F = C[0, 0].subs(C, A - B) + assert tensorflow_code(F) == "(tensorflow.math.add((-1)*B, A))[0, 0]" + + +def test_tensorflow_Derivative(): + expr = Derivative(sin(x), x) + assert tensorflow_code(expr) == \ + "tensorflow.gradients(tensorflow.math.sin(x), x)[0]" diff --git a/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tree.py b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tree.py new file mode 100644 index 0000000000000000000000000000000000000000..cf116d0cac5d38f225815fcd2d4ac90cd0dd96d7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/printing/tests/test_tree.py @@ -0,0 +1,196 @@ +from sympy.printing.tree import tree +from sympy.testing.pytest import XFAIL + + +# Remove this flag after making _assumptions cache deterministic. +@XFAIL +def test_print_tree_MatAdd(): + from sympy.matrices.expressions import MatrixSymbol + A = MatrixSymbol('A', 3, 3) + B = MatrixSymbol('B', 3, 3) + + test_str = [ + 'MatAdd: A + B\n', + 'algebraic: False\n', + 'commutative: False\n', + 'complex: False\n', + 'composite: False\n', + 'even: False\n', + 'extended_negative: False\n', + 'extended_nonnegative: False\n', + 'extended_nonpositive: False\n', + 'extended_nonzero: False\n', + 'extended_positive: False\n', + 'extended_real: False\n', + 'imaginary: False\n', + 'integer: False\n', + 'irrational: False\n', + 'negative: False\n', + 'noninteger: False\n', + 'nonnegative: False\n', + 'nonpositive: False\n', + 'nonzero: False\n', + 'odd: False\n', + 'positive: False\n', + 'prime: False\n', + 'rational: False\n', + 'real: False\n', + 'transcendental: False\n', + 'zero: False\n', + '+-MatrixSymbol: A\n', + '| algebraic: False\n', + '| commutative: False\n', + '| complex: False\n', + '| composite: False\n', + '| even: False\n', + '| extended_negative: False\n', + '| extended_nonnegative: False\n', + '| extended_nonpositive: False\n', + '| extended_nonzero: False\n', + '| extended_positive: False\n', + '| extended_real: False\n', + '| imaginary: False\n', + '| integer: False\n', + '| irrational: False\n', + '| negative: False\n', + '| noninteger: False\n', + '| nonnegative: False\n', + '| nonpositive: False\n', + '| nonzero: False\n', + '| odd: False\n', + '| positive: False\n', + '| prime: False\n', + '| rational: False\n', + '| real: False\n', + '| transcendental: False\n', + '| zero: False\n', + '| +-Symbol: A\n', + '| | commutative: True\n', + '| +-Integer: 3\n', + '| | algebraic: True\n', + '| | commutative: True\n', + '| | complex: True\n', + '| | extended_negative: False\n', + '| | extended_nonnegative: True\n', + '| | extended_real: True\n', + '| | finite: True\n', + '| | hermitian: True\n', + '| | imaginary: False\n', + '| | infinite: False\n', + '| | integer: True\n', + '| | irrational: False\n', + '| | negative: False\n', + '| | noninteger: False\n', + '| | nonnegative: True\n', + '| | rational: True\n', + '| | real: True\n', + '| | transcendental: False\n', + '| +-Integer: 3\n', + '| algebraic: True\n', + '| commutative: True\n', + '| complex: True\n', + '| extended_negative: False\n', + '| extended_nonnegative: True\n', + '| extended_real: True\n', + '| finite: True\n', + '| hermitian: True\n', + '| imaginary: False\n', + '| infinite: False\n', + '| integer: True\n', + '| irrational: False\n', + '| negative: False\n', + '| noninteger: False\n', + '| nonnegative: True\n', + '| rational: True\n', + '| real: True\n', + '| transcendental: False\n', + '+-MatrixSymbol: B\n', + ' algebraic: False\n', + ' commutative: False\n', + ' complex: False\n', + ' composite: False\n', + ' even: False\n', + ' extended_negative: False\n', + ' extended_nonnegative: False\n', + ' extended_nonpositive: False\n', + ' extended_nonzero: False\n', + ' extended_positive: False\n', + ' extended_real: False\n', + ' imaginary: False\n', + ' integer: False\n', + ' irrational: False\n', + ' negative: False\n', + ' noninteger: False\n', + ' nonnegative: False\n', + ' nonpositive: False\n', + ' nonzero: False\n', + ' odd: False\n', + ' positive: False\n', + ' prime: False\n', + ' rational: False\n', + ' real: False\n', + ' transcendental: False\n', + ' zero: False\n', + ' +-Symbol: B\n', + ' | commutative: True\n', + ' +-Integer: 3\n', + ' | algebraic: True\n', + ' | commutative: True\n', + ' | complex: True\n', + ' | extended_negative: False\n', + ' | extended_nonnegative: True\n', + ' | extended_real: True\n', + ' | finite: True\n', + ' | hermitian: True\n', + ' | imaginary: False\n', + ' | infinite: False\n', + ' | integer: True\n', + ' | irrational: False\n', + ' | negative: False\n', + ' | noninteger: False\n', + ' | nonnegative: True\n', + ' | rational: True\n', + ' | real: True\n', + ' | transcendental: False\n', + ' +-Integer: 3\n', + ' algebraic: True\n', + ' commutative: True\n', + ' complex: True\n', + ' extended_negative: False\n', + ' extended_nonnegative: True\n', + ' extended_real: True\n', + ' finite: True\n', + ' hermitian: True\n', + ' imaginary: False\n', + ' infinite: False\n', + ' integer: True\n', + ' irrational: False\n', + ' negative: False\n', + ' noninteger: False\n', + ' nonnegative: True\n', + ' rational: True\n', + ' real: True\n', + ' transcendental: False\n' + ] + + assert tree(A + B) == "".join(test_str) + + +def test_print_tree_MatAdd_noassumptions(): + from sympy.matrices.expressions import MatrixSymbol + A = MatrixSymbol('A', 3, 3) + B = MatrixSymbol('B', 3, 3) + + test_str = \ +"""MatAdd: A + B ++-MatrixSymbol: A +| +-Str: A +| +-Integer: 3 +| +-Integer: 3 ++-MatrixSymbol: B + +-Str: B + +-Integer: 3 + +-Integer: 3 +""" + + assert tree(A + B, assumptions=False) == test_str