diff --git "a/venv/lib/python3.10/site-packages/sympy/printing/latex.py" "b/venv/lib/python3.10/site-packages/sympy/printing/latex.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/sympy/printing/latex.py" @@ -0,0 +1,3277 @@ +""" +A Printer which converts an expression into its LaTeX equivalent. +""" +from __future__ import annotations +from typing import Any, Callable, TYPE_CHECKING + +import itertools + +from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol, Expr +from sympy.core.alphabets import greeks +from sympy.core.containers import Tuple +from sympy.core.function import Function, AppliedUndef, Derivative +from sympy.core.operations import AssocOp +from sympy.core.power import Pow +from sympy.core.sorting import default_sort_key +from sympy.core.sympify import SympifyError +from sympy.logic.boolalg import true, BooleanTrue, BooleanFalse +from sympy.tensor.array import NDimArray + +# sympy.printing imports +from sympy.printing.precedence import precedence_traditional +from sympy.printing.printer import Printer, print_function +from sympy.printing.conventions import split_super_sub, requires_partial +from sympy.printing.precedence import precedence, PRECEDENCE + +from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str + +from sympy.utilities.iterables import has_variety, sift + +import re + +if TYPE_CHECKING: + from sympy.vector.basisdependent import BasisDependent + +# Hand-picked functions which can be used directly in both LaTeX and MathJax +# Complete list at +# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands +# This variable only contains those functions which SymPy uses. +accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', + 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', + 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', + 'arg', + ] + +tex_greek_dictionary = { + 'Alpha': r'\mathrm{A}', + 'Beta': r'\mathrm{B}', + 'Gamma': r'\Gamma', + 'Delta': r'\Delta', + 'Epsilon': r'\mathrm{E}', + 'Zeta': r'\mathrm{Z}', + 'Eta': r'\mathrm{H}', + 'Theta': r'\Theta', + 'Iota': r'\mathrm{I}', + 'Kappa': r'\mathrm{K}', + 'Lambda': r'\Lambda', + 'Mu': r'\mathrm{M}', + 'Nu': r'\mathrm{N}', + 'Xi': r'\Xi', + 'omicron': 'o', + 'Omicron': r'\mathrm{O}', + 'Pi': r'\Pi', + 'Rho': r'\mathrm{P}', + 'Sigma': r'\Sigma', + 'Tau': r'\mathrm{T}', + 'Upsilon': r'\Upsilon', + 'Phi': r'\Phi', + 'Chi': r'\mathrm{X}', + 'Psi': r'\Psi', + 'Omega': r'\Omega', + 'lamda': r'\lambda', + 'Lamda': r'\Lambda', + 'khi': r'\chi', + 'Khi': r'\mathrm{X}', + 'varepsilon': r'\varepsilon', + 'varkappa': r'\varkappa', + 'varphi': r'\varphi', + 'varpi': r'\varpi', + 'varrho': r'\varrho', + 'varsigma': r'\varsigma', + 'vartheta': r'\vartheta', +} + +other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', + 'hslash', 'mho', 'wp'} + +# Variable name modifiers +modifier_dict: dict[str, Callable[[str], str]] = { + # Accents + 'mathring': lambda s: r'\mathring{'+s+r'}', + 'ddddot': lambda s: r'\ddddot{'+s+r'}', + 'dddot': lambda s: r'\dddot{'+s+r'}', + 'ddot': lambda s: r'\ddot{'+s+r'}', + 'dot': lambda s: r'\dot{'+s+r'}', + 'check': lambda s: r'\check{'+s+r'}', + 'breve': lambda s: r'\breve{'+s+r'}', + 'acute': lambda s: r'\acute{'+s+r'}', + 'grave': lambda s: r'\grave{'+s+r'}', + 'tilde': lambda s: r'\tilde{'+s+r'}', + 'hat': lambda s: r'\hat{'+s+r'}', + 'bar': lambda s: r'\bar{'+s+r'}', + 'vec': lambda s: r'\vec{'+s+r'}', + 'prime': lambda s: "{"+s+"}'", + 'prm': lambda s: "{"+s+"}'", + # Faces + 'bold': lambda s: r'\boldsymbol{'+s+r'}', + 'bm': lambda s: r'\boldsymbol{'+s+r'}', + 'cal': lambda s: r'\mathcal{'+s+r'}', + 'scr': lambda s: r'\mathscr{'+s+r'}', + 'frak': lambda s: r'\mathfrak{'+s+r'}', + # Brackets + 'norm': lambda s: r'\left\|{'+s+r'}\right\|', + 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', + 'abs': lambda s: r'\left|{'+s+r'}\right|', + 'mag': lambda s: r'\left|{'+s+r'}\right|', +} + +greek_letters_set = frozenset(greeks) + +_between_two_numbers_p = ( + re.compile(r'[0-9][} ]*$'), # search + re.compile(r'[0-9]'), # match +) + + +def latex_escape(s: str) -> str: + """ + Escape a string such that latex interprets it as plaintext. + + We cannot use verbatim easily with mathjax, so escaping is easier. + Rules from https://tex.stackexchange.com/a/34586/41112. + """ + s = s.replace('\\', r'\textbackslash') + for c in '&%$#_{}': + s = s.replace(c, '\\' + c) + s = s.replace('~', r'\textasciitilde') + s = s.replace('^', r'\textasciicircum') + return s + + +class LatexPrinter(Printer): + printmethod = "_latex" + + _default_settings: dict[str, Any] = { + "full_prec": False, + "fold_frac_powers": False, + "fold_func_brackets": False, + "fold_short_frac": None, + "inv_trig_style": "abbreviated", + "itex": False, + "ln_notation": False, + "long_frac_ratio": None, + "mat_delim": "[", + "mat_str": None, + "mode": "plain", + "mul_symbol": None, + "order": None, + "symbol_names": {}, + "root_notation": True, + "mat_symbol_style": "plain", + "imaginary_unit": "i", + "gothic_re_im": False, + "decimal_separator": "period", + "perm_cyclic": True, + "parenthesize_super": True, + "min": None, + "max": None, + "diff_operator": "d", + } + + def __init__(self, settings=None): + Printer.__init__(self, settings) + + if 'mode' in self._settings: + valid_modes = ['inline', 'plain', 'equation', + 'equation*'] + if self._settings['mode'] not in valid_modes: + raise ValueError("'mode' must be one of 'inline', 'plain', " + "'equation' or 'equation*'") + + if self._settings['fold_short_frac'] is None and \ + self._settings['mode'] == 'inline': + self._settings['fold_short_frac'] = True + + mul_symbol_table = { + None: r" ", + "ldot": r" \,.\, ", + "dot": r" \cdot ", + "times": r" \times " + } + try: + self._settings['mul_symbol_latex'] = \ + mul_symbol_table[self._settings['mul_symbol']] + except KeyError: + self._settings['mul_symbol_latex'] = \ + self._settings['mul_symbol'] + try: + self._settings['mul_symbol_latex_numbers'] = \ + mul_symbol_table[self._settings['mul_symbol'] or 'dot'] + except KeyError: + if (self._settings['mul_symbol'].strip() in + ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): + self._settings['mul_symbol_latex_numbers'] = \ + mul_symbol_table['dot'] + else: + self._settings['mul_symbol_latex_numbers'] = \ + self._settings['mul_symbol'] + + self._delim_dict = {'(': ')', '[': ']'} + + imaginary_unit_table = { + None: r"i", + "i": r"i", + "ri": r"\mathrm{i}", + "ti": r"\text{i}", + "j": r"j", + "rj": r"\mathrm{j}", + "tj": r"\text{j}", + } + imag_unit = self._settings['imaginary_unit'] + self._settings['imaginary_unit_latex'] = imaginary_unit_table.get(imag_unit, imag_unit) + + diff_operator_table = { + None: r"d", + "d": r"d", + "rd": r"\mathrm{d}", + "td": r"\text{d}", + } + diff_operator = self._settings['diff_operator'] + self._settings["diff_operator_latex"] = diff_operator_table.get(diff_operator, diff_operator) + + def _add_parens(self, s) -> str: + return r"\left({}\right)".format(s) + + # TODO: merge this with the above, which requires a lot of test changes + def _add_parens_lspace(self, s) -> str: + return r"\left( {}\right)".format(s) + + def parenthesize(self, item, level, is_neg=False, strict=False) -> str: + prec_val = precedence_traditional(item) + if is_neg and strict: + return self._add_parens(self._print(item)) + + if (prec_val < level) or ((not strict) and prec_val <= level): + return self._add_parens(self._print(item)) + else: + return self._print(item) + + def parenthesize_super(self, s): + """ + Protect superscripts in s + + If the parenthesize_super option is set, protect with parentheses, else + wrap in braces. + """ + if "^" in s: + if self._settings['parenthesize_super']: + return self._add_parens(s) + else: + return "{{{}}}".format(s) + return s + + def doprint(self, expr) -> str: + tex = Printer.doprint(self, expr) + + if self._settings['mode'] == 'plain': + return tex + elif self._settings['mode'] == 'inline': + return r"$%s$" % tex + elif self._settings['itex']: + return r"$$%s$$" % tex + else: + env_str = self._settings['mode'] + return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) + + def _needs_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed, False otherwise. For example: a + b => True; a => False; + 10 => False; -10 => True. + """ + return not ((expr.is_Integer and expr.is_nonnegative) + or (expr.is_Atom and (expr is not S.NegativeOne + and expr.is_Rational is False))) + + def _needs_function_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + passed as an argument to a function, False otherwise. This is a more + liberal version of _needs_brackets, in that many expressions which need + to be wrapped in brackets when added/subtracted/raised to a power do + not need them when passed to a function. Such an example is a*b. + """ + if not self._needs_brackets(expr): + return False + else: + # Muls of the form a*b*c... can be folded + if expr.is_Mul and not self._mul_is_clean(expr): + return True + # Pows which don't need brackets can be folded + elif expr.is_Pow and not self._pow_is_clean(expr): + return True + # Add and Function always need brackets + elif expr.is_Add or expr.is_Function: + return True + else: + return False + + def _needs_mul_brackets(self, expr, first=False, last=False) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed as part of a Mul, False otherwise. This is True for Add, + but also for some container objects that would not need brackets + when appearing last in a Mul, e.g. an Integral. ``last=True`` + specifies that this expr is the last to appear in a Mul. + ``first=True`` specifies that this expr is the first to appear in + a Mul. + """ + from sympy.concrete.products import Product + from sympy.concrete.summations import Sum + from sympy.integrals.integrals import Integral + + if expr.is_Mul: + if not first and expr.could_extract_minus_sign(): + return True + elif precedence_traditional(expr) < PRECEDENCE["Mul"]: + return True + elif expr.is_Relational: + return True + if expr.is_Piecewise: + return True + if any(expr.has(x) for x in (Mod,)): + return True + if (not last and + any(expr.has(x) for x in (Integral, Product, Sum))): + return True + + return False + + def _needs_add_brackets(self, expr) -> bool: + """ + Returns True if the expression needs to be wrapped in brackets when + printed as part of an Add, False otherwise. This is False for most + things. + """ + if expr.is_Relational: + return True + if any(expr.has(x) for x in (Mod,)): + return True + if expr.is_Add: + return True + return False + + def _mul_is_clean(self, expr) -> bool: + for arg in expr.args: + if arg.is_Function: + return False + return True + + def _pow_is_clean(self, expr) -> bool: + return not self._needs_brackets(expr.base) + + def _do_exponent(self, expr: str, exp): + if exp is not None: + return r"\left(%s\right)^{%s}" % (expr, exp) + else: + return expr + + def _print_Basic(self, expr): + name = self._deal_with_super_sub(expr.__class__.__name__) + if expr.args: + ls = [self._print(o) for o in expr.args] + s = r"\operatorname{{{}}}\left({}\right)" + return s.format(name, ", ".join(ls)) + else: + return r"\text{{{}}}".format(name) + + def _print_bool(self, e: bool | BooleanTrue | BooleanFalse): + return r"\text{%s}" % e + + _print_BooleanTrue = _print_bool + _print_BooleanFalse = _print_bool + + def _print_NoneType(self, e): + return r"\text{%s}" % e + + def _print_Add(self, expr, order=None): + terms = self._as_ordered_terms(expr, order=order) + + tex = "" + for i, term in enumerate(terms): + if i == 0: + pass + elif term.could_extract_minus_sign(): + tex += " - " + term = -term + else: + tex += " + " + term_tex = self._print(term) + if self._needs_add_brackets(term): + term_tex = r"\left(%s\right)" % term_tex + tex += term_tex + + return tex + + def _print_Cycle(self, expr): + from sympy.combinatorics.permutations import Permutation + if expr.size == 0: + return r"\left( \right)" + expr = Permutation(expr) + expr_perm = expr.cyclic_form + siz = expr.size + if expr.array_form[-1] == siz - 1: + expr_perm = expr_perm + [[siz - 1]] + term_tex = '' + for i in expr_perm: + term_tex += str(i).replace(',', r"\;") + term_tex = term_tex.replace('[', r"\left( ") + term_tex = term_tex.replace(']', r"\right)") + return term_tex + + def _print_Permutation(self, expr): + from sympy.combinatorics.permutations import Permutation + from sympy.utilities.exceptions import sympy_deprecation_warning + + perm_cyclic = Permutation.print_cyclic + if perm_cyclic is not None: + sympy_deprecation_warning( + f""" + Setting Permutation.print_cyclic is deprecated. Instead use + init_printing(perm_cyclic={perm_cyclic}). + """, + deprecated_since_version="1.6", + active_deprecations_target="deprecated-permutation-print_cyclic", + stacklevel=8, + ) + else: + perm_cyclic = self._settings.get("perm_cyclic", True) + + if perm_cyclic: + return self._print_Cycle(expr) + + if expr.size == 0: + return r"\left( \right)" + + lower = [self._print(arg) for arg in expr.array_form] + upper = [self._print(arg) for arg in range(len(lower))] + + row1 = " & ".join(upper) + row2 = " & ".join(lower) + mat = r" \\ ".join((row1, row2)) + return r"\begin{pmatrix} %s \end{pmatrix}" % mat + + + def _print_AppliedPermutation(self, expr): + perm, var = expr.args + return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var)) + + def _print_Float(self, expr): + # Based off of that in StrPrinter + dps = prec_to_dps(expr._prec) + strip = False if self._settings['full_prec'] else True + low = self._settings["min"] if "min" in self._settings else None + high = self._settings["max"] if "max" in self._settings else None + str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) + + # Must always have a mul symbol (as 2.5 10^{20} just looks odd) + # thus we use the number separator + separator = self._settings['mul_symbol_latex_numbers'] + + if 'e' in str_real: + (mant, exp) = str_real.split('e') + + if exp[0] == '+': + exp = exp[1:] + if self._settings['decimal_separator'] == 'comma': + mant = mant.replace('.','{,}') + + return r"%s%s10^{%s}" % (mant, separator, exp) + elif str_real == "+inf": + return r"\infty" + elif str_real == "-inf": + return r"- \infty" + else: + if self._settings['decimal_separator'] == 'comma': + str_real = str_real.replace('.','{,}') + return str_real + + def _print_Cross(self, expr): + vec1 = expr._expr1 + vec2 = expr._expr2 + return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), + self.parenthesize(vec2, PRECEDENCE['Mul'])) + + def _print_Curl(self, expr): + vec = expr._expr + return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) + + def _print_Divergence(self, expr): + vec = expr._expr + return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) + + def _print_Dot(self, expr): + vec1 = expr._expr1 + vec2 = expr._expr2 + return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), + self.parenthesize(vec2, PRECEDENCE['Mul'])) + + def _print_Gradient(self, expr): + func = expr._expr + return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) + + def _print_Laplacian(self, expr): + func = expr._expr + return r"\Delta %s" % self.parenthesize(func, PRECEDENCE['Mul']) + + def _print_Mul(self, expr: Expr): + from sympy.simplify import fraction + separator: str = self._settings['mul_symbol_latex'] + numbersep: str = self._settings['mul_symbol_latex_numbers'] + + def convert(expr) -> str: + if not expr.is_Mul: + return str(self._print(expr)) + else: + if self.order not in ('old', 'none'): + args = expr.as_ordered_factors() + else: + args = list(expr.args) + + # If there are quantities or prefixes, append them at the back. + units, nonunits = sift(args, lambda x: (hasattr(x, "_scale_factor") or hasattr(x, "is_physical_constant")) or + (isinstance(x, Pow) and + hasattr(x.base, "is_physical_constant")), binary=True) + prefixes, units = sift(units, lambda x: hasattr(x, "_scale_factor"), binary=True) + return convert_args(nonunits + prefixes + units) + + def convert_args(args) -> str: + _tex = last_term_tex = "" + + for i, term in enumerate(args): + term_tex = self._print(term) + if not (hasattr(term, "_scale_factor") or hasattr(term, "is_physical_constant")): + if self._needs_mul_brackets(term, first=(i == 0), + last=(i == len(args) - 1)): + term_tex = r"\left(%s\right)" % term_tex + + if _between_two_numbers_p[0].search(last_term_tex) and \ + _between_two_numbers_p[1].match(str(term)): + # between two numbers + _tex += numbersep + elif _tex: + _tex += separator + elif _tex: + _tex += separator + + _tex += term_tex + last_term_tex = term_tex + return _tex + + # Check for unevaluated Mul. In this case we need to make sure the + # identities are visible, multiple Rational factors are not combined + # etc so we display in a straight-forward form that fully preserves all + # args and their order. + # XXX: _print_Pow calls this routine with instances of Pow... + if isinstance(expr, Mul): + args = expr.args + if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): + return convert_args(args) + + include_parens = False + if expr.could_extract_minus_sign(): + expr = -expr + tex = "- " + if expr.is_Add: + tex += "(" + include_parens = True + else: + tex = "" + + numer, denom = fraction(expr, exact=True) + + if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: + # use the original expression here, since fraction() may have + # altered it when producing numer and denom + tex += convert(expr) + + else: + snumer = convert(numer) + sdenom = convert(denom) + ldenom = len(sdenom.split()) + ratio = self._settings['long_frac_ratio'] + if self._settings['fold_short_frac'] and ldenom <= 2 and \ + "^" not in sdenom: + # handle short fractions + if self._needs_mul_brackets(numer, last=False): + tex += r"\left(%s\right) / %s" % (snumer, sdenom) + else: + tex += r"%s / %s" % (snumer, sdenom) + elif ratio is not None and \ + len(snumer.split()) > ratio*ldenom: + # handle long fractions + if self._needs_mul_brackets(numer, last=True): + tex += r"\frac{1}{%s}%s\left(%s\right)" \ + % (sdenom, separator, snumer) + elif numer.is_Mul: + # split a long numerator + a = S.One + b = S.One + for x in numer.args: + if self._needs_mul_brackets(x, last=False) or \ + len(convert(a*x).split()) > ratio*ldenom or \ + (b.is_commutative is x.is_commutative is False): + b *= x + else: + a *= x + if self._needs_mul_brackets(b, last=True): + tex += r"\frac{%s}{%s}%s\left(%s\right)" \ + % (convert(a), sdenom, separator, convert(b)) + else: + tex += r"\frac{%s}{%s}%s%s" \ + % (convert(a), sdenom, separator, convert(b)) + else: + tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) + else: + tex += r"\frac{%s}{%s}" % (snumer, sdenom) + + if include_parens: + tex += ")" + return tex + + def _print_AlgebraicNumber(self, expr): + if expr.is_aliased: + return self._print(expr.as_poly().as_expr()) + else: + return self._print(expr.as_expr()) + + def _print_PrimeIdeal(self, expr): + p = self._print(expr.p) + if expr.is_inert: + return rf'\left({p}\right)' + alpha = self._print(expr.alpha.as_expr()) + return rf'\left({p}, {alpha}\right)' + + def _print_Pow(self, expr: Pow): + # Treat x**Rational(1,n) as special case + if expr.exp.is_Rational: + p: int = expr.exp.p # type: ignore + q: int = expr.exp.q # type: ignore + if abs(p) == 1 and q != 1 and self._settings['root_notation']: + base = self._print(expr.base) + if q == 2: + tex = r"\sqrt{%s}" % base + elif self._settings['itex']: + tex = r"\root{%d}{%s}" % (q, base) + else: + tex = r"\sqrt[%d]{%s}" % (q, base) + if expr.exp.is_negative: + return r"\frac{1}{%s}" % tex + else: + return tex + elif self._settings['fold_frac_powers'] and q != 1: + base = self.parenthesize(expr.base, PRECEDENCE['Pow']) + # issue #12886: add parentheses for superscripts raised to powers + if expr.base.is_Symbol: + base = self.parenthesize_super(base) + if expr.base.is_Function: + return self._print(expr.base, exp="%s/%s" % (p, q)) + return r"%s^{%s/%s}" % (base, p, q) + elif expr.exp.is_negative and expr.base.is_commutative: + # special case for 1^(-x), issue 9216 + if expr.base == 1: + return r"%s^{%s}" % (expr.base, expr.exp) + # special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252 + if expr.base.is_Rational: + base_p: int = expr.base.p # type: ignore + base_q: int = expr.base.q # type: ignore + if base_p * base_q == abs(base_q): + if expr.exp == -1: + return r"\frac{1}{\frac{%s}{%s}}" % (base_p, base_q) + else: + return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (base_p, base_q, abs(expr.exp)) + # things like 1/x + return self._print_Mul(expr) + if expr.base.is_Function: + return self._print(expr.base, exp=self._print(expr.exp)) + tex = r"%s^{%s}" + return self._helper_print_standard_power(expr, tex) + + def _helper_print_standard_power(self, expr, template: str) -> str: + exp = self._print(expr.exp) + # issue #12886: add parentheses around superscripts raised + # to powers + base = self.parenthesize(expr.base, PRECEDENCE['Pow']) + if expr.base.is_Symbol: + base = self.parenthesize_super(base) + elif (isinstance(expr.base, Derivative) + and base.startswith(r'\left(') + and re.match(r'\\left\(\\d?d?dot', base) + and base.endswith(r'\right)')): + # don't use parentheses around dotted derivative + base = base[6: -7] # remove outermost added parens + return template % (base, exp) + + def _print_UnevaluatedExpr(self, expr): + return self._print(expr.args[0]) + + def _print_Sum(self, expr): + if len(expr.limits) == 1: + tex = r"\sum_{%s=%s}^{%s} " % \ + tuple([self._print(i) for i in expr.limits[0]]) + else: + def _format_ineq(l): + return r"%s \leq %s \leq %s" % \ + tuple([self._print(s) for s in (l[1], l[0], l[2])]) + + tex = r"\sum_{\substack{%s}} " % \ + str.join('\\\\', [_format_ineq(l) for l in expr.limits]) + + if isinstance(expr.function, Add): + tex += r"\left(%s\right)" % self._print(expr.function) + else: + tex += self._print(expr.function) + + return tex + + def _print_Product(self, expr): + if len(expr.limits) == 1: + tex = r"\prod_{%s=%s}^{%s} " % \ + tuple([self._print(i) for i in expr.limits[0]]) + else: + def _format_ineq(l): + return r"%s \leq %s \leq %s" % \ + tuple([self._print(s) for s in (l[1], l[0], l[2])]) + + tex = r"\prod_{\substack{%s}} " % \ + str.join('\\\\', [_format_ineq(l) for l in expr.limits]) + + if isinstance(expr.function, Add): + tex += r"\left(%s\right)" % self._print(expr.function) + else: + tex += self._print(expr.function) + + return tex + + def _print_BasisDependent(self, expr: 'BasisDependent'): + from sympy.vector import Vector + + o1: list[str] = [] + if expr == expr.zero: + return expr.zero._latex_form + if isinstance(expr, Vector): + items = expr.separate().items() + else: + items = [(0, expr)] + + for system, vect in items: + inneritems = list(vect.components.items()) + inneritems.sort(key=lambda x: x[0].__str__()) + for k, v in inneritems: + if v == 1: + o1.append(' + ' + k._latex_form) + elif v == -1: + o1.append(' - ' + k._latex_form) + else: + arg_str = r'\left(' + self._print(v) + r'\right)' + o1.append(' + ' + arg_str + k._latex_form) + + outstr = (''.join(o1)) + if outstr[1] != '-': + outstr = outstr[3:] + else: + outstr = outstr[1:] + return outstr + + def _print_Indexed(self, expr): + tex_base = self._print(expr.base) + tex = '{'+tex_base+'}'+'_{%s}' % ','.join( + map(self._print, expr.indices)) + return tex + + def _print_IndexedBase(self, expr): + return self._print(expr.label) + + def _print_Idx(self, expr): + label = self._print(expr.label) + if expr.upper is not None: + upper = self._print(expr.upper) + if expr.lower is not None: + lower = self._print(expr.lower) + else: + lower = self._print(S.Zero) + interval = '{lower}\\mathrel{{..}}\\nobreak {upper}'.format( + lower = lower, upper = upper) + return '{{{label}}}_{{{interval}}}'.format( + label = label, interval = interval) + #if no bounds are defined this just prints the label + return label + + def _print_Derivative(self, expr): + if requires_partial(expr.expr): + diff_symbol = r'\partial' + else: + diff_symbol = self._settings["diff_operator_latex"] + + tex = "" + dim = 0 + for x, num in reversed(expr.variable_count): + dim += num + if num == 1: + tex += r"%s %s" % (diff_symbol, self._print(x)) + else: + tex += r"%s %s^{%s}" % (diff_symbol, + self.parenthesize_super(self._print(x)), + self._print(num)) + + if dim == 1: + tex = r"\frac{%s}{%s}" % (diff_symbol, tex) + else: + tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) + + if any(i.could_extract_minus_sign() for i in expr.args): + return r"%s %s" % (tex, self.parenthesize(expr.expr, + PRECEDENCE["Mul"], + is_neg=True, + strict=True)) + + return r"%s %s" % (tex, self.parenthesize(expr.expr, + PRECEDENCE["Mul"], + is_neg=False, + strict=True)) + + def _print_Subs(self, subs): + expr, old, new = subs.args + latex_expr = self._print(expr) + latex_old = (self._print(e) for e in old) + latex_new = (self._print(e) for e in new) + latex_subs = r'\\ '.join( + e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) + return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, + latex_subs) + + def _print_Integral(self, expr): + tex, symbols = "", [] + diff_symbol = self._settings["diff_operator_latex"] + + # Only up to \iiiint exists + if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): + # Use len(expr.limits)-1 so that syntax highlighters don't think + # \" is an escaped quote + tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" + symbols = [r"\, %s%s" % (diff_symbol, self._print(symbol[0])) + for symbol in expr.limits] + + else: + for lim in reversed(expr.limits): + symbol = lim[0] + tex += r"\int" + + if len(lim) > 1: + if self._settings['mode'] != 'inline' \ + and not self._settings['itex']: + tex += r"\limits" + + if len(lim) == 3: + tex += "_{%s}^{%s}" % (self._print(lim[1]), + self._print(lim[2])) + if len(lim) == 2: + tex += "^{%s}" % (self._print(lim[1])) + + symbols.insert(0, r"\, %s%s" % (diff_symbol, self._print(symbol))) + + return r"%s %s%s" % (tex, self.parenthesize(expr.function, + PRECEDENCE["Mul"], + is_neg=any(i.could_extract_minus_sign() for i in expr.args), + strict=True), + "".join(symbols)) + + def _print_Limit(self, expr): + e, z, z0, dir = expr.args + + tex = r"\lim_{%s \to " % self._print(z) + if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): + tex += r"%s}" % self._print(z0) + else: + tex += r"%s^%s}" % (self._print(z0), self._print(dir)) + + if isinstance(e, AssocOp): + return r"%s\left(%s\right)" % (tex, self._print(e)) + else: + return r"%s %s" % (tex, self._print(e)) + + def _hprint_Function(self, func: str) -> str: + r''' + Logic to decide how to render a function to latex + - if it is a recognized latex name, use the appropriate latex command + - if it is a single letter, excluding sub- and superscripts, just use that letter + - if it is a longer name, then put \operatorname{} around it and be + mindful of undercores in the name + ''' + func = self._deal_with_super_sub(func) + superscriptidx = func.find("^") + subscriptidx = func.find("_") + if func in accepted_latex_functions: + name = r"\%s" % func + elif len(func) == 1 or func.startswith('\\') or subscriptidx == 1 or superscriptidx == 1: + name = func + else: + if superscriptidx > 0 and subscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:min(subscriptidx,superscriptidx)], + func[min(subscriptidx,superscriptidx):]) + elif superscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:superscriptidx], + func[superscriptidx:]) + elif subscriptidx > 0: + name = r"\operatorname{%s}%s" %( + func[:subscriptidx], + func[subscriptidx:]) + else: + name = r"\operatorname{%s}" % func + return name + + def _print_Function(self, expr: Function, exp=None) -> str: + r''' + Render functions to LaTeX, handling functions that LaTeX knows about + e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). + For single-letter function names, render them as regular LaTeX math + symbols. For multi-letter function names that LaTeX does not know + about, (e.g., Li, sech) use \operatorname{} so that the function name + is rendered in Roman font and LaTeX handles spacing properly. + + expr is the expression involving the function + exp is an exponent + ''' + func = expr.func.__name__ + if hasattr(self, '_print_' + func) and \ + not isinstance(expr, AppliedUndef): + return getattr(self, '_print_' + func)(expr, exp) + else: + args = [str(self._print(arg)) for arg in expr.args] + # How inverse trig functions should be displayed, formats are: + # abbreviated: asin, full: arcsin, power: sin^-1 + inv_trig_style = self._settings['inv_trig_style'] + # If we are dealing with a power-style inverse trig function + inv_trig_power_case = False + # If it is applicable to fold the argument brackets + can_fold_brackets = self._settings['fold_func_brackets'] and \ + len(args) == 1 and \ + not self._needs_function_brackets(expr.args[0]) + + inv_trig_table = [ + "asin", "acos", "atan", + "acsc", "asec", "acot", + "asinh", "acosh", "atanh", + "acsch", "asech", "acoth", + ] + + # If the function is an inverse trig function, handle the style + if func in inv_trig_table: + if inv_trig_style == "abbreviated": + pass + elif inv_trig_style == "full": + func = ("ar" if func[-1] == "h" else "arc") + func[1:] + elif inv_trig_style == "power": + func = func[1:] + inv_trig_power_case = True + + # Can never fold brackets if we're raised to a power + if exp is not None: + can_fold_brackets = False + + if inv_trig_power_case: + if func in accepted_latex_functions: + name = r"\%s^{-1}" % func + else: + name = r"\operatorname{%s}^{-1}" % func + elif exp is not None: + func_tex = self._hprint_Function(func) + func_tex = self.parenthesize_super(func_tex) + name = r'%s^{%s}' % (func_tex, exp) + else: + name = self._hprint_Function(func) + + if can_fold_brackets: + if func in accepted_latex_functions: + # Wrap argument safely to avoid parse-time conflicts + # with the function name itself + name += r" {%s}" + else: + name += r"%s" + else: + name += r"{\left(%s \right)}" + + if inv_trig_power_case and exp is not None: + name += r"^{%s}" % exp + + return name % ",".join(args) + + def _print_UndefinedFunction(self, expr): + return self._hprint_Function(str(expr)) + + def _print_ElementwiseApplyFunction(self, expr): + return r"{%s}_{\circ}\left({%s}\right)" % ( + self._print(expr.function), + self._print(expr.expr), + ) + + @property + def _special_function_classes(self): + from sympy.functions.special.tensor_functions import KroneckerDelta + from sympy.functions.special.gamma_functions import gamma, lowergamma + from sympy.functions.special.beta_functions import beta + from sympy.functions.special.delta_functions import DiracDelta + from sympy.functions.special.error_functions import Chi + return {KroneckerDelta: r'\delta', + gamma: r'\Gamma', + lowergamma: r'\gamma', + beta: r'\operatorname{B}', + DiracDelta: r'\delta', + Chi: r'\operatorname{Chi}'} + + def _print_FunctionClass(self, expr): + for cls in self._special_function_classes: + if issubclass(expr, cls) and expr.__name__ == cls.__name__: + return self._special_function_classes[cls] + return self._hprint_Function(str(expr)) + + def _print_Lambda(self, expr): + symbols, expr = expr.args + + if len(symbols) == 1: + symbols = self._print(symbols[0]) + else: + symbols = self._print(tuple(symbols)) + + tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) + + return tex + + def _print_IdentityFunction(self, expr): + return r"\left( x \mapsto x \right)" + + def _hprint_variadic_function(self, expr, exp=None) -> str: + args = sorted(expr.args, key=default_sort_key) + texargs = [r"%s" % self._print(symbol) for symbol in args] + tex = r"\%s\left(%s\right)" % (str(expr.func).lower(), + ", ".join(texargs)) + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + _print_Min = _print_Max = _hprint_variadic_function + + def _print_floor(self, expr, exp=None): + tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_ceiling(self, expr, exp=None): + tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_log(self, expr, exp=None): + if not self._settings["ln_notation"]: + tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) + else: + tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_Abs(self, expr, exp=None): + tex = r"\left|{%s}\right|" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_re(self, expr, exp=None): + if self._settings['gothic_re_im']: + tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) + else: + tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) + + return self._do_exponent(tex, exp) + + def _print_im(self, expr, exp=None): + if self._settings['gothic_re_im']: + tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) + else: + tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) + + return self._do_exponent(tex, exp) + + def _print_Not(self, e): + from sympy.logic.boolalg import (Equivalent, Implies) + if isinstance(e.args[0], Equivalent): + return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") + if isinstance(e.args[0], Implies): + return self._print_Implies(e.args[0], r"\not\Rightarrow") + if (e.args[0].is_Boolean): + return r"\neg \left(%s\right)" % self._print(e.args[0]) + else: + return r"\neg %s" % self._print(e.args[0]) + + def _print_LogOp(self, args, char): + arg = args[0] + if arg.is_Boolean and not arg.is_Not: + tex = r"\left(%s\right)" % self._print(arg) + else: + tex = r"%s" % self._print(arg) + + for arg in args[1:]: + if arg.is_Boolean and not arg.is_Not: + tex += r" %s \left(%s\right)" % (char, self._print(arg)) + else: + tex += r" %s %s" % (char, self._print(arg)) + + return tex + + def _print_And(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\wedge") + + def _print_Or(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\vee") + + def _print_Xor(self, e): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, r"\veebar") + + def _print_Implies(self, e, altchar=None): + return self._print_LogOp(e.args, altchar or r"\Rightarrow") + + def _print_Equivalent(self, e, altchar=None): + args = sorted(e.args, key=default_sort_key) + return self._print_LogOp(args, altchar or r"\Leftrightarrow") + + def _print_conjugate(self, expr, exp=None): + tex = r"\overline{%s}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_polar_lift(self, expr, exp=None): + func = r"\operatorname{polar\_lift}" + arg = r"{\left(%s \right)}" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (func, exp, arg) + else: + return r"%s%s" % (func, arg) + + def _print_ExpBase(self, expr, exp=None): + # TODO should exp_polar be printed differently? + # what about exp_polar(0), exp_polar(1)? + tex = r"e^{%s}" % self._print(expr.args[0]) + return self._do_exponent(tex, exp) + + def _print_Exp1(self, expr, exp=None): + return "e" + + def _print_elliptic_k(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"K^{%s}%s" % (exp, tex) + else: + return r"K%s" % tex + + def _print_elliptic_f(self, expr, exp=None): + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + if exp is not None: + return r"F^{%s}%s" % (exp, tex) + else: + return r"F%s" % tex + + def _print_elliptic_e(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"E^{%s}%s" % (exp, tex) + else: + return r"E%s" % tex + + def _print_elliptic_pi(self, expr, exp=None): + if len(expr.args) == 3: + tex = r"\left(%s; %s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1]), + self._print(expr.args[2])) + else: + tex = r"\left(%s\middle| %s\right)" % \ + (self._print(expr.args[0]), self._print(expr.args[1])) + if exp is not None: + return r"\Pi^{%s}%s" % (exp, tex) + else: + return r"\Pi%s" % tex + + def _print_beta(self, expr, exp=None): + x = expr.args[0] + # Deal with unevaluated single argument beta + y = expr.args[0] if len(expr.args) == 1 else expr.args[1] + tex = rf"\left({x}, {y}\right)" + + if exp is not None: + return r"\operatorname{B}^{%s}%s" % (exp, tex) + else: + return r"\operatorname{B}%s" % tex + + def _print_betainc(self, expr, exp=None, operator='B'): + largs = [self._print(arg) for arg in expr.args] + tex = r"\left(%s, %s\right)" % (largs[0], largs[1]) + + if exp is not None: + return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex) + else: + return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex) + + def _print_betainc_regularized(self, expr, exp=None): + return self._print_betainc(expr, exp, operator='I') + + def _print_uppergamma(self, expr, exp=None): + tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"\Gamma^{%s}%s" % (exp, tex) + else: + return r"\Gamma%s" % tex + + def _print_lowergamma(self, expr, exp=None): + tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"\gamma^{%s}%s" % (exp, tex) + else: + return r"\gamma%s" % tex + + def _hprint_one_arg_func(self, expr, exp=None) -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) + else: + return r"%s%s" % (self._print(expr.func), tex) + + _print_gamma = _hprint_one_arg_func + + def _print_Chi(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"\operatorname{Chi}^{%s}%s" % (exp, tex) + else: + return r"\operatorname{Chi}%s" % tex + + def _print_expint(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[1]) + nu = self._print(expr.args[0]) + + if exp is not None: + return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) + else: + return r"\operatorname{E}_{%s}%s" % (nu, tex) + + def _print_fresnels(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"S^{%s}%s" % (exp, tex) + else: + return r"S%s" % tex + + def _print_fresnelc(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"C^{%s}%s" % (exp, tex) + else: + return r"C%s" % tex + + def _print_subfactorial(self, expr, exp=None): + tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"\left(%s\right)^{%s}" % (tex, exp) + else: + return tex + + def _print_factorial(self, expr, exp=None): + tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_factorial2(self, expr, exp=None): + tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_binomial(self, expr, exp=None): + tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), + self._print(expr.args[1])) + + if exp is not None: + return r"%s^{%s}" % (tex, exp) + else: + return tex + + def _print_RisingFactorial(self, expr, exp=None): + n, k = expr.args + base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) + + tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) + + return self._do_exponent(tex, exp) + + def _print_FallingFactorial(self, expr, exp=None): + n, k = expr.args + sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) + + tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) + + return self._do_exponent(tex, exp) + + def _hprint_BesselBase(self, expr, exp, sym: str) -> str: + tex = r"%s" % (sym) + + need_exp = False + if exp is not None: + if tex.find('^') == -1: + tex = r"%s^{%s}" % (tex, exp) + else: + need_exp = True + + tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), + self._print(expr.argument)) + + if need_exp: + tex = self._do_exponent(tex, exp) + return tex + + def _hprint_vec(self, vec) -> str: + if not vec: + return "" + s = "" + for i in vec[:-1]: + s += "%s, " % self._print(i) + s += self._print(vec[-1]) + return s + + def _print_besselj(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'J') + + def _print_besseli(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'I') + + def _print_besselk(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'K') + + def _print_bessely(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'Y') + + def _print_yn(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'y') + + def _print_jn(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'j') + + def _print_hankel1(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'H^{(1)}') + + def _print_hankel2(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'H^{(2)}') + + def _print_hn1(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'h^{(1)}') + + def _print_hn2(self, expr, exp=None): + return self._hprint_BesselBase(expr, exp, 'h^{(2)}') + + def _hprint_airy(self, expr, exp=None, notation="") -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"%s^{%s}%s" % (notation, exp, tex) + else: + return r"%s%s" % (notation, tex) + + def _hprint_airy_prime(self, expr, exp=None, notation="") -> str: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + + if exp is not None: + return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) + else: + return r"%s^\prime%s" % (notation, tex) + + def _print_airyai(self, expr, exp=None): + return self._hprint_airy(expr, exp, 'Ai') + + def _print_airybi(self, expr, exp=None): + return self._hprint_airy(expr, exp, 'Bi') + + def _print_airyaiprime(self, expr, exp=None): + return self._hprint_airy_prime(expr, exp, 'Ai') + + def _print_airybiprime(self, expr, exp=None): + return self._hprint_airy_prime(expr, exp, 'Bi') + + def _print_hyper(self, expr, exp=None): + tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ + r"\middle| {%s} \right)}" % \ + (self._print(len(expr.ap)), self._print(len(expr.bq)), + self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), + self._print(expr.argument)) + + if exp is not None: + tex = r"{%s}^{%s}" % (tex, exp) + return tex + + def _print_meijerg(self, expr, exp=None): + tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ + r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ + (self._print(len(expr.ap)), self._print(len(expr.bq)), + self._print(len(expr.bm)), self._print(len(expr.an)), + self._hprint_vec(expr.an), self._hprint_vec(expr.aother), + self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), + self._print(expr.argument)) + + if exp is not None: + tex = r"{%s}^{%s}" % (tex, exp) + return tex + + def _print_dirichlet_eta(self, expr, exp=None): + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\eta^{%s}%s" % (exp, tex) + return r"\eta%s" % tex + + def _print_zeta(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\zeta^{%s}%s" % (exp, tex) + return r"\zeta%s" % tex + + def _print_stieltjes(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) + else: + tex = r"_{%s}" % self._print(expr.args[0]) + if exp is not None: + return r"\gamma%s^{%s}" % (tex, exp) + return r"\gamma%s" % tex + + def _print_lerchphi(self, expr, exp=None): + tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) + if exp is None: + return r"\Phi%s" % tex + return r"\Phi^{%s}%s" % (exp, tex) + + def _print_polylog(self, expr, exp=None): + s, z = map(self._print, expr.args) + tex = r"\left(%s\right)" % z + if exp is None: + return r"\operatorname{Li}_{%s}%s" % (s, tex) + return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex) + + def _print_jacobi(self, expr, exp=None): + n, a, b, x = map(self._print, expr.args) + tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_gegenbauer(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_chebyshevt(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"T_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_chebyshevu(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"U_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_legendre(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"P_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_assoc_legendre(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_hermite(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"H_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_laguerre(self, expr, exp=None): + n, x = map(self._print, expr.args) + tex = r"L_{%s}\left(%s\right)" % (n, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_assoc_laguerre(self, expr, exp=None): + n, a, x = map(self._print, expr.args) + tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_Ynm(self, expr, exp=None): + n, m, theta, phi = map(self._print, expr.args) + tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def _print_Znm(self, expr, exp=None): + n, m, theta, phi = map(self._print, expr.args) + tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) + if exp is not None: + tex = r"\left(" + tex + r"\right)^{%s}" % (exp) + return tex + + def __print_mathieu_functions(self, character, args, prime=False, exp=None): + a, q, z = map(self._print, args) + sup = r"^{\prime}" if prime else "" + exp = "" if not exp else "^{%s}" % exp + return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) + + def _print_mathieuc(self, expr, exp=None): + return self.__print_mathieu_functions("C", expr.args, exp=exp) + + def _print_mathieus(self, expr, exp=None): + return self.__print_mathieu_functions("S", expr.args, exp=exp) + + def _print_mathieucprime(self, expr, exp=None): + return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) + + def _print_mathieusprime(self, expr, exp=None): + return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) + + def _print_Rational(self, expr): + if expr.q != 1: + sign = "" + p = expr.p + if expr.p < 0: + sign = "- " + p = -p + if self._settings['fold_short_frac']: + return r"%s%d / %d" % (sign, p, expr.q) + return r"%s\frac{%d}{%d}" % (sign, p, expr.q) + else: + return self._print(expr.p) + + def _print_Order(self, expr): + s = self._print(expr.expr) + if expr.point and any(p != S.Zero for p in expr.point) or \ + len(expr.variables) > 1: + s += '; ' + if len(expr.variables) > 1: + s += self._print(expr.variables) + elif expr.variables: + s += self._print(expr.variables[0]) + s += r'\rightarrow ' + if len(expr.point) > 1: + s += self._print(expr.point) + else: + s += self._print(expr.point[0]) + return r"O\left(%s\right)" % s + + def _print_Symbol(self, expr: Symbol, style='plain'): + name: str = self._settings['symbol_names'].get(expr) + if name is not None: + return name + + return self._deal_with_super_sub(expr.name, style=style) + + _print_RandomSymbol = _print_Symbol + + def _deal_with_super_sub(self, string: str, style='plain') -> str: + if '{' in string: + name, supers, subs = string, [], [] + else: + name, supers, subs = split_super_sub(string) + + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + # apply the style only to the name + if style == 'bold': + name = "\\mathbf{{{}}}".format(name) + + # glue all items together: + if supers: + name += "^{%s}" % " ".join(supers) + if subs: + name += "_{%s}" % " ".join(subs) + + return name + + def _print_Relational(self, expr): + if self._settings['itex']: + gt = r"\gt" + lt = r"\lt" + else: + gt = ">" + lt = "<" + + charmap = { + "==": "=", + ">": gt, + "<": lt, + ">=": r"\geq", + "<=": r"\leq", + "!=": r"\neq", + } + + return "%s %s %s" % (self._print(expr.lhs), + charmap[expr.rel_op], self._print(expr.rhs)) + + def _print_Piecewise(self, expr): + ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) + for e, c in expr.args[:-1]] + if expr.args[-1].cond == true: + ecpairs.append(r"%s & \text{otherwise}" % + self._print(expr.args[-1].expr)) + else: + ecpairs.append(r"%s & \text{for}\: %s" % + (self._print(expr.args[-1].expr), + self._print(expr.args[-1].cond))) + tex = r"\begin{cases} %s \end{cases}" + return tex % r" \\".join(ecpairs) + + def _print_matrix_contents(self, expr): + lines = [] + + for line in range(expr.rows): # horrible, should be 'rows' + lines.append(" & ".join([self._print(i) for i in expr[line, :]])) + + mat_str = self._settings['mat_str'] + if mat_str is None: + if self._settings['mode'] == 'inline': + mat_str = 'smallmatrix' + else: + if (expr.cols <= 10) is True: + mat_str = 'matrix' + else: + mat_str = 'array' + + out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' + out_str = out_str.replace('%MATSTR%', mat_str) + if mat_str == 'array': + out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') + return out_str % r"\\".join(lines) + + def _print_MatrixBase(self, expr): + out_str = self._print_matrix_contents(expr) + if self._settings['mat_delim']: + left_delim = self._settings['mat_delim'] + right_delim = self._delim_dict[left_delim] + out_str = r'\left' + left_delim + out_str + \ + r'\right' + right_delim + return out_str + + def _print_MatrixElement(self, expr): + return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) + + def _print_MatrixSlice(self, expr): + def latexslice(x, dim): + x = list(x) + if x[2] == 1: + del x[2] + if x[0] == 0: + x[0] = None + if x[1] == dim: + x[1] = None + return ':'.join(self._print(xi) if xi is not None else '' for xi in x) + return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' + + latexslice(expr.rowslice, expr.parent.rows) + ', ' + + latexslice(expr.colslice, expr.parent.cols) + r'\right]') + + def _print_BlockMatrix(self, expr): + return self._print(expr.blocks) + + def _print_Transpose(self, expr): + mat = expr.arg + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + return r"\left(%s\right)^{T}" % self._print(mat) + else: + s = self.parenthesize(mat, precedence_traditional(expr), True) + if '^' in s: + return r"\left(%s\right)^{T}" % s + else: + return "%s^{T}" % s + + def _print_Trace(self, expr): + mat = expr.arg + return r"\operatorname{tr}\left(%s \right)" % self._print(mat) + + def _print_Adjoint(self, expr): + mat = expr.arg + from sympy.matrices import MatrixSymbol, BlockMatrix + if (not isinstance(mat, MatrixSymbol) and + not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr): + return r"\left(%s\right)^{\dagger}" % self._print(mat) + else: + s = self.parenthesize(mat, precedence_traditional(expr), True) + if '^' in s: + return r"\left(%s\right)^{\dagger}" % s + else: + return r"%s^{\dagger}" % s + + def _print_MatMul(self, expr): + from sympy import MatMul + + # Parenthesize nested MatMul but not other types of Mul objects: + parens = lambda x: self._print(x) if isinstance(x, Mul) and not isinstance(x, MatMul) else \ + self.parenthesize(x, precedence_traditional(expr), False) + + args = list(expr.args) + if expr.could_extract_minus_sign(): + if args[0] == -1: + args = args[1:] + else: + args[0] = -args[0] + return '- ' + ' '.join(map(parens, args)) + else: + return ' '.join(map(parens, args)) + + def _print_Determinant(self, expr): + mat = expr.arg + if mat.is_MatrixExpr: + from sympy.matrices.expressions.blockmatrix import BlockMatrix + if isinstance(mat, BlockMatrix): + return r"\left|{%s}\right|" % self._print_matrix_contents(mat.blocks) + return r"\left|{%s}\right|" % self._print(mat) + return r"\left|{%s}\right|" % self._print_matrix_contents(mat) + + + def _print_Mod(self, expr, exp=None): + if exp is not None: + return r'\left(%s \bmod %s\right)^{%s}' % \ + (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], + strict=True), + self.parenthesize(expr.args[1], PRECEDENCE['Mul'], + strict=True), + exp) + return r'%s \bmod %s' % (self.parenthesize(expr.args[0], + PRECEDENCE['Mul'], + strict=True), + self.parenthesize(expr.args[1], + PRECEDENCE['Mul'], + strict=True)) + + def _print_HadamardProduct(self, expr): + args = expr.args + prec = PRECEDENCE['Pow'] + parens = self.parenthesize + + return r' \circ '.join( + (parens(arg, prec, strict=True) for arg in args)) + + def _print_HadamardPower(self, expr): + if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: + template = r"%s^{\circ \left({%s}\right)}" + else: + template = r"%s^{\circ {%s}}" + return self._helper_print_standard_power(expr, template) + + def _print_KroneckerProduct(self, expr): + args = expr.args + prec = PRECEDENCE['Pow'] + parens = self.parenthesize + + return r' \otimes '.join( + (parens(arg, prec, strict=True) for arg in args)) + + def _print_MatPow(self, expr): + base, exp = expr.base, expr.exp + from sympy.matrices import MatrixSymbol + if not isinstance(base, MatrixSymbol) and base.is_MatrixExpr: + return "\\left(%s\\right)^{%s}" % (self._print(base), + self._print(exp)) + else: + base_str = self._print(base) + if '^' in base_str: + return r"\left(%s\right)^{%s}" % (base_str, self._print(exp)) + else: + return "%s^{%s}" % (base_str, self._print(exp)) + + def _print_MatrixSymbol(self, expr): + return self._print_Symbol(expr, style=self._settings[ + 'mat_symbol_style']) + + def _print_ZeroMatrix(self, Z): + return "0" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" + + def _print_OneMatrix(self, O): + return "1" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" + + def _print_Identity(self, I): + return r"\mathbb{I}" if self._settings[ + 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" + + def _print_PermutationMatrix(self, P): + perm_str = self._print(P.args[0]) + return "P_{%s}" % perm_str + + def _print_NDimArray(self, expr: NDimArray): + + if expr.rank() == 0: + return self._print(expr[()]) + + mat_str = self._settings['mat_str'] + if mat_str is None: + if self._settings['mode'] == 'inline': + mat_str = 'smallmatrix' + else: + if (expr.rank() == 0) or (expr.shape[-1] <= 10): + mat_str = 'matrix' + else: + mat_str = 'array' + block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' + block_str = block_str.replace('%MATSTR%', mat_str) + if mat_str == 'array': + block_str= block_str.replace('%s','{}%s') + if self._settings['mat_delim']: + left_delim: str = self._settings['mat_delim'] + right_delim = self._delim_dict[left_delim] + block_str = r'\left' + left_delim + block_str + \ + r'\right' + right_delim + + if expr.rank() == 0: + return block_str % "" + + level_str: list[list[str]] = [[] for i in range(expr.rank() + 1)] + shape_ranges = [list(range(i)) for i in expr.shape] + for outer_i in itertools.product(*shape_ranges): + level_str[-1].append(self._print(expr[outer_i])) + even = True + for back_outer_i in range(expr.rank()-1, -1, -1): + if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: + break + if even: + level_str[back_outer_i].append( + r" & ".join(level_str[back_outer_i+1])) + else: + level_str[back_outer_i].append( + block_str % (r"\\".join(level_str[back_outer_i+1]))) + if len(level_str[back_outer_i+1]) == 1: + level_str[back_outer_i][-1] = r"\left[" + \ + level_str[back_outer_i][-1] + r"\right]" + even = not even + level_str[back_outer_i+1] = [] + + out_str = level_str[0][0] + + if expr.rank() % 2 == 1: + out_str = block_str % out_str + + return out_str + + def _printer_tensor_indices(self, name, indices, index_map: dict): + out_str = self._print(name) + last_valence = None + prev_map = None + for index in indices: + new_valence = index.is_up + if ((index in index_map) or prev_map) and \ + last_valence == new_valence: + out_str += "," + if last_valence != new_valence: + if last_valence is not None: + out_str += "}" + if index.is_up: + out_str += "{}^{" + else: + out_str += "{}_{" + out_str += self._print(index.args[0]) + if index in index_map: + out_str += "=" + out_str += self._print(index_map[index]) + prev_map = True + else: + prev_map = False + last_valence = new_valence + if last_valence is not None: + out_str += "}" + return out_str + + def _print_Tensor(self, expr): + name = expr.args[0].args[0] + indices = expr.get_indices() + return self._printer_tensor_indices(name, indices, {}) + + def _print_TensorElement(self, expr): + name = expr.expr.args[0].args[0] + indices = expr.expr.get_indices() + index_map = expr.index_map + return self._printer_tensor_indices(name, indices, index_map) + + def _print_TensMul(self, expr): + # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" + sign, args = expr._get_args_for_traditional_printer() + return sign + "".join( + [self.parenthesize(arg, precedence(expr)) for arg in args] + ) + + def _print_TensAdd(self, expr): + a = [] + args = expr.args + for x in args: + a.append(self.parenthesize(x, precedence(expr))) + a.sort() + s = ' + '.join(a) + s = s.replace('+ -', '- ') + return s + + def _print_TensorIndex(self, expr): + return "{}%s{%s}" % ( + "^" if expr.is_up else "_", + self._print(expr.args[0]) + ) + + def _print_PartialDerivative(self, expr): + if len(expr.variables) == 1: + return r"\frac{\partial}{\partial {%s}}{%s}" % ( + self._print(expr.variables[0]), + self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) + ) + else: + return r"\frac{\partial^{%s}}{%s}{%s}" % ( + len(expr.variables), + " ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]), + self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) + ) + + def _print_ArraySymbol(self, expr): + return self._print(expr.name) + + def _print_ArrayElement(self, expr): + return "{{%s}_{%s}}" % ( + self.parenthesize(expr.name, PRECEDENCE["Func"], True), + ", ".join([f"{self._print(i)}" for i in expr.indices])) + + def _print_UniversalSet(self, expr): + return r"\mathbb{U}" + + def _print_frac(self, expr, exp=None): + if exp is None: + return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) + else: + return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( + self._print(expr.args[0]), exp) + + def _print_tuple(self, expr): + if self._settings['decimal_separator'] == 'comma': + sep = ";" + elif self._settings['decimal_separator'] == 'period': + sep = "," + else: + raise ValueError('Unknown Decimal Separator') + + if len(expr) == 1: + # 1-tuple needs a trailing separator + return self._add_parens_lspace(self._print(expr[0]) + sep) + else: + return self._add_parens_lspace( + (sep + r" \ ").join([self._print(i) for i in expr])) + + def _print_TensorProduct(self, expr): + elements = [self._print(a) for a in expr.args] + return r' \otimes '.join(elements) + + def _print_WedgeProduct(self, expr): + elements = [self._print(a) for a in expr.args] + return r' \wedge '.join(elements) + + def _print_Tuple(self, expr): + return self._print_tuple(expr) + + def _print_list(self, expr): + if self._settings['decimal_separator'] == 'comma': + return r"\left[ %s\right]" % \ + r"; \ ".join([self._print(i) for i in expr]) + elif self._settings['decimal_separator'] == 'period': + return r"\left[ %s\right]" % \ + r", \ ".join([self._print(i) for i in expr]) + else: + raise ValueError('Unknown Decimal Separator') + + + def _print_dict(self, d): + keys = sorted(d.keys(), key=default_sort_key) + items = [] + + for key in keys: + val = d[key] + items.append("%s : %s" % (self._print(key), self._print(val))) + + return r"\left\{ %s\right\}" % r", \ ".join(items) + + def _print_Dict(self, expr): + return self._print_dict(expr) + + def _print_DiracDelta(self, expr, exp=None): + if len(expr.args) == 1 or expr.args[1] == 0: + tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) + else: + tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( + self._print(expr.args[1]), self._print(expr.args[0])) + if exp: + tex = r"\left(%s\right)^{%s}" % (tex, exp) + return tex + + def _print_SingularityFunction(self, expr, exp=None): + shift = self._print(expr.args[0] - expr.args[1]) + power = self._print(expr.args[2]) + tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) + if exp is not None: + tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp) + return tex + + def _print_Heaviside(self, expr, exp=None): + pargs = ', '.join(self._print(arg) for arg in expr.pargs) + tex = r"\theta\left(%s\right)" % pargs + if exp: + tex = r"\left(%s\right)^{%s}" % (tex, exp) + return tex + + def _print_KroneckerDelta(self, expr, exp=None): + i = self._print(expr.args[0]) + j = self._print(expr.args[1]) + if expr.args[0].is_Atom and expr.args[1].is_Atom: + tex = r'\delta_{%s %s}' % (i, j) + else: + tex = r'\delta_{%s, %s}' % (i, j) + if exp is not None: + tex = r'\left(%s\right)^{%s}' % (tex, exp) + return tex + + def _print_LeviCivita(self, expr, exp=None): + indices = map(self._print, expr.args) + if all(x.is_Atom for x in expr.args): + tex = r'\varepsilon_{%s}' % " ".join(indices) + else: + tex = r'\varepsilon_{%s}' % ", ".join(indices) + if exp: + tex = r'\left(%s\right)^{%s}' % (tex, exp) + return tex + + def _print_RandomDomain(self, d): + if hasattr(d, 'as_boolean'): + return '\\text{Domain: }' + self._print(d.as_boolean()) + elif hasattr(d, 'set'): + return ('\\text{Domain: }' + self._print(d.symbols) + ' \\in ' + + self._print(d.set)) + elif hasattr(d, 'symbols'): + return '\\text{Domain on }' + self._print(d.symbols) + else: + return self._print(None) + + def _print_FiniteSet(self, s): + items = sorted(s.args, key=default_sort_key) + return self._print_set(items) + + def _print_set(self, s): + items = sorted(s, key=default_sort_key) + if self._settings['decimal_separator'] == 'comma': + items = "; ".join(map(self._print, items)) + elif self._settings['decimal_separator'] == 'period': + items = ", ".join(map(self._print, items)) + else: + raise ValueError('Unknown Decimal Separator') + return r"\left\{%s\right\}" % items + + + _print_frozenset = _print_set + + def _print_Range(self, s): + def _print_symbolic_range(): + # Symbolic Range that cannot be resolved + if s.args[0] == 0: + if s.args[2] == 1: + cont = self._print(s.args[1]) + else: + cont = ", ".join(self._print(arg) for arg in s.args) + else: + if s.args[2] == 1: + cont = ", ".join(self._print(arg) for arg in s.args[:2]) + else: + cont = ", ".join(self._print(arg) for arg in s.args) + + return(f"\\text{{Range}}\\left({cont}\\right)") + + dots = object() + + if s.start.is_infinite and s.stop.is_infinite: + if s.step.is_positive: + printset = dots, -1, 0, 1, dots + else: + printset = dots, 1, 0, -1, dots + elif s.start.is_infinite: + printset = dots, s[-1] - s.step, s[-1] + elif s.stop.is_infinite: + it = iter(s) + printset = next(it), next(it), dots + elif s.is_empty is not None: + if (s.size < 4) == True: + printset = tuple(s) + elif s.is_iterable: + it = iter(s) + printset = next(it), next(it), dots, s[-1] + else: + return _print_symbolic_range() + else: + return _print_symbolic_range() + return (r"\left\{" + + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + + r"\right\}") + + def __print_number_polynomial(self, expr, letter, exp=None): + if len(expr.args) == 2: + if exp is not None: + return r"%s_{%s}^{%s}\left(%s\right)" % (letter, + self._print(expr.args[0]), exp, + self._print(expr.args[1])) + return r"%s_{%s}\left(%s\right)" % (letter, + self._print(expr.args[0]), self._print(expr.args[1])) + + tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_bernoulli(self, expr, exp=None): + return self.__print_number_polynomial(expr, "B", exp) + + def _print_genocchi(self, expr, exp=None): + return self.__print_number_polynomial(expr, "G", exp) + + def _print_bell(self, expr, exp=None): + if len(expr.args) == 3: + tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), + self._print(expr.args[1])) + tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for + el in expr.args[2]) + if exp is not None: + tex = r"%s^{%s}%s" % (tex1, exp, tex2) + else: + tex = tex1 + tex2 + return tex + return self.__print_number_polynomial(expr, "B", exp) + + def _print_fibonacci(self, expr, exp=None): + return self.__print_number_polynomial(expr, "F", exp) + + def _print_lucas(self, expr, exp=None): + tex = r"L_{%s}" % self._print(expr.args[0]) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_tribonacci(self, expr, exp=None): + return self.__print_number_polynomial(expr, "T", exp) + + def _print_SeqFormula(self, s): + dots = object() + if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: + return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( + self._print(s.formula), + self._print(s.variables[0]), + self._print(s.start), + self._print(s.stop) + ) + if s.start is S.NegativeInfinity: + stop = s.stop + printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), + s.coeff(stop - 1), s.coeff(stop)) + elif s.stop is S.Infinity or s.length > 4: + printset = s[:4] + printset.append(dots) + else: + printset = tuple(s) + + return (r"\left[" + + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + + r"\right]") + + _print_SeqPer = _print_SeqFormula + _print_SeqAdd = _print_SeqFormula + _print_SeqMul = _print_SeqFormula + + def _print_Interval(self, i): + if i.start == i.end: + return r"\left\{%s\right\}" % self._print(i.start) + + else: + if i.left_open: + left = '(' + else: + left = '[' + + if i.right_open: + right = ')' + else: + right = ']' + + return r"\left%s%s, %s\right%s" % \ + (left, self._print(i.start), self._print(i.end), right) + + def _print_AccumulationBounds(self, i): + return r"\left\langle %s, %s\right\rangle" % \ + (self._print(i.min), self._print(i.max)) + + def _print_Union(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \cup ".join(args_str) + + def _print_Complement(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \setminus ".join(args_str) + + def _print_Intersection(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \cap ".join(args_str) + + def _print_SymmetricDifference(self, u): + prec = precedence_traditional(u) + args_str = [self.parenthesize(i, prec) for i in u.args] + return r" \triangle ".join(args_str) + + def _print_ProductSet(self, p): + prec = precedence_traditional(p) + if len(p.sets) >= 1 and not has_variety(p.sets): + return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) + return r" \times ".join( + self.parenthesize(set, prec) for set in p.sets) + + def _print_EmptySet(self, e): + return r"\emptyset" + + def _print_Naturals(self, n): + return r"\mathbb{N}" + + def _print_Naturals0(self, n): + return r"\mathbb{N}_0" + + def _print_Integers(self, i): + return r"\mathbb{Z}" + + def _print_Rationals(self, i): + return r"\mathbb{Q}" + + def _print_Reals(self, i): + return r"\mathbb{R}" + + def _print_Complexes(self, i): + return r"\mathbb{C}" + + def _print_ImageSet(self, s): + expr = s.lamda.expr + sig = s.lamda.signature + xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets)) + xinys = r", ".join(r"%s \in %s" % xy for xy in xys) + return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys) + + def _print_ConditionSet(self, s): + vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) + if s.base_set is S.UniversalSet: + return r"\left\{%s\; \middle|\; %s \right\}" % \ + (vars_print, self._print(s.condition)) + + return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % ( + vars_print, + vars_print, + self._print(s.base_set), + self._print(s.condition)) + + def _print_PowerSet(self, expr): + arg_print = self._print(expr.args[0]) + return r"\mathcal{{P}}\left({}\right)".format(arg_print) + + def _print_ComplexRegion(self, s): + vars_print = ', '.join([self._print(var) for var in s.variables]) + return r"\left\{%s\; \middle|\; %s \in %s \right\}" % ( + self._print(s.expr), + vars_print, + self._print(s.sets)) + + def _print_Contains(self, e): + return r"%s \in %s" % tuple(self._print(a) for a in e.args) + + def _print_FourierSeries(self, s): + if s.an.formula is S.Zero and s.bn.formula is S.Zero: + return self._print(s.a0) + return self._print_Add(s.truncate()) + r' + \ldots' + + def _print_FormalPowerSeries(self, s): + return self._print_Add(s.infinite) + + def _print_FiniteField(self, expr): + return r"\mathbb{F}_{%s}" % expr.mod + + def _print_IntegerRing(self, expr): + return r"\mathbb{Z}" + + def _print_RationalField(self, expr): + return r"\mathbb{Q}" + + def _print_RealField(self, expr): + return r"\mathbb{R}" + + def _print_ComplexField(self, expr): + return r"\mathbb{C}" + + def _print_PolynomialRing(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + return r"%s\left[%s\right]" % (domain, symbols) + + def _print_FractionField(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + return r"%s\left(%s\right)" % (domain, symbols) + + def _print_PolynomialRingBase(self, expr): + domain = self._print(expr.domain) + symbols = ", ".join(map(self._print, expr.symbols)) + inv = "" + if not expr.is_Poly: + inv = r"S_<^{-1}" + return r"%s%s\left[%s\right]" % (inv, domain, symbols) + + def _print_Poly(self, poly): + cls = poly.__class__.__name__ + terms = [] + for monom, coeff in poly.terms(): + s_monom = '' + for i, exp in enumerate(monom): + if exp > 0: + if exp == 1: + s_monom += self._print(poly.gens[i]) + else: + s_monom += self._print(pow(poly.gens[i], exp)) + + if coeff.is_Add: + if s_monom: + s_coeff = r"\left(%s\right)" % self._print(coeff) + else: + s_coeff = self._print(coeff) + else: + if s_monom: + if coeff is S.One: + terms.extend(['+', s_monom]) + continue + + if coeff is S.NegativeOne: + terms.extend(['-', s_monom]) + continue + + s_coeff = self._print(coeff) + + if not s_monom: + s_term = s_coeff + else: + s_term = s_coeff + " " + s_monom + + if s_term.startswith('-'): + terms.extend(['-', s_term[1:]]) + else: + terms.extend(['+', s_term]) + + if terms[0] in ('-', '+'): + modifier = terms.pop(0) + + if modifier == '-': + terms[0] = '-' + terms[0] + + expr = ' '.join(terms) + gens = list(map(self._print, poly.gens)) + domain = "domain=%s" % self._print(poly.get_domain()) + + args = ", ".join([expr] + gens + [domain]) + if cls in accepted_latex_functions: + tex = r"\%s {\left(%s \right)}" % (cls, args) + else: + tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) + + return tex + + def _print_ComplexRootOf(self, root): + cls = root.__class__.__name__ + if cls == "ComplexRootOf": + cls = "CRootOf" + expr = self._print(root.expr) + index = root.index + if cls in accepted_latex_functions: + return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) + else: + return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, + index) + + def _print_RootSum(self, expr): + cls = expr.__class__.__name__ + args = [self._print(expr.expr)] + + if expr.fun is not S.IdentityFunction: + args.append(self._print(expr.fun)) + + if cls in accepted_latex_functions: + return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) + else: + return r"\operatorname{%s} {\left(%s\right)}" % (cls, + ", ".join(args)) + + def _print_OrdinalOmega(self, expr): + return r"\omega" + + def _print_OmegaPower(self, expr): + exp, mul = expr.args + if mul != 1: + if exp != 1: + return r"{} \omega^{{{}}}".format(mul, exp) + else: + return r"{} \omega".format(mul) + else: + if exp != 1: + return r"\omega^{{{}}}".format(exp) + else: + return r"\omega" + + def _print_Ordinal(self, expr): + return " + ".join([self._print(arg) for arg in expr.args]) + + def _print_PolyElement(self, poly): + mul_symbol = self._settings['mul_symbol_latex'] + return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) + + def _print_FracElement(self, frac): + if frac.denom == 1: + return self._print(frac.numer) + else: + numer = self._print(frac.numer) + denom = self._print(frac.denom) + return r"\frac{%s}{%s}" % (numer, denom) + + def _print_euler(self, expr, exp=None): + m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args + tex = r"E_{%s}" % self._print(m) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + if x is not None: + tex = r"%s\left(%s\right)" % (tex, self._print(x)) + return tex + + def _print_catalan(self, expr, exp=None): + tex = r"C_{%s}" % self._print(expr.args[0]) + if exp is not None: + tex = r"%s^{%s}" % (tex, exp) + return tex + + def _print_UnifiedTransform(self, expr, s, inverse=False): + return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) + + def _print_MellinTransform(self, expr): + return self._print_UnifiedTransform(expr, 'M') + + def _print_InverseMellinTransform(self, expr): + return self._print_UnifiedTransform(expr, 'M', True) + + def _print_LaplaceTransform(self, expr): + return self._print_UnifiedTransform(expr, 'L') + + def _print_InverseLaplaceTransform(self, expr): + return self._print_UnifiedTransform(expr, 'L', True) + + def _print_FourierTransform(self, expr): + return self._print_UnifiedTransform(expr, 'F') + + def _print_InverseFourierTransform(self, expr): + return self._print_UnifiedTransform(expr, 'F', True) + + def _print_SineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'SIN') + + def _print_InverseSineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'SIN', True) + + def _print_CosineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'COS') + + def _print_InverseCosineTransform(self, expr): + return self._print_UnifiedTransform(expr, 'COS', True) + + def _print_DMP(self, p): + try: + if p.ring is not None: + # TODO incorporate order + return self._print(p.ring.to_sympy(p)) + except SympifyError: + pass + return self._print(repr(p)) + + def _print_DMF(self, p): + return self._print_DMP(p) + + def _print_Object(self, object): + return self._print(Symbol(object.name)) + + def _print_LambertW(self, expr, exp=None): + arg0 = self._print(expr.args[0]) + exp = r"^{%s}" % (exp,) if exp is not None else "" + if len(expr.args) == 1: + result = r"W%s\left(%s\right)" % (exp, arg0) + else: + arg1 = self._print(expr.args[1]) + result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0) + return result + + def _print_Expectation(self, expr): + return r"\operatorname{{E}}\left[{}\right]".format(self._print(expr.args[0])) + + def _print_Variance(self, expr): + return r"\operatorname{{Var}}\left({}\right)".format(self._print(expr.args[0])) + + def _print_Covariance(self, expr): + return r"\operatorname{{Cov}}\left({}\right)".format(", ".join(self._print(arg) for arg in expr.args)) + + def _print_Probability(self, expr): + return r"\operatorname{{P}}\left({}\right)".format(self._print(expr.args[0])) + + def _print_Morphism(self, morphism): + domain = self._print(morphism.domain) + codomain = self._print(morphism.codomain) + return "%s\\rightarrow %s" % (domain, codomain) + + def _print_TransferFunction(self, expr): + num, den = self._print(expr.num), self._print(expr.den) + return r"\frac{%s}{%s}" % (num, den) + + def _print_Series(self, expr): + args = list(expr.args) + parens = lambda x: self.parenthesize(x, precedence_traditional(expr), + False) + return ' '.join(map(parens, args)) + + def _print_MIMOSeries(self, expr): + from sympy.physics.control.lti import MIMOParallel + args = list(expr.args)[::-1] + parens = lambda x: self.parenthesize(x, precedence_traditional(expr), + False) if isinstance(x, MIMOParallel) else self._print(x) + return r"\cdot".join(map(parens, args)) + + def _print_Parallel(self, expr): + return ' + '.join(map(self._print, expr.args)) + + def _print_MIMOParallel(self, expr): + return ' + '.join(map(self._print, expr.args)) + + def _print_Feedback(self, expr): + from sympy.physics.control import TransferFunction, Series + + num, tf = expr.sys1, TransferFunction(1, 1, expr.var) + num_arg_list = list(num.args) if isinstance(num, Series) else [num] + den_arg_list = list(expr.sys2.args) if \ + isinstance(expr.sys2, Series) else [expr.sys2] + den_term_1 = tf + + if isinstance(num, Series) and isinstance(expr.sys2, Series): + den_term_2 = Series(*num_arg_list, *den_arg_list) + elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction): + if expr.sys2 == tf: + den_term_2 = Series(*num_arg_list) + else: + den_term_2 = tf, Series(*num_arg_list, expr.sys2) + elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series): + if num == tf: + den_term_2 = Series(*den_arg_list) + else: + den_term_2 = Series(num, *den_arg_list) + else: + if num == tf: + den_term_2 = Series(*den_arg_list) + elif expr.sys2 == tf: + den_term_2 = Series(*num_arg_list) + else: + den_term_2 = Series(*num_arg_list, *den_arg_list) + + numer = self._print(num) + denom_1 = self._print(den_term_1) + denom_2 = self._print(den_term_2) + _sign = "+" if expr.sign == -1 else "-" + + return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2) + + def _print_MIMOFeedback(self, expr): + from sympy.physics.control import MIMOSeries + inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1)) + sys1 = self._print(expr.sys1) + _sign = "+" if expr.sign == -1 else "-" + return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1) + + def _print_TransferFunctionMatrix(self, expr): + mat = self._print(expr._expr_mat) + return r"%s_\tau" % mat + + def _print_DFT(self, expr): + return r"\text{{{}}}_{{{}}}".format(expr.__class__.__name__, expr.n) + _print_IDFT = _print_DFT + + def _print_NamedMorphism(self, morphism): + pretty_name = self._print(Symbol(morphism.name)) + pretty_morphism = self._print_Morphism(morphism) + return "%s:%s" % (pretty_name, pretty_morphism) + + def _print_IdentityMorphism(self, morphism): + from sympy.categories import NamedMorphism + return self._print_NamedMorphism(NamedMorphism( + morphism.domain, morphism.codomain, "id")) + + def _print_CompositeMorphism(self, morphism): + # All components of the morphism have names and it is thus + # possible to build the name of the composite. + component_names_list = [self._print(Symbol(component.name)) for + component in morphism.components] + component_names_list.reverse() + component_names = "\\circ ".join(component_names_list) + ":" + + pretty_morphism = self._print_Morphism(morphism) + return component_names + pretty_morphism + + def _print_Category(self, morphism): + return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) + + def _print_Diagram(self, diagram): + if not diagram.premises: + # This is an empty diagram. + return self._print(S.EmptySet) + + latex_result = self._print(diagram.premises) + if diagram.conclusions: + latex_result += "\\Longrightarrow %s" % \ + self._print(diagram.conclusions) + + return latex_result + + def _print_DiagramGrid(self, grid): + latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) + + for i in range(grid.height): + for j in range(grid.width): + if grid[i, j]: + latex_result += latex(grid[i, j]) + latex_result += " " + if j != grid.width - 1: + latex_result += "& " + + if i != grid.height - 1: + latex_result += "\\\\" + latex_result += "\n" + + latex_result += "\\end{array}\n" + return latex_result + + def _print_FreeModule(self, M): + return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) + + def _print_FreeModuleElement(self, m): + # Print as row vector for convenience, for now. + return r"\left[ {} \right]".format(",".join( + '{' + self._print(x) + '}' for x in m)) + + def _print_SubModule(self, m): + return r"\left\langle {} \right\rangle".format(",".join( + '{' + self._print(x) + '}' for x in m.gens)) + + def _print_ModuleImplementedIdeal(self, m): + return r"\left\langle {} \right\rangle".format(",".join( + '{' + self._print(x) + '}' for [x] in m._module.gens)) + + def _print_Quaternion(self, expr): + # TODO: This expression is potentially confusing, + # shall we print it as `Quaternion( ... )`? + s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) + for i in expr.args] + a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] + return " + ".join(a) + + def _print_QuotientRing(self, R): + # TODO nicer fractions for few generators... + return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), + self._print(R.base_ideal)) + + def _print_QuotientRingElement(self, x): + return r"{{{}}} + {{{}}}".format(self._print(x.data), + self._print(x.ring.base_ideal)) + + def _print_QuotientModuleElement(self, m): + return r"{{{}}} + {{{}}}".format(self._print(m.data), + self._print(m.module.killed_module)) + + def _print_QuotientModule(self, M): + # TODO nicer fractions for few generators... + return r"\frac{{{}}}{{{}}}".format(self._print(M.base), + self._print(M.killed_module)) + + def _print_MatrixHomomorphism(self, h): + return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), + self._print(h.domain), self._print(h.codomain)) + + def _print_Manifold(self, manifold): + string = manifold.name.name + if '{' in string: + name, supers, subs = string, [], [] + else: + name, supers, subs = split_super_sub(string) + + name = translate(name) + supers = [translate(sup) for sup in supers] + subs = [translate(sub) for sub in subs] + + name = r'\text{%s}' % name + if supers: + name += "^{%s}" % " ".join(supers) + if subs: + name += "_{%s}" % " ".join(subs) + + return name + + def _print_Patch(self, patch): + return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold)) + + def _print_CoordSystem(self, coordsys): + return r'\text{%s}^{\text{%s}}_{%s}' % ( + self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold) + ) + + def _print_CovarDerivativeOp(self, cvd): + return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt) + + def _print_BaseScalarField(self, field): + string = field._coord_sys.symbols[field._index].name + return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) + + def _print_BaseVectorField(self, field): + string = field._coord_sys.symbols[field._index].name + return r'\partial_{{{}}}'.format(self._print(Symbol(string))) + + def _print_Differential(self, diff): + field = diff._form_field + if hasattr(field, '_coord_sys'): + string = field._coord_sys.symbols[field._index].name + return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) + else: + string = self._print(field) + return r'\operatorname{{d}}\left({}\right)'.format(string) + + def _print_Tr(self, p): + # TODO: Handle indices + contents = self._print(p.args[0]) + return r'\operatorname{{tr}}\left({}\right)'.format(contents) + + def _print_totient(self, expr, exp=None): + if exp is not None: + return r'\left(\phi\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\phi\left(%s\right)' % self._print(expr.args[0]) + + def _print_reduced_totient(self, expr, exp=None): + if exp is not None: + return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\lambda\left(%s\right)' % self._print(expr.args[0]) + + def _print_divisor_sigma(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_%s\left(%s\right)" % tuple(map(self._print, + (expr.args[1], expr.args[0]))) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\sigma^{%s}%s" % (exp, tex) + return r"\sigma%s" % tex + + def _print_udivisor_sigma(self, expr, exp=None): + if len(expr.args) == 2: + tex = r"_%s\left(%s\right)" % tuple(map(self._print, + (expr.args[1], expr.args[0]))) + else: + tex = r"\left(%s\right)" % self._print(expr.args[0]) + if exp is not None: + return r"\sigma^*^{%s}%s" % (exp, tex) + return r"\sigma^*%s" % tex + + def _print_primenu(self, expr, exp=None): + if exp is not None: + return r'\left(\nu\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\nu\left(%s\right)' % self._print(expr.args[0]) + + def _print_primeomega(self, expr, exp=None): + if exp is not None: + return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ + (self._print(expr.args[0]), exp) + return r'\Omega\left(%s\right)' % self._print(expr.args[0]) + + def _print_Str(self, s): + return str(s.name) + + def _print_float(self, expr): + return self._print(Float(expr)) + + def _print_int(self, expr): + return str(expr) + + def _print_mpz(self, expr): + return str(expr) + + def _print_mpq(self, expr): + return str(expr) + + def _print_Predicate(self, expr): + return r"\operatorname{{Q}}_{{\text{{{}}}}}".format(latex_escape(str(expr.name))) + + def _print_AppliedPredicate(self, expr): + pred = expr.function + args = expr.arguments + pred_latex = self._print(pred) + args_latex = ', '.join([self._print(a) for a in args]) + return '%s(%s)' % (pred_latex, args_latex) + + def emptyPrinter(self, expr): + # default to just printing as monospace, like would normally be shown + s = super().emptyPrinter(expr) + + return r"\mathtt{\text{%s}}" % latex_escape(s) + + +def translate(s: str) -> str: + r''' + Check for a modifier ending the string. If present, convert the + modifier to latex and translate the rest recursively. + + Given a description of a Greek letter or other special character, + return the appropriate latex. + + Let everything else pass as given. + + >>> from sympy.printing.latex import translate + >>> translate('alphahatdotprime') + "{\\dot{\\hat{\\alpha}}}'" + ''' + # Process the rest + tex = tex_greek_dictionary.get(s) + if tex: + return tex + elif s.lower() in greek_letters_set: + return "\\" + s.lower() + elif s in other_symbols: + return "\\" + s + else: + # Process modifiers, if any, and recurse + for key in sorted(modifier_dict.keys(), key=len, reverse=True): + if s.lower().endswith(key) and len(s) > len(key): + return modifier_dict[key](translate(s[:-len(key)])) + return s + + + +@print_function(LatexPrinter) +def latex(expr, **settings): + r"""Convert the given expression to LaTeX string representation. + + Parameters + ========== + full_prec: boolean, optional + If set to True, a floating point number is printed with full precision. + fold_frac_powers : boolean, optional + Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. + fold_func_brackets : boolean, optional + Fold function brackets where applicable. + fold_short_frac : boolean, optional + Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is + simple enough (at most two terms and no powers). The default value is + ``True`` for inline mode, ``False`` otherwise. + inv_trig_style : string, optional + How inverse trig functions should be displayed. Can be one of + ``'abbreviated'``, ``'full'``, or ``'power'``. Defaults to + ``'abbreviated'``. + itex : boolean, optional + Specifies if itex-specific syntax is used, including emitting + ``$$...$$``. + ln_notation : boolean, optional + If set to ``True``, ``\ln`` is used instead of default ``\log``. + long_frac_ratio : float or None, optional + The allowed ratio of the width of the numerator to the width of the + denominator before the printer breaks off long fractions. If ``None`` + (the default value), long fractions are not broken up. + mat_delim : string, optional + The delimiter to wrap around matrices. Can be one of ``'['``, ``'('``, + or the empty string ``''``. Defaults to ``'['``. + mat_str : string, optional + Which matrix environment string to emit. ``'smallmatrix'``, + ``'matrix'``, ``'array'``, etc. Defaults to ``'smallmatrix'`` for + inline mode, ``'matrix'`` for matrices of no more than 10 columns, and + ``'array'`` otherwise. + mode: string, optional + Specifies how the generated code will be delimited. ``mode`` can be one + of ``'plain'``, ``'inline'``, ``'equation'`` or ``'equation*'``. If + ``mode`` is set to ``'plain'``, then the resulting code will not be + delimited at all (this is the default). If ``mode`` is set to + ``'inline'`` then inline LaTeX ``$...$`` will be used. If ``mode`` is + set to ``'equation'`` or ``'equation*'``, the resulting code will be + enclosed in the ``equation`` or ``equation*`` environment (remember to + import ``amsmath`` for ``equation*``), unless the ``itex`` option is + set. In the latter case, the ``$$...$$`` syntax is used. + mul_symbol : string or None, optional + The symbol to use for multiplication. Can be one of ``None``, + ``'ldot'``, ``'dot'``, or ``'times'``. + order: string, optional + Any of the supported monomial orderings (currently ``'lex'``, + ``'grlex'``, or ``'grevlex'``), ``'old'``, and ``'none'``. This + parameter does nothing for `~.Mul` objects. Setting order to ``'old'`` + uses the compatibility ordering for ``~.Add`` defined in Printer. For + very large expressions, set the ``order`` keyword to ``'none'`` if + speed is a concern. + symbol_names : dictionary of strings mapped to symbols, optional + Dictionary of symbols and the custom strings they should be emitted as. + root_notation : boolean, optional + If set to ``False``, exponents of the form 1/n are printed in fractonal + form. Default is ``True``, to print exponent in root form. + mat_symbol_style : string, optional + Can be either ``'plain'`` (default) or ``'bold'``. If set to + ``'bold'``, a `~.MatrixSymbol` A will be printed as ``\mathbf{A}``, + otherwise as ``A``. + imaginary_unit : string, optional + String to use for the imaginary unit. Defined options are ``'i'`` + (default) and ``'j'``. Adding ``r`` or ``t`` in front gives ``\mathrm`` + or ``\text``, so ``'ri'`` leads to ``\mathrm{i}`` which gives + `\mathrm{i}`. + gothic_re_im : boolean, optional + If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. + The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. + decimal_separator : string, optional + Specifies what separator to use to separate the whole and fractional parts of a + floating point number as in `2.5` for the default, ``period`` or `2{,}5` + when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon + separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when + ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. + parenthesize_super : boolean, optional + If set to ``False``, superscripted expressions will not be parenthesized when + powered. Default is ``True``, which parenthesizes the expression when powered. + min: Integer or None, optional + Sets the lower bound for the exponent to print floating point numbers in + fixed-point format. + max: Integer or None, optional + Sets the upper bound for the exponent to print floating point numbers in + fixed-point format. + diff_operator: string, optional + String to use for differential operator. Default is ``'d'``, to print in italic + form. ``'rd'``, ``'td'`` are shortcuts for ``\mathrm{d}`` and ``\text{d}``. + + Notes + ===== + + Not using a print statement for printing, results in double backslashes for + latex commands since that's the way Python escapes backslashes in strings. + + >>> from sympy import latex, Rational + >>> from sympy.abc import tau + >>> latex((2*tau)**Rational(7,2)) + '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' + >>> print(latex((2*tau)**Rational(7,2))) + 8 \sqrt{2} \tau^{\frac{7}{2}} + + Examples + ======== + + >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log + >>> from sympy.abc import x, y, mu, r, tau + + Basic usage: + + >>> print(latex((2*tau)**Rational(7,2))) + 8 \sqrt{2} \tau^{\frac{7}{2}} + + ``mode`` and ``itex`` options: + + >>> print(latex((2*mu)**Rational(7,2), mode='plain')) + 8 \sqrt{2} \mu^{\frac{7}{2}} + >>> print(latex((2*tau)**Rational(7,2), mode='inline')) + $8 \sqrt{2} \tau^{7 / 2}$ + >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) + \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} + >>> print(latex((2*mu)**Rational(7,2), mode='equation')) + \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} + >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) + $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ + >>> print(latex((2*mu)**Rational(7,2), mode='plain')) + 8 \sqrt{2} \mu^{\frac{7}{2}} + >>> print(latex((2*tau)**Rational(7,2), mode='inline')) + $8 \sqrt{2} \tau^{7 / 2}$ + >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) + \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} + >>> print(latex((2*mu)**Rational(7,2), mode='equation')) + \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} + >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) + $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ + + Fraction options: + + >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) + 8 \sqrt{2} \tau^{7/2} + >>> print(latex((2*tau)**sin(Rational(7,2)))) + \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} + >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) + \left(2 \tau\right)^{\sin {\frac{7}{2}}} + >>> print(latex(3*x**2/y)) + \frac{3 x^{2}}{y} + >>> print(latex(3*x**2/y, fold_short_frac=True)) + 3 x^{2} / y + >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) + \frac{\int r\, dr}{2 \pi} + >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) + \frac{1}{2 \pi} \int r\, dr + + Multiplication options: + + >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) + \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} + + Trig options: + + >>> print(latex(asin(Rational(7,2)))) + \operatorname{asin}{\left(\frac{7}{2} \right)} + >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) + \arcsin{\left(\frac{7}{2} \right)} + >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) + \sin^{-1}{\left(\frac{7}{2} \right)} + + Matrix options: + + >>> print(latex(Matrix(2, 1, [x, y]))) + \left[\begin{matrix}x\\y\end{matrix}\right] + >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) + \left[\begin{array}{c}x\\y\end{array}\right] + >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) + \left(\begin{matrix}x\\y\end{matrix}\right) + + Custom printing of symbols: + + >>> print(latex(x**2, symbol_names={x: 'x_i'})) + x_i^{2} + + Logarithms: + + >>> print(latex(log(10))) + \log{\left(10 \right)} + >>> print(latex(log(10), ln_notation=True)) + \ln{\left(10 \right)} + + ``latex()`` also supports the builtin container types :class:`list`, + :class:`tuple`, and :class:`dict`: + + >>> print(latex([2/x, y], mode='inline')) + $\left[ 2 / x, \ y\right]$ + + Unsupported types are rendered as monospaced plaintext: + + >>> print(latex(int)) + \mathtt{\text{}} + >>> print(latex("plain % text")) + \mathtt{\text{plain \% text}} + + See :ref:`printer_method_example` for an example of how to override + this behavior for your own types by implementing ``_latex``. + + .. versionchanged:: 1.7.0 + Unsupported types no longer have their ``str`` representation treated as valid latex. + + """ + return LatexPrinter(settings).doprint(expr) + + +def print_latex(expr, **settings): + """Prints LaTeX representation of the given expression. Takes the same + settings as ``latex()``.""" + + print(latex(expr, **settings)) + + +def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): + r""" + This function generates a LaTeX equation with a multiline right-hand side + in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. + + Parameters + ========== + + lhs : Expr + Left-hand side of equation + + rhs : Expr + Right-hand side of equation + + terms_per_line : integer, optional + Number of terms per line to print. Default is 1. + + environment : "string", optional + Which LaTeX wnvironment to use for the output. Options are "align*" + (default), "eqnarray", and "IEEEeqnarray". + + use_dots : boolean, optional + If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. + + Examples + ======== + + >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I + >>> x, y, alpha = symbols('x y alpha') + >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) + >>> print(multiline_latex(x, expr)) + \begin{align*} + x = & e^{i \alpha} \\ + & + \sin{\left(\alpha y \right)} \\ + & - \cos{\left(\log{\left(y \right)} \right)} + \end{align*} + + Using at most two terms per line: + >>> print(multiline_latex(x, expr, 2)) + \begin{align*} + x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ + & - \cos{\left(\log{\left(y \right)} \right)} + \end{align*} + + Using ``eqnarray`` and dots: + >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) + \begin{eqnarray} + x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ + & & - \cos{\left(\log{\left(y \right)} \right)} + \end{eqnarray} + + Using ``IEEEeqnarray``: + >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) + \begin{IEEEeqnarray}{rCl} + x & = & e^{i \alpha} \nonumber\\ + & & + \sin{\left(\alpha y \right)} \nonumber\\ + & & - \cos{\left(\log{\left(y \right)} \right)} + \end{IEEEeqnarray} + + Notes + ===== + + All optional parameters from ``latex`` can also be used. + + """ + + # Based on code from https://github.com/sympy/sympy/issues/3001 + l = LatexPrinter(**settings) + if environment == "eqnarray": + result = r'\begin{eqnarray}' + '\n' + first_term = '& = &' + nonumber = r'\nonumber' + end_term = '\n\\end{eqnarray}' + doubleet = True + elif environment == "IEEEeqnarray": + result = r'\begin{IEEEeqnarray}{rCl}' + '\n' + first_term = '& = &' + nonumber = r'\nonumber' + end_term = '\n\\end{IEEEeqnarray}' + doubleet = True + elif environment == "align*": + result = r'\begin{align*}' + '\n' + first_term = '= &' + nonumber = '' + end_term = '\n\\end{align*}' + doubleet = False + else: + raise ValueError("Unknown environment: {}".format(environment)) + dots = '' + if use_dots: + dots=r'\dots' + terms = rhs.as_ordered_terms() + n_terms = len(terms) + term_count = 1 + for i in range(n_terms): + term = terms[i] + term_start = '' + term_end = '' + sign = '+' + if term_count > terms_per_line: + if doubleet: + term_start = '& & ' + else: + term_start = '& ' + term_count = 1 + if term_count == terms_per_line: + # End of line + if i < n_terms-1: + # There are terms remaining + term_end = dots + nonumber + r'\\' + '\n' + else: + term_end = '' + + if term.as_ordered_factors()[0] == -1: + term = -1*term + sign = r'-' + if i == 0: # beginning + if sign == '+': + sign = '' + result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), + first_term, sign, l.doprint(term), term_end) + else: + result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, + l.doprint(term), term_end) + term_count += 1 + result += end_term + return result