applied-ai-018 commited on
Commit
1959592
·
verified ·
1 Parent(s): 0a5da9d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step80/zero/17.attention.dense.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step80/zero/17.attention.dense.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step80/zero/25.input_layernorm.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step80/zero/25.input_layernorm.weight/exp_avg_sq.pt +3 -0
  6. ckpts/universal/global_step80/zero/26.input_layernorm.weight/exp_avg.pt +3 -0
  7. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/__init__.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/coreviews.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/digraph.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/filters.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/function.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/graph.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/graphviews.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/multidigraph.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/multigraph.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/networkx/classes/__pycache__/reportviews.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/networkx/classes/tests/test_coreviews.py +362 -0
  24. venv/lib/python3.10/site-packages/networkx/classes/tests/test_filters.py +177 -0
  25. venv/lib/python3.10/site-packages/networkx/classes/tests/test_function.py +787 -0
  26. venv/lib/python3.10/site-packages/networkx/generators/__init__.py +33 -0
  27. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/ego.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf301191a5195e414196ecded5d82a107b0857af6b94395ad45d9637ecf7bb01
3
+ size 33555627
ckpts/universal/global_step80/zero/17.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5ca77f9cf5fa803cd4face5d8ab3752f09c8d5bd9ce31e262230a7146b2bf3
3
+ size 16778396
ckpts/universal/global_step80/zero/17.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:738e6326b04edf78c8358d06ace4f569889b79f8a0dbdb5f3daa303e5a2f1d0f
3
+ size 16778411
ckpts/universal/global_step80/zero/25.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f8ce118ef6ad626f5227ae866cb7731a68fd4cc5207446b8776ebd9d499525c
3
+ size 9372
ckpts/universal/global_step80/zero/25.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266bb660e906e718e76fc3305b55474fba11e679a1e9bd81b423e56b8730bd35
3
+ size 9387
ckpts/universal/global_step80/zero/26.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84ddffd9019b752a301314c751d68fb39d202bbf8fc3b65d5a7b271e960c7745
3
+ size 9372
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (588 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/coreviews.cpython-310.pyc ADDED
Binary file (16.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/digraph.cpython-310.pyc ADDED
Binary file (46.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/filters.cpython-310.pyc ADDED
Binary file (4.72 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/function.cpython-310.pyc ADDED
Binary file (37.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/graph.cpython-310.pyc ADDED
Binary file (69.6 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/graphviews.cpython-310.pyc ADDED
Binary file (8.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/multidigraph.cpython-310.pyc ADDED
Binary file (36 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/multigraph.cpython-310.pyc ADDED
Binary file (46.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/__pycache__/reportviews.cpython-310.pyc ADDED
Binary file (49 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (190 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/historical_tests.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph_historical.cpython-310.pyc ADDED
Binary file (4.89 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multidigraph.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_multigraph.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/test_coreviews.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ class TestAtlasView:
9
+ # node->data
10
+ def setup_method(self):
11
+ self.d = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
12
+ self.av = nx.classes.coreviews.AtlasView(self.d)
13
+
14
+ def test_pickle(self):
15
+ view = self.av
16
+ pview = pickle.loads(pickle.dumps(view, -1))
17
+ assert view == pview
18
+ assert view.__slots__ == pview.__slots__
19
+ pview = pickle.loads(pickle.dumps(view))
20
+ assert view == pview
21
+ assert view.__slots__ == pview.__slots__
22
+
23
+ def test_len(self):
24
+ assert len(self.av) == len(self.d)
25
+
26
+ def test_iter(self):
27
+ assert list(self.av) == list(self.d)
28
+
29
+ def test_getitem(self):
30
+ assert self.av[1] is self.d[1]
31
+ assert self.av[2]["color"] == 1
32
+ pytest.raises(KeyError, self.av.__getitem__, 3)
33
+
34
+ def test_copy(self):
35
+ avcopy = self.av.copy()
36
+ assert avcopy[0] == self.av[0]
37
+ assert avcopy == self.av
38
+ assert avcopy[0] is not self.av[0]
39
+ assert avcopy is not self.av
40
+ avcopy[5] = {}
41
+ assert avcopy != self.av
42
+
43
+ avcopy[0]["ht"] = 4
44
+ assert avcopy[0] != self.av[0]
45
+ self.av[0]["ht"] = 4
46
+ assert avcopy[0] == self.av[0]
47
+ del self.av[0]["ht"]
48
+
49
+ assert not hasattr(self.av, "__setitem__")
50
+
51
+ def test_items(self):
52
+ assert sorted(self.av.items()) == sorted(self.d.items())
53
+
54
+ def test_str(self):
55
+ out = str(self.d)
56
+ assert str(self.av) == out
57
+
58
+ def test_repr(self):
59
+ out = "AtlasView(" + str(self.d) + ")"
60
+ assert repr(self.av) == out
61
+
62
+
63
+ class TestAdjacencyView:
64
+ # node->nbr->data
65
+ def setup_method(self):
66
+ dd = {"color": "blue", "weight": 1.2}
67
+ self.nd = {0: dd, 1: {}, 2: {"color": 1}}
68
+ self.adj = {3: self.nd, 0: {3: dd}, 1: {}, 2: {3: {"color": 1}}}
69
+ self.adjview = nx.classes.coreviews.AdjacencyView(self.adj)
70
+
71
+ def test_pickle(self):
72
+ view = self.adjview
73
+ pview = pickle.loads(pickle.dumps(view, -1))
74
+ assert view == pview
75
+ assert view.__slots__ == pview.__slots__
76
+
77
+ def test_len(self):
78
+ assert len(self.adjview) == len(self.adj)
79
+
80
+ def test_iter(self):
81
+ assert list(self.adjview) == list(self.adj)
82
+
83
+ def test_getitem(self):
84
+ assert self.adjview[1] is not self.adj[1]
85
+ assert self.adjview[3][0] is self.adjview[0][3]
86
+ assert self.adjview[2][3]["color"] == 1
87
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
88
+
89
+ def test_copy(self):
90
+ avcopy = self.adjview.copy()
91
+ assert avcopy[0] == self.adjview[0]
92
+ assert avcopy[0] is not self.adjview[0]
93
+
94
+ avcopy[2][3]["ht"] = 4
95
+ assert avcopy[2] != self.adjview[2]
96
+ self.adjview[2][3]["ht"] = 4
97
+ assert avcopy[2] == self.adjview[2]
98
+ del self.adjview[2][3]["ht"]
99
+
100
+ assert not hasattr(self.adjview, "__setitem__")
101
+
102
+ def test_items(self):
103
+ view_items = sorted((n, dict(d)) for n, d in self.adjview.items())
104
+ assert view_items == sorted(self.adj.items())
105
+
106
+ def test_str(self):
107
+ out = str(dict(self.adj))
108
+ assert str(self.adjview) == out
109
+
110
+ def test_repr(self):
111
+ out = self.adjview.__class__.__name__ + "(" + str(self.adj) + ")"
112
+ assert repr(self.adjview) == out
113
+
114
+
115
+ class TestMultiAdjacencyView(TestAdjacencyView):
116
+ # node->nbr->key->data
117
+ def setup_method(self):
118
+ dd = {"color": "blue", "weight": 1.2}
119
+ self.kd = {0: dd, 1: {}, 2: {"color": 1}}
120
+ self.nd = {3: self.kd, 0: {3: dd}, 1: {0: {}}, 2: {3: {"color": 1}}}
121
+ self.adj = {3: self.nd, 0: {3: {3: dd}}, 1: {}, 2: {3: {8: {}}}}
122
+ self.adjview = nx.classes.coreviews.MultiAdjacencyView(self.adj)
123
+
124
+ def test_getitem(self):
125
+ assert self.adjview[1] is not self.adj[1]
126
+ assert self.adjview[3][0][3] is self.adjview[0][3][3]
127
+ assert self.adjview[3][2][3]["color"] == 1
128
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
129
+
130
+ def test_copy(self):
131
+ avcopy = self.adjview.copy()
132
+ assert avcopy[0] == self.adjview[0]
133
+ assert avcopy[0] is not self.adjview[0]
134
+
135
+ avcopy[2][3][8]["ht"] = 4
136
+ assert avcopy[2] != self.adjview[2]
137
+ self.adjview[2][3][8]["ht"] = 4
138
+ assert avcopy[2] == self.adjview[2]
139
+ del self.adjview[2][3][8]["ht"]
140
+
141
+ assert not hasattr(self.adjview, "__setitem__")
142
+
143
+
144
+ class TestUnionAtlas:
145
+ # node->data
146
+ def setup_method(self):
147
+ self.s = {0: {"color": "blue", "weight": 1.2}, 1: {}, 2: {"color": 1}}
148
+ self.p = {3: {"color": "blue", "weight": 1.2}, 4: {}, 2: {"watch": 2}}
149
+ self.av = nx.classes.coreviews.UnionAtlas(self.s, self.p)
150
+
151
+ def test_pickle(self):
152
+ view = self.av
153
+ pview = pickle.loads(pickle.dumps(view, -1))
154
+ assert view == pview
155
+ assert view.__slots__ == pview.__slots__
156
+
157
+ def test_len(self):
158
+ assert len(self.av) == len(self.s.keys() | self.p.keys()) == 5
159
+
160
+ def test_iter(self):
161
+ assert set(self.av) == set(self.s) | set(self.p)
162
+
163
+ def test_getitem(self):
164
+ assert self.av[0] is self.s[0]
165
+ assert self.av[4] is self.p[4]
166
+ assert self.av[2]["color"] == 1
167
+ pytest.raises(KeyError, self.av[2].__getitem__, "watch")
168
+ pytest.raises(KeyError, self.av.__getitem__, 8)
169
+
170
+ def test_copy(self):
171
+ avcopy = self.av.copy()
172
+ assert avcopy[0] == self.av[0]
173
+ assert avcopy[0] is not self.av[0]
174
+ assert avcopy is not self.av
175
+ avcopy[5] = {}
176
+ assert avcopy != self.av
177
+
178
+ avcopy[0]["ht"] = 4
179
+ assert avcopy[0] != self.av[0]
180
+ self.av[0]["ht"] = 4
181
+ assert avcopy[0] == self.av[0]
182
+ del self.av[0]["ht"]
183
+
184
+ assert not hasattr(self.av, "__setitem__")
185
+
186
+ def test_items(self):
187
+ expected = dict(self.p.items())
188
+ expected.update(self.s)
189
+ assert sorted(self.av.items()) == sorted(expected.items())
190
+
191
+ def test_str(self):
192
+ out = str(dict(self.av))
193
+ assert str(self.av) == out
194
+
195
+ def test_repr(self):
196
+ out = f"{self.av.__class__.__name__}({self.s}, {self.p})"
197
+ assert repr(self.av) == out
198
+
199
+
200
+ class TestUnionAdjacency:
201
+ # node->nbr->data
202
+ def setup_method(self):
203
+ dd = {"color": "blue", "weight": 1.2}
204
+ self.nd = {0: dd, 1: {}, 2: {"color": 1}}
205
+ self.s = {3: self.nd, 0: {}, 1: {}, 2: {3: {"color": 1}}}
206
+ self.p = {3: {}, 0: {3: dd}, 1: {0: {}}, 2: {1: {"color": 1}}}
207
+ self.adjview = nx.classes.coreviews.UnionAdjacency(self.s, self.p)
208
+
209
+ def test_pickle(self):
210
+ view = self.adjview
211
+ pview = pickle.loads(pickle.dumps(view, -1))
212
+ assert view == pview
213
+ assert view.__slots__ == pview.__slots__
214
+
215
+ def test_len(self):
216
+ assert len(self.adjview) == len(self.s)
217
+
218
+ def test_iter(self):
219
+ assert sorted(self.adjview) == sorted(self.s)
220
+
221
+ def test_getitem(self):
222
+ assert self.adjview[1] is not self.s[1]
223
+ assert self.adjview[3][0] is self.adjview[0][3]
224
+ assert self.adjview[2][3]["color"] == 1
225
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
226
+
227
+ def test_copy(self):
228
+ avcopy = self.adjview.copy()
229
+ assert avcopy[0] == self.adjview[0]
230
+ assert avcopy[0] is not self.adjview[0]
231
+
232
+ avcopy[2][3]["ht"] = 4
233
+ assert avcopy[2] != self.adjview[2]
234
+ self.adjview[2][3]["ht"] = 4
235
+ assert avcopy[2] == self.adjview[2]
236
+ del self.adjview[2][3]["ht"]
237
+
238
+ assert not hasattr(self.adjview, "__setitem__")
239
+
240
+ def test_str(self):
241
+ out = str(dict(self.adjview))
242
+ assert str(self.adjview) == out
243
+
244
+ def test_repr(self):
245
+ clsname = self.adjview.__class__.__name__
246
+ out = f"{clsname}({self.s}, {self.p})"
247
+ assert repr(self.adjview) == out
248
+
249
+
250
+ class TestUnionMultiInner(TestUnionAdjacency):
251
+ # nbr->key->data
252
+ def setup_method(self):
253
+ dd = {"color": "blue", "weight": 1.2}
254
+ self.kd = {7: {}, "ekey": {}, 9: {"color": 1}}
255
+ self.s = {3: self.kd, 0: {7: dd}, 1: {}, 2: {"key": {"color": 1}}}
256
+ self.p = {3: {}, 0: {3: dd}, 1: {}, 2: {1: {"span": 2}}}
257
+ self.adjview = nx.classes.coreviews.UnionMultiInner(self.s, self.p)
258
+
259
+ def test_len(self):
260
+ assert len(self.adjview) == len(self.s.keys() | self.p.keys()) == 4
261
+
262
+ def test_getitem(self):
263
+ assert self.adjview[1] is not self.s[1]
264
+ assert self.adjview[0][7] is self.adjview[0][3]
265
+ assert self.adjview[2]["key"]["color"] == 1
266
+ assert self.adjview[2][1]["span"] == 2
267
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
268
+ pytest.raises(KeyError, self.adjview[1].__getitem__, "key")
269
+
270
+ def test_copy(self):
271
+ avcopy = self.adjview.copy()
272
+ assert avcopy[0] == self.adjview[0]
273
+ assert avcopy[0] is not self.adjview[0]
274
+
275
+ avcopy[2][1]["width"] = 8
276
+ assert avcopy[2] != self.adjview[2]
277
+ self.adjview[2][1]["width"] = 8
278
+ assert avcopy[2] == self.adjview[2]
279
+ del self.adjview[2][1]["width"]
280
+
281
+ assert not hasattr(self.adjview, "__setitem__")
282
+ assert hasattr(avcopy, "__setitem__")
283
+
284
+
285
+ class TestUnionMultiAdjacency(TestUnionAdjacency):
286
+ # node->nbr->key->data
287
+ def setup_method(self):
288
+ dd = {"color": "blue", "weight": 1.2}
289
+ self.kd = {7: {}, 8: {}, 9: {"color": 1}}
290
+ self.nd = {3: self.kd, 0: {9: dd}, 1: {8: {}}, 2: {9: {"color": 1}}}
291
+ self.s = {3: self.nd, 0: {3: {7: dd}}, 1: {}, 2: {3: {8: {}}}}
292
+ self.p = {3: {}, 0: {3: {9: dd}}, 1: {}, 2: {1: {8: {}}}}
293
+ self.adjview = nx.classes.coreviews.UnionMultiAdjacency(self.s, self.p)
294
+
295
+ def test_getitem(self):
296
+ assert self.adjview[1] is not self.s[1]
297
+ assert self.adjview[3][0][9] is self.adjview[0][3][9]
298
+ assert self.adjview[3][2][9]["color"] == 1
299
+ pytest.raises(KeyError, self.adjview.__getitem__, 4)
300
+
301
+ def test_copy(self):
302
+ avcopy = self.adjview.copy()
303
+ assert avcopy[0] == self.adjview[0]
304
+ assert avcopy[0] is not self.adjview[0]
305
+
306
+ avcopy[2][3][8]["ht"] = 4
307
+ assert avcopy[2] != self.adjview[2]
308
+ self.adjview[2][3][8]["ht"] = 4
309
+ assert avcopy[2] == self.adjview[2]
310
+ del self.adjview[2][3][8]["ht"]
311
+
312
+ assert not hasattr(self.adjview, "__setitem__")
313
+ assert hasattr(avcopy, "__setitem__")
314
+
315
+
316
+ class TestFilteredGraphs:
317
+ def setup_method(self):
318
+ self.Graphs = [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
319
+
320
+ def test_hide_show_nodes(self):
321
+ SubGraph = nx.subgraph_view
322
+ for Graph in self.Graphs:
323
+ G = nx.path_graph(4, Graph)
324
+ SG = G.subgraph([2, 3])
325
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
326
+ assert SG.nodes == RG.nodes
327
+ assert SG.edges == RG.edges
328
+ SGC = SG.copy()
329
+ RGC = RG.copy()
330
+ assert SGC.nodes == RGC.nodes
331
+ assert SGC.edges == RGC.edges
332
+
333
+ def test_str_repr(self):
334
+ SubGraph = nx.subgraph_view
335
+ for Graph in self.Graphs:
336
+ G = nx.path_graph(4, Graph)
337
+ SG = G.subgraph([2, 3])
338
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
339
+ str(SG.adj)
340
+ str(RG.adj)
341
+ repr(SG.adj)
342
+ repr(RG.adj)
343
+ str(SG.adj[2])
344
+ str(RG.adj[2])
345
+ repr(SG.adj[2])
346
+ repr(RG.adj[2])
347
+
348
+ def test_copy(self):
349
+ SubGraph = nx.subgraph_view
350
+ for Graph in self.Graphs:
351
+ G = nx.path_graph(4, Graph)
352
+ SG = G.subgraph([2, 3])
353
+ RG = SubGraph(G, filter_node=nx.filters.hide_nodes([0, 1]))
354
+ RsG = SubGraph(G, filter_node=nx.filters.show_nodes([2, 3]))
355
+ assert G.adj.copy() == G.adj
356
+ assert G.adj[2].copy() == G.adj[2]
357
+ assert SG.adj.copy() == SG.adj
358
+ assert SG.adj[2].copy() == SG.adj[2]
359
+ assert RG.adj.copy() == RG.adj
360
+ assert RG.adj[2].copy() == RG.adj[2]
361
+ assert RsG.adj.copy() == RsG.adj
362
+ assert RsG.adj[2].copy() == RsG.adj[2]
venv/lib/python3.10/site-packages/networkx/classes/tests/test_filters.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ class TestFilterFactory:
7
+ def test_no_filter(self):
8
+ nf = nx.filters.no_filter
9
+ assert nf()
10
+ assert nf(1)
11
+ assert nf(2, 1)
12
+
13
+ def test_hide_nodes(self):
14
+ f = nx.classes.filters.hide_nodes([1, 2, 3])
15
+ assert not f(1)
16
+ assert not f(2)
17
+ assert not f(3)
18
+ assert f(4)
19
+ assert f(0)
20
+ assert f("a")
21
+ pytest.raises(TypeError, f, 1, 2)
22
+ pytest.raises(TypeError, f)
23
+
24
+ def test_show_nodes(self):
25
+ f = nx.classes.filters.show_nodes([1, 2, 3])
26
+ assert f(1)
27
+ assert f(2)
28
+ assert f(3)
29
+ assert not f(4)
30
+ assert not f(0)
31
+ assert not f("a")
32
+ pytest.raises(TypeError, f, 1, 2)
33
+ pytest.raises(TypeError, f)
34
+
35
+ def test_hide_edges(self):
36
+ factory = nx.classes.filters.hide_edges
37
+ f = factory([(1, 2), (3, 4)])
38
+ assert not f(1, 2)
39
+ assert not f(3, 4)
40
+ assert not f(4, 3)
41
+ assert f(2, 3)
42
+ assert f(0, -1)
43
+ assert f("a", "b")
44
+ pytest.raises(TypeError, f, 1, 2, 3)
45
+ pytest.raises(TypeError, f, 1)
46
+ pytest.raises(TypeError, f)
47
+ pytest.raises(TypeError, factory, [1, 2, 3])
48
+ pytest.raises(ValueError, factory, [(1, 2, 3)])
49
+
50
+ def test_show_edges(self):
51
+ factory = nx.classes.filters.show_edges
52
+ f = factory([(1, 2), (3, 4)])
53
+ assert f(1, 2)
54
+ assert f(3, 4)
55
+ assert f(4, 3)
56
+ assert not f(2, 3)
57
+ assert not f(0, -1)
58
+ assert not f("a", "b")
59
+ pytest.raises(TypeError, f, 1, 2, 3)
60
+ pytest.raises(TypeError, f, 1)
61
+ pytest.raises(TypeError, f)
62
+ pytest.raises(TypeError, factory, [1, 2, 3])
63
+ pytest.raises(ValueError, factory, [(1, 2, 3)])
64
+
65
+ def test_hide_diedges(self):
66
+ factory = nx.classes.filters.hide_diedges
67
+ f = factory([(1, 2), (3, 4)])
68
+ assert not f(1, 2)
69
+ assert not f(3, 4)
70
+ assert f(4, 3)
71
+ assert f(2, 3)
72
+ assert f(0, -1)
73
+ assert f("a", "b")
74
+ pytest.raises(TypeError, f, 1, 2, 3)
75
+ pytest.raises(TypeError, f, 1)
76
+ pytest.raises(TypeError, f)
77
+ pytest.raises(TypeError, factory, [1, 2, 3])
78
+ pytest.raises(ValueError, factory, [(1, 2, 3)])
79
+
80
+ def test_show_diedges(self):
81
+ factory = nx.classes.filters.show_diedges
82
+ f = factory([(1, 2), (3, 4)])
83
+ assert f(1, 2)
84
+ assert f(3, 4)
85
+ assert not f(4, 3)
86
+ assert not f(2, 3)
87
+ assert not f(0, -1)
88
+ assert not f("a", "b")
89
+ pytest.raises(TypeError, f, 1, 2, 3)
90
+ pytest.raises(TypeError, f, 1)
91
+ pytest.raises(TypeError, f)
92
+ pytest.raises(TypeError, factory, [1, 2, 3])
93
+ pytest.raises(ValueError, factory, [(1, 2, 3)])
94
+
95
+ def test_hide_multiedges(self):
96
+ factory = nx.classes.filters.hide_multiedges
97
+ f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
98
+ assert not f(1, 2, 0)
99
+ assert not f(1, 2, 1)
100
+ assert f(1, 2, 2)
101
+ assert f(3, 4, 0)
102
+ assert not f(3, 4, 1)
103
+ assert not f(4, 3, 1)
104
+ assert f(4, 3, 0)
105
+ assert f(2, 3, 0)
106
+ assert f(0, -1, 0)
107
+ assert f("a", "b", 0)
108
+ pytest.raises(TypeError, f, 1, 2, 3, 4)
109
+ pytest.raises(TypeError, f, 1, 2)
110
+ pytest.raises(TypeError, f, 1)
111
+ pytest.raises(TypeError, f)
112
+ pytest.raises(TypeError, factory, [1, 2, 3])
113
+ pytest.raises(ValueError, factory, [(1, 2)])
114
+ pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
115
+
116
+ def test_show_multiedges(self):
117
+ factory = nx.classes.filters.show_multiedges
118
+ f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
119
+ assert f(1, 2, 0)
120
+ assert f(1, 2, 1)
121
+ assert not f(1, 2, 2)
122
+ assert not f(3, 4, 0)
123
+ assert f(3, 4, 1)
124
+ assert f(4, 3, 1)
125
+ assert not f(4, 3, 0)
126
+ assert not f(2, 3, 0)
127
+ assert not f(0, -1, 0)
128
+ assert not f("a", "b", 0)
129
+ pytest.raises(TypeError, f, 1, 2, 3, 4)
130
+ pytest.raises(TypeError, f, 1, 2)
131
+ pytest.raises(TypeError, f, 1)
132
+ pytest.raises(TypeError, f)
133
+ pytest.raises(TypeError, factory, [1, 2, 3])
134
+ pytest.raises(ValueError, factory, [(1, 2)])
135
+ pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
136
+
137
+ def test_hide_multidiedges(self):
138
+ factory = nx.classes.filters.hide_multidiedges
139
+ f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
140
+ assert not f(1, 2, 0)
141
+ assert not f(1, 2, 1)
142
+ assert f(1, 2, 2)
143
+ assert f(3, 4, 0)
144
+ assert not f(3, 4, 1)
145
+ assert f(4, 3, 1)
146
+ assert f(4, 3, 0)
147
+ assert f(2, 3, 0)
148
+ assert f(0, -1, 0)
149
+ assert f("a", "b", 0)
150
+ pytest.raises(TypeError, f, 1, 2, 3, 4)
151
+ pytest.raises(TypeError, f, 1, 2)
152
+ pytest.raises(TypeError, f, 1)
153
+ pytest.raises(TypeError, f)
154
+ pytest.raises(TypeError, factory, [1, 2, 3])
155
+ pytest.raises(ValueError, factory, [(1, 2)])
156
+ pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
157
+
158
+ def test_show_multidiedges(self):
159
+ factory = nx.classes.filters.show_multidiedges
160
+ f = factory([(1, 2, 0), (3, 4, 1), (1, 2, 1)])
161
+ assert f(1, 2, 0)
162
+ assert f(1, 2, 1)
163
+ assert not f(1, 2, 2)
164
+ assert not f(3, 4, 0)
165
+ assert f(3, 4, 1)
166
+ assert not f(4, 3, 1)
167
+ assert not f(4, 3, 0)
168
+ assert not f(2, 3, 0)
169
+ assert not f(0, -1, 0)
170
+ assert not f("a", "b", 0)
171
+ pytest.raises(TypeError, f, 1, 2, 3, 4)
172
+ pytest.raises(TypeError, f, 1, 2)
173
+ pytest.raises(TypeError, f, 1)
174
+ pytest.raises(TypeError, f)
175
+ pytest.raises(TypeError, factory, [1, 2, 3])
176
+ pytest.raises(ValueError, factory, [(1, 2)])
177
+ pytest.raises(ValueError, factory, [(1, 2, 3, 4)])
venv/lib/python3.10/site-packages/networkx/classes/tests/test_function.py ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx.utils import edges_equal, nodes_equal
7
+
8
+
9
+ def test_degree_histogram_empty():
10
+ G = nx.Graph()
11
+ assert nx.degree_histogram(G) == []
12
+
13
+
14
+ class TestFunction:
15
+ def setup_method(self):
16
+ self.G = nx.Graph({0: [1, 2, 3], 1: [1, 2, 0], 4: []}, name="Test")
17
+ self.Gdegree = {0: 3, 1: 2, 2: 2, 3: 1, 4: 0}
18
+ self.Gnodes = list(range(5))
19
+ self.Gedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]
20
+ self.DG = nx.DiGraph({0: [1, 2, 3], 1: [1, 2, 0], 4: []})
21
+ self.DGin_degree = {0: 1, 1: 2, 2: 2, 3: 1, 4: 0}
22
+ self.DGout_degree = {0: 3, 1: 3, 2: 0, 3: 0, 4: 0}
23
+ self.DGnodes = list(range(5))
24
+ self.DGedges = [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)]
25
+
26
+ def test_nodes(self):
27
+ assert nodes_equal(self.G.nodes(), list(nx.nodes(self.G)))
28
+ assert nodes_equal(self.DG.nodes(), list(nx.nodes(self.DG)))
29
+
30
+ def test_edges(self):
31
+ assert edges_equal(self.G.edges(), list(nx.edges(self.G)))
32
+ assert sorted(self.DG.edges()) == sorted(nx.edges(self.DG))
33
+ assert edges_equal(
34
+ self.G.edges(nbunch=[0, 1, 3]), list(nx.edges(self.G, nbunch=[0, 1, 3]))
35
+ )
36
+ assert sorted(self.DG.edges(nbunch=[0, 1, 3])) == sorted(
37
+ nx.edges(self.DG, nbunch=[0, 1, 3])
38
+ )
39
+
40
+ def test_degree(self):
41
+ assert edges_equal(self.G.degree(), list(nx.degree(self.G)))
42
+ assert sorted(self.DG.degree()) == sorted(nx.degree(self.DG))
43
+ assert edges_equal(
44
+ self.G.degree(nbunch=[0, 1]), list(nx.degree(self.G, nbunch=[0, 1]))
45
+ )
46
+ assert sorted(self.DG.degree(nbunch=[0, 1])) == sorted(
47
+ nx.degree(self.DG, nbunch=[0, 1])
48
+ )
49
+ assert edges_equal(
50
+ self.G.degree(weight="weight"), list(nx.degree(self.G, weight="weight"))
51
+ )
52
+ assert sorted(self.DG.degree(weight="weight")) == sorted(
53
+ nx.degree(self.DG, weight="weight")
54
+ )
55
+
56
+ def test_neighbors(self):
57
+ assert list(self.G.neighbors(1)) == list(nx.neighbors(self.G, 1))
58
+ assert list(self.DG.neighbors(1)) == list(nx.neighbors(self.DG, 1))
59
+
60
+ def test_number_of_nodes(self):
61
+ assert self.G.number_of_nodes() == nx.number_of_nodes(self.G)
62
+ assert self.DG.number_of_nodes() == nx.number_of_nodes(self.DG)
63
+
64
+ def test_number_of_edges(self):
65
+ assert self.G.number_of_edges() == nx.number_of_edges(self.G)
66
+ assert self.DG.number_of_edges() == nx.number_of_edges(self.DG)
67
+
68
+ def test_is_directed(self):
69
+ assert self.G.is_directed() == nx.is_directed(self.G)
70
+ assert self.DG.is_directed() == nx.is_directed(self.DG)
71
+
72
+ def test_add_star(self):
73
+ G = self.G.copy()
74
+ nlist = [12, 13, 14, 15]
75
+ nx.add_star(G, nlist)
76
+ assert edges_equal(G.edges(nlist), [(12, 13), (12, 14), (12, 15)])
77
+
78
+ G = self.G.copy()
79
+ nx.add_star(G, nlist, weight=2.0)
80
+ assert edges_equal(
81
+ G.edges(nlist, data=True),
82
+ [
83
+ (12, 13, {"weight": 2.0}),
84
+ (12, 14, {"weight": 2.0}),
85
+ (12, 15, {"weight": 2.0}),
86
+ ],
87
+ )
88
+
89
+ G = self.G.copy()
90
+ nlist = [12]
91
+ nx.add_star(G, nlist)
92
+ assert nodes_equal(G, list(self.G) + nlist)
93
+
94
+ G = self.G.copy()
95
+ nlist = []
96
+ nx.add_star(G, nlist)
97
+ assert nodes_equal(G.nodes, self.Gnodes)
98
+ assert edges_equal(G.edges, self.G.edges)
99
+
100
+ def test_add_path(self):
101
+ G = self.G.copy()
102
+ nlist = [12, 13, 14, 15]
103
+ nx.add_path(G, nlist)
104
+ assert edges_equal(G.edges(nlist), [(12, 13), (13, 14), (14, 15)])
105
+ G = self.G.copy()
106
+ nx.add_path(G, nlist, weight=2.0)
107
+ assert edges_equal(
108
+ G.edges(nlist, data=True),
109
+ [
110
+ (12, 13, {"weight": 2.0}),
111
+ (13, 14, {"weight": 2.0}),
112
+ (14, 15, {"weight": 2.0}),
113
+ ],
114
+ )
115
+
116
+ G = self.G.copy()
117
+ nlist = ["node"]
118
+ nx.add_path(G, nlist)
119
+ assert edges_equal(G.edges(nlist), [])
120
+ assert nodes_equal(G, list(self.G) + ["node"])
121
+
122
+ G = self.G.copy()
123
+ nlist = iter(["node"])
124
+ nx.add_path(G, nlist)
125
+ assert edges_equal(G.edges(["node"]), [])
126
+ assert nodes_equal(G, list(self.G) + ["node"])
127
+
128
+ G = self.G.copy()
129
+ nlist = [12]
130
+ nx.add_path(G, nlist)
131
+ assert edges_equal(G.edges(nlist), [])
132
+ assert nodes_equal(G, list(self.G) + [12])
133
+
134
+ G = self.G.copy()
135
+ nlist = iter([12])
136
+ nx.add_path(G, nlist)
137
+ assert edges_equal(G.edges([12]), [])
138
+ assert nodes_equal(G, list(self.G) + [12])
139
+
140
+ G = self.G.copy()
141
+ nlist = []
142
+ nx.add_path(G, nlist)
143
+ assert edges_equal(G.edges, self.G.edges)
144
+ assert nodes_equal(G, list(self.G))
145
+
146
+ G = self.G.copy()
147
+ nlist = iter([])
148
+ nx.add_path(G, nlist)
149
+ assert edges_equal(G.edges, self.G.edges)
150
+ assert nodes_equal(G, list(self.G))
151
+
152
+ def test_add_cycle(self):
153
+ G = self.G.copy()
154
+ nlist = [12, 13, 14, 15]
155
+ oklists = [
156
+ [(12, 13), (12, 15), (13, 14), (14, 15)],
157
+ [(12, 13), (13, 14), (14, 15), (15, 12)],
158
+ ]
159
+ nx.add_cycle(G, nlist)
160
+ assert sorted(G.edges(nlist)) in oklists
161
+ G = self.G.copy()
162
+ oklists = [
163
+ [
164
+ (12, 13, {"weight": 1.0}),
165
+ (12, 15, {"weight": 1.0}),
166
+ (13, 14, {"weight": 1.0}),
167
+ (14, 15, {"weight": 1.0}),
168
+ ],
169
+ [
170
+ (12, 13, {"weight": 1.0}),
171
+ (13, 14, {"weight": 1.0}),
172
+ (14, 15, {"weight": 1.0}),
173
+ (15, 12, {"weight": 1.0}),
174
+ ],
175
+ ]
176
+ nx.add_cycle(G, nlist, weight=1.0)
177
+ assert sorted(G.edges(nlist, data=True)) in oklists
178
+
179
+ G = self.G.copy()
180
+ nlist = [12]
181
+ nx.add_cycle(G, nlist)
182
+ assert nodes_equal(G, list(self.G) + nlist)
183
+
184
+ G = self.G.copy()
185
+ nlist = []
186
+ nx.add_cycle(G, nlist)
187
+ assert nodes_equal(G.nodes, self.Gnodes)
188
+ assert edges_equal(G.edges, self.G.edges)
189
+
190
+ def test_subgraph(self):
191
+ assert (
192
+ self.G.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.G, [0, 1, 2, 4]).adj
193
+ )
194
+ assert (
195
+ self.DG.subgraph([0, 1, 2, 4]).adj == nx.subgraph(self.DG, [0, 1, 2, 4]).adj
196
+ )
197
+ assert (
198
+ self.G.subgraph([0, 1, 2, 4]).adj
199
+ == nx.induced_subgraph(self.G, [0, 1, 2, 4]).adj
200
+ )
201
+ assert (
202
+ self.DG.subgraph([0, 1, 2, 4]).adj
203
+ == nx.induced_subgraph(self.DG, [0, 1, 2, 4]).adj
204
+ )
205
+ # subgraph-subgraph chain is allowed in function interface
206
+ H = nx.induced_subgraph(self.G.subgraph([0, 1, 2, 4]), [0, 1, 4])
207
+ assert H._graph is not self.G
208
+ assert H.adj == self.G.subgraph([0, 1, 4]).adj
209
+
210
+ def test_edge_subgraph(self):
211
+ assert (
212
+ self.G.edge_subgraph([(1, 2), (0, 3)]).adj
213
+ == nx.edge_subgraph(self.G, [(1, 2), (0, 3)]).adj
214
+ )
215
+ assert (
216
+ self.DG.edge_subgraph([(1, 2), (0, 3)]).adj
217
+ == nx.edge_subgraph(self.DG, [(1, 2), (0, 3)]).adj
218
+ )
219
+
220
+ def test_create_empty_copy(self):
221
+ G = nx.create_empty_copy(self.G, with_data=False)
222
+ assert nodes_equal(G, list(self.G))
223
+ assert G.graph == {}
224
+ assert G._node == {}.fromkeys(self.G.nodes(), {})
225
+ assert G._adj == {}.fromkeys(self.G.nodes(), {})
226
+ G = nx.create_empty_copy(self.G)
227
+ assert nodes_equal(G, list(self.G))
228
+ assert G.graph == self.G.graph
229
+ assert G._node == self.G._node
230
+ assert G._adj == {}.fromkeys(self.G.nodes(), {})
231
+
232
+ def test_degree_histogram(self):
233
+ assert nx.degree_histogram(self.G) == [1, 1, 1, 1, 1]
234
+
235
+ def test_density(self):
236
+ assert nx.density(self.G) == 0.5
237
+ assert nx.density(self.DG) == 0.3
238
+ G = nx.Graph()
239
+ G.add_node(1)
240
+ assert nx.density(G) == 0.0
241
+
242
+ def test_density_selfloop(self):
243
+ G = nx.Graph()
244
+ G.add_edge(1, 1)
245
+ assert nx.density(G) == 0.0
246
+ G.add_edge(1, 2)
247
+ assert nx.density(G) == 2.0
248
+
249
+ def test_freeze(self):
250
+ G = nx.freeze(self.G)
251
+ assert G.frozen
252
+ pytest.raises(nx.NetworkXError, G.add_node, 1)
253
+ pytest.raises(nx.NetworkXError, G.add_nodes_from, [1])
254
+ pytest.raises(nx.NetworkXError, G.remove_node, 1)
255
+ pytest.raises(nx.NetworkXError, G.remove_nodes_from, [1])
256
+ pytest.raises(nx.NetworkXError, G.add_edge, 1, 2)
257
+ pytest.raises(nx.NetworkXError, G.add_edges_from, [(1, 2)])
258
+ pytest.raises(nx.NetworkXError, G.remove_edge, 1, 2)
259
+ pytest.raises(nx.NetworkXError, G.remove_edges_from, [(1, 2)])
260
+ pytest.raises(nx.NetworkXError, G.clear_edges)
261
+ pytest.raises(nx.NetworkXError, G.clear)
262
+
263
+ def test_is_frozen(self):
264
+ assert not nx.is_frozen(self.G)
265
+ G = nx.freeze(self.G)
266
+ assert G.frozen == nx.is_frozen(self.G)
267
+ assert G.frozen
268
+
269
+ def test_node_attributes_are_still_mutable_on_frozen_graph(self):
270
+ G = nx.freeze(nx.path_graph(3))
271
+ node = G.nodes[0]
272
+ node["node_attribute"] = True
273
+ assert node["node_attribute"] == True
274
+
275
+ def test_edge_attributes_are_still_mutable_on_frozen_graph(self):
276
+ G = nx.freeze(nx.path_graph(3))
277
+ edge = G.edges[(0, 1)]
278
+ edge["edge_attribute"] = True
279
+ assert edge["edge_attribute"] == True
280
+
281
+ def test_neighbors_complete_graph(self):
282
+ graph = nx.complete_graph(100)
283
+ pop = random.sample(list(graph), 1)
284
+ nbors = list(nx.neighbors(graph, pop[0]))
285
+ # should be all the other vertices in the graph
286
+ assert len(nbors) == len(graph) - 1
287
+
288
+ graph = nx.path_graph(100)
289
+ node = random.sample(list(graph), 1)[0]
290
+ nbors = list(nx.neighbors(graph, node))
291
+ # should be all the other vertices in the graph
292
+ if node != 0 and node != 99:
293
+ assert len(nbors) == 2
294
+ else:
295
+ assert len(nbors) == 1
296
+
297
+ # create a star graph with 99 outer nodes
298
+ graph = nx.star_graph(99)
299
+ nbors = list(nx.neighbors(graph, 0))
300
+ assert len(nbors) == 99
301
+
302
+ def test_non_neighbors(self):
303
+ graph = nx.complete_graph(100)
304
+ pop = random.sample(list(graph), 1)
305
+ nbors = nx.non_neighbors(graph, pop[0])
306
+ # should be all the other vertices in the graph
307
+ assert len(nbors) == 0
308
+
309
+ graph = nx.path_graph(100)
310
+ node = random.sample(list(graph), 1)[0]
311
+ nbors = nx.non_neighbors(graph, node)
312
+ # should be all the other vertices in the graph
313
+ if node != 0 and node != 99:
314
+ assert len(nbors) == 97
315
+ else:
316
+ assert len(nbors) == 98
317
+
318
+ # create a star graph with 99 outer nodes
319
+ graph = nx.star_graph(99)
320
+ nbors = nx.non_neighbors(graph, 0)
321
+ assert len(nbors) == 0
322
+
323
+ # disconnected graph
324
+ graph = nx.Graph()
325
+ graph.add_nodes_from(range(10))
326
+ nbors = nx.non_neighbors(graph, 0)
327
+ assert len(nbors) == 9
328
+
329
+ def test_non_edges(self):
330
+ # All possible edges exist
331
+ graph = nx.complete_graph(5)
332
+ nedges = list(nx.non_edges(graph))
333
+ assert len(nedges) == 0
334
+
335
+ graph = nx.path_graph(4)
336
+ expected = [(0, 2), (0, 3), (1, 3)]
337
+ nedges = list(nx.non_edges(graph))
338
+ for u, v in expected:
339
+ assert (u, v) in nedges or (v, u) in nedges
340
+
341
+ graph = nx.star_graph(4)
342
+ expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
343
+ nedges = list(nx.non_edges(graph))
344
+ for u, v in expected:
345
+ assert (u, v) in nedges or (v, u) in nedges
346
+
347
+ # Directed graphs
348
+ graph = nx.DiGraph()
349
+ graph.add_edges_from([(0, 2), (2, 0), (2, 1)])
350
+ expected = [(0, 1), (1, 0), (1, 2)]
351
+ nedges = list(nx.non_edges(graph))
352
+ for e in expected:
353
+ assert e in nedges
354
+
355
+ def test_is_weighted(self):
356
+ G = nx.Graph()
357
+ assert not nx.is_weighted(G)
358
+
359
+ G = nx.path_graph(4)
360
+ assert not nx.is_weighted(G)
361
+ assert not nx.is_weighted(G, (2, 3))
362
+
363
+ G.add_node(4)
364
+ G.add_edge(3, 4, weight=4)
365
+ assert not nx.is_weighted(G)
366
+ assert nx.is_weighted(G, (3, 4))
367
+
368
+ G = nx.DiGraph()
369
+ G.add_weighted_edges_from(
370
+ [
371
+ ("0", "3", 3),
372
+ ("0", "1", -5),
373
+ ("1", "0", -5),
374
+ ("0", "2", 2),
375
+ ("1", "2", 4),
376
+ ("2", "3", 1),
377
+ ]
378
+ )
379
+ assert nx.is_weighted(G)
380
+ assert nx.is_weighted(G, ("1", "0"))
381
+
382
+ G = G.to_undirected()
383
+ assert nx.is_weighted(G)
384
+ assert nx.is_weighted(G, ("1", "0"))
385
+
386
+ pytest.raises(nx.NetworkXError, nx.is_weighted, G, (1, 2))
387
+
388
+ def test_is_negatively_weighted(self):
389
+ G = nx.Graph()
390
+ assert not nx.is_negatively_weighted(G)
391
+
392
+ G.add_node(1)
393
+ G.add_nodes_from([2, 3, 4, 5])
394
+ assert not nx.is_negatively_weighted(G)
395
+
396
+ G.add_edge(1, 2, weight=4)
397
+ assert not nx.is_negatively_weighted(G, (1, 2))
398
+
399
+ G.add_edges_from([(1, 3), (2, 4), (2, 6)])
400
+ G[1][3]["color"] = "blue"
401
+ assert not nx.is_negatively_weighted(G)
402
+ assert not nx.is_negatively_weighted(G, (1, 3))
403
+
404
+ G[2][4]["weight"] = -2
405
+ assert nx.is_negatively_weighted(G, (2, 4))
406
+ assert nx.is_negatively_weighted(G)
407
+
408
+ G = nx.DiGraph()
409
+ G.add_weighted_edges_from(
410
+ [
411
+ ("0", "3", 3),
412
+ ("0", "1", -5),
413
+ ("1", "0", -2),
414
+ ("0", "2", 2),
415
+ ("1", "2", -3),
416
+ ("2", "3", 1),
417
+ ]
418
+ )
419
+ assert nx.is_negatively_weighted(G)
420
+ assert not nx.is_negatively_weighted(G, ("0", "3"))
421
+ assert nx.is_negatively_weighted(G, ("1", "0"))
422
+
423
+ pytest.raises(nx.NetworkXError, nx.is_negatively_weighted, G, (1, 4))
424
+
425
+
426
+ class TestCommonNeighbors:
427
+ @classmethod
428
+ def setup_class(cls):
429
+ cls.func = staticmethod(nx.common_neighbors)
430
+
431
+ def test_func(G, u, v, expected):
432
+ result = sorted(cls.func(G, u, v))
433
+ assert result == expected
434
+
435
+ cls.test = staticmethod(test_func)
436
+
437
+ def test_K5(self):
438
+ G = nx.complete_graph(5)
439
+ self.test(G, 0, 1, [2, 3, 4])
440
+
441
+ def test_P3(self):
442
+ G = nx.path_graph(3)
443
+ self.test(G, 0, 2, [1])
444
+
445
+ def test_S4(self):
446
+ G = nx.star_graph(4)
447
+ self.test(G, 1, 2, [0])
448
+
449
+ def test_digraph(self):
450
+ with pytest.raises(nx.NetworkXNotImplemented):
451
+ G = nx.DiGraph()
452
+ G.add_edges_from([(0, 1), (1, 2)])
453
+ self.func(G, 0, 2)
454
+
455
+ def test_nonexistent_nodes(self):
456
+ G = nx.complete_graph(5)
457
+ pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 4)
458
+ pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 4, 5)
459
+ pytest.raises(nx.NetworkXError, nx.common_neighbors, G, 5, 6)
460
+
461
+ def test_custom1(self):
462
+ """Case of no common neighbors."""
463
+ G = nx.Graph()
464
+ G.add_nodes_from([0, 1])
465
+ self.test(G, 0, 1, [])
466
+
467
+ def test_custom2(self):
468
+ """Case of equal nodes."""
469
+ G = nx.complete_graph(4)
470
+ self.test(G, 0, 0, [1, 2, 3])
471
+
472
+
473
+ @pytest.mark.parametrize(
474
+ "graph_type", (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
475
+ )
476
+ def test_set_node_attributes(graph_type):
477
+ # Test single value
478
+ G = nx.path_graph(3, create_using=graph_type)
479
+ vals = 100
480
+ attr = "hello"
481
+ nx.set_node_attributes(G, vals, attr)
482
+ assert G.nodes[0][attr] == vals
483
+ assert G.nodes[1][attr] == vals
484
+ assert G.nodes[2][attr] == vals
485
+
486
+ # Test dictionary
487
+ G = nx.path_graph(3, create_using=graph_type)
488
+ vals = dict(zip(sorted(G.nodes()), range(len(G))))
489
+ attr = "hi"
490
+ nx.set_node_attributes(G, vals, attr)
491
+ assert G.nodes[0][attr] == 0
492
+ assert G.nodes[1][attr] == 1
493
+ assert G.nodes[2][attr] == 2
494
+
495
+ # Test dictionary of dictionaries
496
+ G = nx.path_graph(3, create_using=graph_type)
497
+ d = {"hi": 0, "hello": 200}
498
+ vals = dict.fromkeys(G.nodes(), d)
499
+ vals.pop(0)
500
+ nx.set_node_attributes(G, vals)
501
+ assert G.nodes[0] == {}
502
+ assert G.nodes[1]["hi"] == 0
503
+ assert G.nodes[2]["hello"] == 200
504
+
505
+
506
+ @pytest.mark.parametrize(
507
+ ("values", "name"),
508
+ (
509
+ ({0: "red", 1: "blue"}, "color"), # values dictionary
510
+ ({0: {"color": "red"}, 1: {"color": "blue"}}, None), # dict-of-dict
511
+ ),
512
+ )
513
+ def test_set_node_attributes_ignores_extra_nodes(values, name):
514
+ """
515
+ When `values` is a dict or dict-of-dict keyed by nodes, ensure that keys
516
+ that correspond to nodes not in G are ignored.
517
+ """
518
+ G = nx.Graph()
519
+ G.add_node(0)
520
+ nx.set_node_attributes(G, values, name)
521
+ assert G.nodes[0]["color"] == "red"
522
+ assert 1 not in G.nodes
523
+
524
+
525
+ @pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
526
+ def test_set_edge_attributes(graph_type):
527
+ # Test single value
528
+ G = nx.path_graph(3, create_using=graph_type)
529
+ attr = "hello"
530
+ vals = 3
531
+ nx.set_edge_attributes(G, vals, attr)
532
+ assert G[0][1][attr] == vals
533
+ assert G[1][2][attr] == vals
534
+
535
+ # Test multiple values
536
+ G = nx.path_graph(3, create_using=graph_type)
537
+ attr = "hi"
538
+ edges = [(0, 1), (1, 2)]
539
+ vals = dict(zip(edges, range(len(edges))))
540
+ nx.set_edge_attributes(G, vals, attr)
541
+ assert G[0][1][attr] == 0
542
+ assert G[1][2][attr] == 1
543
+
544
+ # Test dictionary of dictionaries
545
+ G = nx.path_graph(3, create_using=graph_type)
546
+ d = {"hi": 0, "hello": 200}
547
+ edges = [(0, 1)]
548
+ vals = dict.fromkeys(edges, d)
549
+ nx.set_edge_attributes(G, vals)
550
+ assert G[0][1]["hi"] == 0
551
+ assert G[0][1]["hello"] == 200
552
+ assert G[1][2] == {}
553
+
554
+
555
+ @pytest.mark.parametrize(
556
+ ("values", "name"),
557
+ (
558
+ ({(0, 1): 1.0, (0, 2): 2.0}, "weight"), # values dict
559
+ ({(0, 1): {"weight": 1.0}, (0, 2): {"weight": 2.0}}, None), # values dod
560
+ ),
561
+ )
562
+ def test_set_edge_attributes_ignores_extra_edges(values, name):
563
+ """If `values` is a dict or dict-of-dicts containing edges that are not in
564
+ G, data associate with these edges should be ignored.
565
+ """
566
+ G = nx.Graph([(0, 1)])
567
+ nx.set_edge_attributes(G, values, name)
568
+ assert G[0][1]["weight"] == 1.0
569
+ assert (0, 2) not in G.edges
570
+
571
+
572
+ @pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph))
573
+ def test_set_edge_attributes_multi(graph_type):
574
+ # Test single value
575
+ G = nx.path_graph(3, create_using=graph_type)
576
+ attr = "hello"
577
+ vals = 3
578
+ nx.set_edge_attributes(G, vals, attr)
579
+ assert G[0][1][0][attr] == vals
580
+ assert G[1][2][0][attr] == vals
581
+
582
+ # Test multiple values
583
+ G = nx.path_graph(3, create_using=graph_type)
584
+ attr = "hi"
585
+ edges = [(0, 1, 0), (1, 2, 0)]
586
+ vals = dict(zip(edges, range(len(edges))))
587
+ nx.set_edge_attributes(G, vals, attr)
588
+ assert G[0][1][0][attr] == 0
589
+ assert G[1][2][0][attr] == 1
590
+
591
+ # Test dictionary of dictionaries
592
+ G = nx.path_graph(3, create_using=graph_type)
593
+ d = {"hi": 0, "hello": 200}
594
+ edges = [(0, 1, 0)]
595
+ vals = dict.fromkeys(edges, d)
596
+ nx.set_edge_attributes(G, vals)
597
+ assert G[0][1][0]["hi"] == 0
598
+ assert G[0][1][0]["hello"] == 200
599
+ assert G[1][2][0] == {}
600
+
601
+
602
+ @pytest.mark.parametrize(
603
+ ("values", "name"),
604
+ (
605
+ ({(0, 1, 0): 1.0, (0, 2, 0): 2.0}, "weight"), # values dict
606
+ ({(0, 1, 0): {"weight": 1.0}, (0, 2, 0): {"weight": 2.0}}, None), # values dod
607
+ ),
608
+ )
609
+ def test_set_edge_attributes_multi_ignores_extra_edges(values, name):
610
+ """If `values` is a dict or dict-of-dicts containing edges that are not in
611
+ G, data associate with these edges should be ignored.
612
+ """
613
+ G = nx.MultiGraph([(0, 1, 0), (0, 1, 1)])
614
+ nx.set_edge_attributes(G, values, name)
615
+ assert G[0][1][0]["weight"] == 1.0
616
+ assert G[0][1][1] == {}
617
+ assert (0, 2) not in G.edges()
618
+
619
+
620
+ def test_get_node_attributes():
621
+ graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
622
+ for G in graphs:
623
+ G = nx.path_graph(3, create_using=G)
624
+ attr = "hello"
625
+ vals = 100
626
+ nx.set_node_attributes(G, vals, attr)
627
+ attrs = nx.get_node_attributes(G, attr)
628
+ assert attrs[0] == vals
629
+ assert attrs[1] == vals
630
+ assert attrs[2] == vals
631
+ default_val = 1
632
+ G.add_node(4)
633
+ attrs = nx.get_node_attributes(G, attr, default=default_val)
634
+ assert attrs[4] == default_val
635
+
636
+
637
+ def test_get_edge_attributes():
638
+ graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
639
+ for G in graphs:
640
+ G = nx.path_graph(3, create_using=G)
641
+ attr = "hello"
642
+ vals = 100
643
+ nx.set_edge_attributes(G, vals, attr)
644
+ attrs = nx.get_edge_attributes(G, attr)
645
+ assert len(attrs) == 2
646
+
647
+ for edge in G.edges:
648
+ assert attrs[edge] == vals
649
+
650
+ default_val = vals
651
+ G.add_edge(4, 5)
652
+ deafult_attrs = nx.get_edge_attributes(G, attr, default=default_val)
653
+ assert len(deafult_attrs) == 3
654
+
655
+ for edge in G.edges:
656
+ assert deafult_attrs[edge] == vals
657
+
658
+
659
+ def test_is_empty():
660
+ graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
661
+ for G in graphs:
662
+ assert nx.is_empty(G)
663
+ G.add_nodes_from(range(5))
664
+ assert nx.is_empty(G)
665
+ G.add_edges_from([(1, 2), (3, 4)])
666
+ assert not nx.is_empty(G)
667
+
668
+
669
+ @pytest.mark.parametrize(
670
+ "graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
671
+ )
672
+ def test_selfloops(graph_type):
673
+ G = nx.complete_graph(3, create_using=graph_type)
674
+ G.add_edge(0, 0)
675
+ assert nodes_equal(nx.nodes_with_selfloops(G), [0])
676
+ assert edges_equal(nx.selfloop_edges(G), [(0, 0)])
677
+ assert edges_equal(nx.selfloop_edges(G, data=True), [(0, 0, {})])
678
+ assert nx.number_of_selfloops(G) == 1
679
+
680
+
681
+ @pytest.mark.parametrize(
682
+ "graph_type", [nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph]
683
+ )
684
+ def test_selfloop_edges_attr(graph_type):
685
+ G = nx.complete_graph(3, create_using=graph_type)
686
+ G.add_edge(0, 0)
687
+ G.add_edge(1, 1, weight=2)
688
+ assert edges_equal(
689
+ nx.selfloop_edges(G, data=True), [(0, 0, {}), (1, 1, {"weight": 2})]
690
+ )
691
+ assert edges_equal(nx.selfloop_edges(G, data="weight"), [(0, 0, None), (1, 1, 2)])
692
+
693
+
694
+ def test_selfloop_edges_multi_with_data_and_keys():
695
+ G = nx.complete_graph(3, create_using=nx.MultiGraph)
696
+ G.add_edge(0, 0, weight=10)
697
+ G.add_edge(0, 0, weight=100)
698
+ assert edges_equal(
699
+ nx.selfloop_edges(G, data="weight", keys=True), [(0, 0, 0, 10), (0, 0, 1, 100)]
700
+ )
701
+
702
+
703
+ @pytest.mark.parametrize("graph_type", [nx.Graph, nx.DiGraph])
704
+ def test_selfloops_removal(graph_type):
705
+ G = nx.complete_graph(3, create_using=graph_type)
706
+ G.add_edge(0, 0)
707
+ G.remove_edges_from(nx.selfloop_edges(G, keys=True))
708
+ G.add_edge(0, 0)
709
+ G.remove_edges_from(nx.selfloop_edges(G, data=True))
710
+ G.add_edge(0, 0)
711
+ G.remove_edges_from(nx.selfloop_edges(G, keys=True, data=True))
712
+
713
+
714
+ @pytest.mark.parametrize("graph_type", [nx.MultiGraph, nx.MultiDiGraph])
715
+ def test_selfloops_removal_multi(graph_type):
716
+ """test removing selfloops behavior vis-a-vis altering a dict while iterating.
717
+ cf. gh-4068"""
718
+ G = nx.complete_graph(3, create_using=graph_type)
719
+ # Defaults - see gh-4080
720
+ G.add_edge(0, 0)
721
+ G.add_edge(0, 0)
722
+ G.remove_edges_from(nx.selfloop_edges(G))
723
+ assert (0, 0) not in G.edges()
724
+ # With keys
725
+ G.add_edge(0, 0)
726
+ G.add_edge(0, 0)
727
+ with pytest.raises(RuntimeError):
728
+ G.remove_edges_from(nx.selfloop_edges(G, keys=True))
729
+ # With data
730
+ G.add_edge(0, 0)
731
+ G.add_edge(0, 0)
732
+ with pytest.raises(TypeError):
733
+ G.remove_edges_from(nx.selfloop_edges(G, data=True))
734
+ # With keys and data
735
+ G.add_edge(0, 0)
736
+ G.add_edge(0, 0)
737
+ with pytest.raises(RuntimeError):
738
+ G.remove_edges_from(nx.selfloop_edges(G, data=True, keys=True))
739
+
740
+
741
+ def test_pathweight():
742
+ valid_path = [1, 2, 3]
743
+ invalid_path = [1, 3, 2]
744
+ graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
745
+ edges = [
746
+ (1, 2, {"cost": 5, "dist": 6}),
747
+ (2, 3, {"cost": 3, "dist": 4}),
748
+ (1, 2, {"cost": 1, "dist": 2}),
749
+ ]
750
+ for graph in graphs:
751
+ graph.add_edges_from(edges)
752
+ assert nx.path_weight(graph, valid_path, "cost") == 4
753
+ assert nx.path_weight(graph, valid_path, "dist") == 6
754
+ pytest.raises(nx.NetworkXNoPath, nx.path_weight, graph, invalid_path, "cost")
755
+
756
+
757
+ @pytest.mark.parametrize(
758
+ "G", (nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph())
759
+ )
760
+ def test_ispath(G):
761
+ G.add_edges_from([(1, 2), (2, 3), (1, 2), (3, 4)])
762
+ valid_path = [1, 2, 3, 4]
763
+ invalid_path = [1, 2, 4, 3] # wrong node order
764
+ another_invalid_path = [1, 2, 3, 4, 5] # contains node not in G
765
+ assert nx.is_path(G, valid_path)
766
+ assert not nx.is_path(G, invalid_path)
767
+ assert not nx.is_path(G, another_invalid_path)
768
+
769
+
770
+ @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
771
+ def test_restricted_view(G):
772
+ G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)])
773
+ G.add_node(4)
774
+ H = nx.restricted_view(G, [0, 2, 5], [(1, 2), (3, 4)])
775
+ assert set(H.nodes()) == {1, 3, 4}
776
+ assert set(H.edges()) == {(1, 1)}
777
+
778
+
779
+ @pytest.mark.parametrize("G", (nx.MultiGraph(), nx.MultiDiGraph()))
780
+ def test_restricted_view_multi(G):
781
+ G.add_edges_from(
782
+ [(0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 2, 0)]
783
+ )
784
+ G.add_node(4)
785
+ H = nx.restricted_view(G, [0, 2, 5], [(1, 2, 0), (3, 4, 0)])
786
+ assert set(H.nodes()) == {1, 3, 4}
787
+ assert set(H.edges()) == {(1, 1)}
venv/lib/python3.10/site-packages/networkx/generators/__init__.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A package for generating various graphs in networkx.
3
+
4
+ """
5
+ from networkx.generators.atlas import *
6
+ from networkx.generators.classic import *
7
+ from networkx.generators.cographs import *
8
+ from networkx.generators.community import *
9
+ from networkx.generators.degree_seq import *
10
+ from networkx.generators.directed import *
11
+ from networkx.generators.duplication import *
12
+ from networkx.generators.ego import *
13
+ from networkx.generators.expanders import *
14
+ from networkx.generators.geometric import *
15
+ from networkx.generators.harary_graph import *
16
+ from networkx.generators.internet_as_graphs import *
17
+ from networkx.generators.intersection import *
18
+ from networkx.generators.interval_graph import *
19
+ from networkx.generators.joint_degree_seq import *
20
+ from networkx.generators.lattice import *
21
+ from networkx.generators.line import *
22
+ from networkx.generators.mycielski import *
23
+ from networkx.generators.nonisomorphic_trees import *
24
+ from networkx.generators.random_clustered import *
25
+ from networkx.generators.random_graphs import *
26
+ from networkx.generators.small import *
27
+ from networkx.generators.social import *
28
+ from networkx.generators.spectral_graph_forge import *
29
+ from networkx.generators.stochastic import *
30
+ from networkx.generators.sudoku import *
31
+ from networkx.generators.time_series import *
32
+ from networkx.generators.trees import *
33
+ from networkx.generators.triads import *
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.48 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/atlas.cpython-310.pyc ADDED
Binary file (4.33 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/classic.cpython-310.pyc ADDED
Binary file (29.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/cographs.cpython-310.pyc ADDED
Binary file (2.24 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/degree_seq.cpython-310.pyc ADDED
Binary file (25.7 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/directed.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/duplication.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/ego.cpython-310.pyc ADDED
Binary file (1.82 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/expanders.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/harary_graph.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/intersection.cpython-310.pyc ADDED
Binary file (4.27 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/interval_graph.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/joint_degree_seq.cpython-310.pyc ADDED
Binary file (17.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/lattice.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/line.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/mycielski.cpython-310.pyc ADDED
Binary file (3.86 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/nonisomorphic_trees.cpython-310.pyc ADDED
Binary file (5.66 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/random_clustered.cpython-310.pyc ADDED
Binary file (4.14 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/small.cpython-310.pyc ADDED
Binary file (26.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/social.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/spectral_graph_forge.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/stochastic.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/sudoku.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
venv/lib/python3.10/site-packages/networkx/generators/__pycache__/time_series.cpython-310.pyc ADDED
Binary file (2.61 kB). View file