diff --git a/.gitattributes b/.gitattributes index c2cf9adbcbe88793afd64cf6552d04a86152b9fd..119c673093e5ad67dc8cce398c183a60cf1511a1 100644 --- a/.gitattributes +++ b/.gitattributes @@ -83,3 +83,6 @@ venv/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs d venv/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1600 filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/pyarrow/libarrow.so.1600 filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so filter=lfs diff=lfs merge=lfs -text diff --git a/lm-evaluation-harness/tests/testdata/anagrams1-v0-greedy_until b/lm-evaluation-harness/tests/testdata/anagrams1-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..55364250028072b1f238b095c4c3eb9373a4a280 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/anagrams1-v0-greedy_until @@ -0,0 +1 @@ +7c0c5246d3f751f39119a5629ac1d4b2c6fd2a315f78d6de9b2c387e24e3fef1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/anli_r3-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/anli_r3-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..29d3d67c8b038c0b0882e97071033fefb9481a41 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/anli_r3-v0-loglikelihood @@ -0,0 +1 @@ +6b6e5c6a794f2fbff78b7aa24fe0c90156039334bbd1cb34f7af9fc6e6183845 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/anli_r3-v0-res.json b/lm-evaluation-harness/tests/testdata/anli_r3-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..548dea1e2285461362f32707937ff84f37572957 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/anli_r3-v0-res.json @@ -0,0 +1 @@ +{"results": {"anli_r3": {"acc": 0.31916666666666665, "acc_stderr": 0.01346230971200514}}, "versions": {"anli_r3": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_2ds-v0-res.json b/lm-evaluation-harness/tests/testdata/arithmetic_2ds-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..a18e6eec6e5fc11e6a613618dddd770e96d8fdd8 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_2ds-v0-res.json @@ -0,0 +1 @@ +{"results": {"arithmetic_2ds": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"arithmetic_2ds": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_5ds-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/arithmetic_5ds-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0f959c21f6bb46a40cf1dd83c5525583189d3793 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_5ds-v0-loglikelihood @@ -0,0 +1 @@ +2888d6d098a5ef8c1e7f0d8295ba80826e2e04e431f57508dfb71d53e1cd4604 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..5fe9e64bc639f3fdf1521cd6f71b8019c987f09e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_1-v0-loglikelihood @@ -0,0 +1 @@ +2df8cc7f17089f7e8c7d974dcb324c809d30ef059a5be22aed6b69f44230809f \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..1d6bea95e1001e7e8986a48afda483ba9dc1933b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_drop_argument-v0-loglikelihood @@ -0,0 +1 @@ +616109e63f162dcd31a632943e7ef0c9e0431afeb179e83e9b04b39007b16f5b \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..00c913dcd3ba3846464d04067c5b896c7e5c3c19 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_existential_there_subject_raising": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_existential_there_subject_raising": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_npi_present_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_npi_present_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..543fdc061433e58041b92ecc9d3f5e34d2427db1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_npi_present_2-v0-loglikelihood @@ -0,0 +1 @@ +fdb688ac6259bb65d234ef0a36e9a9ee449f9608f633b12e1943b462aead8e17 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..8c043857d4845d1bfebf34ede397049c16e981c2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_2-v0-loglikelihood @@ -0,0 +1 @@ +cd68adb65c891d672e22bf53c054b2083ab08bc1da43951732b409c942d14bc7 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..c37e9364012f74afc7b5dd493344a3d535a7c611 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-loglikelihood @@ -0,0 +1 @@ +38454befedcf1f3f6ef27d3bef9ccfdfb3e94a7ab32d86a63493a920d2d50093 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..77c4bf916ab761be87f77618e41abe33d550d7c1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_3-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_principle_A_domain_3": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_principle_A_domain_3": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f8d1d1f87fb4347f4261920ccb2f12fdda14b7fb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_reconstruction-v0-loglikelihood @@ -0,0 +1 @@ +894efedfd8750d5b8de6157f9b2ed2b51b5290d3a78ea9b041fc62d34e96efbc \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_scope-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_scope-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..fcaf915f36cfa6a15cb5cf52f786ad96adb8eecb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_scope-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_sentential_negation_npi_scope": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_sentential_negation_npi_scope": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..6220172936ccbee00cc7d5420c30893109d366b2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-loglikelihood @@ -0,0 +1 @@ +80f5f98fad26240de2767fe58c4b18d864df41cbfa76f06c84c3fce9f14f4833 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..4a8317f0b3ac61c3e677a5caa03bd47223a3fb7b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-loglikelihood @@ -0,0 +1 @@ +59c20ff0f632cf42afc74ecc682cf92e5e740417b01e6cf9a610a3bc544d2ea5 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..95a2c0c7e115167e44288a57dc38ea1d40274c87 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_wh_vs_that_with_gap_long_distance": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_wh_vs_that_with_gap_long_distance": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_age-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english_age-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..5dad8bf864709209d905dadb52930eaf43ff3eb0 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_age-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english_age": {"likelihood_difference": 0.3160680928470684, "likelihood_difference_stderr": 0.02397758321605678, "pct_stereotype": 0.43956043956043955, "pct_stereotype_stderr": 0.05231815698566189}}, "versions": {"crows_pairs_english_age": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..dbe264794f6009bd604d2d55928e1958c74ae35a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_autre-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english_autre": {"likelihood_difference": 0.3424336593343321, "likelihood_difference_stderr": 0.08588068996335849, "pct_stereotype": 0.2727272727272727, "pct_stereotype_stderr": 0.14083575804390605}}, "versions": {"crows_pairs_english_autre": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_sexual_orientation-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english_sexual_orientation-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..9a93b9add705c62cd228fd21a89ea670022189ab --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_sexual_orientation-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english_sexual_orientation": {"likelihood_difference": 0.31947594049467243, "likelihood_difference_stderr": 0.024404952720497735, "pct_stereotype": 0.43010752688172044, "pct_stereotype_stderr": 0.051616798980291805}}, "versions": {"crows_pairs_english_sexual_orientation": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/drop-v0-res.json b/lm-evaluation-harness/tests/testdata/drop-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..9384ca72fe6c84f3a6a9c419b82a7dd7f39bf7d1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/drop-v0-res.json @@ -0,0 +1 @@ +{"results": {"drop": {"em": 0.0, "em_stderr": 0.0, "f1": 0.0, "f1_stderr": 0.0}}, "versions": {"drop": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/drop-v1-greedy_until b/lm-evaluation-harness/tests/testdata/drop-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..3b2b697c91962eb160da3950bb22e45889c265e6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/drop-v1-greedy_until @@ -0,0 +1 @@ +a670f911ab2999d72db15f534b22703d19e7837edbda4f9f199ad587f7aae6b2 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/headqa_es-v0-res.json b/lm-evaluation-harness/tests/testdata/headqa_es-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..0964db9bbb8a6b0ca129c3e069151f334558de54 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/headqa_es-v0-res.json @@ -0,0 +1 @@ +{"results": {"headqa_es": {"acc": 0.23559445660102116, "acc_norm": 0.25018234865062, "acc_norm_stderr": 0.008272783230806014, "acc_stderr": 0.008105688874297972}}, "versions": {"headqa_es": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..2fb96497d12f9b72dbbd38f0d64aa75615bfe14b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-loglikelihood @@ -0,0 +1 @@ +dd6e0a9be1407890e9f8cd4434fb6aa4752ab3d2473837fd465ad99f60ad685e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..d2fff47bcbaaaead17eceef0ca09cd45014c5aac --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-global_facts": {"acc": 0.23, "acc_norm": 0.23, "acc_norm_stderr": 0.04229525846816507, "acc_stderr": 0.04229525846816507}}, "versions": {"hendrycksTest-global_facts": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d0ca97d6a58d8dae225d36636ef21b0fd1e50fdf --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-loglikelihood @@ -0,0 +1 @@ +f4f338e45415c4b5ee7f1d249155bcd910c8401bd1436760a5ec61cb6bb211b6 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_government_and_politics-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_government_and_politics-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..16cc02ff0a897dda3a6c6dc97e9b7815ea120fc2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_government_and_politics-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-high_school_government_and_politics": {"acc": 0.24352331606217617, "acc_norm": 0.23834196891191708, "acc_norm_stderr": 0.03074890536390988, "acc_stderr": 0.030975436386845436}}, "versions": {"hendrycksTest-high_school_government_and_politics": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_us_history-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_us_history-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..e05b91503e0a2c2c8bb8ef34af16e87c902c31f9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_us_history-v0-loglikelihood @@ -0,0 +1 @@ +8c65c1a28330dd001d395ac11f1bb80c3b33f5935f503e74067aef6e9e1d9d9b \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..b665d57e234aa5b9f67f85da689bba952f930914 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_accounting-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-professional_accounting": {"acc": 0.2553191489361702, "acc_norm": 0.26595744680851063, "acc_norm_stderr": 0.026358065698880582, "acc_stderr": 0.026011992930902006}}, "versions": {"hendrycksTest-professional_accounting": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-public_relations-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-public_relations-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..8f7b30ba8823a0a0d8fc94f69ef64d362835e0db --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-public_relations-v0-loglikelihood @@ -0,0 +1 @@ +ab70f500cf24e876f6ae6bdc27525a1d6074fa9b6ea97770255d9fc2559b36ff \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-greedy_until b/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..6f49557ecf42758d64d1297c5569f3d4d95dd9c1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-greedy_until @@ -0,0 +1 @@ +2aa9ae43ee9dbb2457525247d7b65358632c5eaa9cbfc40cf95a4f17f5d942ad \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_precalc-v0-greedy_until b/lm-evaluation-harness/tests/testdata/math_precalc-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..71bbd8d9c221ca484d517bda46c109b2610f79f6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_precalc-v0-greedy_until @@ -0,0 +1 @@ +bc834b06fd79473ca6fe38a51b714aad0bf0478c1b0eec787eca34dbdf69cb71 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mc_taco-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/mc_taco-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f0ce5c64580d1132710e596cc287126ba77394e6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mc_taco-v0-loglikelihood @@ -0,0 +1 @@ +1811808ef05afd5f30ffc3471622a3dd7a1b681b17a2f7616695ad6b2a45943c \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mutual_plus-v1-res.json b/lm-evaluation-harness/tests/testdata/mutual_plus-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..cdb6c85b65643b2214358d18b057d0737d53b9ba --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mutual_plus-v1-res.json @@ -0,0 +1 @@ +{"results": {"mutual_plus": {"mrr": 0.5275583145221953, "mrr_stderr": 0.009940894824430708, "r@1": 0.26297968397291194, "r@1_stderr": 0.01479889176605113, "r@2": 0.5, "r@2_stderr": 0.01680731613632036}}, "versions": {"mutual_plus": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..47805d3b5fe82555e4d61a90b43c157c974ddabc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-loglikelihood_rolling @@ -0,0 +1 @@ +0f1c23a1f4ddec0c2b1ff34de8d1505b0eb9e2868d8edbcc1b6de13d02f32036 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/qa4mre_2011-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/qa4mre_2011-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..049134c7a1eac7ba79fa86951526a4ca96ddd200 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/qa4mre_2011-v0-loglikelihood @@ -0,0 +1 @@ +0d09f17c65768e797633494d2d218e4e46a26f718cab8b0bf3d156b073a8c437 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/squad2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/squad2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..41300bc19fd3142bfd547bf21f2b28b3ce5b21c9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/squad2-v0-loglikelihood @@ -0,0 +1 @@ +287e87cc6878debcc80d9b6df4e2d0a74ed29068e0e0a80906c8441843a17cee \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt16-en-de-v0-res.json b/lm-evaluation-harness/tests/testdata/wmt16-en-de-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..88bee7ffa69b1bf7accdd56a3870f61d4c0453da --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt16-en-de-v0-res.json @@ -0,0 +1 @@ +{"results": {"wmt16-en-de": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.010909486120840577, "chrf_stderr": 0.000122611124711072, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt16-en-de": 0}} \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so new file mode 100644 index 0000000000000000000000000000000000000000..9da636dd671435c0a2c7039d9ca5cd93d6d98147 --- /dev/null +++ b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1626ff119582bca46605bc6d49769ab75314b9993dd647bd64a90dec747bc843 +size 1534104 diff --git a/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 new file mode 100644 index 0000000000000000000000000000000000000000..2f9b64f2973cb53ddbad8dbaaebe83f269dea257 --- /dev/null +++ b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:abc63100e9cf516b8ed1fa25354ae53dbfe8df4838ac525d8d738332c2198dc2 +size 7419504 diff --git a/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so new file mode 100644 index 0000000000000000000000000000000000000000..c205ff388fbd08202375468bfe6d99506ea05555 --- /dev/null +++ b/venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fa2587c8d211fbc85e8b88cca0bcebe78c8cc40c81b0c3763ce57ac9e63f0669 +size 5895416 diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a05732b7b0e709bbe320ae3f86eea53808cce978 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3647cc3263ff960cb95ce2a5f2599b3ad318efbd Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6619c191e430e41455d80de6cba79c8a0eaed01 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..463818c1c40a736dadea76e7288c0747d9942e29 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff65ecf43286cb270fcd24f6dee501658be1274f Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..57a3fb0f62608091e717d15ce50043ed9cd7ae25 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py new file mode 100644 index 0000000000000000000000000000000000000000..05b18f5938106e11ddb6bef4db60310078354029 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py @@ -0,0 +1,1243 @@ +# coding=utf-8 +# Copyright 2022 HuggingFace Inc. team and BigScience workshop. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch BLOOM model.""" + +import math +import warnings +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss +from torch.nn import functional as F + +from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + QuestionAnsweringModelOutput, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import logging +from .configuration_bloom import BloomConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" +_CONFIG_FOR_DOC = "BloomConfig" + + +from ..deprecated._archive_maps import BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: + """ + Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it + relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value + `softmax(l+a) = softmax(l)`. Based on + https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 + TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. + + Args: + Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) + attention_mask (`torch.Tensor`): + Token-wise attention mask, this should be of shape (batch_size, max_seq_len). + num_heads (`int`, *required*): + number of heads + dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): + dtype of the output tensor + """ + batch_size, seq_length = attention_mask.shape + closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) + base = torch.tensor( + 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 + ) + powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) + slopes = torch.pow(base, powers) + + if closest_power_of_2 != num_heads: + extra_base = torch.tensor( + 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 + ) + num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) + extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) + slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) + + # Note: alibi will added to the attention bias that will be applied to the query, key product of attention + # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) + # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) + # => the query_length dimension will then be broadcasted correctly + # This is more or less identical to T5's relative position bias: + # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 + arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] + alibi = slopes[..., None] * arange_tensor + return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) + + +def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: + """ + Dropout add function + + Args: + x (`torch.tensor`, *required*): + input tensor + residual (`torch.tensor`, *required*): + residual tensor + prob (`float`, *required*): + dropout probability + training (`bool`, *required*): + training mode + """ + out = F.dropout(x, p=prob, training=training) + out = residual + out + return out + + +def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: + """ + Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to + make the model jitable. + + Args: + x (`torch.tensor`, *required*): + input hidden states + """ + return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) + + +def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + """ + gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + + 0.3989423 * x * torch.exp(-0.5 * x * x) + + Args: + g (`torch.tensor`, *required*): + gradient output tensor + x (`torch.tensor`, *required*): + input tensor + """ + x = x[0] # x is a tuple of 1 element, needs to unpack it first + tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) + # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 + ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) + return ff * g + + +class GeLUFunction(torch.autograd.Function): + @staticmethod + def forward(ctx, input: torch.Tensor) -> torch.Tensor: + ctx.save_for_backward(input) + return bloom_gelu_forward(input) + + @staticmethod + def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: + input = ctx.saved_tensors + tmp = bloom_gelu_back(grad_output, input) + return tmp + + +class BloomGelu(nn.Module): + """ + BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model + torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly + copied from Megatron-DeepSpeed code and adapted for our needs + + See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 + """ + + def __init__(self): + super().__init__() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.training: + return GeLUFunction.apply(x) + else: + return bloom_gelu_forward(x) + + +class BloomAttention(nn.Module): + def __init__(self, config: BloomConfig): + super().__init__() + + self.pretraining_tp = config.pretraining_tp + self.slow_but_exact = config.slow_but_exact + + self.hidden_size = config.hidden_size + self.num_heads = config.n_head + self.head_dim = self.hidden_size // self.num_heads + self.split_size = self.hidden_size + self.hidden_dropout = config.hidden_dropout + + if self.head_dim * self.num_heads != self.hidden_size: + raise ValueError( + f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" + f" {self.num_heads})." + ) + + # Layer-wise attention scaling + self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) + self.beta = 1.0 + + self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) + self.dense = nn.Linear(self.hidden_size, self.hidden_size) + self.attention_dropout = nn.Dropout(config.attention_dropout) + + def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory + storage as `fused_qkv` + + Args: + fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] + + Returns: + query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] + value: [batch_size, seq_length, num_heads, head_dim] + """ + batch_size, seq_length, three_times_hidden_size = fused_qkv.shape + fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) + return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] + + def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: + """ + Merge heads together over the last dimension + + Args: + x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] + + Returns: + torch.tensor: [batch_size, seq_length, num_heads * head_dim] + """ + # What we want to achieve is: + # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim + batch_size_and_num_heads, seq_length, _ = x.shape + batch_size = batch_size_and_num_heads // self.num_heads + + # First view to decompose the batch size + # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim + x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) + + # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim + x = x.permute(0, 2, 1, 3) + + # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim + return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) + + def forward( + self, + hidden_states: torch.Tensor, + residual: torch.Tensor, + alibi: torch.Tensor, + attention_mask: torch.Tensor, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + use_cache: bool = False, + output_attentions: bool = False, + ): + fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + + # 3 x [batch_size, seq_length, num_heads, head_dim] + (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) + + batch_size, q_length, _, _ = query_layer.shape + + query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) + key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) + value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) + if layer_past is not None: + past_key, past_value = layer_past + # concatenate along seq_length dimension: + # - key: [batch_size * self.num_heads, head_dim, kv_length] + # - value: [batch_size * self.num_heads, kv_length, head_dim] + key_layer = torch.cat((past_key, key_layer), dim=2) + value_layer = torch.cat((past_value, value_layer), dim=1) + + _, _, kv_length = key_layer.shape + + if use_cache is True: + present = (key_layer, value_layer) + else: + present = None + + # [batch_size * num_heads, q_length, kv_length] + # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 + matmul_result = alibi.baddbmm( + batch1=query_layer, + batch2=key_layer, + beta=self.beta, + alpha=self.inv_norm_factor, + ) + + # change view to [batch_size, num_heads, q_length, kv_length] + attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) + + # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] + input_dtype = attention_scores.dtype + # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` + if input_dtype == torch.float16: + attention_scores = attention_scores.to(torch.float) + attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) + attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) + + # [batch_size, num_heads, q_length, kv_length] + attention_probs = self.attention_dropout(attention_probs) + + if head_mask is not None: + attention_probs = attention_probs * head_mask + + # change view [batch_size x num_heads, q_length, kv_length] + attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) + + # matmul: [batch_size * num_heads, q_length, head_dim] + context_layer = torch.bmm(attention_probs_reshaped, value_layer) + + # change view [batch_size, q_length, num_heads * head_dim] + context_layer = self._merge_heads(context_layer) + + # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 + if self.pretraining_tp > 1 and self.slow_but_exact: + slices = self.hidden_size / self.pretraining_tp + output_tensor = torch.zeros_like(context_layer) + for i in range(self.pretraining_tp): + output_tensor = output_tensor + F.linear( + context_layer[:, :, int(i * slices) : int((i + 1) * slices)], + self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], + ) + else: + output_tensor = self.dense(context_layer) + + output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) + + outputs = (output_tensor, present) + if output_attentions: + outputs += (attention_probs,) + + return outputs + + +class BloomMLP(nn.Module): + def __init__(self, config: BloomConfig): + super().__init__() + hidden_size = config.hidden_size + + self.pretraining_tp = config.pretraining_tp + self.slow_but_exact = config.slow_but_exact + self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) + self.gelu_impl = BloomGelu() + self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) + self.hidden_dropout = config.hidden_dropout + + def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: + hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) + + if self.pretraining_tp > 1 and self.slow_but_exact: + intermediate_output = torch.zeros_like(residual) + slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp + for i in range(self.pretraining_tp): + intermediate_output = intermediate_output + F.linear( + hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], + self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], + ) + else: + intermediate_output = self.dense_4h_to_h(hidden_states) + + output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) + + return output + + +class BloomBlock(nn.Module): + def __init__(self, config: BloomConfig): + super().__init__() + hidden_size = config.hidden_size + + self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + self.num_heads = config.n_head + self.self_attention = BloomAttention(config) + self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + + self.mlp = BloomMLP(config) + + self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm + self.hidden_dropout = config.hidden_dropout + + def forward( + self, + hidden_states: torch.Tensor, + alibi: torch.Tensor, + attention_mask: torch.Tensor, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + use_cache: bool = False, + output_attentions: bool = False, + ): + # hidden_states: [batch_size, seq_length, hidden_size] + + # Layer norm at the beginning of the transformer layer. + layernorm_output = self.input_layernorm(hidden_states) + + # Layer norm post the self attention. + if self.apply_residual_connection_post_layernorm: + residual = layernorm_output + else: + residual = hidden_states + + # Self attention. + attn_outputs = self.self_attention( + layernorm_output, + residual, + layer_past=layer_past, + attention_mask=attention_mask, + alibi=alibi, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + attention_output = attn_outputs[0] + + outputs = attn_outputs[1:] + + layernorm_output = self.post_attention_layernorm(attention_output) + + # Get residual + if self.apply_residual_connection_post_layernorm: + residual = layernorm_output + else: + residual = attention_output + + # MLP. + output = self.mlp(layernorm_output, residual) + + if use_cache: + outputs = (output,) + outputs + else: + outputs = (output,) + outputs[1:] + + return outputs # hidden_states, present, attentions + + +class BloomPreTrainedModel(PreTrainedModel): + config_class = BloomConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["BloomBlock"] + _skip_keys_device_placement = "past_key_values" + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module: nn.Module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + @staticmethod + def _convert_to_standard_cache( + past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: + """ + Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, + num_heads, ...])) + """ + batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape + num_heads = batch_size_times_num_heads // batch_size + # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] + # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] + return tuple( + ( + layer_past[0].view(batch_size, num_heads, head_dim, seq_length), + layer_past[1].view(batch_size, num_heads, seq_length, head_dim), + ) + for layer_past in past_key_value + ) + + @staticmethod + def _convert_to_bloom_cache( + past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: + """ + Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) + """ + batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape + batch_size_times_num_heads = batch_size * num_heads + # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] + # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] + return tuple( + ( + layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), + layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), + ) + for layer_past in past_key_value + ) + + +BLOOM_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`BloomConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BLOOM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): + `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` + (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. + + If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as + `input_ids`. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): + Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see + `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have + their past given to this model should not be passed as `input_ids` as they have already been computed. + + Each element of `past_key_values` is a tuple (past_key, past_value): + - past_key: [batch_size * num_heads, head_dim, kv_length] + - past_value: [batch_size * num_heads, kv_length, head_dim] + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + + If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see + `past_key_values`). + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", + BLOOM_START_DOCSTRING, +) +class BloomModel(BloomPreTrainedModel): + def __init__(self, config: BloomConfig): + super().__init__(config) + + self.embed_dim = config.hidden_size + self.num_heads = config.n_head + + # Embedding + LN Embedding + self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) + self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + + # Transformer blocks + self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) + + # Final Layer Norm + self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: + return build_alibi_tensor(attention_mask, num_heads, dtype) + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, new_embeddings: torch.Tensor): + self.word_embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + if deprecated_arguments.pop("position_ids", False) is not False: + # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" + " passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if past_key_values is None: + past_key_values = tuple([None] * len(self.h)) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape batch_size x num_heads x N x N + # head_mask has shape n_layer x batch x num_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + hidden_states = self.word_embeddings_layernorm(inputs_embeds) + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Compute alibi tensor: check build_alibi_tensor documentation + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values[0] is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) + else: + attention_mask = attention_mask.to(hidden_states.device) + + alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) + + causal_mask = _prepare_4d_causal_attention_mask( + attention_mask, + input_shape=(batch_size, seq_length), + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + causal_mask = causal_mask.bool() + + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + alibi, + causal_mask, + layer_past, + head_mask[i], + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=causal_mask, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + alibi=alibi, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Add last hidden state + hidden_states = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + BLOOM_START_DOCSTRING, +) +class BloomForCausalLM(BloomPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: BloomConfig): + super().__init__(config) + self.transformer = BloomModel(config) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings: torch.Tensor): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + **kwargs, + ) -> dict: + # only last tokens for input_ids if past is not None + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed + if past_key_values[0][0].shape[0] == input_ids.shape[0]: + past_key_values = self._convert_to_bloom_cache(past_key_values) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + if deprecated_arguments.pop("position_ids", False) is not False: + # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" + " passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(lm_logits.device) + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + batch_size, seq_length, vocab_size = shift_logits.shape + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def _reorder_cache( + self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: + """ + This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + + Output shares the same memory storage as `past`. + """ + standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) + + # Get a copy of `beam_idx` on all the devices where we need those indices. + device_to_beam_idx = { + past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past + } + reordered_past = tuple( + ( + layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), + layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), + ) + for layer_past in standardized_past + ) + return self._convert_to_bloom_cache(reordered_past) + + +@add_start_docstrings( + """ + The Bloom Model transformer with a sequence classification head on top (linear layer). + + [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + BLOOM_START_DOCSTRING, +) +class BloomForSequenceClassification(BloomPreTrainedModel): + def __init__(self, config: BloomConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = BloomModel(config) + self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + if deprecated_arguments.pop("position_ids", False) is not False: + # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" + " passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + BLOOM_START_DOCSTRING, +) +class BloomForTokenClassification(BloomPreTrainedModel): + def __init__(self, config: BloomConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = BloomModel(config) + if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: + classifier_dropout = config.classifier_dropout + elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: + classifier_dropout = config.hidden_dropout + else: + classifier_dropout = 0.1 + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **deprecated_arguments, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + if deprecated_arguments.pop("position_ids", False) is not False: + # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` + warnings.warn( + "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" + " passing `position_ids`.", + FutureWarning, + ) + if len(deprecated_arguments) > 0: + raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + batch_size, seq_length = labels.shape + loss_fct = CrossEntropyLoss() + loss = loss_fct( + logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (logits,) + transformer_outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like + SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + BLOOM_START_DOCSTRING, +) +class BloomForQuestionAnswering(BloomPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.transformer = BloomModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, 2) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/codegen/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a1ce89620035d50db1c4e1878763cddec62f94f2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/codegen/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_codegen": ["CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodeGenConfig", "CodeGenOnnxConfig"], + "tokenization_codegen": ["CodeGenTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_codegen_fast"] = ["CodeGenTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_codegen"] = [ + "CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST", + "CodeGenForCausalLM", + "CodeGenModel", + "CodeGenPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_codegen import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, CodeGenConfig, CodeGenOnnxConfig + from .tokenization_codegen import CodeGenTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_codegen_fast import CodeGenTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_codegen import ( + CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST, + CodeGenForCausalLM, + CodeGenModel, + CodeGenPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fdca0cce39e5d6b73c887746c57ff15098990289 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/configuration_codegen.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/configuration_codegen.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a47ff1c5fde88d2fb0c282b53fc66faea48ffb76 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/configuration_codegen.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/modeling_codegen.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/modeling_codegen.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff7755b20314934eb90d7f3665f8a5e0984502e8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/modeling_codegen.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55338a1a3b9ba54fc8a88866d8e5eb96d0453de1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc7ac6177705c1bf8b0e9db5effb3f61e282e97f Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/codegen/__pycache__/tokenization_codegen_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.py b/venv/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.py new file mode 100644 index 0000000000000000000000000000000000000000..e16dd1fadcf74aedbc9728240a6b944c5a298553 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/codegen/configuration_codegen.py @@ -0,0 +1,229 @@ +# coding=utf-8 +# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" CodeGen model configuration""" +from collections import OrderedDict +from typing import Any, List, Mapping, Optional + +from ... import PreTrainedTokenizer, TensorType, is_torch_available +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfigWithPast, PatchingSpec +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class CodeGenConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a + CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the CodeGen + [Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects + inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from + [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 50400): + Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`CodeGenModel`]. + n_positions (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + n_ctx (`int`, *optional*, defaults to 2048): + This attribute is used in `CodeGenModel.__init__` without any real effect. + n_embd (`int`, *optional*, defaults to 4096): + Dimensionality of the embeddings and hidden states. + n_layer (`int`, *optional*, defaults to 28): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + rotary_dim (`int`, *optional*, defaults to 64): + Number of dimensions in the embedding that Rotary Position Embedding is applied to. + n_inner (`int`, *optional*): + Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd + activation_function (`str`, *optional*, defaults to `"gelu_new"`): + Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. + resid_pdrop (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + embd_pdrop (`int`, *optional*, defaults to 0.0): + The dropout ratio for the embeddings. + attn_pdrop (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + bos_token_id (`int`, *optional*, defaults to 50256): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 50256): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the + model has a output word embedding layer. + + Example: + + ```python + >>> from transformers import CodeGenConfig, CodeGenModel + + >>> # Initializing a CodeGen 6B configuration + >>> configuration = CodeGenConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = CodeGenModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "codegen" + attribute_map = { + "max_position_embeddings": "n_positions", + "hidden_size": "n_embd", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=50400, + n_positions=2048, + n_ctx=2048, + n_embd=4096, + n_layer=28, + n_head=16, + rotary_dim=64, + n_inner=None, + activation_function="gelu_new", + resid_pdrop=0.0, + embd_pdrop=0.0, + attn_pdrop=0.0, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + use_cache=True, + bos_token_id=50256, + eos_token_id=50256, + tie_word_embeddings=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.n_ctx = n_ctx + self.n_positions = n_positions + self.n_embd = n_embd + self.n_layer = n_layer + self.n_head = n_head + self.n_inner = n_inner + self.rotary_dim = rotary_dim + self.activation_function = activation_function + self.resid_pdrop = resid_pdrop + self.embd_pdrop = embd_pdrop + self.attn_pdrop = attn_pdrop + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.use_cache = use_cache + + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + + super().__init__( + bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs + ) + + +# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig +class CodeGenOnnxConfig(OnnxConfigWithPast): + def __init__( + self, + config: PretrainedConfig, + task: str = "default", + patching_specs: List[PatchingSpec] = None, + use_past: bool = False, + ): + super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) + if not getattr(self._config, "pad_token_id", None): + # TODO: how to do that better? + self._config.pad_token_id = 0 + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} + else: + common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} + + return common_inputs + + @property + def num_layers(self) -> int: + return self._config.n_layer + + @property + def num_attention_heads(self) -> int: + return self._config.n_head + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + # We need to order the input in the way they appears in the forward() + ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) + + # Need to add the past_keys + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + past_shape = ( + batch, + self.num_attention_heads, + past_key_values_length, + self._config.hidden_size // self.num_attention_heads, + ) + ordered_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) + ] + + ordered_inputs["attention_mask"] = common_inputs["attention_mask"] + if self.use_past: + mask_dtype = ordered_inputs["attention_mask"].dtype + ordered_inputs["attention_mask"] = torch.cat( + [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + + return ordered_inputs + + @property + def default_onnx_opset(self) -> int: + return 13 diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/modeling_codegen.py b/venv/lib/python3.10/site-packages/transformers/models/codegen/modeling_codegen.py new file mode 100644 index 0000000000000000000000000000000000000000..41f23900c29a2cdf3e5f19d1448f79fe1e9f1c23 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/codegen/modeling_codegen.py @@ -0,0 +1,719 @@ +# coding=utf-8 +# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CodeGen model.""" + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from ...modeling_utils import PreTrainedModel +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_codegen import CodeGenConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Salesforce/codegen-2B-mono" +_CONFIG_FOR_DOC = "CodeGenConfig" + + +from ..deprecated._archive_maps import CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: + inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) + sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float() + return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) + + +# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two +def rotate_every_two(x: torch.Tensor) -> torch.Tensor: + x1 = x[:, :, :, ::2] + x2 = x[:, :, :, 1::2] + x = torch.stack((-x2, x1), dim=-1) + return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') + + +# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: + sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) + cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) + return (tensor * cos) + (rotate_every_two(tensor) * sin) + + +class CodeGenAttention(nn.Module): + def __init__(self, config): + super().__init__() + + max_positions = config.max_position_embeddings + self.register_buffer( + "causal_mask", + torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( + 1, 1, max_positions, max_positions + ), + persistent=False, + ) + + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + + self.embed_dim = config.hidden_size + self.num_attention_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_attention_heads + if self.head_dim * self.num_attention_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" + f" `num_attention_heads`: {self.num_attention_heads})." + ) + self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) + self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) + + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) + self.rotary_dim = config.rotary_dim + pos_embd_dim = self.rotary_dim or self.embed_dim + self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) + + def _split_heads(self, x, n_head, dim_head, mp_num): + reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) + reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) + return reshaped + + def _merge_heads(self, tensor, num_attention_heads, attn_head_size): + """ + Merges attn_head_size dim and num_attn_heads dim into n_ctx + """ + if len(tensor.shape) == 5: + tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() + elif len(tensor.shape) == 4: + tensor = tensor.permute(0, 2, 1, 3).contiguous() + else: + raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") + new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) + return tensor.view(new_shape) + + def _attn( + self, + query, + key, + value, + attention_mask=None, + head_mask=None, + ): + # compute causal mask from causal mask buffer + query_length, key_length = query.size(-2), key.size(-2) + causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] + + # Keep the attention weights computation in fp32 to avoid overflow issues + query = query.to(torch.float32) + key = key.to(torch.float32) + + attn_weights = torch.matmul(query, key.transpose(-1, -2)) + + attn_weights = attn_weights / self.scale_attn + mask_value = torch.finfo(attn_weights.dtype).min + # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. + # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` + mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) + attn_weights = torch.where(causal_mask, attn_weights, mask_value) + + if attention_mask is not None: + # Apply the attention mask + attn_weights = attn_weights + attention_mask + + attn_weights = nn.Softmax(dim=-1)(attn_weights) + attn_weights = attn_weights.to(value.dtype) + attn_weights = self.attn_dropout(attn_weights) + + # Mask heads if we want to + if head_mask is not None: + attn_weights = attn_weights * head_mask + + attn_output = torch.matmul(attn_weights, value) + + return attn_output, attn_weights + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[ + Tuple[torch.Tensor, Tuple[torch.Tensor]], + Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], + ]: + qkv = self.qkv_proj(hidden_states) + # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic + mp_num = 4 + qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) + + local_dim = self.head_dim * self.num_attention_heads // mp_num + query, value, key = torch.split(qkv_split, local_dim, dim=-1) + query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) + key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) + + value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) + value = value.permute(0, 2, 1, 3) + + embed_positions = self.embed_positions + if embed_positions.device != position_ids.device: + embed_positions = embed_positions.to(position_ids.device) + self.embed_positions = embed_positions + + sincos = embed_positions[position_ids] + sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) + + if self.rotary_dim is not None: + k_rot = key[:, :, :, : self.rotary_dim] + k_pass = key[:, :, :, self.rotary_dim :] + + q_rot = query[:, :, :, : self.rotary_dim] + q_pass = query[:, :, :, self.rotary_dim :] + + k_rot = apply_rotary_pos_emb(k_rot, sin, cos) + q_rot = apply_rotary_pos_emb(q_rot, sin, cos) + + key = torch.cat([k_rot, k_pass], dim=-1) + query = torch.cat([q_rot, q_pass], dim=-1) + else: + key = apply_rotary_pos_emb(key, sin, cos) + query = apply_rotary_pos_emb(query, sin, cos) + + key = key.permute(0, 2, 1, 3) + query = query.permute(0, 2, 1, 3) + + if layer_past is not None: + past_key = layer_past[0] + past_value = layer_past[1] + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + # Note that this cast is quite ugly, but is not implemented before ROPE as k_rot in the original codebase is always in fp32. + # Reference: https://github.com/salesforce/CodeGen/blob/f210c3bb1216c975ad858cd4132c0fdeabf4bfc2/codegen1/jaxformer/hf/codegen/modeling_codegen.py#L38 + present = (key.to(hidden_states.dtype), value) + else: + present = None + + # compute self-attention: V x Softmax(QK^T) + attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) + + attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) + attn_output = self.out_proj(attn_output) + attn_output = self.resid_dropout(attn_output) + + outputs = (attn_output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs # a, present, (attentions) + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen +class CodeGenMLP(nn.Module): + def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim + super().__init__() + embed_dim = config.n_embd + + self.fc_in = nn.Linear(embed_dim, intermediate_size) + self.fc_out = nn.Linear(intermediate_size, embed_dim) + + self.act = ACT2FN[config.activation_function] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.fc_in(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.fc_out(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen +class CodeGenBlock(nn.Module): + # Ignore copy + def __init__(self, config): + super().__init__() + inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd + self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) + self.attn = CodeGenAttention(config) + self.mlp = CodeGenMLP(inner_dim, config) + + def forward( + self, + hidden_states: Optional[torch.FloatTensor], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_output + feed_forward_hidden_states + residual + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions) + + +class CodeGenPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = CodeGenConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["CodeGenBlock"] + _skip_keys_device_placement = "past_key_values" + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear,)): + # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +CODEGEN_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`CodeGenConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CODEGEN_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare CodeGen Model transformer outputting raw hidden-states without any specific head on top.", + CODEGEN_START_DOCSTRING, +) +class CodeGenModel(CodeGenPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embed_dim = config.n_embd + self.vocab_size = config.vocab_size + self.wte = nn.Embedding(config.vocab_size, self.embed_dim) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)]) + self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, new_embeddings): + self.wte = new_embeddings + + @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + batch_size = input_ids.shape[0] + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + batch_size = inputs_embeds.shape[0] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + if past_key_values is None: + past_length = 0 + past_key_values = tuple([None] * len(self.h)) + else: + past_length = past_key_values[0][0].size(-2) + + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) + + # Attention mask. + if attention_mask is not None: + if batch_size <= 0: + raise ValueError("batch_size has to be defined and > 0") + attention_mask = attention_mask.view(batch_size, -1) + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask[:, None, None, :] + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x num_attention_heads x N x N + # head_mask has shape n_layer x batch x num_attention_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + + hidden_states = inputs_embeds + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " + "`use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + None, + attention_mask, + position_ids, + head_mask[i], + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states=hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + hidden_states = self.ln_f(hidden_states) + + hidden_states = hidden_states.view(output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + The CodeGen Model transformer with a language modeling head on top. + """, + CODEGEN_START_DOCSTRING, +) +class CodeGenForCausalLM(CodeGenPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.transformer = CodeGenModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): + token_type_ids = kwargs.get("token_type_ids", None) + # Omit tokens covered by past_key_values + if past_key_values: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + if token_type_ids is not None: + token_type_ids = token_type_ids[:, -input_ids.shape[1] :] + + attention_mask = kwargs.get("attention_mask", None) + position_ids = kwargs.get("position_ids", None) + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + return { + "input_ids": input_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "position_ids": position_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + } + + @add_start_docstrings_to_model_forward(CODEGEN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + # make sure sampling in fp16 works correctly and + # compute loss in fp32 to match with mesh-tf version + # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 + lm_logits = self.lm_head(hidden_states).to(torch.float32) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(lm_logits.device) + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + loss = loss.to(hidden_states.dtype) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache( + past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor + ) -> Tuple[Tuple[torch.Tensor]]: + """ + This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or + [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + """ + return tuple( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) + for layer_past in past_key_values + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen.py b/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen.py new file mode 100644 index 0000000000000000000000000000000000000000..1b03af7008465dd76c7138fae3a6cac5e5a4ef53 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen.py @@ -0,0 +1,417 @@ +# coding=utf-8 +# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for CodeGen""" + + +import json +import os +from functools import lru_cache +from typing import TYPE_CHECKING, List, Optional, Tuple, Union + +import numpy as np +import regex as re + +from ...utils import is_tf_available, is_torch_available, logging, to_py_obj + + +if TYPE_CHECKING: + if is_torch_available(): + import torch + if is_tf_available(): + import tensorflow as tf + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class CodeGenTokenizer(PreTrainedTokenizer): + """ + Construct a CodeGen tokenizer. Based on byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import CodeGenTokenizer + + >>> tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") + >>> tokenizer("Hello world")["input_ids"] + [15496, 995] + + >>> tokenizer(" Hello world")["input_ids"] + [18435, 995] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The end of sequence token. + pad_token (`str`, *optional*): + The token used for padding, for example when batching sequences of different lengths. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (CodeGen tokenizer detect beginning of words by the preceding space). + add_bos_token (`bool`, *optional*, defaults to `False`): + Whether to add a beginning of sequence token at the start of sequences. + return_token_type_ids (`bool`, *optional*, defaults to `False`): + Whether to return token type IDs. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + unk_token="<|endoftext|>", + bos_token="<|endoftext|>", + eos_token="<|endoftext|>", + pad_token=None, + add_prefix_space=False, + add_bos_token=False, + return_token_type_ids=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token + self.add_bos_token = add_bos_token + self.return_token_type_ids = return_token_type_ids + if self.return_token_type_ids: + self.model_input_names.append("token_type_ids") + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + super().__init__( + errors=errors, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + pad_token=pad_token, + add_prefix_space=add_prefix_space, + add_bos_token=add_bos_token, + return_token_type_ids=return_token_type_ids, + **kwargs, + ) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + if self.add_bos_token: + bos_token_ids = [self.bos_token_id] + else: + bos_token_ids = [] + + output = bos_token_ids + token_ids_0 + + if token_ids_1 is None: + return output + + return output + bos_token_ids + token_ids_1 + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] if self.sep_token_id is not None else [] + cls = [self.cls_token_id] if self.sep_token_id is not None else [] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if is_split_into_words or add_prefix_space: + text = " " + text + return (text, kwargs) + + def decode( + self, + token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], + skip_special_tokens: bool = False, + clean_up_tokenization_spaces: bool = None, + truncate_before_pattern: Optional[List[str]] = None, + **kwargs, + ) -> str: + """ + Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special + tokens and clean up tokenization spaces. + + Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. + + Args: + token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): + List of tokenized input ids. Can be obtained using the `__call__` method. + skip_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to remove special tokens in the decoding. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether or not to clean up the tokenization spaces. If `None`, will default to + `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). + truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): + A list of regular expression strings that will be used to truncate the returned string. This can be + used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning + of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. + kwargs (additional keyword arguments, *optional*): + Will be passed to the underlying model specific decode method. + + Returns: + `str`: The decoded sentence. + """ + + token_ids = to_py_obj(token_ids) + + decoded_text = super()._decode( + token_ids=token_ids, + skip_special_tokens=skip_special_tokens, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + + if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: + decoded_text = self.truncate(decoded_text, truncate_before_pattern) + + return decoded_text + + def truncate(self, completion, truncate_before_pattern): + def find_re(string, pattern, start_pos): + m = pattern.search(string, start_pos) + return m.start() if m else -1 + + terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] + + prints = list(re.finditer("^print", completion, re.MULTILINE)) + + if len(prints) > 1: + completion = completion[: prints[1].start()] + + defs = list(re.finditer("^def", completion, re.MULTILINE)) + + if len(defs) > 1: + completion = completion[: defs[1].start()] + + start_pos = 0 + + terminals_pos = [ + pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 + ] + + if len(terminals_pos) > 0: + return completion[: min(terminals_pos)] + else: + return completion diff --git a/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen_fast.py b/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..b086fb84a65af9b632f219e5911318fa518c3637 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/codegen/tokenization_codegen_fast.py @@ -0,0 +1,273 @@ +# coding=utf-8 +# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for OpenAI GPT.""" + + +import json +import re +from typing import TYPE_CHECKING, List, Optional, Tuple, Union + +import numpy as np + +from ...utils import is_tf_available, is_torch_available, logging + + +if TYPE_CHECKING: + if is_torch_available(): + import torch + if is_tf_available(): + import tensorflow as tf + +from tokenizers import pre_tokenizers + +from ...tokenization_utils_base import BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from .tokenization_codegen import CodeGenTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +class CodeGenTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level + Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import CodeGenTokenizerFast + + >>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono") + >>> tokenizer("Hello world")["input_ids"] + [15496, 995] + + >>> tokenizer(" Hello world")["input_ids"] + [18435, 995] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since + the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`, *optional*): + Path to the vocabulary file. + merges_file (`str`, *optional*): + Path to the merges file. + tokenizer_file (`str`, *optional*): + Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that + contains everything needed to load the tokenizer. + unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The end of sequence token. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (CodeGen tokenizer detect beginning of words by the preceding space). + return_token_type_ids (`bool`, *optional*, defaults to `False`): + Whether to return token type IDs. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = CodeGenTokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + unk_token="<|endoftext|>", + bos_token="<|endoftext|>", + eos_token="<|endoftext|>", + add_prefix_space=False, + return_token_type_ids=False, + **kwargs, + ): + self.return_token_type_ids = return_token_type_ids + if self.return_token_type_ids: + self.model_input_names.append("token_type_ids") + + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + add_prefix_space=add_prefix_space, + return_token_type_ids=return_token_type_ids, + **kwargs, + ) + + if kwargs.pop("add_bos_token", False): + model_id = kwargs.pop("name_or_path", "") + raise ValueError( + "Currenty GPT2's fast tokenizer does NOT support adding a BOS token. " + "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" + f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" + f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" + "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." + " so that the fast tokenizer works correctly." + ) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + # Copied from transformers.models.codegen.tokenization_codegen.CodeGenTokenizer.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] if self.sep_token_id is not None else [] + cls = [self.cls_token_id] if self.sep_token_id is not None else [] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + def decode( + self, + token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], + skip_special_tokens: bool = False, + clean_up_tokenization_spaces: bool = None, + truncate_before_pattern: Optional[List[str]] = None, + **kwargs, + ) -> str: + """ + Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special + tokens and clean up tokenization spaces. + + Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. + + Args: + token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): + List of tokenized input ids. Can be obtained using the `__call__` method. + skip_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to remove special tokens in the decoding. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether or not to clean up the tokenization spaces. If `None`, will default to + `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). + truncate_before_pattern (`List[str]`, *optional*, defaults to `None`): + A list of regular expression strings that will be used to truncate the returned string. This can be + used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning + of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`. + kwargs (additional keyword arguments, *optional*): + Will be passed to the underlying model specific decode method. + + Returns: + `str`: The decoded sentence. + """ + + decoded_text = super().decode( + token_ids=token_ids, + skip_special_tokens=skip_special_tokens, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + + if truncate_before_pattern is not None and len(truncate_before_pattern) > 0: + decoded_text = self.truncate(decoded_text, truncate_before_pattern) + + return decoded_text + + def truncate(self, completion, truncate_before_pattern): + def find_re(string, pattern, start_pos): + m = pattern.search(string, start_pos) + return m.start() if m else -1 + + terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern] + + prints = list(re.finditer("^print", completion, re.MULTILINE)) + + if len(prints) > 1: + completion = completion[: prints[1].start()] + + defs = list(re.finditer("^def", completion, re.MULTILINE)) + + if len(defs) > 1: + completion = completion[: defs[1].start()] + + start_pos = 0 + + terminals_pos = [ + pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1 + ] + + if len(terminals_pos) > 0: + return completion[: min(terminals_pos)] + else: + return completion diff --git a/venv/lib/python3.10/site-packages/transformers/models/idefics/configuration_idefics.py b/venv/lib/python3.10/site-packages/transformers/models/idefics/configuration_idefics.py new file mode 100644 index 0000000000000000000000000000000000000000..07a92432aee3afc95aafe3a4bd5567ec861823af --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/idefics/configuration_idefics.py @@ -0,0 +1,327 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Idefics model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class IdeficsVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an + Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Idefics-9B. + + e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`) + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + intermediate_size (`int`, *optional*, defaults to 5120): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + patch_size (`int`, *optional*, defaults to 14): + The size (resolution) of each patch. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + image_num_channels (`int`, *optional*, defaults to `3`): + Number of image channels. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization + testing). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + """ + + model_type = "idefics" + attribute_map = { + "hidden_size": "embed_dim", + } + + def __init__( + self, + embed_dim=768, + image_size=224, + intermediate_size=5120, + patch_size=14, + num_hidden_layers=32, + num_attention_heads=16, + num_channels=3, + hidden_act="gelu", + layer_norm_eps=1e-5, + attention_dropout=0.0, + initializer_range=0.02, + initializer_factor=1.0, + **kwargs, + ): + self.embed_dim = embed_dim + self.image_size = image_size + self.intermediate_size = intermediate_size + self.patch_size = patch_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.layer_norm_eps = layer_norm_eps + self.attention_dropout = attention_dropout + self.initializer_range = initializer_range + self.initializer_factor = initializer_factor + self.hidden_act = hidden_act + + super().__init__(**kwargs) + + +class IdeficsPerceiverConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an + Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Idefics-9B. + + e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + use_resampler (`bool`, *optional*, defaults to `False`): + Whether or not to use the resampler + resampler_n_latents (`int`, *optional*, defaults to ): + Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). + resampler_depth (`int`, *optional*, defaults to 6): + Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). + resampler_n_heads (`int`, *optional*, defaults to 16): + Number of heads in each Transformer block (for multi-headed self-attention). + resampler_head_dim (`int`, *optional*, defaults to 96): + Dimensionality of each head projection in the Transformer block. + qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): + Whether or not to use qk layer norms in perceiver + """ + + model_type = "idefics" + + def __init__( + self, + use_resampler=False, + resampler_n_latents=64, + resampler_depth=6, + resampler_n_heads=16, + resampler_head_dim=96, + qk_layer_norms_perceiver=False, + **kwargs, + ): + self.use_resampler = use_resampler + self.resampler_n_latents = resampler_n_latents + self.resampler_depth = resampler_depth + self.resampler_n_heads = resampler_n_heads + self.resampler_head_dim = resampler_head_dim + self.qk_layer_norms_perceiver = qk_layer_norms_perceiver + + super().__init__(**kwargs) + + +class IdeficsConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an + Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Idefics-9B. + + e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + additional_vocab_size (`int`, *optional`, defaults to 0): + Additional vocabulary size of the model, typically for the special "" token. Additional vocab tokens + are always trainable whereas regular vocab tokens can be frozen or not. + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`~IdeficsModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + alpha_initializer (`str`, *optional*, defaults to `"zeros"`): + Initialization type for the alphas. + alphas_initializer_range (`float`, *optional*, defaults to 0.0): + The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross + Attention. + alpha_type (`str`, *optional*, defaults to `"float"`): + Whether the gating alphas should be vectors or single floats. + rms_norm_eps (`float`, *optional*, defaults to 1e-6): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 0) + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1) + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2) + End of stream token id. + tie_word_embeddings(`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + cross_layer_interval (`int`, *optional*, default to 1) + Interval for cross attention (from text to image) layers. + qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k + freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers + freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): + Exceptions to freezing text layers when `freeze_text_layers` is `True` + freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head + freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers + freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): + Exceptions to freezing vision layers when `freeze_vision_layers` is `True` + use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler + vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict + perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict + + Example: + + ```python + >>> from transformers import IdeficsModel, IdeficsConfig + + >>> # Initializing a Idefics idefics-9b style configuration + >>> configuration = IdeficsConfig() + + >>> # Initializing a model from the idefics-9b style configuration + >>> model = IdeficsModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "idefics" + is_composition = False + + def __init__( + self, + vocab_size=32000, + additional_vocab_size=0, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + dropout=0.0, + hidden_act="silu", + initializer_range=0.02, + alpha_initializer="zeros", + alphas_initializer_range=0.0, + alpha_type="float", + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + cross_layer_interval=1, + qk_layer_norms=False, + freeze_text_layers=True, + freeze_text_module_exceptions=[], + freeze_lm_head=False, + freeze_vision_layers=True, + freeze_vision_module_exceptions=[], + use_resampler=False, + vision_config=None, + perceiver_config=None, + **kwargs, + ): + self.vocab_size = vocab_size + self.additional_vocab_size = additional_vocab_size + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.dropout = dropout + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.alpha_initializer = alpha_initializer + self.alphas_initializer_range = alphas_initializer_range + self.alpha_type = alpha_type + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + + self.cross_layer_interval = cross_layer_interval + self.qk_layer_norms = qk_layer_norms + self.freeze_vision_layers = freeze_vision_layers + + self.freeze_text_layers = freeze_text_layers + self.freeze_text_module_exceptions = freeze_text_module_exceptions + self.freeze_vision_module_exceptions = freeze_vision_module_exceptions + self.freeze_lm_head = freeze_lm_head + + self.use_resampler = use_resampler + + if perceiver_config is None: + self.perceiver_config = IdeficsPerceiverConfig() + elif isinstance(perceiver_config, dict): + self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config) + elif isinstance(perceiver_config, IdeficsPerceiverConfig): + self.perceiver_config = perceiver_config + + if vision_config is None: + self.vision_config = IdeficsVisionConfig() + elif isinstance(vision_config, dict): + self.vision_config = IdeficsVisionConfig(**vision_config) + elif isinstance(vision_config, IdeficsVisionConfig): + self.vision_config = vision_config + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since + # PretrainedConfig.from_dict first instantiates the class with the config dict and only then + # updates the config object with `kwargs` from from_pretrained, so during the instantiation + # of this object many attributes have default values and haven't yet been overridden. + # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. diff --git a/venv/lib/python3.10/site-packages/transformers/models/idefics/image_processing_idefics.py b/venv/lib/python3.10/site-packages/transformers/models/idefics/image_processing_idefics.py new file mode 100644 index 0000000000000000000000000000000000000000..ee8dfbb4077c66de280f8ca60506250553ea305e --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/idefics/image_processing_idefics.py @@ -0,0 +1,168 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for Idefics.""" + +from typing import Callable, Dict, List, Optional, Union + +from PIL import Image + +from ...image_processing_utils import BaseImageProcessor, BatchFeature +from ...image_transforms import resize, to_channel_dimension_format +from ...image_utils import ( + ChannelDimension, + ImageInput, + PILImageResampling, + make_list_of_images, + to_numpy_array, + valid_images, +) +from ...utils import TensorType, is_torch_available + + +IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073] +IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711] + + +def convert_to_rgb(image): + # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background + # for transparent images. The call to `alpha_composite` handles this case + if image.mode == "RGB": + return image + + image_rgba = image.convert("RGBA") + background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) + alpha_composite = Image.alpha_composite(background, image_rgba) + alpha_composite = alpha_composite.convert("RGB") + return alpha_composite + + +class IdeficsImageProcessor(BaseImageProcessor): + r""" + Constructs a Idefics image processor. + + Args: + image_size (`int`, *optional*, defaults to 224): + Resize to image size + image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be + overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + Can be overridden by the `image_std` parameter in the `preprocess` method. + image_num_channels (`int`, *optional*, defaults to 3): + Number of image channels. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + image_size: int = 224, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + image_num_channels: Optional[int] = 3, + **kwargs, + ) -> None: + super().__init__(**kwargs) + + self.image_size = image_size + self.image_num_channels = image_num_channels + self.image_mean = image_mean + self.image_std = image_std + + def preprocess( + self, + images: ImageInput, + image_num_channels: Optional[int] = 3, + image_size: Optional[Dict[str, int]] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + transform: Callable = None, + **kwargs, + ) -> TensorType.PYTORCH: + """ + Preprocess a batch of images. + + Args: + images (`ImageInput`): + A list of images to preprocess. + image_size (`int`, *optional*, defaults to `self.image_size`): + Resize to image size + image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`): + Number of image channels. + image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can + be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` + method. Can be overridden by the `image_std` parameter in the `preprocess` method. + transform (`Callable`, *optional*, defaults to `None`): + A custom transform function that accepts a single image can be passed for training. For example, + `torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is + assumed - and then a preset of inference-specific transforms will be applied to the images + + Returns: + a PyTorch tensor of the processed images + + """ + image_size = image_size if image_size is not None else self.image_size + image_num_channels = image_num_channels if image_num_channels is not None else self.image_num_channels + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + size = (image_size, image_size) + + if isinstance(images, list) and len(images) == 0: + return [] + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + # For training a user needs to pass their own set of transforms as a Callable. + # For reference this is what was used in the original IDEFICS training: + # transform = transforms.Compose([ + # convert_to_rgb, + # transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC), + # transforms.ToTensor(), + # transforms.Normalize(mean=image_mean, std=image_std), + # ]) + if transform is not None: + if not is_torch_available(): + raise ImportError("To pass in `transform` torch must be installed") + import torch + + images = [transform(x) for x in images] + return torch.stack(images) + + # for inference we do the exact transforms that were used to train IDEFICS + images = [convert_to_rgb(x) for x in images] + # further transforms expect numpy arrays + images = [to_numpy_array(x) for x in images] + images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images] + images = [self.rescale(image=image, scale=1 / 255) for image in images] + images = [self.normalize(x, mean=image_mean, std=image_std) for x in images] + images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images] + # TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available + images = BatchFeature(data={"pixel_values": images}, tensor_type=TensorType.PYTORCH)["pixel_values"] + + return images diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e172dd1dc791010141fb4555c663558a0498612d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__init__.py @@ -0,0 +1,120 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_layoutlm": ["LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMConfig", "LayoutLMOnnxConfig"], + "tokenization_layoutlm": ["LayoutLMTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_layoutlm_fast"] = ["LayoutLMTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_layoutlm"] = [ + "LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", + "LayoutLMForMaskedLM", + "LayoutLMForSequenceClassification", + "LayoutLMForTokenClassification", + "LayoutLMForQuestionAnswering", + "LayoutLMModel", + "LayoutLMPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_layoutlm"] = [ + "TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFLayoutLMForMaskedLM", + "TFLayoutLMForSequenceClassification", + "TFLayoutLMForTokenClassification", + "TFLayoutLMForQuestionAnswering", + "TFLayoutLMMainLayer", + "TFLayoutLMModel", + "TFLayoutLMPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig, LayoutLMOnnxConfig + from .tokenization_layoutlm import LayoutLMTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_layoutlm_fast import LayoutLMTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_layoutlm import ( + LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, + LayoutLMForMaskedLM, + LayoutLMForQuestionAnswering, + LayoutLMForSequenceClassification, + LayoutLMForTokenClassification, + LayoutLMModel, + LayoutLMPreTrainedModel, + ) + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_layoutlm import ( + TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, + TFLayoutLMForMaskedLM, + TFLayoutLMForQuestionAnswering, + TFLayoutLMForSequenceClassification, + TFLayoutLMForTokenClassification, + TFLayoutLMMainLayer, + TFLayoutLMModel, + TFLayoutLMPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..727075dc97c81899a70624f93eb4317643c3570d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..32f2b07d6595d578501a7a22a39a13a0d2d9771e Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/configuration_layoutlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_layoutlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_layoutlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2447b542d310a503ee822bae19b077b15c5ec5d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_layoutlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_tf_layoutlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_tf_layoutlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ab23cd5faf3bf2d338f3648a5b8feceb9a82906 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/modeling_tf_layoutlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ae240ba8194b7ab0a74d4c59839fe3d4da201de Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c0a28c96a1ec717e840a56eb1a6e25a77c63c07 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/__pycache__/tokenization_layoutlm_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/configuration_layoutlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/configuration_layoutlm.py new file mode 100644 index 0000000000000000000000000000000000000000..c7c6886fedbec54d7e138a1b0e94970285cebb31 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/configuration_layoutlm.py @@ -0,0 +1,198 @@ +# coding=utf-8 +# Copyright 2010, The Microsoft Research Asia LayoutLM Team authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" LayoutLM model configuration""" +from collections import OrderedDict +from typing import Any, List, Mapping, Optional + +from ... import PretrainedConfig, PreTrainedTokenizer +from ...onnx import OnnxConfig, PatchingSpec +from ...utils import TensorType, is_torch_available, logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class LayoutLMConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a + LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the LayoutLM + [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture. + + Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the + documentation from [`BertConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the + *inputs_ids* passed to the forward method of [`LayoutLMModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + pad_token_id (`int`, *optional*, defaults to 0): + The value used to pad input_ids. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + max_2d_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum value that the 2D position embedding might ever used. Typically set this to something large + just in case (e.g., 1024). + + Examples: + + ```python + >>> from transformers import LayoutLMConfig, LayoutLMModel + + >>> # Initializing a LayoutLM configuration + >>> configuration = LayoutLMConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = LayoutLMModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "layoutlm" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + position_embedding_type="absolute", + use_cache=True, + max_2d_position_embeddings=1024, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.max_2d_position_embeddings = max_2d_position_embeddings + + +class LayoutLMOnnxConfig(OnnxConfig): + def __init__( + self, + config: PretrainedConfig, + task: str = "default", + patching_specs: List[PatchingSpec] = None, + ): + super().__init__(config, task=task, patching_specs=patching_specs) + self.max_2d_positions = config.max_2d_position_embeddings - 1 + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("input_ids", {0: "batch", 1: "sequence"}), + ("bbox", {0: "batch", 1: "sequence"}), + ("attention_mask", {0: "batch", 1: "sequence"}), + ("token_type_ids", {0: "batch", 1: "sequence"}), + ] + ) + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + """ + Generate inputs to provide to the ONNX exporter for the specific framework + + Args: + tokenizer: The tokenizer associated with this model configuration + batch_size: The batch size (int) to export the model for (-1 means dynamic axis) + seq_length: The sequence length (int) to export the model for (-1 means dynamic axis) + is_pair: Indicate if the input is a pair (sentence 1, sentence 2) + framework: The framework (optional) the tokenizer will generate tensor for + + Returns: + Mapping[str, Tensor] holding the kwargs to provide to the model's forward function + """ + + input_dict = super().generate_dummy_inputs( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + # Generate a dummy bbox + box = [48, 84, 73, 128] + + if not framework == TensorType.PYTORCH: + raise NotImplementedError("Exporting LayoutLM to ONNX is currently only supported for PyTorch.") + + if not is_torch_available(): + raise ValueError("Cannot generate dummy inputs without PyTorch installed.") + import torch + + batch_size, seq_length = input_dict["input_ids"].shape + input_dict["bbox"] = torch.tensor([*[box] * seq_length]).tile(batch_size, 1, 1) + return input_dict diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_layoutlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_layoutlm.py new file mode 100644 index 0000000000000000000000000000000000000000..c570fdb124adc12055ffedda4bb4050a2861115b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_layoutlm.py @@ -0,0 +1,1368 @@ +# coding=utf-8 +# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch LayoutLM model.""" + + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + MaskedLMOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_layoutlm import LayoutLMConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "LayoutLMConfig" +_CHECKPOINT_FOR_DOC = "microsoft/layoutlm-base-uncased" + + +from ..deprecated._archive_maps import LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +LayoutLMLayerNorm = nn.LayerNorm + + +class LayoutLMEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super(LayoutLMEmbeddings, self).__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) + self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) + self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) + self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids=None, + bbox=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + ): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + words_embeddings = inputs_embeds + position_embeddings = self.position_embeddings(position_ids) + try: + left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) + upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) + right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) + lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) + except IndexError as e: + raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e + + h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) + w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = ( + words_embeddings + + position_embeddings + + left_position_embeddings + + upper_position_embeddings + + right_position_embeddings + + lower_position_embeddings + + h_position_embeddings + + w_position_embeddings + + token_type_embeddings + ) + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->LayoutLM +class LayoutLMSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in LayoutLMModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM +class LayoutLMSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->LayoutLM +class LayoutLMAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = LayoutLMSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = LayoutLMSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class LayoutLMIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM +class LayoutLMOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->LayoutLM +class LayoutLMLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = LayoutLMAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = LayoutLMAttention(config, position_embedding_type="absolute") + self.intermediate = LayoutLMIntermediate(config) + self.output = LayoutLMOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->LayoutLM +class LayoutLMEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([LayoutLMLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class LayoutLMPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM +class LayoutLMPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM +class LayoutLMLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = LayoutLMPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM +class LayoutLMOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = LayoutLMLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class LayoutLMPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LayoutLMConfig + base_model_prefix = "layoutlm" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, LayoutLMLayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LAYOUTLM_START_DOCSTRING = r""" + The LayoutLM model was proposed in [LayoutLM: Pre-training of Text and Layout for Document Image + Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei and + Ming Zhou. + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LAYOUTLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): + Bounding boxes of each input sequence tokens. Selected in the range `[0, + config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) + format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, + y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: `1` for + tokens that are NOT MASKED, `0` for MASKED tokens. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: `0` corresponds to a *sentence A* token, `1` corresponds to a *sentence B* token + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: `1` + indicates the head is **not masked**, `0` indicates the head is **masked**. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + If set to `True`, the attentions tensors of all attention layers are returned. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + If set to `True`, the hidden states of all layers are returned. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + If set to `True`, the model will return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", + LAYOUTLM_START_DOCSTRING, +) +class LayoutLMModel(LayoutLMPreTrainedModel): + def __init__(self, config): + super(LayoutLMModel, self).__init__(config) + self.config = config + + self.embeddings = LayoutLMEmbeddings(config) + self.encoder = LayoutLMEncoder(config) + self.pooler = LayoutLMPooler(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LayoutLMModel + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="pt") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = torch.tensor([token_boxes]) + + >>> outputs = model( + ... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids + ... ) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + if bbox is None: + bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) + + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + + extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) + extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min + + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) + head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) + head_mask = head_mask.to(dtype=next(self.parameters()).dtype) + else: + head_mask = [None] * self.config.num_hidden_layers + + embedding_output = self.embeddings( + input_ids=input_ids, + bbox=bbox, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING) +class LayoutLMForMaskedLM(LayoutLMPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] + + def __init__(self, config): + super().__init__(config) + + self.layoutlm = LayoutLMModel(config) + self.cls = LayoutLMOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.layoutlm.embeddings.word_embeddings + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LayoutLMForMaskedLM + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = LayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "[MASK]"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="pt") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = torch.tensor([token_boxes]) + + >>> labels = tokenizer("Hello world", return_tensors="pt")["input_ids"] + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=labels, + ... ) + + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.layoutlm( + input_ids, + bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct( + prediction_scores.view(-1, self.config.vocab_size), + labels.view(-1), + ) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + LayoutLM Model with a sequence classification head on top (a linear layer on top of the pooled output) e.g. for + document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset. + """, + LAYOUTLM_START_DOCSTRING, +) +class LayoutLMForSequenceClassification(LayoutLMPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.layoutlm = LayoutLMModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.layoutlm.embeddings.word_embeddings + + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LayoutLMForSequenceClassification + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="pt") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = torch.tensor([token_boxes]) + >>> sequence_label = torch.tensor([1]) + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=sequence_label, + ... ) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + sequence labeling (information extraction) tasks such as the [FUNSD](https://guillaumejaume.github.io/FUNSD/) + dataset and the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset. + """, + LAYOUTLM_START_DOCSTRING, +) +class LayoutLMForTokenClassification(LayoutLMPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.layoutlm = LayoutLMModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.layoutlm.embeddings.word_embeddings + + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LayoutLMForTokenClassification + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="pt") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = torch.tensor([token_boxes]) + >>> token_labels = torch.tensor([1, 1, 0, 0]).unsqueeze(0) # batch size of 1 + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=token_labels, + ... ) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + LayoutLM Model with a span classification head on top for extractive question-answering tasks such as + [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span + start logits` and `span end logits`). + """, + LAYOUTLM_START_DOCSTRING, +) +class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel): + def __init__(self, config, has_visual_segment_embedding=True): + super().__init__(config) + self.num_labels = config.num_labels + + self.layoutlm = LayoutLMModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.layoutlm.embeddings.word_embeddings + + @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Example: + + In the example below, we prepare a question + context pair for the LayoutLM model. It will give us a prediction + of what it thinks the answer is (the span of the answer within the texts parsed from the image). + + ```python + >>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering + >>> from datasets import load_dataset + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True) + >>> model = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac") + + >>> dataset = load_dataset("nielsr/funsd", split="train") + >>> example = dataset[0] + >>> question = "what's his name?" + >>> words = example["words"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer( + ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt" + ... ) + >>> bbox = [] + >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)): + ... if s == 1: + ... bbox.append(boxes[w]) + ... elif i == tokenizer.sep_token_id: + ... bbox.append([1000] * 4) + ... else: + ... bbox.append([0] * 4) + >>> encoding["bbox"] = torch.tensor([bbox]) + + >>> word_ids = encoding.word_ids(0) + >>> outputs = model(**encoding) + >>> loss = outputs.loss + >>> start_scores = outputs.start_logits + >>> end_scores = outputs.end_logits + >>> start, end = word_ids[start_scores.argmax(-1)], word_ids[end_scores.argmax(-1)] + >>> print(" ".join(words[start : end + 1])) + M. Hamann P. Harper, P. Martinez + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_tf_layoutlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_tf_layoutlm.py new file mode 100644 index 0000000000000000000000000000000000000000..0125fc3ed60232c96d5233de6e4c323778c40054 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/modeling_tf_layoutlm.py @@ -0,0 +1,1685 @@ +# coding=utf-8 +# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 LayoutLM model.""" + + +from __future__ import annotations + +import math +import warnings +from typing import Dict, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithPastAndCrossAttentions, + TFBaseModelOutputWithPoolingAndCrossAttentions, + TFMaskedLMOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_layoutlm import LayoutLMConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "LayoutLMConfig" + + +from ..deprecated._archive_maps import TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFLayoutLMEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.max_2d_position_embeddings = config.max_2d_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("x_position_embeddings"): + self.x_position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_2d_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("y_position_embeddings"): + self.y_position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_2d_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("h_position_embeddings"): + self.h_position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_2d_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("w_position_embeddings"): + self.w_position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_2d_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def call( + self, + input_ids: tf.Tensor = None, + bbox: tf.Tensor = None, + position_ids: tf.Tensor = None, + token_type_ids: tf.Tensor = None, + inputs_embeds: tf.Tensor = None, + training: bool = False, + ) -> tf.Tensor: + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + if bbox is None: + bbox = bbox = tf.fill(input_shape + [4], value=0) + try: + left_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 0]) + upper_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 1]) + right_position_embeddings = tf.gather(self.x_position_embeddings, bbox[:, :, 2]) + lower_position_embeddings = tf.gather(self.y_position_embeddings, bbox[:, :, 3]) + except IndexError as e: + raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e + h_position_embeddings = tf.gather(self.h_position_embeddings, bbox[:, :, 3] - bbox[:, :, 1]) + w_position_embeddings = tf.gather(self.w_position_embeddings, bbox[:, :, 2] - bbox[:, :, 0]) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = ( + inputs_embeds + + position_embeds + + token_type_embeds + + left_position_embeddings + + upper_position_embeddings + + right_position_embeddings + + lower_position_embeddings + + h_position_embeddings + + w_position_embeddings + ) + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->LayoutLM +class TFLayoutLMSelfAttention(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + self.is_decoder = config.is_decoder + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + key_layer = tf.concat([past_key_value[0], key_layer], axis=2) + value_layer = tf.concat([past_key_value[1], value_layer], axis=2) + else: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFLayoutLMModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->LayoutLM +class TFLayoutLMSelfOutput(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->LayoutLM +class TFLayoutLMAttention(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFLayoutLMSelfAttention(config, name="self") + self.dense_output = TFLayoutLMSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + # add attentions (possibly with past_key_value) if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->LayoutLM +class TFLayoutLMIntermediate(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->LayoutLM +class TFLayoutLMOutput(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->LayoutLM +class TFLayoutLMLayer(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFLayoutLMAttention(config, name="attention") + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TFLayoutLMAttention(config, name="crossattention") + self.intermediate = TFLayoutLMIntermediate(config, name="intermediate") + self.bert_output = TFLayoutLMOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_value: Tuple[tf.Tensor] | None, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + input_tensor=attention_output, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + outputs # add attentions if we output them + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + if getattr(self, "crossattention", None) is not None: + with tf.name_scope(self.crossattention.name): + self.crossattention.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->LayoutLM +class TFLayoutLMEncoder(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layer = [TFLayoutLMLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None, + use_cache: Optional[bool], + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + past_key_value = past_key_values[i] if past_key_values is not None else None + + layer_outputs = layer_module( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if self.config.add_cross_attention and encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None + ) + + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->LayoutLM +class TFLayoutLMPooler(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->LayoutLM +class TFLayoutLMPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(inputs=hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->LayoutLM +class TFLayoutLMLMPredictionHead(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + + self.transform = TFLayoutLMPredictionHeadTransform(config, name="transform") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self) -> keras.layers.Layer: + return self.input_embeddings + + def set_output_embeddings(self, value: tf.Variable): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self) -> Dict[str, tf.Variable]: + return {"bias": self.bias} + + def set_bias(self, value: tf.Variable): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.transform(hidden_states=hidden_states) + seq_length = shape_list(hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->LayoutLM +class TFLayoutLMMLMHead(keras.layers.Layer): + def __init__(self, config: LayoutLMConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.predictions = TFLayoutLMLMPredictionHead(config, input_embeddings, name="predictions") + + def call(self, sequence_output: tf.Tensor) -> tf.Tensor: + prediction_scores = self.predictions(hidden_states=sequence_output) + + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +@keras_serializable +class TFLayoutLMMainLayer(keras.layers.Layer): + config_class = LayoutLMConfig + + def __init__(self, config: LayoutLMConfig, add_pooling_layer: bool = True, **kwargs): + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFLayoutLMEmbeddings(config, name="embeddings") + self.encoder = TFLayoutLMEncoder(config, name="encoder") + self.pooler = TFLayoutLMPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(dims=input_shape, value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + if bbox is None: + bbox = tf.fill(dims=input_shape + [4], value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + bbox=bbox, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + # Need to pass these required positional arguments to `Encoder` + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=None, + past_key_values=None, + use_cache=False, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFLayoutLMPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LayoutLMConfig + base_model_prefix = "layoutlm" + + @property + def input_signature(self): + signature = super().input_signature + signature["bbox"] = tf.TensorSpec(shape=(None, None, 4), dtype=tf.int32, name="bbox") + return signature + + +LAYOUTLM_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`LayoutLMConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LAYOUTLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + bbox (`Numpy array` or `tf.Tensor` of shape `({0}, 4)`, *optional*): + Bounding Boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings- + 1]`. + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare LayoutLM Model transformer outputting raw hidden-states without any specific head on top.", + LAYOUTLM_START_DOCSTRING, +) +class TFLayoutLMModel(TFLayoutLMPreTrainedModel): + def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings( + output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC + ) + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFLayoutLMModel + >>> import tensorflow as tf + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="tf") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = tf.convert_to_tensor([token_boxes]) + + >>> outputs = model( + ... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids + ... ) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layoutlm", None) is not None: + with tf.name_scope(self.layoutlm.name): + self.layoutlm.build(None) + + +@add_start_docstrings("""LayoutLM Model with a `language modeling` head on top.""", LAYOUTLM_START_DOCSTRING) +class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"cls.seq_relationship", + r"cls.predictions.decoder.weight", + r"nsp___cls", + ] + + def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + if config.is_decoder: + logger.warning( + "If you want to use `TFLayoutLMForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm") + self.mlm = TFLayoutLMMLMHead(config, input_embeddings=self.layoutlm.embeddings, name="mlm___cls") + + def get_lm_head(self) -> keras.layers.Layer: + return self.mlm.predictions + + def get_prefix_bias_name(self) -> str: + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFLayoutLMForMaskedLM + >>> import tensorflow as tf + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = TFLayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "[MASK]"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="tf") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = tf.convert_to_tensor([token_boxes]) + + >>> labels = tokenizer("Hello world", return_tensors="tf")["input_ids"] + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=labels, + ... ) + + >>> loss = outputs.loss + ```""" + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.mlm(sequence_output=sequence_output, training=training) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layoutlm", None) is not None: + with tf.name_scope(self.layoutlm.name): + self.layoutlm.build(None) + if getattr(self, "mlm", None) is not None: + with tf.name_scope(self.mlm.name): + self.mlm.build(None) + + +@add_start_docstrings( + """ + LayoutLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LAYOUTLM_START_DOCSTRING, +) +class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.layoutlm = TFLayoutLMMainLayer(config, name="layoutlm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFLayoutLMForSequenceClassification + >>> import tensorflow as tf + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="tf") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = tf.convert_to_tensor([token_boxes]) + >>> sequence_label = tf.convert_to_tensor([1]) + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=sequence_label, + ... ) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(inputs=pooled_output, training=training) + logits = self.classifier(inputs=pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layoutlm", None) is not None: + with tf.name_scope(self.layoutlm.name): + self.layoutlm.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + LAYOUTLM_START_DOCSTRING, +) +class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"mlm___cls", + r"nsp___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFLayoutLMForTokenClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased") + >>> model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased") + + >>> words = ["Hello", "world"] + >>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782] + + >>> token_boxes = [] + >>> for word, box in zip(words, normalized_word_boxes): + ... word_tokens = tokenizer.tokenize(word) + ... token_boxes.extend([box] * len(word_tokens)) + >>> # add bounding boxes of cls + sep tokens + >>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]] + + >>> encoding = tokenizer(" ".join(words), return_tensors="tf") + >>> input_ids = encoding["input_ids"] + >>> attention_mask = encoding["attention_mask"] + >>> token_type_ids = encoding["token_type_ids"] + >>> bbox = tf.convert_to_tensor([token_boxes]) + >>> token_labels = tf.convert_to_tensor([1, 1, 0, 0]) + + >>> outputs = model( + ... input_ids=input_ids, + ... bbox=bbox, + ... attention_mask=attention_mask, + ... token_type_ids=token_type_ids, + ... labels=token_labels, + ... ) + + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(inputs=sequence_output, training=training) + logits = self.classifier(inputs=sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layoutlm", None) is not None: + with tf.name_scope(self.layoutlm.name): + self.layoutlm.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + LayoutLM Model with a span classification head on top for extractive question-answering tasks such as + [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the final hidden-states output to compute `span + start logits` and `span end logits`). + """, + LAYOUTLM_START_DOCSTRING, +) +class TFLayoutLMForQuestionAnswering(TFLayoutLMPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"mlm___cls", + r"nsp___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + + def __init__(self, config: LayoutLMConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.layoutlm = TFLayoutLMMainLayer(config, add_pooling_layer=True, name="layoutlm") + self.qa_outputs = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="qa_outputs", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LAYOUTLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + bbox: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFLayoutLMForQuestionAnswering + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True) + >>> model = TFLayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac") + + >>> dataset = load_dataset("nielsr/funsd", split="train") + >>> example = dataset[0] + >>> question = "what's his name?" + >>> words = example["words"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer( + ... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="tf" + ... ) + >>> bbox = [] + >>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)): + ... if s == 1: + ... bbox.append(boxes[w]) + ... elif i == tokenizer.sep_token_id: + ... bbox.append([1000] * 4) + ... else: + ... bbox.append([0] * 4) + >>> encoding["bbox"] = tf.convert_to_tensor([bbox]) + + >>> word_ids = encoding.word_ids(0) + >>> outputs = model(**encoding) + >>> loss = outputs.loss + >>> start_scores = outputs.start_logits + >>> end_scores = outputs.end_logits + >>> start, end = word_ids[tf.math.argmax(start_scores, -1)[0]], word_ids[tf.math.argmax(end_scores, -1)[0]] + >>> print(" ".join(words[start : end + 1])) + M. Hamann P. Harper, P. Martinez + ```""" + + outputs = self.layoutlm( + input_ids=input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(inputs=sequence_output) + start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) + start_logits = tf.squeeze(input=start_logits, axis=-1) + end_logits = tf.squeeze(input=end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layoutlm", None) is not None: + with tf.name_scope(self.layoutlm.name): + self.layoutlm.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm.py new file mode 100644 index 0000000000000000000000000000000000000000..836b1aab8800a90af0886f4986c7e23dbed8ac06 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm.py @@ -0,0 +1,504 @@ +# coding=utf-8 +# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model LayoutLM.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->LayoutLM,BERT->LayoutLM +class LayoutLMTokenizer(PreTrainedTokenizer): + r""" + Construct a LayoutLM tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original LayoutLM). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = LayoutLMTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A LayoutLM sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A LayoutLM sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm_fast.py b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..fa3d95132b0eff9b7c9970bdc7607427733fe2aa --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutlm/tokenization_layoutlm_fast.py @@ -0,0 +1,173 @@ +# coding=utf-8 +# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model LayoutLM.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_layoutlm import LayoutLMTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + + +# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->LayoutLM,BERT->LayoutLM +class LayoutLMTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" LayoutLM tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original LayoutLM). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = LayoutLMTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A LayoutLM sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A LayoutLM sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/lilt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..50c493e352bc75f0a72cbda074c4b060cea1b087 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/lilt/__init__.py @@ -0,0 +1,60 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_lilt"] = [ + "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", + "LiltForQuestionAnswering", + "LiltForSequenceClassification", + "LiltForTokenClassification", + "LiltModel", + "LiltPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_lilt import ( + LILT_PRETRAINED_MODEL_ARCHIVE_LIST, + LiltForQuestionAnswering, + LiltForSequenceClassification, + LiltForTokenClassification, + LiltModel, + LiltPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c515c2e0351e5105118970287fa44f4709a0dd5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d659fda8cbbc46fab4823396d3bca87968a2868 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/configuration_lilt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d95ae715699da012a5e99002db308a3376544a7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/lilt/__pycache__/modeling_lilt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py b/venv/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py new file mode 100644 index 0000000000000000000000000000000000000000..f1cfa98c6c3c13048843447f2fe461b7c87cde0b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/lilt/configuration_lilt.py @@ -0,0 +1,131 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" LiLT configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class LiltConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the LiLT + [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture. + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`LiltModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + channel_shrink_ratio (`int`, *optional*, defaults to 4): + The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings. + max_2d_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum value that the 2D position embedding might ever be used with. Typically set this to something + large just in case (e.g., 1024). + + Examples: + + ```python + >>> from transformers import LiltConfig, LiltModel + + >>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration + >>> configuration = LiltConfig() + >>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration + >>> model = LiltModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "lilt" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + position_embedding_type="absolute", + classifier_dropout=None, + channel_shrink_ratio=4, + max_2d_position_embeddings=1024, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.classifier_dropout = classifier_dropout + self.channel_shrink_ratio = channel_shrink_ratio + self.max_2d_position_embeddings = max_2d_position_embeddings diff --git a/venv/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py b/venv/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py new file mode 100644 index 0000000000000000000000000000000000000000..adf8edcdc2ab715af10c5343e43a6335a4229681 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/lilt/modeling_lilt.py @@ -0,0 +1,1186 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch LiLT model.""" + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_lilt import LiltConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "LiltConfig" + + +from ..deprecated._archive_maps import LILT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class LiltTextEmbeddings(nn.Module): + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, + input_ids=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( + input_ids.device + ) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings, position_ids + + def create_position_ids_from_input_ids(self, input_ids, padding_idx): + """ + Args: + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + x: torch.Tensor x: + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask + return incremental_indices.long() + padding_idx + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + Args: + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.: + inputs_embeds: torch.Tensor + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class LiltLayoutEmbeddings(nn.Module): + def __init__(self, config): + super().__init__() + # we divide the hidden_size by 6 here as there are 6 different layout embeddings, + # namely left_position, upper_position, right_position, lower_position, height, width + self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) + self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) + self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) + self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) + + self.padding_idx = config.pad_token_id + self.box_position_embeddings = nn.Embedding( + config.max_position_embeddings, + config.hidden_size // config.channel_shrink_ratio, + padding_idx=self.padding_idx, + ) + self.box_linear_embeddings = nn.Linear( + in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio + ) + self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, bbox=None, position_ids=None): + try: + left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) + upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) + right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) + lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) + except IndexError as e: + raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e + + h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) + w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) + + spatial_position_embeddings = torch.cat( + [ + left_position_embeddings, + upper_position_embeddings, + right_position_embeddings, + lower_position_embeddings, + h_position_embeddings, + w_position_embeddings, + ], + dim=-1, + ) + spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings) + box_position_embeddings = self.box_position_embeddings(position_ids) + + spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings + + spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings) + spatial_position_embeddings = self.dropout(spatial_position_embeddings) + + return spatial_position_embeddings + + +class LiltSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.layout_query = nn.Linear( + config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio + ) + self.layout_key = nn.Linear( + config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio + ) + self.layout_value = nn.Linear( + config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio + ) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.channel_shrink_ratio = config.channel_shrink_ratio + + def transpose_for_scores(self, x, r=1): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + layout_inputs, + attention_mask=None, + head_mask=None, + output_attentions=False, + ): + layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio) + layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio) + layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio) + + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = hidden_states.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size) + tmp_layout_attention_scores = layout_attention_scores / math.sqrt( + self.attention_head_size // self.channel_shrink_ratio + ) + attention_scores = tmp_attention_scores + tmp_layout_attention_scores + layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + layout_attention_scores = layout_attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + layout_attention_probs = self.dropout(layout_attention_probs) + + # Mask heads if we want to + if head_mask is not None: + layout_attention_probs = layout_attention_probs * head_mask + + layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer) + + layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,) + layout_context_layer = layout_context_layer.view(*new_context_layer_shape) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = ( + ((context_layer, layout_context_layer), attention_probs) + if output_attentions + else ((context_layer, layout_context_layer),) + ) + + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class LiltSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LiltAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = LiltSelfOutput(config) + self.pruned_heads = set() + + ori_hidden_size = config.hidden_size + config.hidden_size = config.hidden_size // config.channel_shrink_ratio + self.layout_output = LiltSelfOutput(config) + config.hidden_size = ori_hidden_size + + # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + layout_inputs: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + layout_inputs, + attention_mask, + head_mask, + output_attentions, + ) + attention_output = self.output(self_outputs[0][0], hidden_states) + layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs) + outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class LiltIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class LiltOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LiltLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = LiltAttention(config) + self.intermediate = LiltIntermediate(config) + self.output = LiltOutput(config) + + ori_hidden_size = config.hidden_size + ori_intermediate_size = config.intermediate_size + config.hidden_size = config.hidden_size // config.channel_shrink_ratio + config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio + self.layout_intermediate = LiltIntermediate(config) + self.layout_output = LiltOutput(config) + config.hidden_size = ori_hidden_size + config.intermediate_size = ori_intermediate_size + + def forward( + self, + hidden_states: torch.Tensor, + layout_inputs: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_attention_outputs = self.attention( + hidden_states, + layout_inputs, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0][0] + layout_attention_output = self_attention_outputs[0][1] + + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + layout_layer_output = apply_chunking_to_forward( + self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output + ) + outputs = ((layer_output, layout_layer_output),) + outputs + + return outputs + + # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + def layout_feed_forward_chunk(self, attention_output): + intermediate_output = self.layout_intermediate(attention_output) + layer_output = self.layout_output(intermediate_output, attention_output) + return layer_output + + +class LiltEncoder(nn.Module): + # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + layout_inputs: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layout_inputs, + attention_mask, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + layout_inputs, + attention_mask, + layer_head_mask, + output_attentions, + ) + + hidden_states = layer_outputs[0][0] + layout_inputs = layer_outputs[0][1] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + all_hidden_states, + all_self_attentions, + ] + if v is not None + ) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class LiltPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class LiltPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LiltConfig + base_model_prefix = "lilt" + supports_gradient_checkpointing = True + _no_split_modules = [] + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LILT_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LiltConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LILT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): + Bounding boxes of each input sequence tokens. Selected in the range `[0, + config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) + format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, + y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. + + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.", + LILT_START_DOCSTRING, +) +class LiltModel(LiltPreTrainedModel): + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = LiltTextEmbeddings(config) + self.layout_embeddings = LiltLayoutEmbeddings(config) + self.encoder = LiltEncoder(config) + + self.pooler = LiltPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + bbox: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: + r""" + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, AutoModel + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + + >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") + >>> example = dataset[0] + >>> words = example["tokens"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") + + >>> outputs = model(**encoding) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if bbox is None: + bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output, position_ids = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + + layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids) + + encoder_outputs = self.encoder( + embedding_output, + layout_embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + LILT_START_DOCSTRING, +) +class LiltForSequenceClassification(LiltPreTrainedModel): + # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.lilt = LiltModel(config, add_pooling_layer=False) + self.classifier = LiltClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + + >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") + >>> example = dataset[0] + >>> words = example["tokens"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") + + >>> outputs = model(**encoding) + >>> predicted_class_idx = outputs.logits.argmax(-1).item() + >>> predicted_class = model.config.id2label[predicted_class_idx] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.lilt( + input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + LILT_START_DOCSTRING, +) +class LiltForTokenClassification(LiltPreTrainedModel): + # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.lilt = LiltModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, AutoModelForTokenClassification + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + + >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") + >>> example = dataset[0] + >>> words = example["tokens"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") + + >>> outputs = model(**encoding) + >>> predicted_class_indices = outputs.logits.argmax(-1) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.lilt( + input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt +class LiltClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LILT_START_DOCSTRING, +) +class LiltForQuestionAnswering(LiltPreTrainedModel): + # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.lilt = LiltModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + bbox: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering + >>> from datasets import load_dataset + + >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") + + >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") + >>> example = dataset[0] + >>> words = example["tokens"] + >>> boxes = example["bboxes"] + + >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") + + >>> outputs = model(**encoding) + + >>> answer_start_index = outputs.start_logits.argmax() + >>> answer_end_index = outputs.end_logits.argmax() + + >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] + >>> predicted_answer = tokenizer.decode(predict_answer_tokens) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.lilt( + input_ids, + bbox=bbox, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )