Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/15.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/19.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- lm-evaluation-harness/tests/testdata/lambada_mt_en-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/lambada_standard_cloze-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/math_counting_and_prob-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/math_prealgebra-v1-greedy_until +1 -0
- lm-evaluation-harness/tests/testdata/math_precalc-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_freelaw-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-en-ps-v0-res.json +1 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__init__.py +102 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/configuration_convnext.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/convert_convnext_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/feature_extraction_convnext.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/image_processing_convnext.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/modeling_convnext.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/modeling_tf_convnext.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/configuration_convnext.py +142 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/convert_convnext_to_pytorch.py +243 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/feature_extraction_convnext.py +33 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/image_processing_convnext.py +338 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/modeling_convnext.py +551 -0
- venv/lib/python3.10/site-packages/transformers/models/convnext/modeling_tf_convnext.py +667 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py +58 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py +354 -0
- venv/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py +259 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/__init__.py +140 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_tf_pegasus.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/configuration_pegasus.py +164 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py +131 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_flax_pegasus.py +1530 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_pegasus.py +1693 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_tf_pegasus.py +1572 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus.py +285 -0
- venv/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus_fast.py +217 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__init__.py +83 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/configuration_poolformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/convert_poolformer_original_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/feature_extraction_poolformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/image_processing_poolformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/modeling_poolformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/configuration_poolformer.py +147 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py +214 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/feature_extraction_poolformer.py +33 -0
- venv/lib/python3.10/site-packages/transformers/models/poolformer/image_processing_poolformer.py +377 -0
ckpts/universal/global_step20/zero/15.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2797d15dd0a3fdf23677f17138c83cad3de3fdcec0f84d272961324501a54c3
|
3 |
+
size 50332843
|
ckpts/universal/global_step20/zero/19.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63b97f36159ab0725204bc620192509cca489c08622fe379cc7b3ee164fcd9ac
|
3 |
+
size 33555612
|
lm-evaluation-harness/tests/testdata/lambada_mt_en-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"lambada_mt_en": {"acc": 0.0, "acc_stderr": 0.0, "ppl": 1.6479047769869253, "ppl_stderr": 0.006497321146240192}}, "versions": {"lambada_mt_en": 0}}
|
lm-evaluation-harness/tests/testdata/lambada_standard_cloze-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"lambada_standard_cloze": {"acc": 0.0, "acc_stderr": 0.0, "ppl": 1.6479047769869253, "ppl_stderr": 0.006497321146240192}}, "versions": {"lambada_standard_cloze": 0}}
|
lm-evaluation-harness/tests/testdata/math_counting_and_prob-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2aa9ae43ee9dbb2457525247d7b65358632c5eaa9cbfc40cf95a4f17f5d942ad
|
lm-evaluation-harness/tests/testdata/math_prealgebra-v1-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
752cdf343d7152e476b0273065024f6ea0e0f47ea385c6bdf9067736cb39724a
|
lm-evaluation-harness/tests/testdata/math_precalc-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"math_precalc": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_precalc": 1}}
|
lm-evaluation-harness/tests/testdata/pile_freelaw-v1-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
d77f3f68aadd6cbf1290c2f6737b2ed5d5c2a60e4c81a65c280f207783caabe1
|
lm-evaluation-harness/tests/testdata/wmt20-en-ps-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"wmt20-en-ps": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 2.1193813610582323e-06, "chrf_stderr": 2.113911466119111e-06, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-en-ps": 0}}
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__init__.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_tf_available,
|
20 |
+
is_torch_available,
|
21 |
+
is_vision_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_vision_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["feature_extraction_convnext"] = ["ConvNextFeatureExtractor"]
|
36 |
+
_import_structure["image_processing_convnext"] = ["ConvNextImageProcessor"]
|
37 |
+
|
38 |
+
try:
|
39 |
+
if not is_torch_available():
|
40 |
+
raise OptionalDependencyNotAvailable()
|
41 |
+
except OptionalDependencyNotAvailable:
|
42 |
+
pass
|
43 |
+
else:
|
44 |
+
_import_structure["modeling_convnext"] = [
|
45 |
+
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
46 |
+
"ConvNextForImageClassification",
|
47 |
+
"ConvNextModel",
|
48 |
+
"ConvNextPreTrainedModel",
|
49 |
+
"ConvNextBackbone",
|
50 |
+
]
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_tf_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
_import_structure["modeling_tf_convnext"] = [
|
59 |
+
"TFConvNextForImageClassification",
|
60 |
+
"TFConvNextModel",
|
61 |
+
"TFConvNextPreTrainedModel",
|
62 |
+
]
|
63 |
+
|
64 |
+
if TYPE_CHECKING:
|
65 |
+
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
|
66 |
+
|
67 |
+
try:
|
68 |
+
if not is_vision_available():
|
69 |
+
raise OptionalDependencyNotAvailable()
|
70 |
+
except OptionalDependencyNotAvailable:
|
71 |
+
pass
|
72 |
+
else:
|
73 |
+
from .feature_extraction_convnext import ConvNextFeatureExtractor
|
74 |
+
from .image_processing_convnext import ConvNextImageProcessor
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_torch_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
from .modeling_convnext import (
|
83 |
+
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
84 |
+
ConvNextBackbone,
|
85 |
+
ConvNextForImageClassification,
|
86 |
+
ConvNextModel,
|
87 |
+
ConvNextPreTrainedModel,
|
88 |
+
)
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_tf_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
|
97 |
+
|
98 |
+
|
99 |
+
else:
|
100 |
+
import sys
|
101 |
+
|
102 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.59 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/configuration_convnext.cpython-310.pyc
ADDED
Binary file (6.02 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/convert_convnext_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.14 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/feature_extraction_convnext.cpython-310.pyc
ADDED
Binary file (1.03 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/image_processing_convnext.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/modeling_convnext.cpython-310.pyc
ADDED
Binary file (17.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/__pycache__/modeling_tf_convnext.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnext/configuration_convnext.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ConvNeXT model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
from ..deprecated._archive_maps import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
32 |
+
|
33 |
+
|
34 |
+
class ConvNextConfig(BackboneConfigMixin, PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
|
37 |
+
ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
38 |
+
with the defaults will yield a similar configuration to that of the ConvNeXT
|
39 |
+
[facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
num_channels (`int`, *optional*, defaults to 3):
|
46 |
+
The number of input channels.
|
47 |
+
patch_size (`int`, optional, defaults to 4):
|
48 |
+
Patch size to use in the patch embedding layer.
|
49 |
+
num_stages (`int`, optional, defaults to 4):
|
50 |
+
The number of stages in the model.
|
51 |
+
hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]):
|
52 |
+
Dimensionality (hidden size) at each stage.
|
53 |
+
depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]):
|
54 |
+
Depth (number of blocks) for each stage.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
57 |
+
`"selu"` and `"gelu_new"` are supported.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
layer_scale_init_value (`float`, *optional*, defaults to 1e-6):
|
63 |
+
The initial value for the layer scale.
|
64 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
65 |
+
The drop rate for stochastic depth.
|
66 |
+
out_features (`List[str]`, *optional*):
|
67 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
68 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
69 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
70 |
+
same order as defined in the `stage_names` attribute.
|
71 |
+
out_indices (`List[int]`, *optional*):
|
72 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
73 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
74 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
75 |
+
same order as defined in the `stage_names` attribute.
|
76 |
+
|
77 |
+
Example:
|
78 |
+
```python
|
79 |
+
>>> from transformers import ConvNextConfig, ConvNextModel
|
80 |
+
|
81 |
+
>>> # Initializing a ConvNext convnext-tiny-224 style configuration
|
82 |
+
>>> configuration = ConvNextConfig()
|
83 |
+
|
84 |
+
>>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration
|
85 |
+
>>> model = ConvNextModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "convnext"
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
num_channels=3,
|
96 |
+
patch_size=4,
|
97 |
+
num_stages=4,
|
98 |
+
hidden_sizes=None,
|
99 |
+
depths=None,
|
100 |
+
hidden_act="gelu",
|
101 |
+
initializer_range=0.02,
|
102 |
+
layer_norm_eps=1e-12,
|
103 |
+
layer_scale_init_value=1e-6,
|
104 |
+
drop_path_rate=0.0,
|
105 |
+
image_size=224,
|
106 |
+
out_features=None,
|
107 |
+
out_indices=None,
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
super().__init__(**kwargs)
|
111 |
+
|
112 |
+
self.num_channels = num_channels
|
113 |
+
self.patch_size = patch_size
|
114 |
+
self.num_stages = num_stages
|
115 |
+
self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
|
116 |
+
self.depths = [3, 3, 9, 3] if depths is None else depths
|
117 |
+
self.hidden_act = hidden_act
|
118 |
+
self.initializer_range = initializer_range
|
119 |
+
self.layer_norm_eps = layer_norm_eps
|
120 |
+
self.layer_scale_init_value = layer_scale_init_value
|
121 |
+
self.drop_path_rate = drop_path_rate
|
122 |
+
self.image_size = image_size
|
123 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
|
124 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
125 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
class ConvNextOnnxConfig(OnnxConfig):
|
130 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
131 |
+
|
132 |
+
@property
|
133 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
134 |
+
return OrderedDict(
|
135 |
+
[
|
136 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
137 |
+
]
|
138 |
+
)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def atol_for_validation(self) -> float:
|
142 |
+
return 1e-5
|
venv/lib/python3.10/site-packages/transformers/models/convnext/convert_convnext_to_pytorch.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ConvNext checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/facebookresearch/ConvNeXt"""
|
18 |
+
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import json
|
22 |
+
from pathlib import Path
|
23 |
+
|
24 |
+
import requests
|
25 |
+
import torch
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
from PIL import Image
|
28 |
+
|
29 |
+
from transformers import ConvNextConfig, ConvNextForImageClassification, ConvNextImageProcessor
|
30 |
+
from transformers.utils import logging
|
31 |
+
|
32 |
+
|
33 |
+
logging.set_verbosity_info()
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
def get_convnext_config(checkpoint_url):
|
38 |
+
config = ConvNextConfig()
|
39 |
+
|
40 |
+
if "tiny" in checkpoint_url:
|
41 |
+
depths = [3, 3, 9, 3]
|
42 |
+
hidden_sizes = [96, 192, 384, 768]
|
43 |
+
if "small" in checkpoint_url:
|
44 |
+
depths = [3, 3, 27, 3]
|
45 |
+
hidden_sizes = [96, 192, 384, 768]
|
46 |
+
if "base" in checkpoint_url:
|
47 |
+
depths = [3, 3, 27, 3]
|
48 |
+
hidden_sizes = [128, 256, 512, 1024]
|
49 |
+
if "large" in checkpoint_url:
|
50 |
+
depths = [3, 3, 27, 3]
|
51 |
+
hidden_sizes = [192, 384, 768, 1536]
|
52 |
+
if "xlarge" in checkpoint_url:
|
53 |
+
depths = [3, 3, 27, 3]
|
54 |
+
hidden_sizes = [256, 512, 1024, 2048]
|
55 |
+
|
56 |
+
if "1k" in checkpoint_url:
|
57 |
+
num_labels = 1000
|
58 |
+
filename = "imagenet-1k-id2label.json"
|
59 |
+
expected_shape = (1, 1000)
|
60 |
+
else:
|
61 |
+
num_labels = 21841
|
62 |
+
filename = "imagenet-22k-id2label.json"
|
63 |
+
expected_shape = (1, 21841)
|
64 |
+
|
65 |
+
repo_id = "huggingface/label-files"
|
66 |
+
config.num_labels = num_labels
|
67 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
68 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
69 |
+
if "1k" not in checkpoint_url:
|
70 |
+
# this dataset contains 21843 labels but the model only has 21841
|
71 |
+
# we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18
|
72 |
+
del id2label[9205]
|
73 |
+
del id2label[15027]
|
74 |
+
config.id2label = id2label
|
75 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
76 |
+
config.hidden_sizes = hidden_sizes
|
77 |
+
config.depths = depths
|
78 |
+
|
79 |
+
return config, expected_shape
|
80 |
+
|
81 |
+
|
82 |
+
def rename_key(name):
|
83 |
+
if "downsample_layers.0.0" in name:
|
84 |
+
name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings")
|
85 |
+
if "downsample_layers.0.1" in name:
|
86 |
+
name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on
|
87 |
+
if "downsample_layers.1.0" in name:
|
88 |
+
name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0")
|
89 |
+
if "downsample_layers.1.1" in name:
|
90 |
+
name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1")
|
91 |
+
if "downsample_layers.2.0" in name:
|
92 |
+
name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0")
|
93 |
+
if "downsample_layers.2.1" in name:
|
94 |
+
name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1")
|
95 |
+
if "downsample_layers.3.0" in name:
|
96 |
+
name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0")
|
97 |
+
if "downsample_layers.3.1" in name:
|
98 |
+
name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1")
|
99 |
+
if "stages" in name and "downsampling_layer" not in name:
|
100 |
+
# stages.0.0. for instance should be renamed to stages.0.layers.0.
|
101 |
+
name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :]
|
102 |
+
if "stages" in name:
|
103 |
+
name = name.replace("stages", "encoder.stages")
|
104 |
+
if "norm" in name:
|
105 |
+
name = name.replace("norm", "layernorm")
|
106 |
+
if "gamma" in name:
|
107 |
+
name = name.replace("gamma", "layer_scale_parameter")
|
108 |
+
if "head" in name:
|
109 |
+
name = name.replace("head", "classifier")
|
110 |
+
|
111 |
+
return name
|
112 |
+
|
113 |
+
|
114 |
+
# We will verify our results on an image of cute cats
|
115 |
+
def prepare_img():
|
116 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
117 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
118 |
+
return im
|
119 |
+
|
120 |
+
|
121 |
+
@torch.no_grad()
|
122 |
+
def convert_convnext_checkpoint(checkpoint_url, pytorch_dump_folder_path):
|
123 |
+
"""
|
124 |
+
Copy/paste/tweak model's weights to our ConvNext structure.
|
125 |
+
"""
|
126 |
+
|
127 |
+
# define ConvNext configuration based on URL
|
128 |
+
config, expected_shape = get_convnext_config(checkpoint_url)
|
129 |
+
# load original state_dict from URL
|
130 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
|
131 |
+
# rename keys
|
132 |
+
for key in state_dict.copy().keys():
|
133 |
+
val = state_dict.pop(key)
|
134 |
+
state_dict[rename_key(key)] = val
|
135 |
+
# add prefix to all keys expect classifier head
|
136 |
+
for key in state_dict.copy().keys():
|
137 |
+
val = state_dict.pop(key)
|
138 |
+
if not key.startswith("classifier"):
|
139 |
+
key = "convnext." + key
|
140 |
+
state_dict[key] = val
|
141 |
+
|
142 |
+
# load HuggingFace model
|
143 |
+
model = ConvNextForImageClassification(config)
|
144 |
+
model.load_state_dict(state_dict)
|
145 |
+
model.eval()
|
146 |
+
|
147 |
+
# Check outputs on an image, prepared by ConvNextImageProcessor
|
148 |
+
size = 224 if "224" in checkpoint_url else 384
|
149 |
+
image_processor = ConvNextImageProcessor(size=size)
|
150 |
+
pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values
|
151 |
+
|
152 |
+
logits = model(pixel_values).logits
|
153 |
+
|
154 |
+
# note: the logits below were obtained without center cropping
|
155 |
+
if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth":
|
156 |
+
expected_logits = torch.tensor([-0.1210, -0.6605, 0.1918])
|
157 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth":
|
158 |
+
expected_logits = torch.tensor([-0.4473, -0.1847, -0.6365])
|
159 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth":
|
160 |
+
expected_logits = torch.tensor([0.4525, 0.7539, 0.0308])
|
161 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_384.pth":
|
162 |
+
expected_logits = torch.tensor([0.3561, 0.6350, -0.0384])
|
163 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth":
|
164 |
+
expected_logits = torch.tensor([0.4174, -0.0989, 0.1489])
|
165 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_384.pth":
|
166 |
+
expected_logits = torch.tensor([0.2513, -0.1349, -0.1613])
|
167 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth":
|
168 |
+
expected_logits = torch.tensor([1.2980, 0.3631, -0.1198])
|
169 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth":
|
170 |
+
expected_logits = torch.tensor([1.2963, 0.1227, 0.1723])
|
171 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth":
|
172 |
+
expected_logits = torch.tensor([1.7956, 0.8390, 0.2820])
|
173 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth":
|
174 |
+
expected_logits = torch.tensor([-0.2822, -0.0502, -0.0878])
|
175 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_384.pth":
|
176 |
+
expected_logits = torch.tensor([-0.5672, -0.0730, -0.4348])
|
177 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_224.pth":
|
178 |
+
expected_logits = torch.tensor([0.2681, 0.2365, 0.6246])
|
179 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_1k_384.pth":
|
180 |
+
expected_logits = torch.tensor([-0.2642, 0.3931, 0.5116])
|
181 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_224_ema.pth":
|
182 |
+
expected_logits = torch.tensor([-0.6677, -0.1873, -0.8379])
|
183 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_1k_384_ema.pth":
|
184 |
+
expected_logits = torch.tensor([-0.7749, -0.2967, -0.6444])
|
185 |
+
else:
|
186 |
+
raise ValueError(f"Unknown URL: {checkpoint_url}")
|
187 |
+
|
188 |
+
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-3)
|
189 |
+
assert logits.shape == expected_shape
|
190 |
+
|
191 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
192 |
+
print(f"Saving model to {pytorch_dump_folder_path}")
|
193 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
194 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
195 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
196 |
+
|
197 |
+
print("Pushing model to the hub...")
|
198 |
+
model_name = "convnext"
|
199 |
+
if "tiny" in checkpoint_url:
|
200 |
+
model_name += "-tiny"
|
201 |
+
elif "small" in checkpoint_url:
|
202 |
+
model_name += "-small"
|
203 |
+
elif "base" in checkpoint_url:
|
204 |
+
model_name += "-base"
|
205 |
+
elif "xlarge" in checkpoint_url:
|
206 |
+
model_name += "-xlarge"
|
207 |
+
elif "large" in checkpoint_url:
|
208 |
+
model_name += "-large"
|
209 |
+
if "224" in checkpoint_url:
|
210 |
+
model_name += "-224"
|
211 |
+
elif "384" in checkpoint_url:
|
212 |
+
model_name += "-384"
|
213 |
+
if "22k" in checkpoint_url and "1k" not in checkpoint_url:
|
214 |
+
model_name += "-22k"
|
215 |
+
if "22k" in checkpoint_url and "1k" in checkpoint_url:
|
216 |
+
model_name += "-22k-1k"
|
217 |
+
|
218 |
+
model.push_to_hub(
|
219 |
+
repo_path_or_name=Path(pytorch_dump_folder_path, model_name),
|
220 |
+
organization="nielsr",
|
221 |
+
commit_message="Add model",
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
parser = argparse.ArgumentParser()
|
227 |
+
# Required parameters
|
228 |
+
parser.add_argument(
|
229 |
+
"--checkpoint_url",
|
230 |
+
default="https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
|
231 |
+
type=str,
|
232 |
+
help="URL of the original ConvNeXT checkpoint you'd like to convert.",
|
233 |
+
)
|
234 |
+
parser.add_argument(
|
235 |
+
"--pytorch_dump_folder_path",
|
236 |
+
default=None,
|
237 |
+
type=str,
|
238 |
+
required=True,
|
239 |
+
help="Path to the output PyTorch model directory.",
|
240 |
+
)
|
241 |
+
|
242 |
+
args = parser.parse_args()
|
243 |
+
convert_convnext_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/convnext/feature_extraction_convnext.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for ConvNeXT."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_convnext import ConvNextImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class ConvNextFeatureExtractor(ConvNextImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class ConvNextFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use ConvNextImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/convnext/image_processing_convnext.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for ConvNeXT."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
center_crop,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from ...image_utils import (
|
29 |
+
IMAGENET_STANDARD_MEAN,
|
30 |
+
IMAGENET_STANDARD_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
is_scaled_image,
|
36 |
+
make_list_of_images,
|
37 |
+
to_numpy_array,
|
38 |
+
valid_images,
|
39 |
+
validate_kwargs,
|
40 |
+
validate_preprocess_arguments,
|
41 |
+
)
|
42 |
+
from ...utils import TensorType, is_vision_available, logging
|
43 |
+
|
44 |
+
|
45 |
+
if is_vision_available():
|
46 |
+
import PIL
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
|
52 |
+
class ConvNextImageProcessor(BaseImageProcessor):
|
53 |
+
r"""
|
54 |
+
Constructs a ConvNeXT image processor.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
58 |
+
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
|
59 |
+
by `do_resize` in the `preprocess` method.
|
60 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
|
61 |
+
Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is
|
62 |
+
resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will
|
63 |
+
be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to
|
64 |
+
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can
|
65 |
+
be overriden by `size` in the `preprocess` method.
|
66 |
+
crop_pct (`float` *optional*, defaults to 224 / 256):
|
67 |
+
Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be
|
68 |
+
overriden by `crop_pct` in the `preprocess` method.
|
69 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
70 |
+
Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
|
71 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
|
73 |
+
the `preprocess` method.
|
74 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
75 |
+
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
|
76 |
+
method.
|
77 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
79 |
+
method.
|
80 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
81 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
82 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
83 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
84 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
85 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
86 |
+
"""
|
87 |
+
|
88 |
+
model_input_names = ["pixel_values"]
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
do_resize: bool = True,
|
93 |
+
size: Dict[str, int] = None,
|
94 |
+
crop_pct: float = None,
|
95 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
96 |
+
do_rescale: bool = True,
|
97 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
100 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
101 |
+
**kwargs,
|
102 |
+
) -> None:
|
103 |
+
super().__init__(**kwargs)
|
104 |
+
size = size if size is not None else {"shortest_edge": 384}
|
105 |
+
size = get_size_dict(size, default_to_square=False)
|
106 |
+
|
107 |
+
self.do_resize = do_resize
|
108 |
+
self.size = size
|
109 |
+
# Default value set here for backwards compatibility where the value in config is None
|
110 |
+
self.crop_pct = crop_pct if crop_pct is not None else 224 / 256
|
111 |
+
self.resample = resample
|
112 |
+
self.do_rescale = do_rescale
|
113 |
+
self.rescale_factor = rescale_factor
|
114 |
+
self.do_normalize = do_normalize
|
115 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
116 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
117 |
+
self._valid_processor_keys = [
|
118 |
+
"images",
|
119 |
+
"do_resize",
|
120 |
+
"size",
|
121 |
+
"crop_pct",
|
122 |
+
"resample",
|
123 |
+
"do_rescale",
|
124 |
+
"rescale_factor",
|
125 |
+
"do_normalize",
|
126 |
+
"image_mean",
|
127 |
+
"image_std",
|
128 |
+
"return_tensors",
|
129 |
+
"data_format",
|
130 |
+
"input_data_format",
|
131 |
+
]
|
132 |
+
|
133 |
+
def resize(
|
134 |
+
self,
|
135 |
+
image: np.ndarray,
|
136 |
+
size: Dict[str, int],
|
137 |
+
crop_pct: float,
|
138 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
139 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
140 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
141 |
+
**kwargs,
|
142 |
+
) -> np.ndarray:
|
143 |
+
"""
|
144 |
+
Resize an image.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
image (`np.ndarray`):
|
148 |
+
Image to resize.
|
149 |
+
size (`Dict[str, int]`):
|
150 |
+
Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If
|
151 |
+
`size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`.
|
152 |
+
Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`,
|
153 |
+
after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`.
|
154 |
+
crop_pct (`float`):
|
155 |
+
Percentage of the image to crop. Only has an effect if size < 384.
|
156 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
157 |
+
Resampling filter to use when resizing the image.
|
158 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
159 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
160 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
161 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input
|
162 |
+
image.
|
163 |
+
"""
|
164 |
+
size = get_size_dict(size, default_to_square=False)
|
165 |
+
if "shortest_edge" not in size:
|
166 |
+
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
|
167 |
+
shortest_edge = size["shortest_edge"]
|
168 |
+
|
169 |
+
if shortest_edge < 384:
|
170 |
+
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
|
171 |
+
resize_shortest_edge = int(shortest_edge / crop_pct)
|
172 |
+
resize_size = get_resize_output_image_size(
|
173 |
+
image, size=resize_shortest_edge, default_to_square=False, input_data_format=input_data_format
|
174 |
+
)
|
175 |
+
image = resize(
|
176 |
+
image=image,
|
177 |
+
size=resize_size,
|
178 |
+
resample=resample,
|
179 |
+
data_format=data_format,
|
180 |
+
input_data_format=input_data_format,
|
181 |
+
**kwargs,
|
182 |
+
)
|
183 |
+
# then crop to (shortest_edge, shortest_edge)
|
184 |
+
return center_crop(
|
185 |
+
image=image,
|
186 |
+
size=(shortest_edge, shortest_edge),
|
187 |
+
data_format=data_format,
|
188 |
+
input_data_format=input_data_format,
|
189 |
+
**kwargs,
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
# warping (no cropping) when evaluated at 384 or larger
|
193 |
+
return resize(
|
194 |
+
image,
|
195 |
+
size=(shortest_edge, shortest_edge),
|
196 |
+
resample=resample,
|
197 |
+
data_format=data_format,
|
198 |
+
input_data_format=input_data_format,
|
199 |
+
**kwargs,
|
200 |
+
)
|
201 |
+
|
202 |
+
def preprocess(
|
203 |
+
self,
|
204 |
+
images: ImageInput,
|
205 |
+
do_resize: bool = None,
|
206 |
+
size: Dict[str, int] = None,
|
207 |
+
crop_pct: float = None,
|
208 |
+
resample: PILImageResampling = None,
|
209 |
+
do_rescale: bool = None,
|
210 |
+
rescale_factor: float = None,
|
211 |
+
do_normalize: bool = None,
|
212 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
213 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
214 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
215 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
216 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
217 |
+
**kwargs,
|
218 |
+
) -> PIL.Image.Image:
|
219 |
+
"""
|
220 |
+
Preprocess an image or batch of images.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
images (`ImageInput`):
|
224 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
225 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
226 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
227 |
+
Whether to resize the image.
|
228 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
229 |
+
Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
|
230 |
+
is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
|
231 |
+
image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
|
232 |
+
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
|
233 |
+
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
|
234 |
+
Percentage of the image to crop if size < 384.
|
235 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
236 |
+
Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
|
237 |
+
has an effect if `do_resize` is set to `True`.
|
238 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
239 |
+
Whether to rescale the image values between [0 - 1].
|
240 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
241 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
242 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
243 |
+
Whether to normalize the image.
|
244 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
245 |
+
Image mean.
|
246 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
247 |
+
Image standard deviation.
|
248 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
249 |
+
The type of tensors to return. Can be one of:
|
250 |
+
- Unset: Return a list of `np.ndarray`.
|
251 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
252 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
253 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
254 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
255 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
256 |
+
The channel dimension format for the output image. Can be one of:
|
257 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
258 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
259 |
+
- Unset: Use the channel dimension format of the input image.
|
260 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
261 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
262 |
+
from the input image. Can be one of:
|
263 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
264 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
265 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
266 |
+
"""
|
267 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
268 |
+
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
|
269 |
+
resample = resample if resample is not None else self.resample
|
270 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
271 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
272 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
273 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
274 |
+
image_std = image_std if image_std is not None else self.image_std
|
275 |
+
|
276 |
+
size = size if size is not None else self.size
|
277 |
+
size = get_size_dict(size, default_to_square=False)
|
278 |
+
|
279 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
280 |
+
|
281 |
+
images = make_list_of_images(images)
|
282 |
+
|
283 |
+
if not valid_images(images):
|
284 |
+
raise ValueError(
|
285 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
286 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
287 |
+
)
|
288 |
+
|
289 |
+
validate_preprocess_arguments(
|
290 |
+
do_rescale=do_rescale,
|
291 |
+
rescale_factor=rescale_factor,
|
292 |
+
do_normalize=do_normalize,
|
293 |
+
image_mean=image_mean,
|
294 |
+
image_std=image_std,
|
295 |
+
do_resize=do_resize,
|
296 |
+
size=size,
|
297 |
+
resample=resample,
|
298 |
+
)
|
299 |
+
|
300 |
+
# All transformations expect numpy arrays.
|
301 |
+
images = [to_numpy_array(image) for image in images]
|
302 |
+
|
303 |
+
if is_scaled_image(images[0]) and do_rescale:
|
304 |
+
logger.warning_once(
|
305 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
306 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
307 |
+
)
|
308 |
+
|
309 |
+
if input_data_format is None:
|
310 |
+
# We assume that all images have the same channel dimension format.
|
311 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
312 |
+
|
313 |
+
if do_resize:
|
314 |
+
images = [
|
315 |
+
self.resize(
|
316 |
+
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
|
317 |
+
)
|
318 |
+
for image in images
|
319 |
+
]
|
320 |
+
|
321 |
+
if do_rescale:
|
322 |
+
images = [
|
323 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
324 |
+
for image in images
|
325 |
+
]
|
326 |
+
|
327 |
+
if do_normalize:
|
328 |
+
images = [
|
329 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
330 |
+
for image in images
|
331 |
+
]
|
332 |
+
|
333 |
+
images = [
|
334 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
335 |
+
]
|
336 |
+
|
337 |
+
data = {"pixel_values": images}
|
338 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
venv/lib/python3.10/site-packages/transformers/models/convnext/modeling_convnext.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ConvNext model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BackboneOutput,
|
28 |
+
BaseModelOutputWithNoAttention,
|
29 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
30 |
+
ImageClassifierOutputWithNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from ...utils.backbone_utils import BackboneMixin
|
41 |
+
from .configuration_convnext import ConvNextConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
# General docstring
|
47 |
+
_CONFIG_FOR_DOC = "ConvNextConfig"
|
48 |
+
|
49 |
+
# Base docstring
|
50 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
|
51 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
52 |
+
|
53 |
+
# Image classification docstring
|
54 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/convnext-tiny-224"
|
55 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
56 |
+
|
57 |
+
|
58 |
+
from ..deprecated._archive_maps import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
62 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
63 |
+
"""
|
64 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
65 |
+
|
66 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
67 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
68 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
69 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
70 |
+
argument.
|
71 |
+
"""
|
72 |
+
if drop_prob == 0.0 or not training:
|
73 |
+
return input
|
74 |
+
keep_prob = 1 - drop_prob
|
75 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
76 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
77 |
+
random_tensor.floor_() # binarize
|
78 |
+
output = input.div(keep_prob) * random_tensor
|
79 |
+
return output
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNext
|
83 |
+
class ConvNextDropPath(nn.Module):
|
84 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
85 |
+
|
86 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
87 |
+
super().__init__()
|
88 |
+
self.drop_prob = drop_prob
|
89 |
+
|
90 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
91 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
92 |
+
|
93 |
+
def extra_repr(self) -> str:
|
94 |
+
return "p={}".format(self.drop_prob)
|
95 |
+
|
96 |
+
|
97 |
+
class ConvNextLayerNorm(nn.Module):
|
98 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
99 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
100 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
104 |
+
super().__init__()
|
105 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
106 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
107 |
+
self.eps = eps
|
108 |
+
self.data_format = data_format
|
109 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
110 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
111 |
+
self.normalized_shape = (normalized_shape,)
|
112 |
+
|
113 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
114 |
+
if self.data_format == "channels_last":
|
115 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
116 |
+
elif self.data_format == "channels_first":
|
117 |
+
input_dtype = x.dtype
|
118 |
+
x = x.float()
|
119 |
+
u = x.mean(1, keepdim=True)
|
120 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
121 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
122 |
+
x = x.to(dtype=input_dtype)
|
123 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
class ConvNextEmbeddings(nn.Module):
|
128 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
129 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__()
|
134 |
+
self.patch_embeddings = nn.Conv2d(
|
135 |
+
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
|
136 |
+
)
|
137 |
+
self.layernorm = ConvNextLayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
|
138 |
+
self.num_channels = config.num_channels
|
139 |
+
|
140 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
141 |
+
num_channels = pixel_values.shape[1]
|
142 |
+
if num_channels != self.num_channels:
|
143 |
+
raise ValueError(
|
144 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
145 |
+
)
|
146 |
+
embeddings = self.patch_embeddings(pixel_values)
|
147 |
+
embeddings = self.layernorm(embeddings)
|
148 |
+
return embeddings
|
149 |
+
|
150 |
+
|
151 |
+
class ConvNextLayer(nn.Module):
|
152 |
+
"""This corresponds to the `Block` class in the original implementation.
|
153 |
+
|
154 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
155 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
156 |
+
|
157 |
+
The authors used (2) as they find it slightly faster in PyTorch.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
161 |
+
dim (`int`): Number of input channels.
|
162 |
+
drop_path (`float`): Stochastic depth rate. Default: 0.0.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(self, config, dim, drop_path=0):
|
166 |
+
super().__init__()
|
167 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
|
168 |
+
self.layernorm = ConvNextLayerNorm(dim, eps=1e-6)
|
169 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
|
170 |
+
self.act = ACT2FN[config.hidden_act]
|
171 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
172 |
+
self.layer_scale_parameter = (
|
173 |
+
nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
174 |
+
if config.layer_scale_init_value > 0
|
175 |
+
else None
|
176 |
+
)
|
177 |
+
self.drop_path = ConvNextDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
178 |
+
|
179 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
180 |
+
input = hidden_states
|
181 |
+
x = self.dwconv(hidden_states)
|
182 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
183 |
+
x = self.layernorm(x)
|
184 |
+
x = self.pwconv1(x)
|
185 |
+
x = self.act(x)
|
186 |
+
x = self.pwconv2(x)
|
187 |
+
if self.layer_scale_parameter is not None:
|
188 |
+
x = self.layer_scale_parameter * x
|
189 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
190 |
+
|
191 |
+
x = input + self.drop_path(x)
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class ConvNextStage(nn.Module):
|
196 |
+
"""ConvNeXT stage, consisting of an optional downsampling layer + multiple residual blocks.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
200 |
+
in_channels (`int`): Number of input channels.
|
201 |
+
out_channels (`int`): Number of output channels.
|
202 |
+
depth (`int`): Number of residual blocks.
|
203 |
+
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
|
204 |
+
"""
|
205 |
+
|
206 |
+
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
|
207 |
+
super().__init__()
|
208 |
+
|
209 |
+
if in_channels != out_channels or stride > 1:
|
210 |
+
self.downsampling_layer = nn.Sequential(
|
211 |
+
ConvNextLayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
|
212 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
self.downsampling_layer = nn.Identity()
|
216 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
217 |
+
self.layers = nn.Sequential(
|
218 |
+
*[ConvNextLayer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
|
219 |
+
)
|
220 |
+
|
221 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
222 |
+
hidden_states = self.downsampling_layer(hidden_states)
|
223 |
+
hidden_states = self.layers(hidden_states)
|
224 |
+
return hidden_states
|
225 |
+
|
226 |
+
|
227 |
+
class ConvNextEncoder(nn.Module):
|
228 |
+
def __init__(self, config):
|
229 |
+
super().__init__()
|
230 |
+
self.stages = nn.ModuleList()
|
231 |
+
drop_path_rates = [
|
232 |
+
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
|
233 |
+
]
|
234 |
+
prev_chs = config.hidden_sizes[0]
|
235 |
+
for i in range(config.num_stages):
|
236 |
+
out_chs = config.hidden_sizes[i]
|
237 |
+
stage = ConvNextStage(
|
238 |
+
config,
|
239 |
+
in_channels=prev_chs,
|
240 |
+
out_channels=out_chs,
|
241 |
+
stride=2 if i > 0 else 1,
|
242 |
+
depth=config.depths[i],
|
243 |
+
drop_path_rates=drop_path_rates[i],
|
244 |
+
)
|
245 |
+
self.stages.append(stage)
|
246 |
+
prev_chs = out_chs
|
247 |
+
|
248 |
+
def forward(
|
249 |
+
self,
|
250 |
+
hidden_states: torch.FloatTensor,
|
251 |
+
output_hidden_states: Optional[bool] = False,
|
252 |
+
return_dict: Optional[bool] = True,
|
253 |
+
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
|
254 |
+
all_hidden_states = () if output_hidden_states else None
|
255 |
+
|
256 |
+
for i, layer_module in enumerate(self.stages):
|
257 |
+
if output_hidden_states:
|
258 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
259 |
+
|
260 |
+
hidden_states = layer_module(hidden_states)
|
261 |
+
|
262 |
+
if output_hidden_states:
|
263 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
264 |
+
|
265 |
+
if not return_dict:
|
266 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
267 |
+
|
268 |
+
return BaseModelOutputWithNoAttention(
|
269 |
+
last_hidden_state=hidden_states,
|
270 |
+
hidden_states=all_hidden_states,
|
271 |
+
)
|
272 |
+
|
273 |
+
|
274 |
+
class ConvNextPreTrainedModel(PreTrainedModel):
|
275 |
+
"""
|
276 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
277 |
+
models.
|
278 |
+
"""
|
279 |
+
|
280 |
+
config_class = ConvNextConfig
|
281 |
+
base_model_prefix = "convnext"
|
282 |
+
main_input_name = "pixel_values"
|
283 |
+
|
284 |
+
def _init_weights(self, module):
|
285 |
+
"""Initialize the weights"""
|
286 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
287 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
288 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
289 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
290 |
+
if module.bias is not None:
|
291 |
+
module.bias.data.zero_()
|
292 |
+
elif isinstance(module, nn.LayerNorm):
|
293 |
+
module.bias.data.zero_()
|
294 |
+
module.weight.data.fill_(1.0)
|
295 |
+
|
296 |
+
|
297 |
+
CONVNEXT_START_DOCSTRING = r"""
|
298 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
299 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
300 |
+
behavior.
|
301 |
+
|
302 |
+
Parameters:
|
303 |
+
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
|
304 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
305 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
306 |
+
"""
|
307 |
+
|
308 |
+
CONVNEXT_INPUTS_DOCSTRING = r"""
|
309 |
+
Args:
|
310 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
311 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
312 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
313 |
+
|
314 |
+
output_hidden_states (`bool`, *optional*):
|
315 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
316 |
+
more detail.
|
317 |
+
return_dict (`bool`, *optional*):
|
318 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
319 |
+
"""
|
320 |
+
|
321 |
+
|
322 |
+
@add_start_docstrings(
|
323 |
+
"The bare ConvNext model outputting raw features without any specific head on top.",
|
324 |
+
CONVNEXT_START_DOCSTRING,
|
325 |
+
)
|
326 |
+
class ConvNextModel(ConvNextPreTrainedModel):
|
327 |
+
def __init__(self, config):
|
328 |
+
super().__init__(config)
|
329 |
+
self.config = config
|
330 |
+
|
331 |
+
self.embeddings = ConvNextEmbeddings(config)
|
332 |
+
self.encoder = ConvNextEncoder(config)
|
333 |
+
|
334 |
+
# final layernorm layer
|
335 |
+
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
336 |
+
|
337 |
+
# Initialize weights and apply final processing
|
338 |
+
self.post_init()
|
339 |
+
|
340 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
341 |
+
@add_code_sample_docstrings(
|
342 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
343 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
344 |
+
config_class=_CONFIG_FOR_DOC,
|
345 |
+
modality="vision",
|
346 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
347 |
+
)
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
pixel_values: torch.FloatTensor = None,
|
351 |
+
output_hidden_states: Optional[bool] = None,
|
352 |
+
return_dict: Optional[bool] = None,
|
353 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
354 |
+
output_hidden_states = (
|
355 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
356 |
+
)
|
357 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
358 |
+
|
359 |
+
if pixel_values is None:
|
360 |
+
raise ValueError("You have to specify pixel_values")
|
361 |
+
|
362 |
+
embedding_output = self.embeddings(pixel_values)
|
363 |
+
|
364 |
+
encoder_outputs = self.encoder(
|
365 |
+
embedding_output,
|
366 |
+
output_hidden_states=output_hidden_states,
|
367 |
+
return_dict=return_dict,
|
368 |
+
)
|
369 |
+
|
370 |
+
last_hidden_state = encoder_outputs[0]
|
371 |
+
|
372 |
+
# global average pooling, (N, C, H, W) -> (N, C)
|
373 |
+
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
|
374 |
+
|
375 |
+
if not return_dict:
|
376 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
377 |
+
|
378 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
379 |
+
last_hidden_state=last_hidden_state,
|
380 |
+
pooler_output=pooled_output,
|
381 |
+
hidden_states=encoder_outputs.hidden_states,
|
382 |
+
)
|
383 |
+
|
384 |
+
|
385 |
+
@add_start_docstrings(
|
386 |
+
"""
|
387 |
+
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
388 |
+
ImageNet.
|
389 |
+
""",
|
390 |
+
CONVNEXT_START_DOCSTRING,
|
391 |
+
)
|
392 |
+
class ConvNextForImageClassification(ConvNextPreTrainedModel):
|
393 |
+
def __init__(self, config):
|
394 |
+
super().__init__(config)
|
395 |
+
|
396 |
+
self.num_labels = config.num_labels
|
397 |
+
self.convnext = ConvNextModel(config)
|
398 |
+
|
399 |
+
# Classifier head
|
400 |
+
self.classifier = (
|
401 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
402 |
+
)
|
403 |
+
|
404 |
+
# Initialize weights and apply final processing
|
405 |
+
self.post_init()
|
406 |
+
|
407 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
408 |
+
@add_code_sample_docstrings(
|
409 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
410 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
411 |
+
config_class=_CONFIG_FOR_DOC,
|
412 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
413 |
+
)
|
414 |
+
def forward(
|
415 |
+
self,
|
416 |
+
pixel_values: torch.FloatTensor = None,
|
417 |
+
labels: Optional[torch.LongTensor] = None,
|
418 |
+
output_hidden_states: Optional[bool] = None,
|
419 |
+
return_dict: Optional[bool] = None,
|
420 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
421 |
+
r"""
|
422 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
423 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
424 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
425 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
426 |
+
"""
|
427 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
428 |
+
|
429 |
+
outputs = self.convnext(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
430 |
+
|
431 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
432 |
+
|
433 |
+
logits = self.classifier(pooled_output)
|
434 |
+
|
435 |
+
loss = None
|
436 |
+
if labels is not None:
|
437 |
+
if self.config.problem_type is None:
|
438 |
+
if self.num_labels == 1:
|
439 |
+
self.config.problem_type = "regression"
|
440 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
441 |
+
self.config.problem_type = "single_label_classification"
|
442 |
+
else:
|
443 |
+
self.config.problem_type = "multi_label_classification"
|
444 |
+
|
445 |
+
if self.config.problem_type == "regression":
|
446 |
+
loss_fct = MSELoss()
|
447 |
+
if self.num_labels == 1:
|
448 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
449 |
+
else:
|
450 |
+
loss = loss_fct(logits, labels)
|
451 |
+
elif self.config.problem_type == "single_label_classification":
|
452 |
+
loss_fct = CrossEntropyLoss()
|
453 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
454 |
+
elif self.config.problem_type == "multi_label_classification":
|
455 |
+
loss_fct = BCEWithLogitsLoss()
|
456 |
+
loss = loss_fct(logits, labels)
|
457 |
+
if not return_dict:
|
458 |
+
output = (logits,) + outputs[2:]
|
459 |
+
return ((loss,) + output) if loss is not None else output
|
460 |
+
|
461 |
+
return ImageClassifierOutputWithNoAttention(
|
462 |
+
loss=loss,
|
463 |
+
logits=logits,
|
464 |
+
hidden_states=outputs.hidden_states,
|
465 |
+
)
|
466 |
+
|
467 |
+
|
468 |
+
@add_start_docstrings(
|
469 |
+
"""
|
470 |
+
ConvNeXt backbone, to be used with frameworks like DETR and MaskFormer.
|
471 |
+
""",
|
472 |
+
CONVNEXT_START_DOCSTRING,
|
473 |
+
)
|
474 |
+
class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin):
|
475 |
+
def __init__(self, config):
|
476 |
+
super().__init__(config)
|
477 |
+
super()._init_backbone(config)
|
478 |
+
|
479 |
+
self.embeddings = ConvNextEmbeddings(config)
|
480 |
+
self.encoder = ConvNextEncoder(config)
|
481 |
+
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
|
482 |
+
|
483 |
+
# Add layer norms to hidden states of out_features
|
484 |
+
hidden_states_norms = {}
|
485 |
+
for stage, num_channels in zip(self._out_features, self.channels):
|
486 |
+
hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first")
|
487 |
+
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
|
488 |
+
|
489 |
+
# initialize weights and apply final processing
|
490 |
+
self.post_init()
|
491 |
+
|
492 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
493 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
494 |
+
def forward(
|
495 |
+
self,
|
496 |
+
pixel_values: torch.Tensor,
|
497 |
+
output_hidden_states: Optional[bool] = None,
|
498 |
+
return_dict: Optional[bool] = None,
|
499 |
+
) -> BackboneOutput:
|
500 |
+
"""
|
501 |
+
Returns:
|
502 |
+
|
503 |
+
Examples:
|
504 |
+
|
505 |
+
```python
|
506 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
507 |
+
>>> import torch
|
508 |
+
>>> from PIL import Image
|
509 |
+
>>> import requests
|
510 |
+
|
511 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
512 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
513 |
+
|
514 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
515 |
+
>>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224")
|
516 |
+
|
517 |
+
>>> inputs = processor(image, return_tensors="pt")
|
518 |
+
>>> outputs = model(**inputs)
|
519 |
+
```"""
|
520 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
521 |
+
output_hidden_states = (
|
522 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
523 |
+
)
|
524 |
+
|
525 |
+
embedding_output = self.embeddings(pixel_values)
|
526 |
+
|
527 |
+
outputs = self.encoder(
|
528 |
+
embedding_output,
|
529 |
+
output_hidden_states=True,
|
530 |
+
return_dict=return_dict,
|
531 |
+
)
|
532 |
+
|
533 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
534 |
+
|
535 |
+
feature_maps = ()
|
536 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
537 |
+
if stage in self.out_features:
|
538 |
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
539 |
+
feature_maps += (hidden_state,)
|
540 |
+
|
541 |
+
if not return_dict:
|
542 |
+
output = (feature_maps,)
|
543 |
+
if output_hidden_states:
|
544 |
+
output += (hidden_states,)
|
545 |
+
return output
|
546 |
+
|
547 |
+
return BackboneOutput(
|
548 |
+
feature_maps=feature_maps,
|
549 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
550 |
+
attentions=None,
|
551 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/convnext/modeling_tf_convnext.py
ADDED
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 ConvNext model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...activations_tf import get_tf_activation
|
26 |
+
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
|
27 |
+
from ...modeling_tf_utils import (
|
28 |
+
TFModelInputType,
|
29 |
+
TFPreTrainedModel,
|
30 |
+
TFSequenceClassificationLoss,
|
31 |
+
get_initializer,
|
32 |
+
keras,
|
33 |
+
keras_serializable,
|
34 |
+
unpack_inputs,
|
35 |
+
)
|
36 |
+
from ...tf_utils import shape_list
|
37 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
38 |
+
from .configuration_convnext import ConvNextConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
_CONFIG_FOR_DOC = "ConvNextConfig"
|
45 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnext-tiny-224"
|
46 |
+
|
47 |
+
|
48 |
+
class TFConvNextDropPath(keras.layers.Layer):
|
49 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
50 |
+
References:
|
51 |
+
(1) github.com:rwightman/pytorch-image-models
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, drop_path: float, **kwargs):
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
self.drop_path = drop_path
|
57 |
+
|
58 |
+
def call(self, x: tf.Tensor, training=None):
|
59 |
+
if training:
|
60 |
+
keep_prob = 1 - self.drop_path
|
61 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
62 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
63 |
+
random_tensor = tf.floor(random_tensor)
|
64 |
+
return (x / keep_prob) * random_tensor
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class TFConvNextEmbeddings(keras.layers.Layer):
|
69 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
70 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, config: ConvNextConfig, **kwargs):
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.patch_embeddings = keras.layers.Conv2D(
|
76 |
+
filters=config.hidden_sizes[0],
|
77 |
+
kernel_size=config.patch_size,
|
78 |
+
strides=config.patch_size,
|
79 |
+
name="patch_embeddings",
|
80 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
81 |
+
bias_initializer=keras.initializers.Zeros(),
|
82 |
+
)
|
83 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
|
84 |
+
self.num_channels = config.num_channels
|
85 |
+
self.config = config
|
86 |
+
|
87 |
+
def call(self, pixel_values):
|
88 |
+
if isinstance(pixel_values, dict):
|
89 |
+
pixel_values = pixel_values["pixel_values"]
|
90 |
+
|
91 |
+
tf.debugging.assert_equal(
|
92 |
+
shape_list(pixel_values)[1],
|
93 |
+
self.num_channels,
|
94 |
+
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
|
95 |
+
)
|
96 |
+
|
97 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
|
98 |
+
# So change the input format from `NCHW` to `NHWC`.
|
99 |
+
# shape = (batch_size, in_height, in_width, in_channels)
|
100 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
101 |
+
|
102 |
+
embeddings = self.patch_embeddings(pixel_values)
|
103 |
+
embeddings = self.layernorm(embeddings)
|
104 |
+
return embeddings
|
105 |
+
|
106 |
+
def build(self, input_shape=None):
|
107 |
+
if self.built:
|
108 |
+
return
|
109 |
+
self.built = True
|
110 |
+
if getattr(self, "patch_embeddings", None) is not None:
|
111 |
+
with tf.name_scope(self.patch_embeddings.name):
|
112 |
+
self.patch_embeddings.build([None, None, None, self.config.num_channels])
|
113 |
+
if getattr(self, "layernorm", None) is not None:
|
114 |
+
with tf.name_scope(self.layernorm.name):
|
115 |
+
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
|
116 |
+
|
117 |
+
|
118 |
+
class TFConvNextLayer(keras.layers.Layer):
|
119 |
+
"""This corresponds to the `Block` class in the original implementation.
|
120 |
+
|
121 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
122 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
123 |
+
|
124 |
+
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
|
125 |
+
NHWC ordering, we can just apply the operations straight-away without the permutation.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
config ([`ConvNextConfig`]): Model configuration class.
|
129 |
+
dim (`int`): Number of input channels.
|
130 |
+
drop_path (`float`): Stochastic depth rate. Default: 0.0.
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(self, config, dim, drop_path=0.0, **kwargs):
|
134 |
+
super().__init__(**kwargs)
|
135 |
+
self.dim = dim
|
136 |
+
self.config = config
|
137 |
+
self.dwconv = keras.layers.Conv2D(
|
138 |
+
filters=dim,
|
139 |
+
kernel_size=7,
|
140 |
+
padding="same",
|
141 |
+
groups=dim,
|
142 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
143 |
+
bias_initializer="zeros",
|
144 |
+
name="dwconv",
|
145 |
+
) # depthwise conv
|
146 |
+
self.layernorm = keras.layers.LayerNormalization(
|
147 |
+
epsilon=1e-6,
|
148 |
+
name="layernorm",
|
149 |
+
)
|
150 |
+
self.pwconv1 = keras.layers.Dense(
|
151 |
+
units=4 * dim,
|
152 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
153 |
+
bias_initializer="zeros",
|
154 |
+
name="pwconv1",
|
155 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
156 |
+
self.act = get_tf_activation(config.hidden_act)
|
157 |
+
self.pwconv2 = keras.layers.Dense(
|
158 |
+
units=dim,
|
159 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
160 |
+
bias_initializer="zeros",
|
161 |
+
name="pwconv2",
|
162 |
+
)
|
163 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training`
|
164 |
+
# behaviour.
|
165 |
+
self.drop_path = (
|
166 |
+
TFConvNextDropPath(drop_path, name="drop_path")
|
167 |
+
if drop_path > 0.0
|
168 |
+
else keras.layers.Activation("linear", name="drop_path")
|
169 |
+
)
|
170 |
+
|
171 |
+
def build(self, input_shape: tf.TensorShape = None):
|
172 |
+
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
|
173 |
+
self.layer_scale_parameter = (
|
174 |
+
self.add_weight(
|
175 |
+
shape=(self.dim,),
|
176 |
+
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
|
177 |
+
trainable=True,
|
178 |
+
name="layer_scale_parameter",
|
179 |
+
)
|
180 |
+
if self.config.layer_scale_init_value > 0
|
181 |
+
else None
|
182 |
+
)
|
183 |
+
|
184 |
+
if self.built:
|
185 |
+
return
|
186 |
+
self.built = True
|
187 |
+
if getattr(self, "dwconv", None) is not None:
|
188 |
+
with tf.name_scope(self.dwconv.name):
|
189 |
+
self.dwconv.build([None, None, None, self.dim])
|
190 |
+
if getattr(self, "layernorm", None) is not None:
|
191 |
+
with tf.name_scope(self.layernorm.name):
|
192 |
+
self.layernorm.build([None, None, None, self.dim])
|
193 |
+
if getattr(self, "pwconv1", None) is not None:
|
194 |
+
with tf.name_scope(self.pwconv1.name):
|
195 |
+
self.pwconv1.build([None, None, self.dim])
|
196 |
+
if getattr(self, "pwconv2", None) is not None:
|
197 |
+
with tf.name_scope(self.pwconv2.name):
|
198 |
+
self.pwconv2.build([None, None, 4 * self.dim])
|
199 |
+
if getattr(self, "drop_path", None) is not None:
|
200 |
+
with tf.name_scope(self.drop_path.name):
|
201 |
+
self.drop_path.build(None)
|
202 |
+
|
203 |
+
def call(self, hidden_states, training=False):
|
204 |
+
input = hidden_states
|
205 |
+
x = self.dwconv(hidden_states)
|
206 |
+
x = self.layernorm(x)
|
207 |
+
x = self.pwconv1(x)
|
208 |
+
x = self.act(x)
|
209 |
+
x = self.pwconv2(x)
|
210 |
+
|
211 |
+
if self.layer_scale_parameter is not None:
|
212 |
+
x = self.layer_scale_parameter * x
|
213 |
+
|
214 |
+
x = input + self.drop_path(x, training=training)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class TFConvNextStage(keras.layers.Layer):
|
219 |
+
"""ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
config (`ConvNextV2Config`):
|
223 |
+
Model configuration class.
|
224 |
+
in_channels (`int`):
|
225 |
+
Number of input channels.
|
226 |
+
out_channels (`int`):
|
227 |
+
Number of output channels.
|
228 |
+
depth (`int`):
|
229 |
+
Number of residual blocks.
|
230 |
+
drop_path_rates(`List[float]`):
|
231 |
+
Stochastic depth rates for each layer.
|
232 |
+
"""
|
233 |
+
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
config: ConvNextConfig,
|
237 |
+
in_channels: int,
|
238 |
+
out_channels: int,
|
239 |
+
kernel_size: int = 2,
|
240 |
+
stride: int = 2,
|
241 |
+
depth: int = 2,
|
242 |
+
drop_path_rates: Optional[List[float]] = None,
|
243 |
+
**kwargs,
|
244 |
+
):
|
245 |
+
super().__init__(**kwargs)
|
246 |
+
if in_channels != out_channels or stride > 1:
|
247 |
+
self.downsampling_layer = [
|
248 |
+
keras.layers.LayerNormalization(
|
249 |
+
epsilon=1e-6,
|
250 |
+
name="downsampling_layer.0",
|
251 |
+
),
|
252 |
+
# Inputs to this layer will follow NHWC format since we
|
253 |
+
# transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
|
254 |
+
# layer. All the outputs throughout the model will be in NHWC
|
255 |
+
# from this point on until the output where we again change to
|
256 |
+
# NCHW.
|
257 |
+
keras.layers.Conv2D(
|
258 |
+
filters=out_channels,
|
259 |
+
kernel_size=kernel_size,
|
260 |
+
strides=stride,
|
261 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
262 |
+
bias_initializer=keras.initializers.Zeros(),
|
263 |
+
name="downsampling_layer.1",
|
264 |
+
),
|
265 |
+
]
|
266 |
+
else:
|
267 |
+
self.downsampling_layer = [tf.identity]
|
268 |
+
|
269 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
270 |
+
self.layers = [
|
271 |
+
TFConvNextLayer(
|
272 |
+
config,
|
273 |
+
dim=out_channels,
|
274 |
+
drop_path=drop_path_rates[j],
|
275 |
+
name=f"layers.{j}",
|
276 |
+
)
|
277 |
+
for j in range(depth)
|
278 |
+
]
|
279 |
+
self.in_channels = in_channels
|
280 |
+
self.out_channels = out_channels
|
281 |
+
self.stride = stride
|
282 |
+
|
283 |
+
def call(self, hidden_states):
|
284 |
+
for layer in self.downsampling_layer:
|
285 |
+
hidden_states = layer(hidden_states)
|
286 |
+
for layer in self.layers:
|
287 |
+
hidden_states = layer(hidden_states)
|
288 |
+
return hidden_states
|
289 |
+
|
290 |
+
def build(self, input_shape=None):
|
291 |
+
if self.built:
|
292 |
+
return
|
293 |
+
self.built = True
|
294 |
+
if getattr(self, "layers", None) is not None:
|
295 |
+
for layer in self.layers:
|
296 |
+
with tf.name_scope(layer.name):
|
297 |
+
layer.build(None)
|
298 |
+
if self.in_channels != self.out_channels or self.stride > 1:
|
299 |
+
with tf.name_scope(self.downsampling_layer[0].name):
|
300 |
+
self.downsampling_layer[0].build([None, None, None, self.in_channels])
|
301 |
+
with tf.name_scope(self.downsampling_layer[1].name):
|
302 |
+
self.downsampling_layer[1].build([None, None, None, self.in_channels])
|
303 |
+
|
304 |
+
|
305 |
+
class TFConvNextEncoder(keras.layers.Layer):
|
306 |
+
def __init__(self, config, **kwargs):
|
307 |
+
super().__init__(**kwargs)
|
308 |
+
self.stages = []
|
309 |
+
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
|
310 |
+
drop_path_rates = tf.split(drop_path_rates, config.depths)
|
311 |
+
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
|
312 |
+
prev_chs = config.hidden_sizes[0]
|
313 |
+
for i in range(config.num_stages):
|
314 |
+
out_chs = config.hidden_sizes[i]
|
315 |
+
stage = TFConvNextStage(
|
316 |
+
config,
|
317 |
+
in_channels=prev_chs,
|
318 |
+
out_channels=out_chs,
|
319 |
+
stride=2 if i > 0 else 1,
|
320 |
+
depth=config.depths[i],
|
321 |
+
drop_path_rates=drop_path_rates[i],
|
322 |
+
name=f"stages.{i}",
|
323 |
+
)
|
324 |
+
self.stages.append(stage)
|
325 |
+
prev_chs = out_chs
|
326 |
+
|
327 |
+
def call(self, hidden_states, output_hidden_states=False, return_dict=True):
|
328 |
+
all_hidden_states = () if output_hidden_states else None
|
329 |
+
|
330 |
+
for i, layer_module in enumerate(self.stages):
|
331 |
+
if output_hidden_states:
|
332 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
333 |
+
|
334 |
+
hidden_states = layer_module(hidden_states)
|
335 |
+
|
336 |
+
if output_hidden_states:
|
337 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
338 |
+
|
339 |
+
if not return_dict:
|
340 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
341 |
+
|
342 |
+
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
343 |
+
|
344 |
+
def build(self, input_shape=None):
|
345 |
+
for stage in self.stages:
|
346 |
+
with tf.name_scope(stage.name):
|
347 |
+
stage.build(None)
|
348 |
+
|
349 |
+
|
350 |
+
@keras_serializable
|
351 |
+
class TFConvNextMainLayer(keras.layers.Layer):
|
352 |
+
config_class = ConvNextConfig
|
353 |
+
|
354 |
+
def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
|
355 |
+
super().__init__(**kwargs)
|
356 |
+
|
357 |
+
self.config = config
|
358 |
+
self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
|
359 |
+
self.encoder = TFConvNextEncoder(config, name="encoder")
|
360 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
361 |
+
# We are setting the `data_format` like so because from here on we will revert to the
|
362 |
+
# NCHW output format
|
363 |
+
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None
|
364 |
+
|
365 |
+
@unpack_inputs
|
366 |
+
def call(
|
367 |
+
self,
|
368 |
+
pixel_values: TFModelInputType | None = None,
|
369 |
+
output_hidden_states: Optional[bool] = None,
|
370 |
+
return_dict: Optional[bool] = None,
|
371 |
+
training: bool = False,
|
372 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
373 |
+
output_hidden_states = (
|
374 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
375 |
+
)
|
376 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
377 |
+
|
378 |
+
if pixel_values is None:
|
379 |
+
raise ValueError("You have to specify pixel_values")
|
380 |
+
|
381 |
+
embedding_output = self.embeddings(pixel_values, training=training)
|
382 |
+
|
383 |
+
encoder_outputs = self.encoder(
|
384 |
+
embedding_output,
|
385 |
+
output_hidden_states=output_hidden_states,
|
386 |
+
return_dict=return_dict,
|
387 |
+
training=training,
|
388 |
+
)
|
389 |
+
|
390 |
+
last_hidden_state = encoder_outputs[0]
|
391 |
+
# Change to NCHW output format have uniformity in the modules
|
392 |
+
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
|
393 |
+
pooled_output = self.layernorm(self.pooler(last_hidden_state))
|
394 |
+
|
395 |
+
# Change the other hidden state outputs to NCHW as well
|
396 |
+
if output_hidden_states:
|
397 |
+
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
|
398 |
+
|
399 |
+
if not return_dict:
|
400 |
+
hidden_states = hidden_states if output_hidden_states else ()
|
401 |
+
return (last_hidden_state, pooled_output) + hidden_states
|
402 |
+
|
403 |
+
return TFBaseModelOutputWithPooling(
|
404 |
+
last_hidden_state=last_hidden_state,
|
405 |
+
pooler_output=pooled_output,
|
406 |
+
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
|
407 |
+
)
|
408 |
+
|
409 |
+
def build(self, input_shape=None):
|
410 |
+
if self.built:
|
411 |
+
return
|
412 |
+
self.built = True
|
413 |
+
if getattr(self, "embeddings", None) is not None:
|
414 |
+
with tf.name_scope(self.embeddings.name):
|
415 |
+
self.embeddings.build(None)
|
416 |
+
if getattr(self, "encoder", None) is not None:
|
417 |
+
with tf.name_scope(self.encoder.name):
|
418 |
+
self.encoder.build(None)
|
419 |
+
if getattr(self, "layernorm", None) is not None:
|
420 |
+
with tf.name_scope(self.layernorm.name):
|
421 |
+
self.layernorm.build([None, self.config.hidden_sizes[-1]])
|
422 |
+
|
423 |
+
|
424 |
+
class TFConvNextPreTrainedModel(TFPreTrainedModel):
|
425 |
+
"""
|
426 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
427 |
+
models.
|
428 |
+
"""
|
429 |
+
|
430 |
+
config_class = ConvNextConfig
|
431 |
+
base_model_prefix = "convnext"
|
432 |
+
main_input_name = "pixel_values"
|
433 |
+
|
434 |
+
|
435 |
+
CONVNEXT_START_DOCSTRING = r"""
|
436 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
437 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
438 |
+
etc.)
|
439 |
+
|
440 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
441 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
442 |
+
behavior.
|
443 |
+
|
444 |
+
<Tip>
|
445 |
+
|
446 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
447 |
+
|
448 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
449 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
450 |
+
|
451 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
452 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
453 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
454 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
455 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
456 |
+
positional argument:
|
457 |
+
|
458 |
+
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
|
459 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
460 |
+
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
|
461 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
462 |
+
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
|
463 |
+
|
464 |
+
Note that when creating models and layers with
|
465 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
466 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
467 |
+
|
468 |
+
</Tip>
|
469 |
+
|
470 |
+
Parameters:
|
471 |
+
config ([`ConvNextConfig`]): Model configuration class with all the parameters of the model.
|
472 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
473 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
474 |
+
"""
|
475 |
+
|
476 |
+
CONVNEXT_INPUTS_DOCSTRING = r"""
|
477 |
+
Args:
|
478 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
479 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
480 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
481 |
+
|
482 |
+
output_hidden_states (`bool`, *optional*):
|
483 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
484 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
485 |
+
used instead.
|
486 |
+
return_dict (`bool`, *optional*):
|
487 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
488 |
+
eager mode, in graph mode the value will always be set to True.
|
489 |
+
"""
|
490 |
+
|
491 |
+
|
492 |
+
@add_start_docstrings(
|
493 |
+
"The bare ConvNext model outputting raw features without any specific head on top.",
|
494 |
+
CONVNEXT_START_DOCSTRING,
|
495 |
+
)
|
496 |
+
class TFConvNextModel(TFConvNextPreTrainedModel):
|
497 |
+
def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
|
498 |
+
super().__init__(config, *inputs, **kwargs)
|
499 |
+
self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")
|
500 |
+
|
501 |
+
@unpack_inputs
|
502 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
503 |
+
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
504 |
+
def call(
|
505 |
+
self,
|
506 |
+
pixel_values: TFModelInputType | None = None,
|
507 |
+
output_hidden_states: Optional[bool] = None,
|
508 |
+
return_dict: Optional[bool] = None,
|
509 |
+
training: bool = False,
|
510 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
511 |
+
r"""
|
512 |
+
Returns:
|
513 |
+
|
514 |
+
Examples:
|
515 |
+
|
516 |
+
```python
|
517 |
+
>>> from transformers import AutoImageProcessor, TFConvNextModel
|
518 |
+
>>> from PIL import Image
|
519 |
+
>>> import requests
|
520 |
+
|
521 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
522 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
523 |
+
|
524 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
525 |
+
>>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")
|
526 |
+
|
527 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
528 |
+
>>> outputs = model(**inputs)
|
529 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
530 |
+
```"""
|
531 |
+
output_hidden_states = (
|
532 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
533 |
+
)
|
534 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
535 |
+
|
536 |
+
if pixel_values is None:
|
537 |
+
raise ValueError("You have to specify pixel_values")
|
538 |
+
|
539 |
+
outputs = self.convnext(
|
540 |
+
pixel_values=pixel_values,
|
541 |
+
output_hidden_states=output_hidden_states,
|
542 |
+
return_dict=return_dict,
|
543 |
+
training=training,
|
544 |
+
)
|
545 |
+
|
546 |
+
if not return_dict:
|
547 |
+
return (outputs[0],) + outputs[1:]
|
548 |
+
|
549 |
+
return TFBaseModelOutputWithPooling(
|
550 |
+
last_hidden_state=outputs.last_hidden_state,
|
551 |
+
pooler_output=outputs.pooler_output,
|
552 |
+
hidden_states=outputs.hidden_states,
|
553 |
+
)
|
554 |
+
|
555 |
+
def build(self, input_shape=None):
|
556 |
+
if self.built:
|
557 |
+
return
|
558 |
+
self.built = True
|
559 |
+
if getattr(self, "convnext", None) is not None:
|
560 |
+
with tf.name_scope(self.convnext.name):
|
561 |
+
self.convnext.build(None)
|
562 |
+
|
563 |
+
|
564 |
+
@add_start_docstrings(
|
565 |
+
"""
|
566 |
+
ConvNext Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
567 |
+
ImageNet.
|
568 |
+
""",
|
569 |
+
CONVNEXT_START_DOCSTRING,
|
570 |
+
)
|
571 |
+
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
|
572 |
+
def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
|
573 |
+
super().__init__(config, *inputs, **kwargs)
|
574 |
+
|
575 |
+
self.num_labels = config.num_labels
|
576 |
+
self.convnext = TFConvNextMainLayer(config, name="convnext")
|
577 |
+
|
578 |
+
# Classifier head
|
579 |
+
self.classifier = keras.layers.Dense(
|
580 |
+
units=config.num_labels,
|
581 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
582 |
+
bias_initializer="zeros",
|
583 |
+
name="classifier",
|
584 |
+
)
|
585 |
+
self.config = config
|
586 |
+
|
587 |
+
@unpack_inputs
|
588 |
+
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
|
589 |
+
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
590 |
+
def call(
|
591 |
+
self,
|
592 |
+
pixel_values: TFModelInputType | None = None,
|
593 |
+
output_hidden_states: Optional[bool] = None,
|
594 |
+
return_dict: Optional[bool] = None,
|
595 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
596 |
+
training: Optional[bool] = False,
|
597 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
598 |
+
r"""
|
599 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
600 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
601 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
602 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
603 |
+
|
604 |
+
Returns:
|
605 |
+
|
606 |
+
Examples:
|
607 |
+
|
608 |
+
```python
|
609 |
+
>>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
|
610 |
+
>>> import tensorflow as tf
|
611 |
+
>>> from PIL import Image
|
612 |
+
>>> import requests
|
613 |
+
|
614 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
615 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
616 |
+
|
617 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
|
618 |
+
>>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")
|
619 |
+
|
620 |
+
>>> inputs = image_processor(images=image, return_tensors="tf")
|
621 |
+
>>> outputs = model(**inputs)
|
622 |
+
>>> logits = outputs.logits
|
623 |
+
>>> # model predicts one of the 1000 ImageNet classes
|
624 |
+
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
|
625 |
+
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
|
626 |
+
```"""
|
627 |
+
output_hidden_states = (
|
628 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
629 |
+
)
|
630 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
631 |
+
|
632 |
+
if pixel_values is None:
|
633 |
+
raise ValueError("You have to specify pixel_values")
|
634 |
+
|
635 |
+
outputs = self.convnext(
|
636 |
+
pixel_values,
|
637 |
+
output_hidden_states=output_hidden_states,
|
638 |
+
return_dict=return_dict,
|
639 |
+
training=training,
|
640 |
+
)
|
641 |
+
|
642 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
643 |
+
|
644 |
+
logits = self.classifier(pooled_output)
|
645 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
646 |
+
|
647 |
+
if not return_dict:
|
648 |
+
output = (logits,) + outputs[2:]
|
649 |
+
return ((loss,) + output) if loss is not None else output
|
650 |
+
|
651 |
+
return TFSequenceClassifierOutput(
|
652 |
+
loss=loss,
|
653 |
+
logits=logits,
|
654 |
+
hidden_states=outputs.hidden_states,
|
655 |
+
)
|
656 |
+
|
657 |
+
def build(self, input_shape=None):
|
658 |
+
if self.built:
|
659 |
+
return
|
660 |
+
self.built = True
|
661 |
+
if getattr(self, "convnext", None) is not None:
|
662 |
+
with tf.name_scope(self.convnext.name):
|
663 |
+
self.convnext.build(None)
|
664 |
+
if getattr(self, "classifier", None) is not None:
|
665 |
+
if hasattr(self.classifier, "name"):
|
666 |
+
with tf.name_scope(self.classifier.name):
|
667 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
venv/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {}
|
20 |
+
|
21 |
+
try:
|
22 |
+
if not is_sentencepiece_available():
|
23 |
+
raise OptionalDependencyNotAvailable()
|
24 |
+
except OptionalDependencyNotAvailable:
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
_import_structure["tokenization_mbart50"] = ["MBart50Tokenizer"]
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_tokenizers_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_mbart50_fast"] = ["MBart50TokenizerFast"]
|
36 |
+
|
37 |
+
|
38 |
+
if TYPE_CHECKING:
|
39 |
+
try:
|
40 |
+
if not is_sentencepiece_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .tokenization_mbart50 import MBart50Tokenizer
|
46 |
+
|
47 |
+
try:
|
48 |
+
if not is_tokenizers_available():
|
49 |
+
raise OptionalDependencyNotAvailable()
|
50 |
+
except OptionalDependencyNotAvailable:
|
51 |
+
pass
|
52 |
+
else:
|
53 |
+
from .tokenization_mbart50_fast import MBart50TokenizerFast
|
54 |
+
|
55 |
+
else:
|
56 |
+
import sys
|
57 |
+
|
58 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (922 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50_fast.cpython-310.pyc
ADDED
Binary file (9.98 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple
|
19 |
+
|
20 |
+
import sentencepiece as spm
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
SPIECE_UNDERLINE = "▁"
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
|
34 |
+
|
35 |
+
|
36 |
+
class MBart50Tokenizer(PreTrainedTokenizer):
|
37 |
+
"""
|
38 |
+
Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
39 |
+
|
40 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
41 |
+
this superclass for more information regarding those methods.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_file (`str`):
|
45 |
+
Path to the vocabulary file.
|
46 |
+
src_lang (`str`, *optional*):
|
47 |
+
A string representing the source language.
|
48 |
+
tgt_lang (`str`, *optional*):
|
49 |
+
A string representing the target language.
|
50 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
51 |
+
The end of sequence token.
|
52 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
53 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
54 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
55 |
+
token of a sequence built with special tokens.
|
56 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
57 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
58 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
59 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
60 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
61 |
+
token instead.
|
62 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
63 |
+
The token used for padding, for example when batching sequences of different lengths.
|
64 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
65 |
+
The token used for masking values. This is the token used when training this model with masked language
|
66 |
+
modeling. This is the token which the model will try to predict.
|
67 |
+
sp_model_kwargs (`dict`, *optional*):
|
68 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
69 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
70 |
+
to set:
|
71 |
+
|
72 |
+
- `enable_sampling`: Enable subword regularization.
|
73 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
74 |
+
|
75 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
76 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
77 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
78 |
+
using forward-filtering-and-backward-sampling algorithm.
|
79 |
+
|
80 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
81 |
+
BPE-dropout.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import MBart50Tokenizer
|
87 |
+
|
88 |
+
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
|
89 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
90 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
91 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
92 |
+
>>> # model(**model_inputs) should work
|
93 |
+
```"""
|
94 |
+
|
95 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
96 |
+
model_input_names = ["input_ids", "attention_mask"]
|
97 |
+
|
98 |
+
prefix_tokens: List[int] = []
|
99 |
+
suffix_tokens: List[int] = []
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
vocab_file,
|
104 |
+
src_lang=None,
|
105 |
+
tgt_lang=None,
|
106 |
+
eos_token="</s>",
|
107 |
+
sep_token="</s>",
|
108 |
+
cls_token="<s>",
|
109 |
+
unk_token="<unk>",
|
110 |
+
pad_token="<pad>",
|
111 |
+
mask_token="<mask>",
|
112 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
113 |
+
**kwargs,
|
114 |
+
) -> None:
|
115 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
116 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
117 |
+
|
118 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
119 |
+
|
120 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
|
121 |
+
kwargs["additional_special_tokens"] += [
|
122 |
+
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
|
123 |
+
]
|
124 |
+
|
125 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
126 |
+
self.sp_model.Load(str(vocab_file))
|
127 |
+
self.vocab_file = vocab_file
|
128 |
+
|
129 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
130 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
131 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
132 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
133 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
134 |
+
|
135 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
136 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
137 |
+
|
138 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
139 |
+
self.fairseq_offset = 1
|
140 |
+
|
141 |
+
self.sp_model_size = len(self.sp_model)
|
142 |
+
self.lang_code_to_id = {
|
143 |
+
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
|
144 |
+
}
|
145 |
+
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
|
146 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
|
147 |
+
|
148 |
+
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
|
149 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
150 |
+
|
151 |
+
super().__init__(
|
152 |
+
src_lang=src_lang,
|
153 |
+
tgt_lang=tgt_lang,
|
154 |
+
eos_token=eos_token,
|
155 |
+
unk_token=unk_token,
|
156 |
+
sep_token=sep_token,
|
157 |
+
cls_token=cls_token,
|
158 |
+
pad_token=pad_token,
|
159 |
+
mask_token=mask_token,
|
160 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
165 |
+
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
166 |
+
self.tgt_lang = tgt_lang
|
167 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
168 |
+
|
169 |
+
@property
|
170 |
+
def vocab_size(self) -> int:
|
171 |
+
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
|
172 |
+
|
173 |
+
@property
|
174 |
+
def src_lang(self) -> str:
|
175 |
+
return self._src_lang
|
176 |
+
|
177 |
+
@src_lang.setter
|
178 |
+
def src_lang(self, new_src_lang: str) -> None:
|
179 |
+
self._src_lang = new_src_lang
|
180 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
181 |
+
|
182 |
+
def __getstate__(self) -> Dict:
|
183 |
+
state = self.__dict__.copy()
|
184 |
+
state["sp_model"] = None
|
185 |
+
return state
|
186 |
+
|
187 |
+
def __setstate__(self, d: Dict) -> None:
|
188 |
+
self.__dict__ = d
|
189 |
+
|
190 |
+
# for backward compatibility
|
191 |
+
if not hasattr(self, "sp_model_kwargs"):
|
192 |
+
self.sp_model_kwargs = {}
|
193 |
+
|
194 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
195 |
+
self.sp_model.Load(self.vocab_file)
|
196 |
+
|
197 |
+
def get_vocab(self) -> Dict:
|
198 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
199 |
+
vocab.update(self.added_tokens_encoder)
|
200 |
+
return vocab
|
201 |
+
|
202 |
+
def _tokenize(self, text: str) -> List[str]:
|
203 |
+
return self.sp_model.encode(text, out_type=str)
|
204 |
+
|
205 |
+
def _convert_token_to_id(self, token: str) -> int:
|
206 |
+
"""Converts a token (str) in an id using the vocab."""
|
207 |
+
if token in self.fairseq_tokens_to_ids:
|
208 |
+
return self.fairseq_tokens_to_ids[token]
|
209 |
+
spm_id = self.sp_model.PieceToId(token)
|
210 |
+
|
211 |
+
# Need to return unknown token if the SP model returned 0
|
212 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
213 |
+
|
214 |
+
def _convert_id_to_token(self, index: int) -> str:
|
215 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
216 |
+
if index in self.fairseq_ids_to_tokens:
|
217 |
+
return self.fairseq_ids_to_tokens[index]
|
218 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
219 |
+
|
220 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
221 |
+
def convert_tokens_to_string(self, tokens):
|
222 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
223 |
+
current_sub_tokens = []
|
224 |
+
out_string = ""
|
225 |
+
prev_is_special = False
|
226 |
+
for token in tokens:
|
227 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
228 |
+
if token in self.all_special_tokens:
|
229 |
+
if not prev_is_special:
|
230 |
+
out_string += " "
|
231 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
232 |
+
prev_is_special = True
|
233 |
+
current_sub_tokens = []
|
234 |
+
else:
|
235 |
+
current_sub_tokens.append(token)
|
236 |
+
prev_is_special = False
|
237 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
238 |
+
return out_string.strip()
|
239 |
+
|
240 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
241 |
+
if not os.path.isdir(save_directory):
|
242 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
243 |
+
return
|
244 |
+
out_vocab_file = os.path.join(
|
245 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
246 |
+
)
|
247 |
+
|
248 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
249 |
+
copyfile(self.vocab_file, out_vocab_file)
|
250 |
+
elif not os.path.isfile(self.vocab_file):
|
251 |
+
with open(out_vocab_file, "wb") as fi:
|
252 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
253 |
+
fi.write(content_spiece_model)
|
254 |
+
|
255 |
+
return (out_vocab_file,)
|
256 |
+
|
257 |
+
def get_special_tokens_mask(
|
258 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
259 |
+
) -> List[int]:
|
260 |
+
"""
|
261 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
262 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
token_ids_0 (`List[int]`):
|
266 |
+
List of IDs.
|
267 |
+
token_ids_1 (`List[int]`, *optional*):
|
268 |
+
Optional second list of IDs for sequence pairs.
|
269 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
270 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
274 |
+
"""
|
275 |
+
|
276 |
+
if already_has_special_tokens:
|
277 |
+
return super().get_special_tokens_mask(
|
278 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
279 |
+
)
|
280 |
+
|
281 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
282 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
283 |
+
if token_ids_1 is None:
|
284 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
285 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
286 |
+
|
287 |
+
def build_inputs_with_special_tokens(
|
288 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
289 |
+
) -> List[int]:
|
290 |
+
"""
|
291 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
292 |
+
adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence:
|
293 |
+
|
294 |
+
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
295 |
+
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
|
296 |
+
|
297 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
298 |
+
separator.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
token_ids_0 (`List[int]`):
|
302 |
+
List of IDs to which the special tokens will be added.
|
303 |
+
token_ids_1 (`List[int]`, *optional*):
|
304 |
+
Optional second list of IDs for sequence pairs.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
308 |
+
"""
|
309 |
+
if token_ids_1 is None:
|
310 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
311 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
312 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
313 |
+
|
314 |
+
def _build_translation_inputs(
|
315 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
316 |
+
):
|
317 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
318 |
+
if src_lang is None or tgt_lang is None:
|
319 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
320 |
+
self.src_lang = src_lang
|
321 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
322 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
323 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
324 |
+
return inputs
|
325 |
+
|
326 |
+
def prepare_seq2seq_batch(
|
327 |
+
self,
|
328 |
+
src_texts: List[str],
|
329 |
+
src_lang: str = "en_XX",
|
330 |
+
tgt_texts: Optional[List[str]] = None,
|
331 |
+
tgt_lang: str = "ro_RO",
|
332 |
+
**kwargs,
|
333 |
+
) -> BatchEncoding:
|
334 |
+
self.src_lang = src_lang
|
335 |
+
self.tgt_lang = tgt_lang
|
336 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
337 |
+
|
338 |
+
def _switch_to_input_mode(self):
|
339 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
340 |
+
|
341 |
+
def _switch_to_target_mode(self):
|
342 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
343 |
+
|
344 |
+
def set_src_lang_special_tokens(self, src_lang: str) -> None:
|
345 |
+
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
|
346 |
+
self.cur_lang_code_id = self.lang_code_to_id[src_lang]
|
347 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
348 |
+
self.suffix_tokens = [self.eos_token_id]
|
349 |
+
|
350 |
+
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
351 |
+
"""Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos]."""
|
352 |
+
self.cur_lang_code_id = self.lang_code_to_id[tgt_lang]
|
353 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
354 |
+
self.suffix_tokens = [self.eos_token_id]
|
venv/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import processors
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_mbart50 import MBart50Tokenizer
|
29 |
+
else:
|
30 |
+
MBart50Tokenizer = None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
36 |
+
|
37 |
+
|
38 |
+
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
|
39 |
+
|
40 |
+
|
41 |
+
class MBart50TokenizerFast(PreTrainedTokenizerFast):
|
42 |
+
"""
|
43 |
+
Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on
|
44 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
45 |
+
|
46 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
47 |
+
refer to this superclass for more information regarding those methods.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
vocab_file (`str`):
|
51 |
+
Path to the vocabulary file.
|
52 |
+
src_lang (`str`, *optional*):
|
53 |
+
A string representing the source language.
|
54 |
+
tgt_lang (`str`, *optional*):
|
55 |
+
A string representing the target language.
|
56 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
57 |
+
The end of sequence token.
|
58 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
59 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
60 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
61 |
+
token of a sequence built with special tokens.
|
62 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
63 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
64 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
65 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
66 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
67 |
+
token instead.
|
68 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
69 |
+
The token used for padding, for example when batching sequences of different lengths.
|
70 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
71 |
+
The token used for masking values. This is the token used when training this model with masked language
|
72 |
+
modeling. This is the token which the model will try to predict.
|
73 |
+
|
74 |
+
Examples:
|
75 |
+
|
76 |
+
```python
|
77 |
+
>>> from transformers import MBart50TokenizerFast
|
78 |
+
|
79 |
+
>>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
|
80 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
81 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
82 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
83 |
+
>>> # model(**model_inputs) should work
|
84 |
+
```"""
|
85 |
+
|
86 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
87 |
+
model_input_names = ["input_ids", "attention_mask"]
|
88 |
+
slow_tokenizer_class = MBart50Tokenizer
|
89 |
+
|
90 |
+
prefix_tokens: List[int] = []
|
91 |
+
suffix_tokens: List[int] = []
|
92 |
+
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
vocab_file=None,
|
96 |
+
src_lang=None,
|
97 |
+
tgt_lang=None,
|
98 |
+
tokenizer_file=None,
|
99 |
+
eos_token="</s>",
|
100 |
+
sep_token="</s>",
|
101 |
+
cls_token="<s>",
|
102 |
+
unk_token="<unk>",
|
103 |
+
pad_token="<pad>",
|
104 |
+
mask_token="<mask>",
|
105 |
+
**kwargs,
|
106 |
+
):
|
107 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
108 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
109 |
+
|
110 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
|
111 |
+
kwargs["additional_special_tokens"] += [
|
112 |
+
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
|
113 |
+
]
|
114 |
+
|
115 |
+
super().__init__(
|
116 |
+
vocab_file,
|
117 |
+
src_lang=src_lang,
|
118 |
+
tgt_lang=tgt_lang,
|
119 |
+
tokenizer_file=tokenizer_file,
|
120 |
+
eos_token=eos_token,
|
121 |
+
sep_token=sep_token,
|
122 |
+
cls_token=cls_token,
|
123 |
+
unk_token=unk_token,
|
124 |
+
pad_token=pad_token,
|
125 |
+
mask_token=mask_token,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
self.vocab_file = vocab_file
|
130 |
+
|
131 |
+
self.lang_code_to_id = {
|
132 |
+
lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES
|
133 |
+
}
|
134 |
+
|
135 |
+
self._src_lang = src_lang if src_lang is not None else "en_XX"
|
136 |
+
self.tgt_lang = tgt_lang
|
137 |
+
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
|
138 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def can_save_slow_tokenizer(self) -> bool:
|
142 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
143 |
+
|
144 |
+
@property
|
145 |
+
def src_lang(self) -> str:
|
146 |
+
return self._src_lang
|
147 |
+
|
148 |
+
@src_lang.setter
|
149 |
+
def src_lang(self, new_src_lang: str) -> None:
|
150 |
+
self._src_lang = new_src_lang
|
151 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
152 |
+
|
153 |
+
def build_inputs_with_special_tokens(
|
154 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
155 |
+
) -> List[int]:
|
156 |
+
"""
|
157 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
158 |
+
adding special tokens. The special tokens depend on calling set_lang.
|
159 |
+
|
160 |
+
An MBART-50 sequence has the following format, where `X` represents the sequence:
|
161 |
+
|
162 |
+
- `input_ids` (for encoder) `[src_lang_code] X [eos]`
|
163 |
+
- `labels`: (for decoder) `[tgt_lang_code] X [eos]`
|
164 |
+
|
165 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
166 |
+
separator.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
token_ids_0 (`List[int]`):
|
170 |
+
List of IDs to which the special tokens will be added.
|
171 |
+
token_ids_1 (`List[int]`, *optional*):
|
172 |
+
Optional second list of IDs for sequence pairs.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
176 |
+
"""
|
177 |
+
if token_ids_1 is None:
|
178 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
179 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
180 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
181 |
+
|
182 |
+
def prepare_seq2seq_batch(
|
183 |
+
self,
|
184 |
+
src_texts: List[str],
|
185 |
+
src_lang: str = "en_XX",
|
186 |
+
tgt_texts: Optional[List[str]] = None,
|
187 |
+
tgt_lang: str = "ro_RO",
|
188 |
+
**kwargs,
|
189 |
+
) -> BatchEncoding:
|
190 |
+
self.src_lang = src_lang
|
191 |
+
self.tgt_lang = tgt_lang
|
192 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
193 |
+
|
194 |
+
def _switch_to_input_mode(self):
|
195 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
196 |
+
|
197 |
+
def _switch_to_target_mode(self):
|
198 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
199 |
+
|
200 |
+
def set_src_lang_special_tokens(self, src_lang: str) -> None:
|
201 |
+
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
|
202 |
+
self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang)
|
203 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
204 |
+
self.suffix_tokens = [self.eos_token_id]
|
205 |
+
|
206 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
207 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
208 |
+
|
209 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
210 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
211 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
212 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
213 |
+
)
|
214 |
+
|
215 |
+
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
216 |
+
"""Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos]."""
|
217 |
+
self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang)
|
218 |
+
self.prefix_tokens = [self.cur_lang_code_id]
|
219 |
+
self.suffix_tokens = [self.eos_token_id]
|
220 |
+
|
221 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
222 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
223 |
+
|
224 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
225 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
226 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
227 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
228 |
+
)
|
229 |
+
|
230 |
+
def _build_translation_inputs(
|
231 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
232 |
+
):
|
233 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
234 |
+
if src_lang is None or tgt_lang is None:
|
235 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
236 |
+
self.src_lang = src_lang
|
237 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
238 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
239 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
240 |
+
return inputs
|
241 |
+
|
242 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
243 |
+
if not self.can_save_slow_tokenizer:
|
244 |
+
raise ValueError(
|
245 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
246 |
+
"tokenizer."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not os.path.isdir(save_directory):
|
250 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
251 |
+
return
|
252 |
+
out_vocab_file = os.path.join(
|
253 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
254 |
+
)
|
255 |
+
|
256 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
257 |
+
copyfile(self.vocab_file, out_vocab_file)
|
258 |
+
|
259 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/__init__.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {"configuration_pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig"]}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_sentencepiece_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_pegasus"] = ["PegasusTokenizer"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["tokenization_pegasus_fast"] = ["PegasusTokenizerFast"]
|
44 |
+
|
45 |
+
try:
|
46 |
+
if not is_torch_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
_import_structure["modeling_pegasus"] = [
|
52 |
+
"PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST",
|
53 |
+
"PegasusForCausalLM",
|
54 |
+
"PegasusForConditionalGeneration",
|
55 |
+
"PegasusModel",
|
56 |
+
"PegasusPreTrainedModel",
|
57 |
+
]
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_tf_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
_import_structure["modeling_tf_pegasus"] = [
|
66 |
+
"TFPegasusForConditionalGeneration",
|
67 |
+
"TFPegasusModel",
|
68 |
+
"TFPegasusPreTrainedModel",
|
69 |
+
]
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_flax_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
_import_structure["modeling_flax_pegasus"] = [
|
78 |
+
"FlaxPegasusForConditionalGeneration",
|
79 |
+
"FlaxPegasusModel",
|
80 |
+
"FlaxPegasusPreTrainedModel",
|
81 |
+
]
|
82 |
+
|
83 |
+
|
84 |
+
if TYPE_CHECKING:
|
85 |
+
from .configuration_pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig
|
86 |
+
|
87 |
+
try:
|
88 |
+
if not is_sentencepiece_available():
|
89 |
+
raise OptionalDependencyNotAvailable()
|
90 |
+
except OptionalDependencyNotAvailable:
|
91 |
+
pass
|
92 |
+
else:
|
93 |
+
from .tokenization_pegasus import PegasusTokenizer
|
94 |
+
|
95 |
+
try:
|
96 |
+
if not is_tokenizers_available():
|
97 |
+
raise OptionalDependencyNotAvailable()
|
98 |
+
except OptionalDependencyNotAvailable:
|
99 |
+
pass
|
100 |
+
else:
|
101 |
+
from .tokenization_pegasus_fast import PegasusTokenizerFast
|
102 |
+
|
103 |
+
try:
|
104 |
+
if not is_torch_available():
|
105 |
+
raise OptionalDependencyNotAvailable()
|
106 |
+
except OptionalDependencyNotAvailable:
|
107 |
+
pass
|
108 |
+
else:
|
109 |
+
from .modeling_pegasus import (
|
110 |
+
PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
|
111 |
+
PegasusForCausalLM,
|
112 |
+
PegasusForConditionalGeneration,
|
113 |
+
PegasusModel,
|
114 |
+
PegasusPreTrainedModel,
|
115 |
+
)
|
116 |
+
|
117 |
+
try:
|
118 |
+
if not is_tf_available():
|
119 |
+
raise OptionalDependencyNotAvailable()
|
120 |
+
except OptionalDependencyNotAvailable:
|
121 |
+
pass
|
122 |
+
else:
|
123 |
+
from .modeling_tf_pegasus import TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel
|
124 |
+
|
125 |
+
try:
|
126 |
+
if not is_flax_available():
|
127 |
+
raise OptionalDependencyNotAvailable()
|
128 |
+
except OptionalDependencyNotAvailable:
|
129 |
+
pass
|
130 |
+
else:
|
131 |
+
from .modeling_flax_pegasus import (
|
132 |
+
FlaxPegasusForConditionalGeneration,
|
133 |
+
FlaxPegasusModel,
|
134 |
+
FlaxPegasusPreTrainedModel,
|
135 |
+
)
|
136 |
+
|
137 |
+
else:
|
138 |
+
import sys
|
139 |
+
|
140 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/__pycache__/modeling_tf_pegasus.cpython-310.pyc
ADDED
Binary file (51.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/configuration_pegasus.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PEGASUS model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class PegasusConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`PegasusModel`]. It is used to instantiate an
|
30 |
+
PEGASUS model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the PEGASUS
|
32 |
+
[google/pegasus-large](https://huggingface.co/google/pegasus-large) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
40 |
+
Vocabulary size of the PEGASUS model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`PegasusModel`] or [`TFPegasusModel`].
|
42 |
+
d_model (`int`, *optional*, defaults to 1024):
|
43 |
+
Dimensionality of the layers and the pooler layer.
|
44 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
45 |
+
Number of encoder layers.
|
46 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of decoder layers.
|
48 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
53 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
54 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
55 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
56 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
57 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
59 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
61 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for the attention probabilities.
|
63 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for activations inside the fully connected layer.
|
65 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
66 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
67 |
+
just in case (e.g., 512 or 1024 or 2048).
|
68 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
71 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
72 |
+
for more details.
|
73 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
74 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
75 |
+
for more details.
|
76 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
77 |
+
Scale embeddings by diving by sqrt(d_model).
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models)
|
80 |
+
forced_eos_token_id (`int`, *optional*, defaults to 1):
|
81 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
82 |
+
`eos_token_id`.
|
83 |
+
|
84 |
+
Example:
|
85 |
+
|
86 |
+
```python
|
87 |
+
>>> from transformers import PegasusConfig, PegasusModel
|
88 |
+
|
89 |
+
>>> # Initializing a PEGASUS google/pegasus-large style configuration
|
90 |
+
>>> configuration = PegasusConfig()
|
91 |
+
|
92 |
+
>>> # Initializing a model (with random weights) from the google/pegasus-large style configuration
|
93 |
+
>>> model = PegasusModel(configuration)
|
94 |
+
|
95 |
+
>>> # Accessing the model configuration
|
96 |
+
>>> configuration = model.config
|
97 |
+
```"""
|
98 |
+
|
99 |
+
model_type = "pegasus"
|
100 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
101 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
vocab_size=50265,
|
106 |
+
max_position_embeddings=1024,
|
107 |
+
encoder_layers=12,
|
108 |
+
encoder_ffn_dim=4096,
|
109 |
+
encoder_attention_heads=16,
|
110 |
+
decoder_layers=12,
|
111 |
+
decoder_ffn_dim=4096,
|
112 |
+
decoder_attention_heads=16,
|
113 |
+
encoder_layerdrop=0.0,
|
114 |
+
decoder_layerdrop=0.0,
|
115 |
+
use_cache=True,
|
116 |
+
is_encoder_decoder=True,
|
117 |
+
activation_function="gelu",
|
118 |
+
d_model=1024,
|
119 |
+
dropout=0.1,
|
120 |
+
attention_dropout=0.0,
|
121 |
+
activation_dropout=0.0,
|
122 |
+
init_std=0.02,
|
123 |
+
decoder_start_token_id=0,
|
124 |
+
scale_embedding=False,
|
125 |
+
pad_token_id=0,
|
126 |
+
eos_token_id=1,
|
127 |
+
forced_eos_token_id=1,
|
128 |
+
**kwargs,
|
129 |
+
):
|
130 |
+
self.vocab_size = vocab_size
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.d_model = d_model
|
133 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
134 |
+
self.encoder_layers = encoder_layers
|
135 |
+
self.encoder_attention_heads = encoder_attention_heads
|
136 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
137 |
+
self.decoder_layers = decoder_layers
|
138 |
+
self.decoder_attention_heads = decoder_attention_heads
|
139 |
+
self.dropout = dropout
|
140 |
+
self.attention_dropout = attention_dropout
|
141 |
+
self.activation_dropout = activation_dropout
|
142 |
+
self.activation_function = activation_function
|
143 |
+
self.init_std = init_std
|
144 |
+
self.encoder_layerdrop = encoder_layerdrop
|
145 |
+
self.decoder_layerdrop = decoder_layerdrop
|
146 |
+
self.use_cache = use_cache
|
147 |
+
self.num_hidden_layers = encoder_layers
|
148 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
149 |
+
super().__init__(
|
150 |
+
pad_token_id=pad_token_id,
|
151 |
+
eos_token_id=eos_token_id,
|
152 |
+
is_encoder_decoder=is_encoder_decoder,
|
153 |
+
decoder_start_token_id=decoder_start_token_id,
|
154 |
+
forced_eos_token_id=forced_eos_token_id,
|
155 |
+
**kwargs,
|
156 |
+
)
|
157 |
+
|
158 |
+
@property
|
159 |
+
def num_attention_heads(self) -> int:
|
160 |
+
return self.encoder_attention_heads
|
161 |
+
|
162 |
+
@property
|
163 |
+
def hidden_size(self) -> int:
|
164 |
+
return self.d_model
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Google and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import os
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict
|
20 |
+
|
21 |
+
import tensorflow as tf
|
22 |
+
import torch
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
|
26 |
+
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
|
27 |
+
|
28 |
+
|
29 |
+
PATTERNS = [
|
30 |
+
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
|
31 |
+
["memory_attention", "encoder_attn"],
|
32 |
+
["attention", "attn"],
|
33 |
+
["/", "."],
|
34 |
+
[".LayerNorm.gamma", "_layer_norm.weight"],
|
35 |
+
[".LayerNorm.beta", "_layer_norm.bias"],
|
36 |
+
["r.layer_", "r.layers."],
|
37 |
+
["output_proj", "out_proj"],
|
38 |
+
["ffn.dense_1.", "fc2."],
|
39 |
+
["ffn.dense.", "fc1."],
|
40 |
+
["ffn_layer_norm", "final_layer_norm"],
|
41 |
+
["kernel", "weight"],
|
42 |
+
["encoder_layer_norm.", "encoder.layer_norm."],
|
43 |
+
["decoder_layer_norm.", "decoder.layer_norm."],
|
44 |
+
["embeddings.weights", "shared.weight"],
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
def rename_state_dict_key(k):
|
49 |
+
for pegasus_name, hf_name in PATTERNS:
|
50 |
+
k = k.replace(pegasus_name, hf_name)
|
51 |
+
return k
|
52 |
+
|
53 |
+
|
54 |
+
# See appendix C of paper for all hyperparams
|
55 |
+
|
56 |
+
|
57 |
+
def convert_pegasus(tf_weights: dict, cfg_updates: dict) -> PegasusForConditionalGeneration:
|
58 |
+
cfg_kwargs = DEFAULTS.copy()
|
59 |
+
cfg_kwargs.update(cfg_updates)
|
60 |
+
cfg = PegasusConfig(**cfg_kwargs)
|
61 |
+
torch_model = PegasusForConditionalGeneration(cfg)
|
62 |
+
sd = torch_model.model.state_dict()
|
63 |
+
mapping = {}
|
64 |
+
for k, v in tf_weights.items():
|
65 |
+
new_k = rename_state_dict_key(k)
|
66 |
+
if new_k not in sd:
|
67 |
+
raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})")
|
68 |
+
|
69 |
+
if "dense" in k or "proj" in new_k:
|
70 |
+
v = v.T
|
71 |
+
mapping[new_k] = torch.tensor(v, dtype=sd[new_k].dtype)
|
72 |
+
assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
|
73 |
+
# make sure embedding.padding_idx is respected
|
74 |
+
mapping["shared.weight"][cfg.pad_token_id] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1])
|
75 |
+
mapping["encoder.embed_tokens.weight"] = mapping["shared.weight"]
|
76 |
+
mapping["decoder.embed_tokens.weight"] = mapping["shared.weight"]
|
77 |
+
empty_biases = {k: torch.zeros_like(v) for k, v in sd.items() if k.endswith("bias") and k not in mapping}
|
78 |
+
mapping.update(**empty_biases)
|
79 |
+
missing, extra = torch_model.model.load_state_dict(mapping, strict=False)
|
80 |
+
unexpected_missing = [
|
81 |
+
k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"]
|
82 |
+
]
|
83 |
+
assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}"
|
84 |
+
assert extra == [], f"no matches found for the following tf keys {extra}"
|
85 |
+
return torch_model
|
86 |
+
|
87 |
+
|
88 |
+
def get_tf_weights_as_numpy(path="./ckpt/aeslc/model.ckpt-32000") -> Dict:
|
89 |
+
init_vars = tf.train.list_variables(path)
|
90 |
+
tf_weights = {}
|
91 |
+
ignore_name = ["Adafactor", "global_step"]
|
92 |
+
for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"):
|
93 |
+
skip_key = any(pat in name for pat in ignore_name)
|
94 |
+
if skip_key:
|
95 |
+
continue
|
96 |
+
array = tf.train.load_variable(path, name)
|
97 |
+
tf_weights[name] = array
|
98 |
+
return tf_weights
|
99 |
+
|
100 |
+
|
101 |
+
def convert_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str):
|
102 |
+
# save tokenizer first
|
103 |
+
dataset = Path(ckpt_path).parent.name
|
104 |
+
desired_max_model_length = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"]
|
105 |
+
tok = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=desired_max_model_length)
|
106 |
+
assert tok.model_max_length == desired_max_model_length
|
107 |
+
tok.save_pretrained(save_dir)
|
108 |
+
|
109 |
+
# convert model
|
110 |
+
tf_weights = get_tf_weights_as_numpy(ckpt_path)
|
111 |
+
cfg_updates = task_specific_params[f"summarization_{dataset}"]
|
112 |
+
if dataset == "large":
|
113 |
+
cfg_updates["task_specific_params"] = task_specific_params
|
114 |
+
torch_model = convert_pegasus(tf_weights, cfg_updates)
|
115 |
+
torch_model.save_pretrained(save_dir)
|
116 |
+
sd = torch_model.state_dict()
|
117 |
+
sd.pop("model.decoder.embed_positions.weight")
|
118 |
+
sd.pop("model.encoder.embed_positions.weight")
|
119 |
+
torch.save(sd, Path(save_dir) / "pytorch_model.bin")
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
parser = argparse.ArgumentParser()
|
124 |
+
# Required parameters
|
125 |
+
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
|
126 |
+
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
|
127 |
+
args = parser.parse_args()
|
128 |
+
if args.save_dir is None:
|
129 |
+
dataset = Path(args.tf_ckpt_path).parent.name
|
130 |
+
args.save_dir = os.path.join("pegasus", dataset)
|
131 |
+
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_flax_pegasus.py
ADDED
@@ -0,0 +1,1530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flax PEGASUS model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
import random
|
20 |
+
from functools import partial
|
21 |
+
from typing import Callable, Optional, Tuple
|
22 |
+
|
23 |
+
import flax.linen as nn
|
24 |
+
import jax
|
25 |
+
import jax.numpy as jnp
|
26 |
+
import numpy as np
|
27 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
28 |
+
from flax.linen import combine_masks, make_causal_mask
|
29 |
+
from flax.linen.attention import dot_product_attention_weights
|
30 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
31 |
+
from jax import lax
|
32 |
+
from jax.random import PRNGKey
|
33 |
+
|
34 |
+
from ...modeling_flax_outputs import (
|
35 |
+
FlaxBaseModelOutput,
|
36 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
37 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
38 |
+
FlaxSeq2SeqLMOutput,
|
39 |
+
FlaxSeq2SeqModelOutput,
|
40 |
+
)
|
41 |
+
from ...modeling_flax_utils import (
|
42 |
+
ACT2FN,
|
43 |
+
FlaxPreTrainedModel,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
append_call_sample_docstring,
|
46 |
+
append_replace_return_docstrings,
|
47 |
+
overwrite_call_docstring,
|
48 |
+
)
|
49 |
+
from ...utils import add_start_docstrings, logging, replace_return_docstrings
|
50 |
+
from .configuration_pegasus import PegasusConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
|
56 |
+
_CONFIG_FOR_DOC = "PegasusConfig"
|
57 |
+
|
58 |
+
PEGASUS_START_DOCSTRING = r"""
|
59 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
60 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
61 |
+
etc.)
|
62 |
+
|
63 |
+
This model is also a Flax Linen
|
64 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
65 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
66 |
+
|
67 |
+
Finally, this model supports inherent JAX features such as:
|
68 |
+
|
69 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
70 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
71 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
72 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
|
76 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
77 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
78 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
79 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
80 |
+
`jax.numpy.bfloat16` (on TPUs).
|
81 |
+
|
82 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
83 |
+
specified all the computation will be performed with the given `dtype`.
|
84 |
+
|
85 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
86 |
+
parameters.**
|
87 |
+
|
88 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
89 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
90 |
+
"""
|
91 |
+
|
92 |
+
PEGASUS_INPUTS_DOCSTRING = r"""
|
93 |
+
Args:
|
94 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
95 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
96 |
+
it.
|
97 |
+
|
98 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
99 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
100 |
+
|
101 |
+
[What are input IDs?](../glossary#input-ids)
|
102 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
103 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
104 |
+
|
105 |
+
- 1 for tokens that are **not masked**,
|
106 |
+
- 0 for tokens that are **masked**.
|
107 |
+
|
108 |
+
[What are attention masks?](../glossary#attention-mask)
|
109 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
110 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
111 |
+
|
112 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
113 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
114 |
+
|
115 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
116 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
117 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
118 |
+
be used by default.
|
119 |
+
|
120 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
121 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
122 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
123 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
124 |
+
config.max_position_embeddings - 1]`.
|
125 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
126 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
127 |
+
range `[0, config.max_position_embeddings - 1]`.
|
128 |
+
output_attentions (`bool`, *optional*):
|
129 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
130 |
+
tensors for more detail.
|
131 |
+
output_hidden_states (`bool`, *optional*):
|
132 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
133 |
+
more detail.
|
134 |
+
return_dict (`bool`, *optional*):
|
135 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
136 |
+
"""
|
137 |
+
|
138 |
+
|
139 |
+
PEGASUS_ENCODE_INPUTS_DOCSTRING = r"""
|
140 |
+
Args:
|
141 |
+
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
142 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
143 |
+
it.
|
144 |
+
|
145 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
146 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
147 |
+
|
148 |
+
[What are input IDs?](../glossary#input-ids)
|
149 |
+
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
150 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
151 |
+
|
152 |
+
- 1 for tokens that are **not masked**,
|
153 |
+
- 0 for tokens that are **masked**.
|
154 |
+
|
155 |
+
[What are attention masks?](../glossary#attention-mask)
|
156 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
157 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
158 |
+
config.max_position_embeddings - 1]`.
|
159 |
+
output_attentions (`bool`, *optional*):
|
160 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
161 |
+
tensors for more detail.
|
162 |
+
output_hidden_states (`bool`, *optional*):
|
163 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
164 |
+
more detail.
|
165 |
+
return_dict (`bool`, *optional*):
|
166 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
167 |
+
"""
|
168 |
+
|
169 |
+
PEGASUS_DECODE_INPUTS_DOCSTRING = r"""
|
170 |
+
Args:
|
171 |
+
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
|
172 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
173 |
+
|
174 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
175 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
176 |
+
|
177 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
178 |
+
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
|
179 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
180 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
181 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
182 |
+
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
183 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
184 |
+
|
185 |
+
- 1 for tokens that are **not masked**,
|
186 |
+
- 0 for tokens that are **masked**.
|
187 |
+
|
188 |
+
[What are attention masks?](../glossary#attention-mask)
|
189 |
+
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
|
190 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
191 |
+
be used by default.
|
192 |
+
|
193 |
+
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
|
194 |
+
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
195 |
+
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
196 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
197 |
+
range `[0, config.max_position_embeddings - 1]`.
|
198 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
199 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
200 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
201 |
+
output_attentions (`bool`, *optional*):
|
202 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
203 |
+
tensors for more detail.
|
204 |
+
output_hidden_states (`bool`, *optional*):
|
205 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
206 |
+
more detail.
|
207 |
+
return_dict (`bool`, *optional*):
|
208 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
209 |
+
"""
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
|
213 |
+
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
|
214 |
+
"""
|
215 |
+
Shift input ids one token to the right.
|
216 |
+
"""
|
217 |
+
shifted_input_ids = jnp.zeros_like(input_ids)
|
218 |
+
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
|
219 |
+
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
|
220 |
+
|
221 |
+
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
|
222 |
+
return shifted_input_ids
|
223 |
+
|
224 |
+
|
225 |
+
# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
|
226 |
+
def create_sinusoidal_positions(n_pos, dim):
|
227 |
+
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
228 |
+
sentinel = dim // 2 + dim % 2
|
229 |
+
out = np.zeros_like(position_enc)
|
230 |
+
out[:, 0:sentinel] = np.sin(position_enc[:, 0::2])
|
231 |
+
out[:, sentinel:] = np.cos(position_enc[:, 1::2])
|
232 |
+
|
233 |
+
return jnp.array(out)
|
234 |
+
|
235 |
+
|
236 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Pegasus
|
237 |
+
class FlaxPegasusAttention(nn.Module):
|
238 |
+
config: PegasusConfig
|
239 |
+
embed_dim: int
|
240 |
+
num_heads: int
|
241 |
+
dropout: float = 0.0
|
242 |
+
causal: bool = False
|
243 |
+
bias: bool = True
|
244 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
245 |
+
|
246 |
+
def setup(self) -> None:
|
247 |
+
self.head_dim = self.embed_dim // self.num_heads
|
248 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
249 |
+
raise ValueError(
|
250 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
251 |
+
f" and `num_heads`: {self.num_heads})."
|
252 |
+
)
|
253 |
+
|
254 |
+
dense = partial(
|
255 |
+
nn.Dense,
|
256 |
+
self.embed_dim,
|
257 |
+
use_bias=self.bias,
|
258 |
+
dtype=self.dtype,
|
259 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
260 |
+
)
|
261 |
+
|
262 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
263 |
+
self.out_proj = dense()
|
264 |
+
|
265 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
266 |
+
|
267 |
+
if self.causal:
|
268 |
+
self.causal_mask = make_causal_mask(
|
269 |
+
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
|
270 |
+
)
|
271 |
+
|
272 |
+
def _split_heads(self, hidden_states):
|
273 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
274 |
+
|
275 |
+
def _merge_heads(self, hidden_states):
|
276 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
277 |
+
|
278 |
+
@nn.compact
|
279 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
280 |
+
"""
|
281 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
282 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
283 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
284 |
+
"""
|
285 |
+
# detect if we're initializing by absence of existing cache data.
|
286 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
287 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
288 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
289 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
290 |
+
|
291 |
+
if is_initialized:
|
292 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
293 |
+
# update key, value caches with our new 1d spatial slices
|
294 |
+
cur_index = cache_index.value
|
295 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
296 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
297 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
298 |
+
cached_key.value = key
|
299 |
+
cached_value.value = value
|
300 |
+
num_updated_cache_vectors = query.shape[1]
|
301 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
302 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
303 |
+
pad_mask = jnp.broadcast_to(
|
304 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
305 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
306 |
+
)
|
307 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
308 |
+
return key, value, attention_mask
|
309 |
+
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
hidden_states: jnp.ndarray,
|
313 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
314 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
315 |
+
init_cache: bool = False,
|
316 |
+
deterministic: bool = True,
|
317 |
+
) -> Tuple[jnp.ndarray]:
|
318 |
+
"""Input shape: Batch x Time x Channel"""
|
319 |
+
|
320 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
321 |
+
# for the decoder
|
322 |
+
is_cross_attention = key_value_states is not None
|
323 |
+
batch_size = hidden_states.shape[0]
|
324 |
+
|
325 |
+
# get query proj
|
326 |
+
query_states = self.q_proj(hidden_states)
|
327 |
+
# get key, value proj
|
328 |
+
if is_cross_attention:
|
329 |
+
# cross_attentions
|
330 |
+
key_states = self.k_proj(key_value_states)
|
331 |
+
value_states = self.v_proj(key_value_states)
|
332 |
+
else:
|
333 |
+
# self_attention
|
334 |
+
key_states = self.k_proj(hidden_states)
|
335 |
+
value_states = self.v_proj(hidden_states)
|
336 |
+
|
337 |
+
query_states = self._split_heads(query_states)
|
338 |
+
key_states = self._split_heads(key_states)
|
339 |
+
value_states = self._split_heads(value_states)
|
340 |
+
|
341 |
+
# handle cache prepare causal attention mask
|
342 |
+
if self.causal:
|
343 |
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
344 |
+
if self.has_variable("cache", "cached_key"):
|
345 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
346 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
347 |
+
causal_mask = lax.dynamic_slice(
|
348 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
352 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
353 |
+
|
354 |
+
# combine masks if needed
|
355 |
+
if attention_mask is not None and self.causal:
|
356 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
357 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
358 |
+
elif self.causal:
|
359 |
+
attention_mask = causal_mask
|
360 |
+
elif attention_mask is not None:
|
361 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
362 |
+
|
363 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
364 |
+
# and cache the keys and values step by step.
|
365 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
366 |
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
367 |
+
key_states, value_states, query_states, attention_mask
|
368 |
+
)
|
369 |
+
|
370 |
+
# Convert the boolean attention mask to an attention bias.
|
371 |
+
if attention_mask is not None:
|
372 |
+
# attention mask in the form of attention bias
|
373 |
+
attention_bias = lax.select(
|
374 |
+
attention_mask > 0,
|
375 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
376 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
377 |
+
)
|
378 |
+
else:
|
379 |
+
attention_bias = None
|
380 |
+
|
381 |
+
dropout_rng = None
|
382 |
+
if not deterministic and self.dropout > 0.0:
|
383 |
+
dropout_rng = self.make_rng("dropout")
|
384 |
+
|
385 |
+
attn_weights = dot_product_attention_weights(
|
386 |
+
query_states,
|
387 |
+
key_states,
|
388 |
+
bias=attention_bias,
|
389 |
+
dropout_rng=dropout_rng,
|
390 |
+
dropout_rate=self.dropout,
|
391 |
+
broadcast_dropout=True,
|
392 |
+
deterministic=deterministic,
|
393 |
+
dtype=self.dtype,
|
394 |
+
precision=None,
|
395 |
+
)
|
396 |
+
|
397 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
398 |
+
attn_output = self._merge_heads(attn_output)
|
399 |
+
attn_output = self.out_proj(attn_output)
|
400 |
+
|
401 |
+
return attn_output, attn_weights
|
402 |
+
|
403 |
+
|
404 |
+
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Pegasus
|
405 |
+
class FlaxPegasusEncoderLayer(nn.Module):
|
406 |
+
config: PegasusConfig
|
407 |
+
dtype: jnp.dtype = jnp.float32
|
408 |
+
|
409 |
+
def setup(self) -> None:
|
410 |
+
self.embed_dim = self.config.d_model
|
411 |
+
self.self_attn = FlaxPegasusAttention(
|
412 |
+
config=self.config,
|
413 |
+
embed_dim=self.embed_dim,
|
414 |
+
num_heads=self.config.encoder_attention_heads,
|
415 |
+
dropout=self.config.attention_dropout,
|
416 |
+
dtype=self.dtype,
|
417 |
+
)
|
418 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
419 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
420 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
421 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
422 |
+
self.fc1 = nn.Dense(
|
423 |
+
self.config.encoder_ffn_dim,
|
424 |
+
dtype=self.dtype,
|
425 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
426 |
+
)
|
427 |
+
self.fc2 = nn.Dense(
|
428 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
429 |
+
)
|
430 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
431 |
+
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
hidden_states: jnp.ndarray,
|
435 |
+
attention_mask: jnp.ndarray,
|
436 |
+
output_attentions: bool = True,
|
437 |
+
deterministic: bool = True,
|
438 |
+
) -> Tuple[jnp.ndarray]:
|
439 |
+
residual = hidden_states
|
440 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
441 |
+
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
|
442 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
443 |
+
hidden_states = residual + hidden_states
|
444 |
+
|
445 |
+
residual = hidden_states
|
446 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
447 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
448 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
449 |
+
hidden_states = self.fc2(hidden_states)
|
450 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
451 |
+
hidden_states = residual + hidden_states
|
452 |
+
|
453 |
+
outputs = (hidden_states,)
|
454 |
+
|
455 |
+
if output_attentions:
|
456 |
+
outputs += (attn_weights,)
|
457 |
+
|
458 |
+
return outputs
|
459 |
+
|
460 |
+
|
461 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Pegasus
|
462 |
+
class FlaxPegasusEncoderLayerCollection(nn.Module):
|
463 |
+
config: PegasusConfig
|
464 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
465 |
+
|
466 |
+
def setup(self):
|
467 |
+
self.layers = [
|
468 |
+
FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype)
|
469 |
+
for i in range(self.config.encoder_layers)
|
470 |
+
]
|
471 |
+
self.layerdrop = self.config.encoder_layerdrop
|
472 |
+
|
473 |
+
def __call__(
|
474 |
+
self,
|
475 |
+
hidden_states,
|
476 |
+
attention_mask,
|
477 |
+
deterministic: bool = True,
|
478 |
+
output_attentions: bool = False,
|
479 |
+
output_hidden_states: bool = False,
|
480 |
+
return_dict: bool = True,
|
481 |
+
):
|
482 |
+
all_attentions = () if output_attentions else None
|
483 |
+
all_hidden_states = () if output_hidden_states else None
|
484 |
+
|
485 |
+
for encoder_layer in self.layers:
|
486 |
+
if output_hidden_states:
|
487 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
488 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
489 |
+
dropout_probability = random.uniform(0, 1)
|
490 |
+
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
|
491 |
+
layer_outputs = (None, None)
|
492 |
+
else:
|
493 |
+
layer_outputs = encoder_layer(
|
494 |
+
hidden_states,
|
495 |
+
attention_mask,
|
496 |
+
output_attentions,
|
497 |
+
deterministic,
|
498 |
+
)
|
499 |
+
hidden_states = layer_outputs[0]
|
500 |
+
if output_attentions:
|
501 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
502 |
+
|
503 |
+
if output_hidden_states:
|
504 |
+
all_hidden_states += (hidden_states,)
|
505 |
+
|
506 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
507 |
+
|
508 |
+
if not return_dict:
|
509 |
+
return tuple(v for v in outputs if v is not None)
|
510 |
+
|
511 |
+
return FlaxBaseModelOutput(
|
512 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
513 |
+
)
|
514 |
+
|
515 |
+
|
516 |
+
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Pegasus
|
517 |
+
class FlaxPegasusDecoderLayer(nn.Module):
|
518 |
+
config: PegasusConfig
|
519 |
+
dtype: jnp.dtype = jnp.float32
|
520 |
+
|
521 |
+
def setup(self) -> None:
|
522 |
+
self.embed_dim = self.config.d_model
|
523 |
+
self.self_attn = FlaxPegasusAttention(
|
524 |
+
config=self.config,
|
525 |
+
embed_dim=self.embed_dim,
|
526 |
+
num_heads=self.config.decoder_attention_heads,
|
527 |
+
dropout=self.config.attention_dropout,
|
528 |
+
causal=True,
|
529 |
+
dtype=self.dtype,
|
530 |
+
)
|
531 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
532 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
533 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
534 |
+
|
535 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
536 |
+
self.encoder_attn = FlaxPegasusAttention(
|
537 |
+
config=self.config,
|
538 |
+
embed_dim=self.embed_dim,
|
539 |
+
num_heads=self.config.decoder_attention_heads,
|
540 |
+
dropout=self.config.attention_dropout,
|
541 |
+
dtype=self.dtype,
|
542 |
+
)
|
543 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
544 |
+
self.fc1 = nn.Dense(
|
545 |
+
self.config.decoder_ffn_dim,
|
546 |
+
dtype=self.dtype,
|
547 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
548 |
+
)
|
549 |
+
self.fc2 = nn.Dense(
|
550 |
+
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
|
551 |
+
)
|
552 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
553 |
+
|
554 |
+
def __call__(
|
555 |
+
self,
|
556 |
+
hidden_states: jnp.ndarray,
|
557 |
+
attention_mask: jnp.ndarray,
|
558 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
559 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
560 |
+
init_cache: bool = False,
|
561 |
+
output_attentions: bool = True,
|
562 |
+
deterministic: bool = True,
|
563 |
+
) -> Tuple[jnp.ndarray]:
|
564 |
+
residual = hidden_states
|
565 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
566 |
+
|
567 |
+
# Self Attention
|
568 |
+
hidden_states, self_attn_weights = self.self_attn(
|
569 |
+
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
|
570 |
+
)
|
571 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
572 |
+
hidden_states = residual + hidden_states
|
573 |
+
|
574 |
+
# Cross-Attention Block
|
575 |
+
cross_attn_weights = None
|
576 |
+
if encoder_hidden_states is not None:
|
577 |
+
residual = hidden_states
|
578 |
+
|
579 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
580 |
+
hidden_states, cross_attn_weights = self.encoder_attn(
|
581 |
+
hidden_states=hidden_states,
|
582 |
+
key_value_states=encoder_hidden_states,
|
583 |
+
attention_mask=encoder_attention_mask,
|
584 |
+
)
|
585 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
586 |
+
hidden_states = residual + hidden_states
|
587 |
+
|
588 |
+
# Fully Connected
|
589 |
+
residual = hidden_states
|
590 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
591 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
592 |
+
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
|
593 |
+
hidden_states = self.fc2(hidden_states)
|
594 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
595 |
+
hidden_states = residual + hidden_states
|
596 |
+
|
597 |
+
outputs = (hidden_states,)
|
598 |
+
|
599 |
+
if output_attentions:
|
600 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
601 |
+
|
602 |
+
return outputs
|
603 |
+
|
604 |
+
|
605 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Pegasus
|
606 |
+
class FlaxPegasusDecoderLayerCollection(nn.Module):
|
607 |
+
config: PegasusConfig
|
608 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
609 |
+
|
610 |
+
def setup(self):
|
611 |
+
self.layers = [
|
612 |
+
FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype)
|
613 |
+
for i in range(self.config.decoder_layers)
|
614 |
+
]
|
615 |
+
self.layerdrop = self.config.decoder_layerdrop
|
616 |
+
|
617 |
+
def __call__(
|
618 |
+
self,
|
619 |
+
hidden_states,
|
620 |
+
attention_mask,
|
621 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
622 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
623 |
+
deterministic: bool = True,
|
624 |
+
init_cache: bool = False,
|
625 |
+
output_attentions: bool = False,
|
626 |
+
output_hidden_states: bool = False,
|
627 |
+
return_dict: bool = True,
|
628 |
+
):
|
629 |
+
# decoder layers
|
630 |
+
all_hidden_states = () if output_hidden_states else None
|
631 |
+
all_self_attns = () if output_attentions else None
|
632 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
633 |
+
|
634 |
+
for decoder_layer in self.layers:
|
635 |
+
if output_hidden_states:
|
636 |
+
all_hidden_states += (hidden_states,)
|
637 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
638 |
+
dropout_probability = random.uniform(0, 1)
|
639 |
+
if not deterministic and (dropout_probability < self.layerdrop):
|
640 |
+
layer_outputs = (None, None, None)
|
641 |
+
else:
|
642 |
+
layer_outputs = decoder_layer(
|
643 |
+
hidden_states,
|
644 |
+
attention_mask=attention_mask,
|
645 |
+
encoder_hidden_states=encoder_hidden_states,
|
646 |
+
encoder_attention_mask=encoder_attention_mask,
|
647 |
+
init_cache=init_cache,
|
648 |
+
output_attentions=output_attentions,
|
649 |
+
deterministic=deterministic,
|
650 |
+
)
|
651 |
+
|
652 |
+
hidden_states = layer_outputs[0]
|
653 |
+
if output_attentions:
|
654 |
+
all_self_attns += (layer_outputs[1],)
|
655 |
+
|
656 |
+
if encoder_hidden_states is not None:
|
657 |
+
all_cross_attentions += (layer_outputs[2],)
|
658 |
+
|
659 |
+
# add hidden states from the last decoder layer
|
660 |
+
if output_hidden_states:
|
661 |
+
all_hidden_states += (hidden_states,)
|
662 |
+
|
663 |
+
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
|
664 |
+
|
665 |
+
if not return_dict:
|
666 |
+
return tuple(v for v in outputs if v is not None)
|
667 |
+
|
668 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
669 |
+
last_hidden_state=hidden_states,
|
670 |
+
hidden_states=all_hidden_states,
|
671 |
+
attentions=all_self_attns,
|
672 |
+
cross_attentions=all_cross_attentions,
|
673 |
+
)
|
674 |
+
|
675 |
+
|
676 |
+
class FlaxPegasusEncoder(nn.Module):
|
677 |
+
config: PegasusConfig
|
678 |
+
embed_tokens: nn.Embed
|
679 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
680 |
+
|
681 |
+
def setup(self):
|
682 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
683 |
+
|
684 |
+
embed_dim = self.config.d_model
|
685 |
+
self.padding_idx = self.config.pad_token_id
|
686 |
+
self.max_source_positions = self.config.max_position_embeddings
|
687 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
688 |
+
|
689 |
+
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
|
690 |
+
self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype)
|
691 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
692 |
+
|
693 |
+
def __call__(
|
694 |
+
self,
|
695 |
+
input_ids,
|
696 |
+
attention_mask,
|
697 |
+
position_ids,
|
698 |
+
output_attentions: bool = False,
|
699 |
+
output_hidden_states: bool = False,
|
700 |
+
return_dict: bool = True,
|
701 |
+
deterministic: bool = True,
|
702 |
+
):
|
703 |
+
input_shape = input_ids.shape
|
704 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
705 |
+
|
706 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
707 |
+
|
708 |
+
# embed positions
|
709 |
+
embed_pos = jnp.take(self.embed_positions, position_ids, axis=0)
|
710 |
+
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
|
711 |
+
embed_pos = embed_pos.astype(inputs_embeds.dtype)
|
712 |
+
|
713 |
+
hidden_states = inputs_embeds + embed_pos
|
714 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
715 |
+
outputs = self.layers(
|
716 |
+
hidden_states,
|
717 |
+
attention_mask,
|
718 |
+
deterministic=deterministic,
|
719 |
+
output_attentions=output_attentions,
|
720 |
+
output_hidden_states=output_hidden_states,
|
721 |
+
return_dict=return_dict,
|
722 |
+
)
|
723 |
+
last_hidden_state = outputs[0]
|
724 |
+
last_hidden_state = self.layer_norm(last_hidden_state)
|
725 |
+
|
726 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
727 |
+
hidden_states = None
|
728 |
+
if output_hidden_states:
|
729 |
+
hidden_states = outputs[1]
|
730 |
+
hidden_states = hidden_states[:-1] + (last_hidden_state,)
|
731 |
+
|
732 |
+
if not return_dict:
|
733 |
+
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
734 |
+
return tuple(v for v in outputs if v is not None)
|
735 |
+
|
736 |
+
return FlaxBaseModelOutput(
|
737 |
+
last_hidden_state=last_hidden_state,
|
738 |
+
hidden_states=hidden_states,
|
739 |
+
attentions=outputs.attentions,
|
740 |
+
)
|
741 |
+
|
742 |
+
|
743 |
+
class FlaxPegasusDecoder(nn.Module):
|
744 |
+
config: PegasusConfig
|
745 |
+
embed_tokens: nn.Embed
|
746 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
747 |
+
|
748 |
+
def setup(self):
|
749 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
750 |
+
|
751 |
+
embed_dim = self.config.d_model
|
752 |
+
self.padding_idx = self.config.pad_token_id
|
753 |
+
self.max_target_positions = self.config.max_position_embeddings
|
754 |
+
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
755 |
+
|
756 |
+
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
|
757 |
+
|
758 |
+
self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype)
|
759 |
+
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
760 |
+
|
761 |
+
def __call__(
|
762 |
+
self,
|
763 |
+
input_ids,
|
764 |
+
attention_mask,
|
765 |
+
position_ids,
|
766 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
767 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
768 |
+
init_cache: bool = False,
|
769 |
+
output_attentions: bool = False,
|
770 |
+
output_hidden_states: bool = False,
|
771 |
+
return_dict: bool = True,
|
772 |
+
deterministic: bool = True,
|
773 |
+
):
|
774 |
+
input_shape = input_ids.shape
|
775 |
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
776 |
+
|
777 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
778 |
+
|
779 |
+
# embed positions
|
780 |
+
positions = jnp.take(self.embed_positions, position_ids, axis=0)
|
781 |
+
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
|
782 |
+
positions = positions.astype(inputs_embeds.dtype)
|
783 |
+
|
784 |
+
hidden_states = inputs_embeds + positions
|
785 |
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
786 |
+
outputs = self.layers(
|
787 |
+
hidden_states,
|
788 |
+
attention_mask,
|
789 |
+
encoder_hidden_states,
|
790 |
+
encoder_attention_mask,
|
791 |
+
deterministic=deterministic,
|
792 |
+
init_cache=init_cache,
|
793 |
+
output_attentions=output_attentions,
|
794 |
+
output_hidden_states=output_hidden_states,
|
795 |
+
return_dict=return_dict,
|
796 |
+
)
|
797 |
+
last_hidden_state = outputs[0]
|
798 |
+
last_hidden_state = self.layer_norm(last_hidden_state)
|
799 |
+
|
800 |
+
# update the last element in `hidden_states` after applying `layernorm` above
|
801 |
+
hidden_states = None
|
802 |
+
if output_hidden_states:
|
803 |
+
hidden_states = outputs[1]
|
804 |
+
hidden_states = hidden_states[:-1] + (last_hidden_state,)
|
805 |
+
|
806 |
+
if not return_dict:
|
807 |
+
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
|
808 |
+
return tuple(v for v in outputs if v is not None)
|
809 |
+
|
810 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
811 |
+
last_hidden_state=last_hidden_state,
|
812 |
+
hidden_states=hidden_states,
|
813 |
+
attentions=outputs.attentions,
|
814 |
+
cross_attentions=outputs.cross_attentions,
|
815 |
+
)
|
816 |
+
|
817 |
+
|
818 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Pegasus
|
819 |
+
class FlaxPegasusModule(nn.Module):
|
820 |
+
config: PegasusConfig
|
821 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
822 |
+
|
823 |
+
def setup(self):
|
824 |
+
self.shared = nn.Embed(
|
825 |
+
self.config.vocab_size,
|
826 |
+
self.config.d_model,
|
827 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
828 |
+
dtype=self.dtype,
|
829 |
+
)
|
830 |
+
|
831 |
+
self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
832 |
+
self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
833 |
+
|
834 |
+
def _get_encoder_module(self):
|
835 |
+
return self.encoder
|
836 |
+
|
837 |
+
def _get_decoder_module(self):
|
838 |
+
return self.decoder
|
839 |
+
|
840 |
+
def __call__(
|
841 |
+
self,
|
842 |
+
input_ids,
|
843 |
+
attention_mask,
|
844 |
+
decoder_input_ids,
|
845 |
+
decoder_attention_mask,
|
846 |
+
position_ids,
|
847 |
+
decoder_position_ids,
|
848 |
+
output_attentions: bool = False,
|
849 |
+
output_hidden_states: bool = False,
|
850 |
+
return_dict: bool = True,
|
851 |
+
deterministic: bool = True,
|
852 |
+
):
|
853 |
+
encoder_outputs = self.encoder(
|
854 |
+
input_ids=input_ids,
|
855 |
+
attention_mask=attention_mask,
|
856 |
+
position_ids=position_ids,
|
857 |
+
output_attentions=output_attentions,
|
858 |
+
output_hidden_states=output_hidden_states,
|
859 |
+
return_dict=return_dict,
|
860 |
+
deterministic=deterministic,
|
861 |
+
)
|
862 |
+
|
863 |
+
decoder_outputs = self.decoder(
|
864 |
+
input_ids=decoder_input_ids,
|
865 |
+
attention_mask=decoder_attention_mask,
|
866 |
+
position_ids=decoder_position_ids,
|
867 |
+
encoder_hidden_states=encoder_outputs[0],
|
868 |
+
encoder_attention_mask=attention_mask,
|
869 |
+
output_attentions=output_attentions,
|
870 |
+
output_hidden_states=output_hidden_states,
|
871 |
+
return_dict=return_dict,
|
872 |
+
deterministic=deterministic,
|
873 |
+
)
|
874 |
+
|
875 |
+
if not return_dict:
|
876 |
+
return decoder_outputs + encoder_outputs
|
877 |
+
|
878 |
+
return FlaxSeq2SeqModelOutput(
|
879 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
880 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
881 |
+
decoder_attentions=decoder_outputs.attentions,
|
882 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
883 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
884 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
885 |
+
encoder_attentions=encoder_outputs.attentions,
|
886 |
+
)
|
887 |
+
|
888 |
+
|
889 |
+
class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel):
|
890 |
+
config_class = PegasusConfig
|
891 |
+
base_model_prefix: str = "model"
|
892 |
+
module_class: nn.Module = None
|
893 |
+
|
894 |
+
def __init__(
|
895 |
+
self,
|
896 |
+
config: PegasusConfig,
|
897 |
+
input_shape: Tuple[int] = (1, 1),
|
898 |
+
seed: int = 0,
|
899 |
+
dtype: jnp.dtype = jnp.float32,
|
900 |
+
_do_init: bool = True,
|
901 |
+
**kwargs,
|
902 |
+
):
|
903 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
904 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
905 |
+
|
906 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
907 |
+
# init input tensors
|
908 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
909 |
+
attention_mask = jnp.ones_like(input_ids)
|
910 |
+
decoder_input_ids = input_ids
|
911 |
+
decoder_attention_mask = jnp.ones_like(input_ids)
|
912 |
+
|
913 |
+
batch_size, sequence_length = input_ids.shape
|
914 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
915 |
+
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
916 |
+
|
917 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
918 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
919 |
+
|
920 |
+
random_params = self.module.init(
|
921 |
+
rngs,
|
922 |
+
input_ids,
|
923 |
+
attention_mask,
|
924 |
+
decoder_input_ids,
|
925 |
+
decoder_attention_mask,
|
926 |
+
position_ids,
|
927 |
+
decoder_position_ids,
|
928 |
+
)["params"]
|
929 |
+
|
930 |
+
if params is not None:
|
931 |
+
random_params = flatten_dict(unfreeze(random_params))
|
932 |
+
params = flatten_dict(unfreeze(params))
|
933 |
+
for missing_key in self._missing_keys:
|
934 |
+
params[missing_key] = random_params[missing_key]
|
935 |
+
self._missing_keys = set()
|
936 |
+
return freeze(unflatten_dict(params))
|
937 |
+
else:
|
938 |
+
return random_params
|
939 |
+
|
940 |
+
def init_cache(self, batch_size, max_length, encoder_outputs):
|
941 |
+
r"""
|
942 |
+
Args:
|
943 |
+
batch_size (`int`):
|
944 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
945 |
+
max_length (`int`):
|
946 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
947 |
+
cache.
|
948 |
+
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
949 |
+
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
|
950 |
+
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
|
951 |
+
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
|
952 |
+
cross-attention of the decoder.
|
953 |
+
"""
|
954 |
+
# init input variables to retrieve cache
|
955 |
+
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
956 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
957 |
+
decoder_position_ids = jnp.broadcast_to(
|
958 |
+
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
|
959 |
+
)
|
960 |
+
|
961 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
962 |
+
decoder_module = module._get_decoder_module()
|
963 |
+
return decoder_module(
|
964 |
+
decoder_input_ids,
|
965 |
+
decoder_attention_mask,
|
966 |
+
decoder_position_ids,
|
967 |
+
**kwargs,
|
968 |
+
)
|
969 |
+
|
970 |
+
init_variables = self.module.init(
|
971 |
+
jax.random.PRNGKey(0),
|
972 |
+
decoder_input_ids=decoder_input_ids,
|
973 |
+
decoder_attention_mask=decoder_attention_mask,
|
974 |
+
decoder_position_ids=decoder_position_ids,
|
975 |
+
encoder_hidden_states=encoder_outputs[0],
|
976 |
+
init_cache=True,
|
977 |
+
method=_decoder_forward, # we only need to call the decoder to init the cache
|
978 |
+
)
|
979 |
+
return unfreeze(init_variables["cache"])
|
980 |
+
|
981 |
+
@add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING)
|
982 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig)
|
983 |
+
def encode(
|
984 |
+
self,
|
985 |
+
input_ids: jnp.ndarray,
|
986 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
987 |
+
position_ids: Optional[jnp.ndarray] = None,
|
988 |
+
output_attentions: Optional[bool] = None,
|
989 |
+
output_hidden_states: Optional[bool] = None,
|
990 |
+
return_dict: Optional[bool] = None,
|
991 |
+
train: bool = False,
|
992 |
+
params: dict = None,
|
993 |
+
dropout_rng: PRNGKey = None,
|
994 |
+
):
|
995 |
+
r"""
|
996 |
+
Returns:
|
997 |
+
|
998 |
+
Example:
|
999 |
+
|
1000 |
+
```python
|
1001 |
+
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
|
1002 |
+
|
1003 |
+
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
|
1004 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1005 |
+
|
1006 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1007 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
|
1008 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1009 |
+
```"""
|
1010 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1011 |
+
output_hidden_states = (
|
1012 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1013 |
+
)
|
1014 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1015 |
+
|
1016 |
+
if attention_mask is None:
|
1017 |
+
attention_mask = jnp.ones_like(input_ids)
|
1018 |
+
if position_ids is None:
|
1019 |
+
batch_size, sequence_length = input_ids.shape
|
1020 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1021 |
+
|
1022 |
+
# Handle any PRNG if needed
|
1023 |
+
rngs = {}
|
1024 |
+
if dropout_rng is not None:
|
1025 |
+
rngs["dropout"] = dropout_rng
|
1026 |
+
|
1027 |
+
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
|
1028 |
+
encode_module = module._get_encoder_module()
|
1029 |
+
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
1030 |
+
|
1031 |
+
return self.module.apply(
|
1032 |
+
{"params": params or self.params},
|
1033 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1034 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1035 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1036 |
+
output_attentions=output_attentions,
|
1037 |
+
output_hidden_states=output_hidden_states,
|
1038 |
+
return_dict=return_dict,
|
1039 |
+
deterministic=not train,
|
1040 |
+
rngs=rngs,
|
1041 |
+
method=_encoder_forward,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
@add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
|
1045 |
+
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig)
|
1046 |
+
def decode(
|
1047 |
+
self,
|
1048 |
+
decoder_input_ids,
|
1049 |
+
encoder_outputs,
|
1050 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1051 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1052 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1053 |
+
past_key_values: dict = None,
|
1054 |
+
output_attentions: Optional[bool] = None,
|
1055 |
+
output_hidden_states: Optional[bool] = None,
|
1056 |
+
return_dict: Optional[bool] = None,
|
1057 |
+
train: bool = False,
|
1058 |
+
params: dict = None,
|
1059 |
+
dropout_rng: PRNGKey = None,
|
1060 |
+
):
|
1061 |
+
r"""
|
1062 |
+
Returns:
|
1063 |
+
|
1064 |
+
Example:
|
1065 |
+
|
1066 |
+
```python
|
1067 |
+
>>> import jax.numpy as jnp
|
1068 |
+
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
|
1069 |
+
|
1070 |
+
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
|
1071 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1072 |
+
|
1073 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1074 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
|
1075 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1076 |
+
|
1077 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1078 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1079 |
+
|
1080 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1081 |
+
>>> last_decoder_hidden_states = outputs.last_hidden_state
|
1082 |
+
```"""
|
1083 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1084 |
+
output_hidden_states = (
|
1085 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1086 |
+
)
|
1087 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1088 |
+
|
1089 |
+
encoder_hidden_states = encoder_outputs[0]
|
1090 |
+
if encoder_attention_mask is None:
|
1091 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1092 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1093 |
+
|
1094 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1095 |
+
if decoder_attention_mask is None:
|
1096 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1097 |
+
|
1098 |
+
if decoder_position_ids is None:
|
1099 |
+
if past_key_values is not None:
|
1100 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1101 |
+
|
1102 |
+
decoder_position_ids = jnp.broadcast_to(
|
1103 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Handle any PRNG if needed
|
1107 |
+
rngs = {}
|
1108 |
+
if dropout_rng is not None:
|
1109 |
+
rngs["dropout"] = dropout_rng
|
1110 |
+
|
1111 |
+
inputs = {"params": params or self.params}
|
1112 |
+
|
1113 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1114 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1115 |
+
# it can be changed by FlaxPegasusAttention module
|
1116 |
+
if past_key_values:
|
1117 |
+
inputs["cache"] = past_key_values
|
1118 |
+
mutable = ["cache"]
|
1119 |
+
else:
|
1120 |
+
mutable = False
|
1121 |
+
|
1122 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1123 |
+
decoder_module = module._get_decoder_module()
|
1124 |
+
return decoder_module(
|
1125 |
+
decoder_input_ids,
|
1126 |
+
decoder_attention_mask,
|
1127 |
+
decoder_position_ids,
|
1128 |
+
**kwargs,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
outputs = self.module.apply(
|
1132 |
+
inputs,
|
1133 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1134 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1135 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1136 |
+
encoder_hidden_states=encoder_hidden_states,
|
1137 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1138 |
+
output_attentions=output_attentions,
|
1139 |
+
output_hidden_states=output_hidden_states,
|
1140 |
+
return_dict=return_dict,
|
1141 |
+
deterministic=not train,
|
1142 |
+
rngs=rngs,
|
1143 |
+
mutable=mutable,
|
1144 |
+
method=_decoder_forward,
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
# add updated cache to model output
|
1148 |
+
if past_key_values is not None and return_dict:
|
1149 |
+
outputs, past = outputs
|
1150 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1151 |
+
return outputs
|
1152 |
+
elif past_key_values is not None and not return_dict:
|
1153 |
+
outputs, past = outputs
|
1154 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1155 |
+
|
1156 |
+
return outputs
|
1157 |
+
|
1158 |
+
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
|
1159 |
+
def __call__(
|
1160 |
+
self,
|
1161 |
+
input_ids: jnp.ndarray,
|
1162 |
+
attention_mask: Optional[jnp.ndarray] = None,
|
1163 |
+
decoder_input_ids: Optional[jnp.ndarray] = None,
|
1164 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1165 |
+
position_ids: Optional[jnp.ndarray] = None,
|
1166 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1167 |
+
output_attentions: Optional[bool] = None,
|
1168 |
+
output_hidden_states: Optional[bool] = None,
|
1169 |
+
return_dict: Optional[bool] = None,
|
1170 |
+
train: bool = False,
|
1171 |
+
params: dict = None,
|
1172 |
+
dropout_rng: PRNGKey = None,
|
1173 |
+
):
|
1174 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1175 |
+
output_hidden_states = (
|
1176 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1177 |
+
)
|
1178 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1179 |
+
|
1180 |
+
# prepare encoder inputs
|
1181 |
+
if attention_mask is None:
|
1182 |
+
attention_mask = jnp.ones_like(input_ids)
|
1183 |
+
if position_ids is None:
|
1184 |
+
batch_size, sequence_length = input_ids.shape
|
1185 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
1186 |
+
|
1187 |
+
# prepare decoder inputs
|
1188 |
+
if decoder_input_ids is None:
|
1189 |
+
decoder_input_ids = shift_tokens_right(
|
1190 |
+
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
|
1191 |
+
)
|
1192 |
+
if decoder_attention_mask is None:
|
1193 |
+
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
1194 |
+
if decoder_position_ids is None:
|
1195 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1196 |
+
decoder_position_ids = jnp.broadcast_to(
|
1197 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
# Handle any PRNG if needed
|
1201 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
1202 |
+
|
1203 |
+
return self.module.apply(
|
1204 |
+
{"params": params or self.params},
|
1205 |
+
input_ids=jnp.array(input_ids, dtype="i4"),
|
1206 |
+
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
1207 |
+
position_ids=jnp.array(position_ids, dtype="i4"),
|
1208 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1209 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1210 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1211 |
+
output_attentions=output_attentions,
|
1212 |
+
output_hidden_states=output_hidden_states,
|
1213 |
+
return_dict=return_dict,
|
1214 |
+
deterministic=not train,
|
1215 |
+
rngs=rngs,
|
1216 |
+
)
|
1217 |
+
|
1218 |
+
|
1219 |
+
@add_start_docstrings(
|
1220 |
+
"The bare Pegasus Model transformer outputting raw hidden-states without any specific head on top.",
|
1221 |
+
PEGASUS_START_DOCSTRING,
|
1222 |
+
)
|
1223 |
+
class FlaxPegasusModel(FlaxPegasusPreTrainedModel):
|
1224 |
+
config: PegasusConfig
|
1225 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
1226 |
+
module_class = FlaxPegasusModule
|
1227 |
+
|
1228 |
+
|
1229 |
+
append_call_sample_docstring(FlaxPegasusModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
|
1230 |
+
|
1231 |
+
|
1232 |
+
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Pegasus
|
1233 |
+
class FlaxPegasusForConditionalGenerationModule(nn.Module):
|
1234 |
+
config: PegasusConfig
|
1235 |
+
dtype: jnp.dtype = jnp.float32
|
1236 |
+
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
1237 |
+
|
1238 |
+
def setup(self):
|
1239 |
+
self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype)
|
1240 |
+
self.lm_head = nn.Dense(
|
1241 |
+
self.model.shared.num_embeddings,
|
1242 |
+
use_bias=False,
|
1243 |
+
dtype=self.dtype,
|
1244 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
1245 |
+
)
|
1246 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
|
1247 |
+
|
1248 |
+
def _get_encoder_module(self):
|
1249 |
+
return self.model.encoder
|
1250 |
+
|
1251 |
+
def _get_decoder_module(self):
|
1252 |
+
return self.model.decoder
|
1253 |
+
|
1254 |
+
def __call__(
|
1255 |
+
self,
|
1256 |
+
input_ids,
|
1257 |
+
attention_mask,
|
1258 |
+
decoder_input_ids,
|
1259 |
+
decoder_attention_mask,
|
1260 |
+
position_ids,
|
1261 |
+
decoder_position_ids,
|
1262 |
+
output_attentions: bool = False,
|
1263 |
+
output_hidden_states: bool = False,
|
1264 |
+
return_dict: bool = True,
|
1265 |
+
deterministic: bool = True,
|
1266 |
+
):
|
1267 |
+
outputs = self.model(
|
1268 |
+
input_ids=input_ids,
|
1269 |
+
attention_mask=attention_mask,
|
1270 |
+
decoder_input_ids=decoder_input_ids,
|
1271 |
+
decoder_attention_mask=decoder_attention_mask,
|
1272 |
+
position_ids=position_ids,
|
1273 |
+
decoder_position_ids=decoder_position_ids,
|
1274 |
+
output_attentions=output_attentions,
|
1275 |
+
output_hidden_states=output_hidden_states,
|
1276 |
+
return_dict=return_dict,
|
1277 |
+
deterministic=deterministic,
|
1278 |
+
)
|
1279 |
+
|
1280 |
+
hidden_states = outputs[0]
|
1281 |
+
|
1282 |
+
if self.config.tie_word_embeddings:
|
1283 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
1284 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1285 |
+
else:
|
1286 |
+
lm_logits = self.lm_head(hidden_states)
|
1287 |
+
|
1288 |
+
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
|
1289 |
+
|
1290 |
+
if not return_dict:
|
1291 |
+
output = (lm_logits,) + outputs[1:]
|
1292 |
+
return output
|
1293 |
+
|
1294 |
+
return FlaxSeq2SeqLMOutput(
|
1295 |
+
logits=lm_logits,
|
1296 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1297 |
+
decoder_attentions=outputs.decoder_attentions,
|
1298 |
+
cross_attentions=outputs.cross_attentions,
|
1299 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1300 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1301 |
+
encoder_attentions=outputs.encoder_attentions,
|
1302 |
+
)
|
1303 |
+
|
1304 |
+
|
1305 |
+
@add_start_docstrings(
|
1306 |
+
"The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
|
1307 |
+
)
|
1308 |
+
class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel):
|
1309 |
+
module_class = FlaxPegasusForConditionalGenerationModule
|
1310 |
+
dtype: jnp.dtype = jnp.float32
|
1311 |
+
|
1312 |
+
@add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
|
1313 |
+
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=PegasusConfig)
|
1314 |
+
def decode(
|
1315 |
+
self,
|
1316 |
+
decoder_input_ids,
|
1317 |
+
encoder_outputs,
|
1318 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
1319 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
1320 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
1321 |
+
past_key_values: dict = None,
|
1322 |
+
output_attentions: Optional[bool] = None,
|
1323 |
+
output_hidden_states: Optional[bool] = None,
|
1324 |
+
return_dict: Optional[bool] = None,
|
1325 |
+
deterministic: bool = True,
|
1326 |
+
params: dict = None,
|
1327 |
+
dropout_rng: PRNGKey = None,
|
1328 |
+
):
|
1329 |
+
r"""
|
1330 |
+
Returns:
|
1331 |
+
|
1332 |
+
Example:
|
1333 |
+
|
1334 |
+
```python
|
1335 |
+
>>> import jax.numpy as jnp
|
1336 |
+
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
|
1337 |
+
|
1338 |
+
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
|
1339 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1340 |
+
|
1341 |
+
>>> text = "My friends are cool but they eat too many carbs."
|
1342 |
+
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
|
1343 |
+
>>> encoder_outputs = model.encode(**inputs)
|
1344 |
+
|
1345 |
+
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
1346 |
+
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
1347 |
+
|
1348 |
+
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
1349 |
+
>>> logits = outputs.logits
|
1350 |
+
```"""
|
1351 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1352 |
+
output_hidden_states = (
|
1353 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1354 |
+
)
|
1355 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1356 |
+
|
1357 |
+
encoder_hidden_states = encoder_outputs[0]
|
1358 |
+
if encoder_attention_mask is None:
|
1359 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
1360 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1361 |
+
|
1362 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
1363 |
+
if decoder_attention_mask is None:
|
1364 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
1365 |
+
|
1366 |
+
if decoder_position_ids is None:
|
1367 |
+
if past_key_values is not None:
|
1368 |
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
1369 |
+
|
1370 |
+
decoder_position_ids = jnp.broadcast_to(
|
1371 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
# Handle any PRNG if needed
|
1375 |
+
rngs = {}
|
1376 |
+
if dropout_rng is not None:
|
1377 |
+
rngs["dropout"] = dropout_rng
|
1378 |
+
|
1379 |
+
inputs = {"params": params or self.params}
|
1380 |
+
|
1381 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
1382 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
1383 |
+
# it can be changed by FlaxPegasusAttention module
|
1384 |
+
if past_key_values:
|
1385 |
+
inputs["cache"] = past_key_values
|
1386 |
+
mutable = ["cache"]
|
1387 |
+
else:
|
1388 |
+
mutable = False
|
1389 |
+
|
1390 |
+
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
|
1391 |
+
decoder_module = module._get_decoder_module()
|
1392 |
+
outputs = decoder_module(
|
1393 |
+
decoder_input_ids,
|
1394 |
+
decoder_attention_mask,
|
1395 |
+
decoder_position_ids,
|
1396 |
+
**kwargs,
|
1397 |
+
)
|
1398 |
+
hidden_states = outputs[0]
|
1399 |
+
|
1400 |
+
if self.config.tie_word_embeddings:
|
1401 |
+
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
|
1402 |
+
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
1403 |
+
else:
|
1404 |
+
lm_logits = module.lm_head(hidden_states)
|
1405 |
+
|
1406 |
+
lm_logits += module.final_logits_bias.astype(self.dtype)
|
1407 |
+
return lm_logits, outputs
|
1408 |
+
|
1409 |
+
outputs = self.module.apply(
|
1410 |
+
inputs,
|
1411 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
1412 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
1413 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1414 |
+
encoder_hidden_states=encoder_hidden_states,
|
1415 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
1416 |
+
output_attentions=output_attentions,
|
1417 |
+
output_hidden_states=output_hidden_states,
|
1418 |
+
return_dict=return_dict,
|
1419 |
+
deterministic=deterministic,
|
1420 |
+
rngs=rngs,
|
1421 |
+
mutable=mutable,
|
1422 |
+
method=_decoder_forward,
|
1423 |
+
)
|
1424 |
+
|
1425 |
+
if past_key_values is None:
|
1426 |
+
lm_logits, decoder_outputs = outputs
|
1427 |
+
else:
|
1428 |
+
(lm_logits, decoder_outputs), past = outputs
|
1429 |
+
|
1430 |
+
if return_dict:
|
1431 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
1432 |
+
logits=lm_logits,
|
1433 |
+
hidden_states=decoder_outputs.hidden_states,
|
1434 |
+
attentions=decoder_outputs.attentions,
|
1435 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1436 |
+
)
|
1437 |
+
else:
|
1438 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
1439 |
+
|
1440 |
+
# add updated cache to model output
|
1441 |
+
if past_key_values is not None and return_dict:
|
1442 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
1443 |
+
return outputs
|
1444 |
+
elif past_key_values is not None and not return_dict:
|
1445 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
1446 |
+
|
1447 |
+
return outputs
|
1448 |
+
|
1449 |
+
def prepare_inputs_for_generation(
|
1450 |
+
self,
|
1451 |
+
decoder_input_ids,
|
1452 |
+
max_length,
|
1453 |
+
attention_mask: Optional[jax.Array] = None,
|
1454 |
+
decoder_attention_mask: Optional[jax.Array] = None,
|
1455 |
+
encoder_outputs=None,
|
1456 |
+
**kwargs,
|
1457 |
+
):
|
1458 |
+
# initializing the cache
|
1459 |
+
batch_size, seq_length = decoder_input_ids.shape
|
1460 |
+
|
1461 |
+
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
1462 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1463 |
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
1464 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
1465 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1466 |
+
if decoder_attention_mask is not None:
|
1467 |
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
1468 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
1469 |
+
else:
|
1470 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
1471 |
+
|
1472 |
+
return {
|
1473 |
+
"past_key_values": past_key_values,
|
1474 |
+
"encoder_outputs": encoder_outputs,
|
1475 |
+
"encoder_attention_mask": attention_mask,
|
1476 |
+
"decoder_attention_mask": extended_attention_mask,
|
1477 |
+
"decoder_position_ids": position_ids,
|
1478 |
+
}
|
1479 |
+
|
1480 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1481 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1482 |
+
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
|
1483 |
+
return model_kwargs
|
1484 |
+
|
1485 |
+
|
1486 |
+
FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """
|
1487 |
+
Returns:
|
1488 |
+
|
1489 |
+
Summarization example:
|
1490 |
+
|
1491 |
+
```pyton
|
1492 |
+
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
|
1493 |
+
|
1494 |
+
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large')
|
1495 |
+
>>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large')
|
1496 |
+
|
1497 |
+
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
|
1498 |
+
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
|
1499 |
+
|
1500 |
+
>>> # Generate Summary
|
1501 |
+
>>> summary_ids = model.generate(inputs['input_ids']).sequences
|
1502 |
+
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
|
1503 |
+
```
|
1504 |
+
|
1505 |
+
Mask filling example:
|
1506 |
+
|
1507 |
+
```python
|
1508 |
+
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
|
1509 |
+
|
1510 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1511 |
+
>>> TXT = "My friends are <mask> but they eat too many carbs."
|
1512 |
+
|
1513 |
+
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
|
1514 |
+
>>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
|
1515 |
+
>>> logits = model(input_ids).logits
|
1516 |
+
|
1517 |
+
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
|
1518 |
+
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
|
1519 |
+
>>> values, predictions = jax.lax.top_k(probs)
|
1520 |
+
|
1521 |
+
>>> tokenizer.decode(predictions).split()
|
1522 |
+
```
|
1523 |
+
"""
|
1524 |
+
|
1525 |
+
overwrite_call_docstring(
|
1526 |
+
FlaxPegasusForConditionalGeneration, PEGASUS_INPUTS_DOCSTRING + FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING
|
1527 |
+
)
|
1528 |
+
append_replace_return_docstrings(
|
1529 |
+
FlaxPegasusForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
|
1530 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_pegasus.py
ADDED
@@ -0,0 +1,1693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch PEGASUS model."""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
29 |
+
from ...modeling_outputs import (
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
32 |
+
CausalLMOutputWithCrossAttentions,
|
33 |
+
Seq2SeqLMOutput,
|
34 |
+
Seq2SeqModelOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import (
|
38 |
+
add_end_docstrings,
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from .configuration_pegasus import PegasusConfig
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
|
50 |
+
_CONFIG_FOR_DOC = "PegasusConfig"
|
51 |
+
|
52 |
+
|
53 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
54 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
55 |
+
"""
|
56 |
+
Shift input ids one token to the right.
|
57 |
+
"""
|
58 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
59 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
60 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
61 |
+
|
62 |
+
if pad_token_id is None:
|
63 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
64 |
+
# replace possible -100 values in labels by `pad_token_id`
|
65 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
66 |
+
|
67 |
+
return shifted_input_ids
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Pegasus
|
71 |
+
class PegasusSinusoidalPositionalEmbedding(nn.Embedding):
|
72 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
73 |
+
|
74 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
|
75 |
+
super().__init__(num_positions, embedding_dim)
|
76 |
+
self.weight = self._init_weight(self.weight)
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def _init_weight(out: nn.Parameter) -> nn.Parameter:
|
80 |
+
"""
|
81 |
+
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
|
82 |
+
the 2nd half of the vector. [dim // 2:]
|
83 |
+
"""
|
84 |
+
n_pos, dim = out.shape
|
85 |
+
position_enc = np.array(
|
86 |
+
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
|
87 |
+
)
|
88 |
+
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
|
89 |
+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
|
90 |
+
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
91 |
+
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
92 |
+
out.detach_()
|
93 |
+
return out
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
|
97 |
+
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
98 |
+
bsz, seq_len = input_ids_shape[:2]
|
99 |
+
positions = torch.arange(
|
100 |
+
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
101 |
+
)
|
102 |
+
return super().forward(positions)
|
103 |
+
|
104 |
+
|
105 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Pegasus
|
106 |
+
class PegasusAttention(nn.Module):
|
107 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
embed_dim: int,
|
112 |
+
num_heads: int,
|
113 |
+
dropout: float = 0.0,
|
114 |
+
is_decoder: bool = False,
|
115 |
+
bias: bool = True,
|
116 |
+
is_causal: bool = False,
|
117 |
+
config: Optional[PegasusConfig] = None,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
self.embed_dim = embed_dim
|
121 |
+
self.num_heads = num_heads
|
122 |
+
self.dropout = dropout
|
123 |
+
self.head_dim = embed_dim // num_heads
|
124 |
+
self.config = config
|
125 |
+
|
126 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
127 |
+
raise ValueError(
|
128 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
129 |
+
f" and `num_heads`: {num_heads})."
|
130 |
+
)
|
131 |
+
self.scaling = self.head_dim**-0.5
|
132 |
+
self.is_decoder = is_decoder
|
133 |
+
self.is_causal = is_causal
|
134 |
+
|
135 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
136 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
137 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
138 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
139 |
+
|
140 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
141 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
hidden_states: torch.Tensor,
|
146 |
+
key_value_states: Optional[torch.Tensor] = None,
|
147 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
148 |
+
attention_mask: Optional[torch.Tensor] = None,
|
149 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
150 |
+
output_attentions: bool = False,
|
151 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
152 |
+
"""Input shape: Batch x Time x Channel"""
|
153 |
+
|
154 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
155 |
+
# for the decoder
|
156 |
+
is_cross_attention = key_value_states is not None
|
157 |
+
|
158 |
+
bsz, tgt_len, _ = hidden_states.size()
|
159 |
+
|
160 |
+
# get query proj
|
161 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
162 |
+
# get key, value proj
|
163 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
164 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
165 |
+
# the provided `key_value_states` to support prefix tuning
|
166 |
+
if (
|
167 |
+
is_cross_attention
|
168 |
+
and past_key_value is not None
|
169 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
170 |
+
):
|
171 |
+
# reuse k,v, cross_attentions
|
172 |
+
key_states = past_key_value[0]
|
173 |
+
value_states = past_key_value[1]
|
174 |
+
elif is_cross_attention:
|
175 |
+
# cross_attentions
|
176 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
177 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
178 |
+
elif past_key_value is not None:
|
179 |
+
# reuse k, v, self_attention
|
180 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
181 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
182 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
183 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
184 |
+
else:
|
185 |
+
# self_attention
|
186 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
187 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
188 |
+
|
189 |
+
if self.is_decoder:
|
190 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
191 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
192 |
+
# key/value_states (first "if" case)
|
193 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
194 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
195 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
196 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
197 |
+
past_key_value = (key_states, value_states)
|
198 |
+
|
199 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
200 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
201 |
+
key_states = key_states.reshape(*proj_shape)
|
202 |
+
value_states = value_states.reshape(*proj_shape)
|
203 |
+
|
204 |
+
src_len = key_states.size(1)
|
205 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
206 |
+
|
207 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
208 |
+
raise ValueError(
|
209 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
210 |
+
f" {attn_weights.size()}"
|
211 |
+
)
|
212 |
+
|
213 |
+
if attention_mask is not None:
|
214 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
215 |
+
raise ValueError(
|
216 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
217 |
+
)
|
218 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
219 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
220 |
+
|
221 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
222 |
+
|
223 |
+
if layer_head_mask is not None:
|
224 |
+
if layer_head_mask.size() != (self.num_heads,):
|
225 |
+
raise ValueError(
|
226 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
227 |
+
f" {layer_head_mask.size()}"
|
228 |
+
)
|
229 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
230 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
231 |
+
|
232 |
+
if output_attentions:
|
233 |
+
# this operation is a bit awkward, but it's required to
|
234 |
+
# make sure that attn_weights keeps its gradient.
|
235 |
+
# In order to do so, attn_weights have to be reshaped
|
236 |
+
# twice and have to be reused in the following
|
237 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
238 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
239 |
+
else:
|
240 |
+
attn_weights_reshaped = None
|
241 |
+
|
242 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
243 |
+
|
244 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
245 |
+
|
246 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
247 |
+
raise ValueError(
|
248 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
249 |
+
f" {attn_output.size()}"
|
250 |
+
)
|
251 |
+
|
252 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
253 |
+
attn_output = attn_output.transpose(1, 2)
|
254 |
+
|
255 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
256 |
+
# partitioned across GPUs when using tensor-parallelism.
|
257 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
258 |
+
|
259 |
+
attn_output = self.out_proj(attn_output)
|
260 |
+
|
261 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
262 |
+
|
263 |
+
|
264 |
+
PEGASUS_ATTENTION_CLASSES = {"eager": PegasusAttention}
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Pegasus, MBART->PEGASUS
|
268 |
+
class PegasusEncoderLayer(nn.Module):
|
269 |
+
def __init__(self, config: PegasusConfig):
|
270 |
+
super().__init__()
|
271 |
+
self.embed_dim = config.d_model
|
272 |
+
|
273 |
+
self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
|
274 |
+
embed_dim=self.embed_dim,
|
275 |
+
num_heads=config.encoder_attention_heads,
|
276 |
+
dropout=config.attention_dropout,
|
277 |
+
config=config,
|
278 |
+
)
|
279 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
280 |
+
self.dropout = config.dropout
|
281 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
282 |
+
self.activation_dropout = config.activation_dropout
|
283 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
284 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
285 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
286 |
+
|
287 |
+
def forward(
|
288 |
+
self,
|
289 |
+
hidden_states: torch.Tensor,
|
290 |
+
attention_mask: torch.Tensor,
|
291 |
+
layer_head_mask: torch.Tensor,
|
292 |
+
output_attentions: bool = False,
|
293 |
+
) -> torch.Tensor:
|
294 |
+
"""
|
295 |
+
Args:
|
296 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
297 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
298 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
299 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
300 |
+
`(encoder_attention_heads,)`.
|
301 |
+
output_attentions (`bool`, *optional*):
|
302 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
303 |
+
returned tensors for more detail.
|
304 |
+
"""
|
305 |
+
residual = hidden_states
|
306 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
307 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
308 |
+
hidden_states=hidden_states,
|
309 |
+
attention_mask=attention_mask,
|
310 |
+
layer_head_mask=layer_head_mask,
|
311 |
+
output_attentions=output_attentions,
|
312 |
+
)
|
313 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
314 |
+
hidden_states = residual + hidden_states
|
315 |
+
|
316 |
+
residual = hidden_states
|
317 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
318 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
319 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
320 |
+
hidden_states = self.fc2(hidden_states)
|
321 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
322 |
+
hidden_states = residual + hidden_states
|
323 |
+
|
324 |
+
if hidden_states.dtype == torch.float16 and (
|
325 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
326 |
+
):
|
327 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
328 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
329 |
+
|
330 |
+
outputs = (hidden_states,)
|
331 |
+
|
332 |
+
if output_attentions:
|
333 |
+
outputs += (attn_weights,)
|
334 |
+
|
335 |
+
return outputs
|
336 |
+
|
337 |
+
|
338 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Pegasus, MBART->PEGASUS
|
339 |
+
class PegasusDecoderLayer(nn.Module):
|
340 |
+
def __init__(self, config: PegasusConfig):
|
341 |
+
super().__init__()
|
342 |
+
self.embed_dim = config.d_model
|
343 |
+
|
344 |
+
self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
|
345 |
+
embed_dim=self.embed_dim,
|
346 |
+
num_heads=config.decoder_attention_heads,
|
347 |
+
dropout=config.attention_dropout,
|
348 |
+
is_decoder=True,
|
349 |
+
is_causal=True,
|
350 |
+
config=config,
|
351 |
+
)
|
352 |
+
self.dropout = config.dropout
|
353 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
354 |
+
self.activation_dropout = config.activation_dropout
|
355 |
+
|
356 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
357 |
+
self.encoder_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
|
358 |
+
self.embed_dim,
|
359 |
+
config.decoder_attention_heads,
|
360 |
+
dropout=config.attention_dropout,
|
361 |
+
is_decoder=True,
|
362 |
+
config=config,
|
363 |
+
)
|
364 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
365 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
366 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
367 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
368 |
+
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
hidden_states: torch.Tensor,
|
372 |
+
attention_mask: Optional[torch.Tensor] = None,
|
373 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
374 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
375 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
376 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
377 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
378 |
+
output_attentions: Optional[bool] = False,
|
379 |
+
use_cache: Optional[bool] = True,
|
380 |
+
) -> torch.Tensor:
|
381 |
+
"""
|
382 |
+
Args:
|
383 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
384 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
385 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
386 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
387 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
388 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
389 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
390 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
391 |
+
`(encoder_attention_heads,)`.
|
392 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
393 |
+
size `(decoder_attention_heads,)`.
|
394 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
395 |
+
output_attentions (`bool`, *optional*):
|
396 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
397 |
+
returned tensors for more detail.
|
398 |
+
"""
|
399 |
+
residual = hidden_states
|
400 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
401 |
+
|
402 |
+
# Self Attention
|
403 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
404 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
405 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
406 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
407 |
+
hidden_states=hidden_states,
|
408 |
+
past_key_value=self_attn_past_key_value,
|
409 |
+
attention_mask=attention_mask,
|
410 |
+
layer_head_mask=layer_head_mask,
|
411 |
+
output_attentions=output_attentions,
|
412 |
+
)
|
413 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
414 |
+
hidden_states = residual + hidden_states
|
415 |
+
|
416 |
+
# Cross-Attention Block
|
417 |
+
cross_attn_present_key_value = None
|
418 |
+
cross_attn_weights = None
|
419 |
+
if encoder_hidden_states is not None:
|
420 |
+
residual = hidden_states
|
421 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
422 |
+
|
423 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
424 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
425 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
426 |
+
hidden_states=hidden_states,
|
427 |
+
key_value_states=encoder_hidden_states,
|
428 |
+
attention_mask=encoder_attention_mask,
|
429 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
430 |
+
past_key_value=cross_attn_past_key_value,
|
431 |
+
output_attentions=output_attentions,
|
432 |
+
)
|
433 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
434 |
+
hidden_states = residual + hidden_states
|
435 |
+
|
436 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
437 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
438 |
+
|
439 |
+
# Fully Connected
|
440 |
+
residual = hidden_states
|
441 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
442 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
443 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
444 |
+
hidden_states = self.fc2(hidden_states)
|
445 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
446 |
+
hidden_states = residual + hidden_states
|
447 |
+
|
448 |
+
outputs = (hidden_states,)
|
449 |
+
|
450 |
+
if output_attentions:
|
451 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
452 |
+
|
453 |
+
if use_cache:
|
454 |
+
outputs += (present_key_value,)
|
455 |
+
|
456 |
+
return outputs
|
457 |
+
|
458 |
+
|
459 |
+
class PegasusPreTrainedModel(PreTrainedModel):
|
460 |
+
config_class = PegasusConfig
|
461 |
+
base_model_prefix = "model"
|
462 |
+
supports_gradient_checkpointing = True
|
463 |
+
|
464 |
+
def _init_weights(self, module):
|
465 |
+
std = self.config.init_std
|
466 |
+
if isinstance(module, nn.Linear):
|
467 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
468 |
+
if module.bias is not None:
|
469 |
+
module.bias.data.zero_()
|
470 |
+
elif isinstance(module, PegasusSinusoidalPositionalEmbedding):
|
471 |
+
pass
|
472 |
+
elif isinstance(module, nn.Embedding):
|
473 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
474 |
+
if module.padding_idx is not None:
|
475 |
+
module.weight.data[module.padding_idx].zero_()
|
476 |
+
|
477 |
+
|
478 |
+
PEGASUS_START_DOCSTRING = r"""
|
479 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
480 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
481 |
+
etc.)
|
482 |
+
|
483 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
484 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
485 |
+
and behavior.
|
486 |
+
|
487 |
+
Parameters:
|
488 |
+
config ([`PegasusConfig`]):
|
489 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
490 |
+
load the weights associated with the model, only the configuration. Check out the
|
491 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
492 |
+
"""
|
493 |
+
|
494 |
+
PEGASUS_GENERATION_EXAMPLE = r"""
|
495 |
+
Summarization example:
|
496 |
+
|
497 |
+
```python
|
498 |
+
>>> from transformers import AutoTokenizer, PegasusForConditionalGeneration
|
499 |
+
|
500 |
+
>>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
501 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
|
502 |
+
|
503 |
+
>>> ARTICLE_TO_SUMMARIZE = (
|
504 |
+
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
505 |
+
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
506 |
+
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
507 |
+
... )
|
508 |
+
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
|
509 |
+
|
510 |
+
>>> # Generate Summary
|
511 |
+
>>> summary_ids = model.generate(inputs["input_ids"])
|
512 |
+
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
513 |
+
"California's largest electricity provider has turned off power to hundreds of thousands of customers."
|
514 |
+
```
|
515 |
+
"""
|
516 |
+
|
517 |
+
PEGASUS_INPUTS_DOCSTRING = r"""
|
518 |
+
Args:
|
519 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
520 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
521 |
+
it.
|
522 |
+
|
523 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
524 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
525 |
+
|
526 |
+
[What are input IDs?](../glossary#input-ids)
|
527 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
528 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
529 |
+
|
530 |
+
- 1 for tokens that are **not masked**,
|
531 |
+
- 0 for tokens that are **masked**.
|
532 |
+
|
533 |
+
[What are attention masks?](../glossary#attention-mask)
|
534 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
535 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
536 |
+
|
537 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
538 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
539 |
+
|
540 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
541 |
+
|
542 |
+
Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
|
543 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
544 |
+
`past_key_values`).
|
545 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
546 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
547 |
+
be used by default.
|
548 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
549 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
550 |
+
|
551 |
+
- 1 indicates the head is **not masked**,
|
552 |
+
- 0 indicates the head is **masked**.
|
553 |
+
|
554 |
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
555 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
556 |
+
|
557 |
+
- 1 indicates the head is **not masked**,
|
558 |
+
- 0 indicates the head is **masked**.
|
559 |
+
|
560 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
561 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
|
562 |
+
1]`:
|
563 |
+
|
564 |
+
- 1 indicates the head is **not masked**,
|
565 |
+
- 0 indicates the head is **masked**.
|
566 |
+
|
567 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
568 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
569 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
570 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
571 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
572 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
573 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
574 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
575 |
+
|
576 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
577 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
578 |
+
|
579 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
580 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
581 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
582 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
583 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
584 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
585 |
+
than the model's internal embedding lookup matrix.
|
586 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
587 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
588 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
589 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
590 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
591 |
+
|
592 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
593 |
+
of `inputs_embeds`.
|
594 |
+
use_cache (`bool`, *optional*):
|
595 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
596 |
+
`past_key_values`).
|
597 |
+
output_attentions (`bool`, *optional*):
|
598 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
599 |
+
tensors for more detail.
|
600 |
+
output_hidden_states (`bool`, *optional*):
|
601 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
602 |
+
more detail.
|
603 |
+
return_dict (`bool`, *optional*):
|
604 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
605 |
+
"""
|
606 |
+
|
607 |
+
|
608 |
+
class PegasusEncoder(PegasusPreTrainedModel):
|
609 |
+
"""
|
610 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
611 |
+
[`PegasusEncoderLayer`].
|
612 |
+
|
613 |
+
Args:
|
614 |
+
config: PegasusConfig
|
615 |
+
embed_tokens (nn.Embedding): output embedding
|
616 |
+
"""
|
617 |
+
|
618 |
+
def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
|
619 |
+
super().__init__(config)
|
620 |
+
|
621 |
+
self.dropout = config.dropout
|
622 |
+
self.layerdrop = config.encoder_layerdrop
|
623 |
+
|
624 |
+
embed_dim = config.d_model
|
625 |
+
self.padding_idx = config.pad_token_id
|
626 |
+
self.max_source_positions = config.max_position_embeddings
|
627 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
628 |
+
|
629 |
+
if embed_tokens is not None:
|
630 |
+
self.embed_tokens = embed_tokens
|
631 |
+
else:
|
632 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
633 |
+
|
634 |
+
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
|
635 |
+
config.max_position_embeddings,
|
636 |
+
embed_dim,
|
637 |
+
self.padding_idx,
|
638 |
+
)
|
639 |
+
self.layers = nn.ModuleList([PegasusEncoderLayer(config) for _ in range(config.encoder_layers)])
|
640 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
641 |
+
|
642 |
+
self.gradient_checkpointing = False
|
643 |
+
# Initialize weights and apply final processing
|
644 |
+
self.post_init()
|
645 |
+
|
646 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
647 |
+
"""
|
648 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
649 |
+
config.max_position_embeddings`.
|
650 |
+
|
651 |
+
Arguments:
|
652 |
+
new_num_position_embeddings (`int`):
|
653 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
654 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
655 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
656 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
657 |
+
will remove vectors from the end.
|
658 |
+
"""
|
659 |
+
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
|
660 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
661 |
+
|
662 |
+
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
|
663 |
+
self.config.max_position_embeddings,
|
664 |
+
self.config.d_model,
|
665 |
+
self.padding_idx,
|
666 |
+
)
|
667 |
+
self.embed_positions.to(self.device)
|
668 |
+
|
669 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
670 |
+
"""
|
671 |
+
Returns the position embeddings matrix
|
672 |
+
"""
|
673 |
+
return self.embed_positions
|
674 |
+
|
675 |
+
def forward(
|
676 |
+
self,
|
677 |
+
input_ids=None,
|
678 |
+
attention_mask=None,
|
679 |
+
head_mask=None,
|
680 |
+
inputs_embeds=None,
|
681 |
+
output_attentions=None,
|
682 |
+
output_hidden_states=None,
|
683 |
+
return_dict=None,
|
684 |
+
):
|
685 |
+
r"""
|
686 |
+
Args:
|
687 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
688 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
689 |
+
provide it.
|
690 |
+
|
691 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
692 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
693 |
+
|
694 |
+
[What are input IDs?](../glossary#input-ids)
|
695 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
696 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
697 |
+
|
698 |
+
- 1 for tokens that are **not masked**,
|
699 |
+
- 0 for tokens that are **masked**.
|
700 |
+
|
701 |
+
[What are attention masks?](../glossary#attention-mask)
|
702 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
703 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
704 |
+
|
705 |
+
- 1 indicates the head is **not masked**,
|
706 |
+
- 0 indicates the head is **masked**.
|
707 |
+
|
708 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
709 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
710 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
711 |
+
than the model's internal embedding lookup matrix.
|
712 |
+
output_attentions (`bool`, *optional*):
|
713 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
714 |
+
returned tensors for more detail.
|
715 |
+
output_hidden_states (`bool`, *optional*):
|
716 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
717 |
+
for more detail.
|
718 |
+
return_dict (`bool`, *optional*):
|
719 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
720 |
+
"""
|
721 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
722 |
+
output_hidden_states = (
|
723 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
724 |
+
)
|
725 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
726 |
+
|
727 |
+
# retrieve input_ids and inputs_embeds
|
728 |
+
if input_ids is not None and inputs_embeds is not None:
|
729 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
730 |
+
elif input_ids is not None:
|
731 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
732 |
+
input_shape = input_ids.size()
|
733 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
734 |
+
elif inputs_embeds is not None:
|
735 |
+
input_shape = inputs_embeds.size()[:-1]
|
736 |
+
else:
|
737 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
738 |
+
|
739 |
+
if inputs_embeds is None:
|
740 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
741 |
+
|
742 |
+
embed_pos = self.embed_positions(input_shape)
|
743 |
+
|
744 |
+
hidden_states = inputs_embeds + embed_pos
|
745 |
+
|
746 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
747 |
+
|
748 |
+
# expand attention_mask
|
749 |
+
if attention_mask is not None:
|
750 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
751 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
752 |
+
|
753 |
+
encoder_states = () if output_hidden_states else None
|
754 |
+
all_attentions = () if output_attentions else None
|
755 |
+
|
756 |
+
# check if head_mask has a correct number of layers specified if desired
|
757 |
+
if head_mask is not None:
|
758 |
+
if head_mask.size()[0] != len(self.layers):
|
759 |
+
raise ValueError(
|
760 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
761 |
+
f" {head_mask.size()[0]}."
|
762 |
+
)
|
763 |
+
for idx, encoder_layer in enumerate(self.layers):
|
764 |
+
if output_hidden_states:
|
765 |
+
encoder_states = encoder_states + (hidden_states,)
|
766 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
767 |
+
to_drop = False
|
768 |
+
if self.training:
|
769 |
+
dropout_probability = torch.rand([])
|
770 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
771 |
+
to_drop = True
|
772 |
+
|
773 |
+
if to_drop:
|
774 |
+
layer_outputs = (None, None)
|
775 |
+
else:
|
776 |
+
if self.gradient_checkpointing and self.training:
|
777 |
+
layer_outputs = self._gradient_checkpointing_func(
|
778 |
+
encoder_layer.__call__,
|
779 |
+
hidden_states,
|
780 |
+
attention_mask,
|
781 |
+
(head_mask[idx] if head_mask is not None else None),
|
782 |
+
output_attentions,
|
783 |
+
)
|
784 |
+
else:
|
785 |
+
layer_outputs = encoder_layer(
|
786 |
+
hidden_states,
|
787 |
+
attention_mask,
|
788 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
789 |
+
output_attentions=output_attentions,
|
790 |
+
)
|
791 |
+
|
792 |
+
hidden_states = layer_outputs[0]
|
793 |
+
|
794 |
+
if output_attentions:
|
795 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
796 |
+
|
797 |
+
hidden_states = self.layer_norm(hidden_states)
|
798 |
+
|
799 |
+
if output_hidden_states:
|
800 |
+
encoder_states = encoder_states + (hidden_states,)
|
801 |
+
|
802 |
+
if not return_dict:
|
803 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
804 |
+
return BaseModelOutput(
|
805 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
806 |
+
)
|
807 |
+
|
808 |
+
|
809 |
+
class PegasusDecoder(PegasusPreTrainedModel):
|
810 |
+
"""
|
811 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
|
812 |
+
|
813 |
+
Args:
|
814 |
+
config: PegasusConfig
|
815 |
+
embed_tokens (nn.Embedding): output embedding
|
816 |
+
"""
|
817 |
+
|
818 |
+
def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
|
819 |
+
super().__init__(config)
|
820 |
+
self.dropout = config.dropout
|
821 |
+
self.layerdrop = config.decoder_layerdrop
|
822 |
+
self.padding_idx = config.pad_token_id
|
823 |
+
self.max_target_positions = config.max_position_embeddings
|
824 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
825 |
+
|
826 |
+
if embed_tokens is not None:
|
827 |
+
self.embed_tokens = embed_tokens
|
828 |
+
else:
|
829 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
830 |
+
|
831 |
+
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
|
832 |
+
config.max_position_embeddings,
|
833 |
+
config.d_model,
|
834 |
+
self.padding_idx,
|
835 |
+
)
|
836 |
+
self.layers = nn.ModuleList([PegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
|
837 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
838 |
+
|
839 |
+
self.gradient_checkpointing = False
|
840 |
+
# Initialize weights and apply final processing
|
841 |
+
self.post_init()
|
842 |
+
|
843 |
+
def get_input_embeddings(self):
|
844 |
+
return self.embed_tokens
|
845 |
+
|
846 |
+
def set_input_embeddings(self, value):
|
847 |
+
self.embed_tokens = value
|
848 |
+
|
849 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
850 |
+
"""
|
851 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
852 |
+
config.max_position_embeddings`.
|
853 |
+
|
854 |
+
Arguments:
|
855 |
+
new_num_position_embeddings (`int`):
|
856 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
857 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
858 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
859 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
860 |
+
will remove vectors from the end.
|
861 |
+
"""
|
862 |
+
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
|
863 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
864 |
+
|
865 |
+
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
|
866 |
+
self.config.max_position_embeddings,
|
867 |
+
self.config.d_model,
|
868 |
+
self.padding_idx,
|
869 |
+
)
|
870 |
+
self.embed_positions.to(self.device)
|
871 |
+
|
872 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
873 |
+
"""
|
874 |
+
Returns the position embeddings matrix
|
875 |
+
"""
|
876 |
+
return self.embed_positions
|
877 |
+
|
878 |
+
def forward(
|
879 |
+
self,
|
880 |
+
input_ids=None,
|
881 |
+
attention_mask=None,
|
882 |
+
encoder_hidden_states=None,
|
883 |
+
encoder_attention_mask=None,
|
884 |
+
head_mask=None,
|
885 |
+
cross_attn_head_mask=None,
|
886 |
+
past_key_values=None,
|
887 |
+
inputs_embeds=None,
|
888 |
+
use_cache=None,
|
889 |
+
output_attentions=None,
|
890 |
+
output_hidden_states=None,
|
891 |
+
return_dict=None,
|
892 |
+
):
|
893 |
+
r"""
|
894 |
+
Args:
|
895 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
896 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
897 |
+
provide it.
|
898 |
+
|
899 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
900 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
901 |
+
|
902 |
+
[What are input IDs?](../glossary#input-ids)
|
903 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
904 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
905 |
+
|
906 |
+
- 1 for tokens that are **not masked**,
|
907 |
+
- 0 for tokens that are **masked**.
|
908 |
+
|
909 |
+
[What are attention masks?](../glossary#attention-mask)
|
910 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
911 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
912 |
+
of the decoder.
|
913 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
914 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
915 |
+
selected in `[0, 1]`:
|
916 |
+
|
917 |
+
- 1 for tokens that are **not masked**,
|
918 |
+
- 0 for tokens that are **masked**.
|
919 |
+
|
920 |
+
[What are attention masks?](../glossary#attention-mask)
|
921 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
922 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
923 |
+
|
924 |
+
- 1 indicates the head is **not masked**,
|
925 |
+
- 0 indicates the head is **masked**.
|
926 |
+
|
927 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
928 |
+
Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
|
929 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
930 |
+
|
931 |
+
- 1 indicates the head is **not masked**,
|
932 |
+
- 0 indicates the head is **masked**.
|
933 |
+
|
934 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
935 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
936 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
937 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
938 |
+
|
939 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
940 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
941 |
+
|
942 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
943 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
944 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
945 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
946 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
947 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
948 |
+
than the model's internal embedding lookup matrix.
|
949 |
+
output_attentions (`bool`, *optional*):
|
950 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
951 |
+
returned tensors for more detail.
|
952 |
+
output_hidden_states (`bool`, *optional*):
|
953 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
954 |
+
for more detail.
|
955 |
+
return_dict (`bool`, *optional*):
|
956 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
957 |
+
"""
|
958 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
959 |
+
output_hidden_states = (
|
960 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
961 |
+
)
|
962 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
963 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
964 |
+
|
965 |
+
# retrieve input_ids and inputs_embeds
|
966 |
+
if input_ids is not None and inputs_embeds is not None:
|
967 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
968 |
+
elif input_ids is not None:
|
969 |
+
input_shape = input_ids.size()
|
970 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
971 |
+
elif inputs_embeds is not None:
|
972 |
+
input_shape = inputs_embeds.size()[:-1]
|
973 |
+
else:
|
974 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
975 |
+
|
976 |
+
# past_key_values_length
|
977 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
978 |
+
|
979 |
+
if inputs_embeds is None:
|
980 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
981 |
+
|
982 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
983 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
984 |
+
)
|
985 |
+
|
986 |
+
# expand encoder attention mask
|
987 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
988 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
989 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
990 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
991 |
+
)
|
992 |
+
|
993 |
+
# embed positions
|
994 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
995 |
+
|
996 |
+
hidden_states = inputs_embeds + positions
|
997 |
+
|
998 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
999 |
+
|
1000 |
+
if self.gradient_checkpointing and self.training:
|
1001 |
+
if use_cache:
|
1002 |
+
logger.warning_once(
|
1003 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1004 |
+
)
|
1005 |
+
use_cache = False
|
1006 |
+
|
1007 |
+
# decoder layers
|
1008 |
+
all_hidden_states = () if output_hidden_states else None
|
1009 |
+
all_self_attns = () if output_attentions else None
|
1010 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1011 |
+
next_decoder_cache = () if use_cache else None
|
1012 |
+
|
1013 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1014 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1015 |
+
if attn_mask is not None:
|
1016 |
+
if attn_mask.size()[0] != len(self.layers):
|
1017 |
+
raise ValueError(
|
1018 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1019 |
+
f" {head_mask.size()[0]}."
|
1020 |
+
)
|
1021 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1022 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1023 |
+
if output_hidden_states:
|
1024 |
+
all_hidden_states += (hidden_states,)
|
1025 |
+
if self.training:
|
1026 |
+
dropout_probability = torch.rand([])
|
1027 |
+
if dropout_probability < self.layerdrop:
|
1028 |
+
continue
|
1029 |
+
|
1030 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1031 |
+
|
1032 |
+
if self.gradient_checkpointing and self.training:
|
1033 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1034 |
+
decoder_layer.__call__,
|
1035 |
+
hidden_states,
|
1036 |
+
attention_mask,
|
1037 |
+
encoder_hidden_states,
|
1038 |
+
encoder_attention_mask,
|
1039 |
+
head_mask[idx] if head_mask is not None else None,
|
1040 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1041 |
+
None,
|
1042 |
+
output_attentions,
|
1043 |
+
use_cache,
|
1044 |
+
)
|
1045 |
+
else:
|
1046 |
+
layer_outputs = decoder_layer(
|
1047 |
+
hidden_states,
|
1048 |
+
attention_mask=attention_mask,
|
1049 |
+
encoder_hidden_states=encoder_hidden_states,
|
1050 |
+
encoder_attention_mask=encoder_attention_mask,
|
1051 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1052 |
+
cross_attn_layer_head_mask=(
|
1053 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1054 |
+
),
|
1055 |
+
past_key_value=past_key_value,
|
1056 |
+
output_attentions=output_attentions,
|
1057 |
+
use_cache=use_cache,
|
1058 |
+
)
|
1059 |
+
hidden_states = layer_outputs[0]
|
1060 |
+
|
1061 |
+
if use_cache:
|
1062 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1063 |
+
|
1064 |
+
if output_attentions:
|
1065 |
+
all_self_attns += (layer_outputs[1],)
|
1066 |
+
|
1067 |
+
if encoder_hidden_states is not None:
|
1068 |
+
all_cross_attentions += (layer_outputs[2],)
|
1069 |
+
|
1070 |
+
hidden_states = self.layer_norm(hidden_states)
|
1071 |
+
|
1072 |
+
# add hidden states from the last decoder layer
|
1073 |
+
if output_hidden_states:
|
1074 |
+
all_hidden_states += (hidden_states,)
|
1075 |
+
|
1076 |
+
next_cache = next_decoder_cache if use_cache else None
|
1077 |
+
if not return_dict:
|
1078 |
+
return tuple(
|
1079 |
+
v
|
1080 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1081 |
+
if v is not None
|
1082 |
+
)
|
1083 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1084 |
+
last_hidden_state=hidden_states,
|
1085 |
+
past_key_values=next_cache,
|
1086 |
+
hidden_states=all_hidden_states,
|
1087 |
+
attentions=all_self_attns,
|
1088 |
+
cross_attentions=all_cross_attentions,
|
1089 |
+
)
|
1090 |
+
|
1091 |
+
|
1092 |
+
@add_start_docstrings(
|
1093 |
+
"The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
|
1094 |
+
PEGASUS_START_DOCSTRING,
|
1095 |
+
)
|
1096 |
+
class PegasusModel(PegasusPreTrainedModel):
|
1097 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1098 |
+
|
1099 |
+
def __init__(self, config: PegasusConfig):
|
1100 |
+
super().__init__(config)
|
1101 |
+
|
1102 |
+
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
1103 |
+
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
1104 |
+
|
1105 |
+
self.encoder = PegasusEncoder(config, self.shared)
|
1106 |
+
self.decoder = PegasusDecoder(config, self.shared)
|
1107 |
+
|
1108 |
+
# Initialize weights and apply final processing
|
1109 |
+
self.post_init()
|
1110 |
+
|
1111 |
+
def get_input_embeddings(self):
|
1112 |
+
return self.shared
|
1113 |
+
|
1114 |
+
def set_input_embeddings(self, value):
|
1115 |
+
self.shared = value
|
1116 |
+
self.encoder.embed_tokens = self.shared
|
1117 |
+
self.decoder.embed_tokens = self.shared
|
1118 |
+
|
1119 |
+
def get_encoder(self):
|
1120 |
+
return self.encoder
|
1121 |
+
|
1122 |
+
def get_decoder(self):
|
1123 |
+
return self.decoder
|
1124 |
+
|
1125 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1126 |
+
"""
|
1127 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
1128 |
+
config.max_position_embeddings`.
|
1129 |
+
|
1130 |
+
Arguments:
|
1131 |
+
new_num_position_embeddings (`int`):
|
1132 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1133 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1134 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1135 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1136 |
+
will remove vectors from the end.
|
1137 |
+
"""
|
1138 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
1139 |
+
self.encoder.resize_position_embeddings(new_num_position_embeddings)
|
1140 |
+
self.decoder.resize_position_embeddings(new_num_position_embeddings)
|
1141 |
+
|
1142 |
+
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
|
1143 |
+
"""
|
1144 |
+
Returns the position embeddings matrix
|
1145 |
+
"""
|
1146 |
+
return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
|
1147 |
+
|
1148 |
+
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
|
1149 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1150 |
+
def forward(
|
1151 |
+
self,
|
1152 |
+
input_ids: Optional[torch.Tensor] = None,
|
1153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1154 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1155 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1156 |
+
head_mask: Optional[torch.Tensor] = None,
|
1157 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1158 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1159 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
1160 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1161 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1162 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1163 |
+
use_cache: Optional[bool] = None,
|
1164 |
+
output_attentions: Optional[bool] = None,
|
1165 |
+
output_hidden_states: Optional[bool] = None,
|
1166 |
+
return_dict: Optional[bool] = None,
|
1167 |
+
) -> Union[Tuple, Seq2SeqModelOutput]:
|
1168 |
+
r"""
|
1169 |
+
Returns:
|
1170 |
+
|
1171 |
+
Example:
|
1172 |
+
|
1173 |
+
```python
|
1174 |
+
>>> from transformers import AutoTokenizer, PegasusModel
|
1175 |
+
|
1176 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1177 |
+
>>> model = PegasusModel.from_pretrained("google/pegasus-large")
|
1178 |
+
|
1179 |
+
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
|
1180 |
+
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
|
1181 |
+
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
|
1182 |
+
|
1183 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1184 |
+
>>> list(last_hidden_states.shape)
|
1185 |
+
[1, 4, 1024]
|
1186 |
+
```"""
|
1187 |
+
|
1188 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1189 |
+
output_hidden_states = (
|
1190 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1191 |
+
)
|
1192 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1193 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1194 |
+
|
1195 |
+
if encoder_outputs is None:
|
1196 |
+
encoder_outputs = self.encoder(
|
1197 |
+
input_ids=input_ids,
|
1198 |
+
attention_mask=attention_mask,
|
1199 |
+
head_mask=head_mask,
|
1200 |
+
inputs_embeds=inputs_embeds,
|
1201 |
+
output_attentions=output_attentions,
|
1202 |
+
output_hidden_states=output_hidden_states,
|
1203 |
+
return_dict=return_dict,
|
1204 |
+
)
|
1205 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1206 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1207 |
+
encoder_outputs = BaseModelOutput(
|
1208 |
+
last_hidden_state=encoder_outputs[0],
|
1209 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1210 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1214 |
+
decoder_outputs = self.decoder(
|
1215 |
+
input_ids=decoder_input_ids,
|
1216 |
+
attention_mask=decoder_attention_mask,
|
1217 |
+
encoder_hidden_states=encoder_outputs[0],
|
1218 |
+
encoder_attention_mask=attention_mask,
|
1219 |
+
head_mask=decoder_head_mask,
|
1220 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1221 |
+
past_key_values=past_key_values,
|
1222 |
+
inputs_embeds=decoder_inputs_embeds,
|
1223 |
+
use_cache=use_cache,
|
1224 |
+
output_attentions=output_attentions,
|
1225 |
+
output_hidden_states=output_hidden_states,
|
1226 |
+
return_dict=return_dict,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
if not return_dict:
|
1230 |
+
return decoder_outputs + encoder_outputs
|
1231 |
+
|
1232 |
+
return Seq2SeqModelOutput(
|
1233 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1234 |
+
past_key_values=decoder_outputs.past_key_values,
|
1235 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1236 |
+
decoder_attentions=decoder_outputs.attentions,
|
1237 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1238 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1239 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1240 |
+
encoder_attentions=encoder_outputs.attentions,
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
|
1244 |
+
@add_start_docstrings(
|
1245 |
+
"The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
|
1246 |
+
)
|
1247 |
+
class PegasusForConditionalGeneration(PegasusPreTrainedModel):
|
1248 |
+
base_model_prefix = "model"
|
1249 |
+
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
|
1250 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
|
1251 |
+
|
1252 |
+
def __init__(self, config: PegasusConfig):
|
1253 |
+
super().__init__(config)
|
1254 |
+
self.model = PegasusModel(config)
|
1255 |
+
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
|
1256 |
+
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
1257 |
+
|
1258 |
+
# Initialize weights and apply final processing
|
1259 |
+
self.post_init()
|
1260 |
+
|
1261 |
+
def get_encoder(self):
|
1262 |
+
return self.model.get_encoder()
|
1263 |
+
|
1264 |
+
def get_decoder(self):
|
1265 |
+
return self.model.get_decoder()
|
1266 |
+
|
1267 |
+
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
|
1268 |
+
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1269 |
+
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
|
1270 |
+
return new_embeddings
|
1271 |
+
|
1272 |
+
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
1273 |
+
old_num_tokens = self.final_logits_bias.shape[-1]
|
1274 |
+
if new_num_tokens <= old_num_tokens:
|
1275 |
+
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
1276 |
+
else:
|
1277 |
+
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
1278 |
+
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
1279 |
+
self.register_buffer("final_logits_bias", new_bias)
|
1280 |
+
|
1281 |
+
def get_output_embeddings(self):
|
1282 |
+
return self.lm_head
|
1283 |
+
|
1284 |
+
def set_output_embeddings(self, new_embeddings):
|
1285 |
+
self.lm_head = new_embeddings
|
1286 |
+
|
1287 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1288 |
+
"""
|
1289 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
1290 |
+
config.max_position_embeddings`.
|
1291 |
+
|
1292 |
+
Arguments:
|
1293 |
+
new_num_position_embeddings (`int`):
|
1294 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1295 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1296 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1297 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1298 |
+
will remove vectors from the end.
|
1299 |
+
"""
|
1300 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
1301 |
+
self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
|
1302 |
+
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
|
1303 |
+
|
1304 |
+
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
|
1305 |
+
"""
|
1306 |
+
Returns the position embeddings matrix
|
1307 |
+
"""
|
1308 |
+
return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
|
1309 |
+
|
1310 |
+
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
|
1311 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1312 |
+
@add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
|
1313 |
+
def forward(
|
1314 |
+
self,
|
1315 |
+
input_ids: Optional[torch.Tensor] = None,
|
1316 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1317 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
1318 |
+
decoder_attention_mask: Optional[torch.Tensor] = None,
|
1319 |
+
head_mask: Optional[torch.Tensor] = None,
|
1320 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1321 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1322 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
1323 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1324 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1325 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1326 |
+
labels: Optional[torch.Tensor] = None,
|
1327 |
+
use_cache: Optional[bool] = None,
|
1328 |
+
output_attentions: Optional[bool] = None,
|
1329 |
+
output_hidden_states: Optional[bool] = None,
|
1330 |
+
return_dict: Optional[bool] = None,
|
1331 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
1332 |
+
r"""
|
1333 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1334 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1335 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1336 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1337 |
+
|
1338 |
+
Returns:
|
1339 |
+
|
1340 |
+
"""
|
1341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1342 |
+
|
1343 |
+
if labels is not None:
|
1344 |
+
if use_cache:
|
1345 |
+
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
1346 |
+
use_cache = False
|
1347 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1348 |
+
decoder_input_ids = shift_tokens_right(
|
1349 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
outputs = self.model(
|
1353 |
+
input_ids,
|
1354 |
+
attention_mask=attention_mask,
|
1355 |
+
decoder_input_ids=decoder_input_ids,
|
1356 |
+
encoder_outputs=encoder_outputs,
|
1357 |
+
decoder_attention_mask=decoder_attention_mask,
|
1358 |
+
head_mask=head_mask,
|
1359 |
+
decoder_head_mask=decoder_head_mask,
|
1360 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1361 |
+
past_key_values=past_key_values,
|
1362 |
+
inputs_embeds=inputs_embeds,
|
1363 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1364 |
+
use_cache=use_cache,
|
1365 |
+
output_attentions=output_attentions,
|
1366 |
+
output_hidden_states=output_hidden_states,
|
1367 |
+
return_dict=return_dict,
|
1368 |
+
)
|
1369 |
+
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
|
1370 |
+
|
1371 |
+
masked_lm_loss = None
|
1372 |
+
if labels is not None:
|
1373 |
+
loss_fct = CrossEntropyLoss()
|
1374 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1375 |
+
|
1376 |
+
if not return_dict:
|
1377 |
+
output = (lm_logits,) + outputs[1:]
|
1378 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1379 |
+
|
1380 |
+
return Seq2SeqLMOutput(
|
1381 |
+
loss=masked_lm_loss,
|
1382 |
+
logits=lm_logits,
|
1383 |
+
past_key_values=outputs.past_key_values,
|
1384 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1385 |
+
decoder_attentions=outputs.decoder_attentions,
|
1386 |
+
cross_attentions=outputs.cross_attentions,
|
1387 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1388 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1389 |
+
encoder_attentions=outputs.encoder_attentions,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
def prepare_inputs_for_generation(
|
1393 |
+
self,
|
1394 |
+
decoder_input_ids,
|
1395 |
+
past_key_values=None,
|
1396 |
+
attention_mask=None,
|
1397 |
+
head_mask=None,
|
1398 |
+
decoder_head_mask=None,
|
1399 |
+
cross_attn_head_mask=None,
|
1400 |
+
use_cache=None,
|
1401 |
+
encoder_outputs=None,
|
1402 |
+
**kwargs,
|
1403 |
+
):
|
1404 |
+
# cut decoder_input_ids if past is used
|
1405 |
+
if past_key_values is not None:
|
1406 |
+
past_length = past_key_values[0][0].shape[2]
|
1407 |
+
|
1408 |
+
# Some generation methods already pass only the last input ID
|
1409 |
+
if decoder_input_ids.shape[1] > past_length:
|
1410 |
+
remove_prefix_length = past_length
|
1411 |
+
else:
|
1412 |
+
# Default to old behavior: keep only final ID
|
1413 |
+
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
1414 |
+
|
1415 |
+
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
1416 |
+
|
1417 |
+
return {
|
1418 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1419 |
+
"encoder_outputs": encoder_outputs,
|
1420 |
+
"past_key_values": past_key_values,
|
1421 |
+
"decoder_input_ids": decoder_input_ids,
|
1422 |
+
"attention_mask": attention_mask,
|
1423 |
+
"head_mask": head_mask,
|
1424 |
+
"decoder_head_mask": decoder_head_mask,
|
1425 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1426 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1427 |
+
}
|
1428 |
+
|
1429 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1430 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1431 |
+
|
1432 |
+
@staticmethod
|
1433 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1434 |
+
reordered_past = ()
|
1435 |
+
for layer_past in past_key_values:
|
1436 |
+
# cached cross_attention states don't have to be reordered -> they are always the same
|
1437 |
+
reordered_past += (
|
1438 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1439 |
+
+ layer_past[2:],
|
1440 |
+
)
|
1441 |
+
return reordered_past
|
1442 |
+
|
1443 |
+
|
1444 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Pegasus
|
1445 |
+
class PegasusDecoderWrapper(PegasusPreTrainedModel):
|
1446 |
+
"""
|
1447 |
+
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
|
1448 |
+
used in combination with the [`EncoderDecoderModel`] framework.
|
1449 |
+
"""
|
1450 |
+
|
1451 |
+
def __init__(self, config):
|
1452 |
+
super().__init__(config)
|
1453 |
+
self.decoder = PegasusDecoder(config)
|
1454 |
+
|
1455 |
+
def forward(self, *args, **kwargs):
|
1456 |
+
return self.decoder(*args, **kwargs)
|
1457 |
+
|
1458 |
+
|
1459 |
+
class PegasusForCausalLM(PegasusPreTrainedModel):
|
1460 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1461 |
+
|
1462 |
+
def __init__(self, config):
|
1463 |
+
config = copy.deepcopy(config)
|
1464 |
+
config.is_decoder = True
|
1465 |
+
config.is_encoder_decoder = False
|
1466 |
+
super().__init__(config)
|
1467 |
+
self.model = PegasusDecoderWrapper(config)
|
1468 |
+
|
1469 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1470 |
+
|
1471 |
+
# Initialize weights and apply final processing
|
1472 |
+
self.post_init()
|
1473 |
+
|
1474 |
+
def get_input_embeddings(self):
|
1475 |
+
return self.model.decoder.embed_tokens
|
1476 |
+
|
1477 |
+
def set_input_embeddings(self, value):
|
1478 |
+
self.model.decoder.embed_tokens = value
|
1479 |
+
|
1480 |
+
def get_output_embeddings(self):
|
1481 |
+
return self.lm_head
|
1482 |
+
|
1483 |
+
def set_output_embeddings(self, new_embeddings):
|
1484 |
+
self.lm_head = new_embeddings
|
1485 |
+
|
1486 |
+
def set_decoder(self, decoder):
|
1487 |
+
self.model.decoder = decoder
|
1488 |
+
|
1489 |
+
def get_decoder(self):
|
1490 |
+
return self.model.decoder
|
1491 |
+
|
1492 |
+
def get_position_embeddings(self) -> nn.Embedding:
|
1493 |
+
"""
|
1494 |
+
Returns the position embeddings matrix
|
1495 |
+
"""
|
1496 |
+
return self.model.decoder.get_position_embeddings()
|
1497 |
+
|
1498 |
+
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
1499 |
+
"""
|
1500 |
+
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
|
1501 |
+
config.max_position_embeddings`.
|
1502 |
+
|
1503 |
+
Arguments:
|
1504 |
+
new_num_position_embeddings (`int`):
|
1505 |
+
The number of new position embeddings. If position embeddings are learned, increasing the size will add
|
1506 |
+
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
|
1507 |
+
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
|
1508 |
+
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
|
1509 |
+
will remove vectors from the end.
|
1510 |
+
"""
|
1511 |
+
self.config.max_position_embeddings = new_num_position_embeddings
|
1512 |
+
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
|
1513 |
+
|
1514 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1515 |
+
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-base->google/pegasus-large
|
1516 |
+
def forward(
|
1517 |
+
self,
|
1518 |
+
input_ids: torch.LongTensor = None,
|
1519 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1520 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1521 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1522 |
+
head_mask: Optional[torch.Tensor] = None,
|
1523 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1524 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1525 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1526 |
+
labels: Optional[torch.LongTensor] = None,
|
1527 |
+
use_cache: Optional[bool] = None,
|
1528 |
+
output_attentions: Optional[bool] = None,
|
1529 |
+
output_hidden_states: Optional[bool] = None,
|
1530 |
+
return_dict: Optional[bool] = None,
|
1531 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1532 |
+
r"""
|
1533 |
+
Args:
|
1534 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1535 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1536 |
+
provide it.
|
1537 |
+
|
1538 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1539 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1540 |
+
|
1541 |
+
[What are input IDs?](../glossary#input-ids)
|
1542 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1543 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1544 |
+
|
1545 |
+
- 1 for tokens that are **not masked**,
|
1546 |
+
- 0 for tokens that are **masked**.
|
1547 |
+
|
1548 |
+
[What are attention masks?](../glossary#attention-mask)
|
1549 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1550 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1551 |
+
if the model is configured as a decoder.
|
1552 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1553 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
1554 |
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1555 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1556 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1557 |
+
|
1558 |
+
- 1 indicates the head is **not masked**,
|
1559 |
+
- 0 indicates the head is **masked**.
|
1560 |
+
|
1561 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1562 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
1563 |
+
|
1564 |
+
- 1 indicates the head is **not masked**,
|
1565 |
+
- 0 indicates the head is **masked**.
|
1566 |
+
|
1567 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1568 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1569 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1570 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
1571 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
1572 |
+
|
1573 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1574 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1575 |
+
|
1576 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1577 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1578 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1579 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1580 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1581 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1582 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1583 |
+
use_cache (`bool`, *optional*):
|
1584 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1585 |
+
(see `past_key_values`).
|
1586 |
+
|
1587 |
+
- 1 for tokens that are **not masked**,
|
1588 |
+
- 0 for tokens that are **masked**.
|
1589 |
+
output_attentions (`bool`, *optional*):
|
1590 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1591 |
+
returned tensors for more detail.
|
1592 |
+
output_hidden_states (`bool`, *optional*):
|
1593 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1594 |
+
for more detail.
|
1595 |
+
return_dict (`bool`, *optional*):
|
1596 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1597 |
+
|
1598 |
+
Returns:
|
1599 |
+
|
1600 |
+
Example:
|
1601 |
+
|
1602 |
+
```python
|
1603 |
+
>>> from transformers import AutoTokenizer, PegasusForCausalLM
|
1604 |
+
|
1605 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
|
1606 |
+
>>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
|
1607 |
+
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
|
1608 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1609 |
+
>>> outputs = model(**inputs)
|
1610 |
+
|
1611 |
+
>>> logits = outputs.logits
|
1612 |
+
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
|
1613 |
+
>>> list(logits.shape) == expected_shape
|
1614 |
+
True
|
1615 |
+
```"""
|
1616 |
+
|
1617 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1618 |
+
output_hidden_states = (
|
1619 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1620 |
+
)
|
1621 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1622 |
+
|
1623 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1624 |
+
outputs = self.model.decoder(
|
1625 |
+
input_ids=input_ids,
|
1626 |
+
attention_mask=attention_mask,
|
1627 |
+
encoder_hidden_states=encoder_hidden_states,
|
1628 |
+
encoder_attention_mask=encoder_attention_mask,
|
1629 |
+
head_mask=head_mask,
|
1630 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1631 |
+
past_key_values=past_key_values,
|
1632 |
+
inputs_embeds=inputs_embeds,
|
1633 |
+
use_cache=use_cache,
|
1634 |
+
output_attentions=output_attentions,
|
1635 |
+
output_hidden_states=output_hidden_states,
|
1636 |
+
return_dict=return_dict,
|
1637 |
+
)
|
1638 |
+
|
1639 |
+
logits = self.lm_head(outputs[0])
|
1640 |
+
|
1641 |
+
loss = None
|
1642 |
+
if labels is not None:
|
1643 |
+
labels = labels.to(logits.device)
|
1644 |
+
loss_fct = CrossEntropyLoss()
|
1645 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1646 |
+
|
1647 |
+
if not return_dict:
|
1648 |
+
output = (logits,) + outputs[1:]
|
1649 |
+
return (loss,) + output if loss is not None else output
|
1650 |
+
|
1651 |
+
return CausalLMOutputWithCrossAttentions(
|
1652 |
+
loss=loss,
|
1653 |
+
logits=logits,
|
1654 |
+
past_key_values=outputs.past_key_values,
|
1655 |
+
hidden_states=outputs.hidden_states,
|
1656 |
+
attentions=outputs.attentions,
|
1657 |
+
cross_attentions=outputs.cross_attentions,
|
1658 |
+
)
|
1659 |
+
|
1660 |
+
def prepare_inputs_for_generation(
|
1661 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
|
1662 |
+
):
|
1663 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1664 |
+
if attention_mask is None:
|
1665 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1666 |
+
|
1667 |
+
if past_key_values:
|
1668 |
+
past_length = past_key_values[0][0].shape[2]
|
1669 |
+
|
1670 |
+
# Some generation methods already pass only the last input ID
|
1671 |
+
if input_ids.shape[1] > past_length:
|
1672 |
+
remove_prefix_length = past_length
|
1673 |
+
else:
|
1674 |
+
# Default to old behavior: keep only final ID
|
1675 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1676 |
+
|
1677 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1678 |
+
# first step, decoder_cached_states are empty
|
1679 |
+
return {
|
1680 |
+
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
|
1681 |
+
"attention_mask": attention_mask,
|
1682 |
+
"past_key_values": past_key_values,
|
1683 |
+
"use_cache": use_cache,
|
1684 |
+
}
|
1685 |
+
|
1686 |
+
@staticmethod
|
1687 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1688 |
+
reordered_past = ()
|
1689 |
+
for layer_past in past_key_values:
|
1690 |
+
reordered_past += (
|
1691 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1692 |
+
)
|
1693 |
+
return reordered_past
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/modeling_tf_pegasus.py
ADDED
@@ -0,0 +1,1572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021, Google Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 Pegasus model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import random
|
21 |
+
from typing import Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutput,
|
29 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
TFSeq2SeqLMOutput,
|
31 |
+
TFSeq2SeqModelOutput,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Public API
|
35 |
+
from ...modeling_tf_utils import (
|
36 |
+
TFCausalLanguageModelingLoss,
|
37 |
+
TFModelInputType,
|
38 |
+
TFPreTrainedModel,
|
39 |
+
keras,
|
40 |
+
keras_serializable,
|
41 |
+
unpack_inputs,
|
42 |
+
)
|
43 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
44 |
+
from ...utils import (
|
45 |
+
add_code_sample_docstrings,
|
46 |
+
add_end_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
)
|
52 |
+
from .configuration_pegasus import PegasusConfig
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
|
58 |
+
_CONFIG_FOR_DOC = "PegasusConfig"
|
59 |
+
|
60 |
+
|
61 |
+
LARGE_NEGATIVE = -1e8
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
|
65 |
+
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
66 |
+
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
|
67 |
+
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
|
68 |
+
start_tokens = tf.fill(
|
69 |
+
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
|
70 |
+
)
|
71 |
+
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
|
72 |
+
# replace possible -100 values in labels by `pad_token_id`
|
73 |
+
shifted_input_ids = tf.where(
|
74 |
+
shifted_input_ids == -100,
|
75 |
+
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
|
76 |
+
shifted_input_ids,
|
77 |
+
)
|
78 |
+
|
79 |
+
# "Verify that `labels` has only positive values and -100"
|
80 |
+
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
|
81 |
+
|
82 |
+
# Make sure the assertion op is called by wrapping the result in an identity no-op
|
83 |
+
with tf.control_dependencies([assert_gte0]):
|
84 |
+
shifted_input_ids = tf.identity(shifted_input_ids)
|
85 |
+
|
86 |
+
return shifted_input_ids
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
|
90 |
+
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
|
91 |
+
"""
|
92 |
+
Make causal mask used for bi-directional self-attention.
|
93 |
+
"""
|
94 |
+
bsz = input_ids_shape[0]
|
95 |
+
tgt_len = input_ids_shape[1]
|
96 |
+
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
|
97 |
+
mask_cond = tf.range(shape_list(mask)[-1])
|
98 |
+
|
99 |
+
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
|
100 |
+
|
101 |
+
if past_key_values_length > 0:
|
102 |
+
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
|
103 |
+
|
104 |
+
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
|
105 |
+
|
106 |
+
|
107 |
+
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
|
108 |
+
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
|
109 |
+
"""
|
110 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
111 |
+
"""
|
112 |
+
src_len = shape_list(mask)[1]
|
113 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
114 |
+
one_cst = tf.constant(1.0)
|
115 |
+
mask = tf.cast(mask, dtype=one_cst.dtype)
|
116 |
+
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
|
117 |
+
|
118 |
+
return (one_cst - expanded_mask) * LARGE_NEGATIVE
|
119 |
+
|
120 |
+
|
121 |
+
# Copied from transformers.models.marian.modeling_tf_marian.TFMarianSinusoidalPositionalEmbedding with Marian->Pegasus
|
122 |
+
class TFPegasusSinusoidalPositionalEmbedding(keras.layers.Layer):
|
123 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
124 |
+
|
125 |
+
def __init__(self, num_positions: int, embedding_dim: int, **kwargs):
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
if embedding_dim % 2 != 0:
|
129 |
+
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
|
130 |
+
|
131 |
+
self.embedding_dim = embedding_dim
|
132 |
+
self.num_positions = num_positions
|
133 |
+
|
134 |
+
def build(self, input_shape: tf.TensorShape):
|
135 |
+
"""
|
136 |
+
Build shared token embedding layer Shared weights logic adapted from
|
137 |
+
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
|
138 |
+
"""
|
139 |
+
|
140 |
+
weight = self._init_weight(self.num_positions, self.embedding_dim)
|
141 |
+
|
142 |
+
self.weight = self.add_weight(
|
143 |
+
name="embeddings",
|
144 |
+
shape=[self.num_positions, self.embedding_dim],
|
145 |
+
)
|
146 |
+
weight = tf.cast(weight, dtype=self.weight.dtype)
|
147 |
+
|
148 |
+
self.weight.assign(weight)
|
149 |
+
|
150 |
+
super().build(input_shape)
|
151 |
+
|
152 |
+
@staticmethod
|
153 |
+
def _init_weight(n_pos: int, dim: int):
|
154 |
+
"""
|
155 |
+
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
|
156 |
+
the 2nd half of the vector. [dim // 2:]
|
157 |
+
"""
|
158 |
+
position_enc = np.array(
|
159 |
+
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
|
160 |
+
)
|
161 |
+
table = np.zeros_like(position_enc)
|
162 |
+
# index 0 is all zero
|
163 |
+
table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2])
|
164 |
+
table[:, dim // 2 :] = np.cos(position_enc[:, 1::2])
|
165 |
+
# convert to tensor
|
166 |
+
table = tf.convert_to_tensor(table)
|
167 |
+
tf.stop_gradient(table)
|
168 |
+
return table
|
169 |
+
|
170 |
+
def call(
|
171 |
+
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
|
172 |
+
):
|
173 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
174 |
+
if position_ids is None:
|
175 |
+
seq_len = input_shape[1]
|
176 |
+
position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
|
177 |
+
return tf.gather(self.weight, position_ids)
|
178 |
+
|
179 |
+
|
180 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Pegasus
|
181 |
+
class TFPegasusAttention(keras.layers.Layer):
|
182 |
+
"""Multi-headed attention from "Attention Is All You Need"""
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
embed_dim: int,
|
187 |
+
num_heads: int,
|
188 |
+
dropout: float = 0.0,
|
189 |
+
is_decoder: bool = False,
|
190 |
+
bias: bool = True,
|
191 |
+
**kwargs,
|
192 |
+
):
|
193 |
+
super().__init__(**kwargs)
|
194 |
+
self.embed_dim = embed_dim
|
195 |
+
|
196 |
+
self.num_heads = num_heads
|
197 |
+
self.dropout = keras.layers.Dropout(dropout)
|
198 |
+
self.head_dim = embed_dim // num_heads
|
199 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
200 |
+
raise ValueError(
|
201 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
202 |
+
f" and `num_heads`: {num_heads})."
|
203 |
+
)
|
204 |
+
self.scaling = self.head_dim**-0.5
|
205 |
+
self.is_decoder = is_decoder
|
206 |
+
|
207 |
+
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
|
208 |
+
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
|
209 |
+
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
|
210 |
+
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
|
211 |
+
|
212 |
+
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
|
213 |
+
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
|
214 |
+
|
215 |
+
def call(
|
216 |
+
self,
|
217 |
+
hidden_states: tf.Tensor,
|
218 |
+
key_value_states: tf.Tensor | None = None,
|
219 |
+
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
|
220 |
+
attention_mask: tf.Tensor | None = None,
|
221 |
+
layer_head_mask: tf.Tensor | None = None,
|
222 |
+
training: Optional[bool] = False,
|
223 |
+
) -> Tuple[tf.Tensor, tf.Tensor | None]:
|
224 |
+
"""Input shape: Batch x Time x Channel"""
|
225 |
+
|
226 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
227 |
+
# for the decoder
|
228 |
+
is_cross_attention = key_value_states is not None
|
229 |
+
bsz, tgt_len, embed_dim = shape_list(hidden_states)
|
230 |
+
|
231 |
+
# get query proj
|
232 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
233 |
+
# get key, value proj
|
234 |
+
if is_cross_attention and past_key_value is not None:
|
235 |
+
# reuse k,v, cross_attentions
|
236 |
+
key_states = past_key_value[0]
|
237 |
+
value_states = past_key_value[1]
|
238 |
+
elif is_cross_attention:
|
239 |
+
# cross_attentions
|
240 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
241 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
242 |
+
elif past_key_value is not None:
|
243 |
+
# reuse k, v, self_attention
|
244 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
245 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
246 |
+
key_states = tf.concat([past_key_value[0], key_states], axis=2)
|
247 |
+
value_states = tf.concat([past_key_value[1], value_states], axis=2)
|
248 |
+
else:
|
249 |
+
# self_attention
|
250 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
251 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
252 |
+
|
253 |
+
if self.is_decoder:
|
254 |
+
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
|
255 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
256 |
+
# key/value_states (first "if" case)
|
257 |
+
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
|
258 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
259 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
260 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
261 |
+
past_key_value = (key_states, value_states)
|
262 |
+
|
263 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
264 |
+
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
|
265 |
+
key_states = tf.reshape(key_states, proj_shape)
|
266 |
+
value_states = tf.reshape(value_states, proj_shape)
|
267 |
+
|
268 |
+
src_len = shape_list(key_states)[1]
|
269 |
+
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
|
270 |
+
|
271 |
+
tf.debugging.assert_equal(
|
272 |
+
shape_list(attn_weights),
|
273 |
+
[bsz * self.num_heads, tgt_len, src_len],
|
274 |
+
message=(
|
275 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
276 |
+
f" {shape_list(attn_weights)}"
|
277 |
+
),
|
278 |
+
)
|
279 |
+
|
280 |
+
if attention_mask is not None:
|
281 |
+
tf.debugging.assert_equal(
|
282 |
+
shape_list(attention_mask),
|
283 |
+
[bsz, 1, tgt_len, src_len],
|
284 |
+
message=(
|
285 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
286 |
+
f" {shape_list(attention_mask)}"
|
287 |
+
),
|
288 |
+
)
|
289 |
+
|
290 |
+
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
|
291 |
+
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
|
292 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
293 |
+
|
294 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
295 |
+
|
296 |
+
if layer_head_mask is not None:
|
297 |
+
tf.debugging.assert_equal(
|
298 |
+
shape_list(layer_head_mask),
|
299 |
+
[self.num_heads],
|
300 |
+
message=(
|
301 |
+
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
|
302 |
+
f" {shape_list(layer_head_mask)}"
|
303 |
+
),
|
304 |
+
)
|
305 |
+
|
306 |
+
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
|
307 |
+
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
|
308 |
+
)
|
309 |
+
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
|
310 |
+
|
311 |
+
attn_probs = self.dropout(attn_weights, training=training)
|
312 |
+
attn_output = tf.matmul(attn_probs, value_states)
|
313 |
+
|
314 |
+
tf.debugging.assert_equal(
|
315 |
+
shape_list(attn_output),
|
316 |
+
[bsz * self.num_heads, tgt_len, self.head_dim],
|
317 |
+
message=(
|
318 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
319 |
+
f" {shape_list(attn_output)}"
|
320 |
+
),
|
321 |
+
)
|
322 |
+
|
323 |
+
attn_output = tf.transpose(
|
324 |
+
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
|
325 |
+
)
|
326 |
+
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
|
327 |
+
|
328 |
+
attn_output = self.out_proj(attn_output)
|
329 |
+
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
|
330 |
+
|
331 |
+
return attn_output, attn_weights, past_key_value
|
332 |
+
|
333 |
+
def build(self, input_shape=None):
|
334 |
+
if self.built:
|
335 |
+
return
|
336 |
+
self.built = True
|
337 |
+
if getattr(self, "k_proj", None) is not None:
|
338 |
+
with tf.name_scope(self.k_proj.name):
|
339 |
+
self.k_proj.build([None, None, self.embed_dim])
|
340 |
+
if getattr(self, "q_proj", None) is not None:
|
341 |
+
with tf.name_scope(self.q_proj.name):
|
342 |
+
self.q_proj.build([None, None, self.embed_dim])
|
343 |
+
if getattr(self, "v_proj", None) is not None:
|
344 |
+
with tf.name_scope(self.v_proj.name):
|
345 |
+
self.v_proj.build([None, None, self.embed_dim])
|
346 |
+
if getattr(self, "out_proj", None) is not None:
|
347 |
+
with tf.name_scope(self.out_proj.name):
|
348 |
+
self.out_proj.build([None, None, self.embed_dim])
|
349 |
+
|
350 |
+
|
351 |
+
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Pegasus
|
352 |
+
class TFPegasusEncoderLayer(keras.layers.Layer):
|
353 |
+
def __init__(self, config: PegasusConfig, **kwargs):
|
354 |
+
super().__init__(**kwargs)
|
355 |
+
self.embed_dim = config.d_model
|
356 |
+
self.self_attn = TFPegasusAttention(
|
357 |
+
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
|
358 |
+
)
|
359 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
360 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
361 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
362 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
363 |
+
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
|
364 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
365 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
366 |
+
self.config = config
|
367 |
+
|
368 |
+
def call(
|
369 |
+
self,
|
370 |
+
hidden_states: tf.Tensor,
|
371 |
+
attention_mask: tf.Tensor,
|
372 |
+
layer_head_mask: tf.Tensor,
|
373 |
+
training: Optional[bool] = False,
|
374 |
+
):
|
375 |
+
"""
|
376 |
+
Args:
|
377 |
+
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
|
378 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
379 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
380 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
381 |
+
*(encoder_attention_heads,)*
|
382 |
+
"""
|
383 |
+
residual = hidden_states
|
384 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
385 |
+
hidden_states, self_attn_weights, _ = self.self_attn(
|
386 |
+
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
|
387 |
+
)
|
388 |
+
|
389 |
+
tf.debugging.assert_equal(
|
390 |
+
shape_list(hidden_states),
|
391 |
+
shape_list(residual),
|
392 |
+
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
|
393 |
+
)
|
394 |
+
|
395 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
396 |
+
hidden_states = residual + hidden_states
|
397 |
+
|
398 |
+
residual = hidden_states
|
399 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
400 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
401 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
402 |
+
hidden_states = self.fc2(hidden_states)
|
403 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
404 |
+
hidden_states = residual + hidden_states
|
405 |
+
|
406 |
+
return hidden_states, self_attn_weights
|
407 |
+
|
408 |
+
def build(self, input_shape=None):
|
409 |
+
if self.built:
|
410 |
+
return
|
411 |
+
self.built = True
|
412 |
+
if getattr(self, "self_attn", None) is not None:
|
413 |
+
with tf.name_scope(self.self_attn.name):
|
414 |
+
self.self_attn.build(None)
|
415 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
416 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
417 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
418 |
+
if getattr(self, "fc1", None) is not None:
|
419 |
+
with tf.name_scope(self.fc1.name):
|
420 |
+
self.fc1.build([None, None, self.embed_dim])
|
421 |
+
if getattr(self, "fc2", None) is not None:
|
422 |
+
with tf.name_scope(self.fc2.name):
|
423 |
+
self.fc2.build([None, None, self.config.encoder_ffn_dim])
|
424 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
425 |
+
with tf.name_scope(self.final_layer_norm.name):
|
426 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
427 |
+
|
428 |
+
|
429 |
+
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Pegasus
|
430 |
+
class TFPegasusDecoderLayer(keras.layers.Layer):
|
431 |
+
def __init__(self, config: PegasusConfig, **kwargs):
|
432 |
+
super().__init__(**kwargs)
|
433 |
+
self.embed_dim = config.d_model
|
434 |
+
self.self_attn = TFPegasusAttention(
|
435 |
+
embed_dim=self.embed_dim,
|
436 |
+
num_heads=config.decoder_attention_heads,
|
437 |
+
dropout=config.attention_dropout,
|
438 |
+
name="self_attn",
|
439 |
+
is_decoder=True,
|
440 |
+
)
|
441 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
442 |
+
self.activation_fn = get_tf_activation(config.activation_function)
|
443 |
+
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
|
444 |
+
|
445 |
+
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
|
446 |
+
self.encoder_attn = TFPegasusAttention(
|
447 |
+
self.embed_dim,
|
448 |
+
config.decoder_attention_heads,
|
449 |
+
dropout=config.attention_dropout,
|
450 |
+
name="encoder_attn",
|
451 |
+
is_decoder=True,
|
452 |
+
)
|
453 |
+
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
|
454 |
+
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
|
455 |
+
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
|
456 |
+
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
|
457 |
+
self.config = config
|
458 |
+
|
459 |
+
def call(
|
460 |
+
self,
|
461 |
+
hidden_states: tf.Tensor,
|
462 |
+
attention_mask: tf.Tensor | None = None,
|
463 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
464 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
465 |
+
layer_head_mask: tf.Tensor | None = None,
|
466 |
+
cross_attn_layer_head_mask: tf.Tensor | None = None,
|
467 |
+
past_key_value: Tuple[tf.Tensor] | None = None,
|
468 |
+
training: Optional[bool] = False,
|
469 |
+
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
|
470 |
+
"""
|
471 |
+
Args:
|
472 |
+
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
|
473 |
+
attention_mask (`tf.Tensor`): attention mask of size
|
474 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
475 |
+
encoder_hidden_states (`tf.Tensor`):
|
476 |
+
cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
|
477 |
+
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
|
478 |
+
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
|
479 |
+
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
|
480 |
+
*(decoder_attention_heads,)*
|
481 |
+
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
|
482 |
+
*(decoder_attention_heads,)*
|
483 |
+
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
|
484 |
+
"""
|
485 |
+
residual = hidden_states
|
486 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
487 |
+
|
488 |
+
# Self Attention
|
489 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
490 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
491 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
492 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
493 |
+
hidden_states=hidden_states,
|
494 |
+
past_key_value=self_attn_past_key_value,
|
495 |
+
attention_mask=attention_mask,
|
496 |
+
layer_head_mask=layer_head_mask,
|
497 |
+
)
|
498 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
499 |
+
hidden_states = residual + hidden_states
|
500 |
+
|
501 |
+
# Cross-Attention Block
|
502 |
+
cross_attn_present_key_value = None
|
503 |
+
cross_attn_weights = None
|
504 |
+
if encoder_hidden_states is not None:
|
505 |
+
residual = hidden_states
|
506 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
507 |
+
|
508 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
509 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
510 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
511 |
+
hidden_states=hidden_states,
|
512 |
+
key_value_states=encoder_hidden_states,
|
513 |
+
attention_mask=encoder_attention_mask,
|
514 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
515 |
+
past_key_value=cross_attn_past_key_value,
|
516 |
+
)
|
517 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
518 |
+
hidden_states = residual + hidden_states
|
519 |
+
|
520 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
521 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
522 |
+
|
523 |
+
# Fully Connected
|
524 |
+
residual = hidden_states
|
525 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
526 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
527 |
+
hidden_states = self.activation_dropout(hidden_states, training=training)
|
528 |
+
hidden_states = self.fc2(hidden_states)
|
529 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
530 |
+
hidden_states = residual + hidden_states
|
531 |
+
|
532 |
+
return (
|
533 |
+
hidden_states,
|
534 |
+
self_attn_weights,
|
535 |
+
cross_attn_weights,
|
536 |
+
present_key_value,
|
537 |
+
)
|
538 |
+
|
539 |
+
def build(self, input_shape=None):
|
540 |
+
if self.built:
|
541 |
+
return
|
542 |
+
self.built = True
|
543 |
+
if getattr(self, "self_attn", None) is not None:
|
544 |
+
with tf.name_scope(self.self_attn.name):
|
545 |
+
self.self_attn.build(None)
|
546 |
+
if getattr(self, "self_attn_layer_norm", None) is not None:
|
547 |
+
with tf.name_scope(self.self_attn_layer_norm.name):
|
548 |
+
self.self_attn_layer_norm.build([None, None, self.embed_dim])
|
549 |
+
if getattr(self, "encoder_attn", None) is not None:
|
550 |
+
with tf.name_scope(self.encoder_attn.name):
|
551 |
+
self.encoder_attn.build(None)
|
552 |
+
if getattr(self, "encoder_attn_layer_norm", None) is not None:
|
553 |
+
with tf.name_scope(self.encoder_attn_layer_norm.name):
|
554 |
+
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
|
555 |
+
if getattr(self, "fc1", None) is not None:
|
556 |
+
with tf.name_scope(self.fc1.name):
|
557 |
+
self.fc1.build([None, None, self.embed_dim])
|
558 |
+
if getattr(self, "fc2", None) is not None:
|
559 |
+
with tf.name_scope(self.fc2.name):
|
560 |
+
self.fc2.build([None, None, self.config.decoder_ffn_dim])
|
561 |
+
if getattr(self, "final_layer_norm", None) is not None:
|
562 |
+
with tf.name_scope(self.final_layer_norm.name):
|
563 |
+
self.final_layer_norm.build([None, None, self.embed_dim])
|
564 |
+
|
565 |
+
|
566 |
+
class TFPegasusPreTrainedModel(TFPreTrainedModel):
|
567 |
+
config_class = PegasusConfig
|
568 |
+
base_model_prefix = "model"
|
569 |
+
|
570 |
+
|
571 |
+
PEGASUS_START_DOCSTRING = r"""
|
572 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
573 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
574 |
+
etc.)
|
575 |
+
|
576 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
577 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
578 |
+
behavior.
|
579 |
+
|
580 |
+
<Tip>
|
581 |
+
|
582 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
583 |
+
|
584 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
585 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
586 |
+
|
587 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
588 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
589 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
590 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
591 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
592 |
+
positional argument:
|
593 |
+
|
594 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
595 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
596 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
597 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
598 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
599 |
+
|
600 |
+
Note that when creating models and layers with
|
601 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
602 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
603 |
+
|
604 |
+
</Tip>
|
605 |
+
|
606 |
+
Args:
|
607 |
+
config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
|
608 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
609 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
610 |
+
"""
|
611 |
+
|
612 |
+
PEGASUS_GENERATION_EXAMPLE = r"""
|
613 |
+
Summarization example:
|
614 |
+
|
615 |
+
```python
|
616 |
+
>>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration
|
617 |
+
|
618 |
+
>>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
619 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
|
620 |
+
|
621 |
+
>>> ARTICLE_TO_SUMMARIZE = (
|
622 |
+
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
623 |
+
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
624 |
+
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
625 |
+
... )
|
626 |
+
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf")
|
627 |
+
|
628 |
+
>>> # Generate Summary
|
629 |
+
>>> summary_ids = model.generate(input_ids)
|
630 |
+
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
|
631 |
+
```
|
632 |
+
"""
|
633 |
+
|
634 |
+
PEGASUS_INPUTS_DOCSTRING = r"""
|
635 |
+
Args:
|
636 |
+
input_ids (`tf.Tensor` of shape `({0})`):
|
637 |
+
Indices of input sequence tokens in the vocabulary.
|
638 |
+
|
639 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
640 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
641 |
+
|
642 |
+
[What are input IDs?](../glossary#input-ids)
|
643 |
+
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
|
644 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
645 |
+
|
646 |
+
- 1 for tokens that are **not masked**,
|
647 |
+
- 0 for tokens that are **masked**.
|
648 |
+
|
649 |
+
[What are attention masks?](../glossary#attention-mask)
|
650 |
+
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
651 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
652 |
+
|
653 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
654 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
655 |
+
|
656 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
657 |
+
|
658 |
+
Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
|
659 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
660 |
+
`past_key_values`).
|
661 |
+
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
662 |
+
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
|
663 |
+
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
664 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
665 |
+
range `[0, config.max_position_embeddings - 1]`.
|
666 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
667 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
668 |
+
|
669 |
+
- 1 indicates the head is **not masked**,
|
670 |
+
- 0 indicates the head is **masked**.
|
671 |
+
|
672 |
+
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
673 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
674 |
+
|
675 |
+
- 1 indicates the head is **not masked**,
|
676 |
+
- 0 indicates the head is **masked**.
|
677 |
+
|
678 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
679 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
680 |
+
|
681 |
+
- 1 indicates the head is **not masked**,
|
682 |
+
- 0 indicates the head is **masked**.
|
683 |
+
|
684 |
+
encoder_outputs (`tf.FloatTensor`, *optional*):
|
685 |
+
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
686 |
+
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
|
687 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
688 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
689 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
690 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
691 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
692 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
693 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
694 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
695 |
+
than the model's internal embedding lookup matrix.
|
696 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
697 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
698 |
+
`past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`,
|
699 |
+
*optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions`
|
700 |
+
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the
|
701 |
+
value in the config will be used instead.
|
702 |
+
output_attentions (`bool`, *optional*):
|
703 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
704 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
705 |
+
config will be used instead.
|
706 |
+
output_hidden_states (`bool`, *optional*):
|
707 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
708 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
709 |
+
used instead.
|
710 |
+
return_dict (`bool`, *optional*):
|
711 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
712 |
+
eager mode, in graph mode the value will always be set to True.
|
713 |
+
training (`bool`, *optional*, defaults to `False`):
|
714 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
715 |
+
behaviors between training and evaluation).
|
716 |
+
"""
|
717 |
+
|
718 |
+
|
719 |
+
@keras_serializable
|
720 |
+
class TFPegasusEncoder(keras.layers.Layer):
|
721 |
+
config_class = PegasusConfig
|
722 |
+
"""
|
723 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
724 |
+
[`TFPegasusEncoderLayer`].
|
725 |
+
|
726 |
+
Args:
|
727 |
+
config: PegasusConfig
|
728 |
+
"""
|
729 |
+
|
730 |
+
def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
731 |
+
super().__init__(**kwargs)
|
732 |
+
self.config = config
|
733 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
734 |
+
self.layerdrop = config.encoder_layerdrop
|
735 |
+
self.padding_idx = config.pad_token_id
|
736 |
+
self.max_source_positions = config.max_position_embeddings
|
737 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
738 |
+
|
739 |
+
self.embed_tokens = embed_tokens
|
740 |
+
self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
|
741 |
+
config.max_position_embeddings,
|
742 |
+
config.d_model,
|
743 |
+
name="embed_positions",
|
744 |
+
)
|
745 |
+
self.layers = [TFPegasusEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
|
746 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
747 |
+
|
748 |
+
def get_embed_tokens(self):
|
749 |
+
return self.embed_tokens
|
750 |
+
|
751 |
+
def set_embed_tokens(self, embed_tokens):
|
752 |
+
self.embed_tokens = embed_tokens
|
753 |
+
|
754 |
+
@unpack_inputs
|
755 |
+
def call(
|
756 |
+
self,
|
757 |
+
input_ids: tf.Tensor | None = None,
|
758 |
+
inputs_embeds: tf.Tensor | None = None,
|
759 |
+
attention_mask: tf.Tensor | None = None,
|
760 |
+
head_mask: tf.Tensor | None = None,
|
761 |
+
output_attentions: Optional[bool] = None,
|
762 |
+
output_hidden_states: Optional[bool] = None,
|
763 |
+
return_dict: Optional[bool] = None,
|
764 |
+
training: Optional[bool] = False,
|
765 |
+
):
|
766 |
+
"""
|
767 |
+
Args:
|
768 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
769 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
770 |
+
provide it.
|
771 |
+
|
772 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
773 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
774 |
+
|
775 |
+
[What are input IDs?](../glossary#input-ids)
|
776 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
777 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
778 |
+
|
779 |
+
- 1 for tokens that are **not masked**,
|
780 |
+
- 0 for tokens that are **masked**.
|
781 |
+
|
782 |
+
[What are attention masks?](../glossary#attention-mask)
|
783 |
+
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
|
784 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
785 |
+
|
786 |
+
- 1 indicates the head is **not masked**,
|
787 |
+
- 0 indicates the head is **masked**.
|
788 |
+
|
789 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
790 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
791 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
792 |
+
than the model's internal embedding lookup matrix.
|
793 |
+
output_attentions (`bool`, *optional*):
|
794 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
795 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
796 |
+
in the config will be used instead.
|
797 |
+
output_hidden_states (`bool`, *optional*):
|
798 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
799 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
800 |
+
will be used instead.
|
801 |
+
return_dict (`bool`, *optional*):
|
802 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
803 |
+
in eager mode, in graph mode the value will always be set to True.
|
804 |
+
training (`bool`, *optional*, defaults to `False`):
|
805 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
806 |
+
behaviors between training and evaluation).
|
807 |
+
"""
|
808 |
+
|
809 |
+
if input_ids is not None and inputs_embeds is not None:
|
810 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
811 |
+
elif input_ids is not None:
|
812 |
+
input_shape = shape_list(input_ids)
|
813 |
+
elif inputs_embeds is not None:
|
814 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
815 |
+
else:
|
816 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
817 |
+
|
818 |
+
if inputs_embeds is None:
|
819 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
820 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
821 |
+
|
822 |
+
embed_pos = self.embed_positions(input_shape)
|
823 |
+
hidden_states = inputs_embeds + embed_pos
|
824 |
+
hidden_states = self.dropout(hidden_states, training=training)
|
825 |
+
|
826 |
+
# check attention mask and invert
|
827 |
+
if attention_mask is not None:
|
828 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
829 |
+
attention_mask = _expand_mask(attention_mask)
|
830 |
+
else:
|
831 |
+
attention_mask = None
|
832 |
+
|
833 |
+
encoder_states = () if output_hidden_states else None
|
834 |
+
all_attentions = () if output_attentions else None
|
835 |
+
|
836 |
+
# check if head_mask has a correct number of layers specified if desired
|
837 |
+
if head_mask is not None:
|
838 |
+
tf.debugging.assert_equal(
|
839 |
+
shape_list(head_mask)[0],
|
840 |
+
len(self.layers),
|
841 |
+
message=(
|
842 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
843 |
+
f" {shape_list(head_mask)[0]}."
|
844 |
+
),
|
845 |
+
)
|
846 |
+
|
847 |
+
# encoder layers
|
848 |
+
for idx, encoder_layer in enumerate(self.layers):
|
849 |
+
if output_hidden_states:
|
850 |
+
encoder_states = encoder_states + (hidden_states,)
|
851 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
852 |
+
dropout_probability = random.uniform(0, 1)
|
853 |
+
if training and (dropout_probability < self.layerdrop): # skip the layer
|
854 |
+
continue
|
855 |
+
|
856 |
+
hidden_states, attn = encoder_layer(
|
857 |
+
hidden_states,
|
858 |
+
attention_mask,
|
859 |
+
head_mask[idx] if head_mask is not None else None,
|
860 |
+
)
|
861 |
+
|
862 |
+
if output_attentions:
|
863 |
+
all_attentions += (attn,)
|
864 |
+
|
865 |
+
hidden_states = self.layer_norm(hidden_states)
|
866 |
+
|
867 |
+
if output_hidden_states:
|
868 |
+
encoder_states = encoder_states + (hidden_states,)
|
869 |
+
|
870 |
+
if not return_dict:
|
871 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
872 |
+
return TFBaseModelOutput(
|
873 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
874 |
+
)
|
875 |
+
|
876 |
+
def build(self, input_shape=None):
|
877 |
+
if self.built:
|
878 |
+
return
|
879 |
+
self.built = True
|
880 |
+
if getattr(self, "embed_positions", None) is not None:
|
881 |
+
with tf.name_scope(self.embed_positions.name):
|
882 |
+
self.embed_positions.build(None)
|
883 |
+
if getattr(self, "layer_norm", None) is not None:
|
884 |
+
with tf.name_scope(self.layer_norm.name):
|
885 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
886 |
+
if getattr(self, "layers", None) is not None:
|
887 |
+
for layer in self.layers:
|
888 |
+
with tf.name_scope(layer.name):
|
889 |
+
layer.build(None)
|
890 |
+
|
891 |
+
|
892 |
+
@keras_serializable
|
893 |
+
class TFPegasusDecoder(keras.layers.Layer):
|
894 |
+
config_class = PegasusConfig
|
895 |
+
"""
|
896 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFPegasusDecoderLayer`]
|
897 |
+
|
898 |
+
Args:
|
899 |
+
config: PegasusConfig
|
900 |
+
embed_tokens: output embedding
|
901 |
+
"""
|
902 |
+
|
903 |
+
def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
|
904 |
+
super().__init__(**kwargs)
|
905 |
+
self.config = config
|
906 |
+
self.padding_idx = config.pad_token_id
|
907 |
+
self.embed_tokens = embed_tokens
|
908 |
+
self.layerdrop = config.decoder_layerdrop
|
909 |
+
self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
|
910 |
+
config.max_position_embeddings,
|
911 |
+
config.d_model,
|
912 |
+
name="embed_positions",
|
913 |
+
)
|
914 |
+
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
|
915 |
+
self.layers = [TFPegasusDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
|
916 |
+
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
|
917 |
+
|
918 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
919 |
+
|
920 |
+
def get_embed_tokens(self):
|
921 |
+
return self.embed_tokens
|
922 |
+
|
923 |
+
def set_embed_tokens(self, embed_tokens):
|
924 |
+
self.embed_tokens = embed_tokens
|
925 |
+
|
926 |
+
@unpack_inputs
|
927 |
+
def call(
|
928 |
+
self,
|
929 |
+
input_ids: tf.Tensor | None = None,
|
930 |
+
inputs_embeds: tf.Tensor | None = None,
|
931 |
+
attention_mask: tf.Tensor | None = None,
|
932 |
+
position_ids: tf.Tensor | None = None,
|
933 |
+
encoder_hidden_states: tf.Tensor | None = None,
|
934 |
+
encoder_attention_mask: tf.Tensor | None = None,
|
935 |
+
head_mask: tf.Tensor | None = None,
|
936 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
937 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
|
938 |
+
use_cache: Optional[bool] = None,
|
939 |
+
output_attentions: Optional[bool] = None,
|
940 |
+
output_hidden_states: Optional[bool] = None,
|
941 |
+
return_dict: Optional[bool] = None,
|
942 |
+
training: Optional[bool] = False,
|
943 |
+
):
|
944 |
+
r"""
|
945 |
+
Args:
|
946 |
+
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
|
947 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
948 |
+
provide it.
|
949 |
+
|
950 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
951 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
952 |
+
|
953 |
+
[What are input IDs?](../glossary#input-ids)
|
954 |
+
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
955 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
956 |
+
|
957 |
+
- 1 for tokens that are **not masked**,
|
958 |
+
- 0 for tokens that are **masked**.
|
959 |
+
|
960 |
+
[What are attention masks?](../glossary#attention-mask)
|
961 |
+
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
962 |
+
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
|
963 |
+
range `[0, config.max_position_embeddings - 1]`.
|
964 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
965 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
966 |
+
of the decoder.
|
967 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
968 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
969 |
+
selected in `[0, 1]`:
|
970 |
+
|
971 |
+
- 1 for tokens that are **not masked**,
|
972 |
+
- 0 for tokens that are **masked**.
|
973 |
+
|
974 |
+
[What are attention masks?](../glossary#attention-mask)
|
975 |
+
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
976 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
977 |
+
|
978 |
+
- 1 indicates the head is **not masked**,
|
979 |
+
- 0 indicates the head is **masked**.
|
980 |
+
|
981 |
+
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
982 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
983 |
+
|
984 |
+
- 1 indicates the head is **not masked**,
|
985 |
+
- 0 indicates the head is **masked**.
|
986 |
+
|
987 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
988 |
+
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
|
989 |
+
decoding.
|
990 |
+
|
991 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
992 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
993 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
994 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
995 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
996 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
997 |
+
than the model's internal embedding lookup matrix.
|
998 |
+
output_attentions (`bool`, *optional*):
|
999 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1000 |
+
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
|
1001 |
+
in the config will be used instead.
|
1002 |
+
output_hidden_states (`bool`, *optional*):
|
1003 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1004 |
+
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
|
1005 |
+
will be used instead.
|
1006 |
+
return_dict (`bool`, *optional*):
|
1007 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
1008 |
+
in eager mode, in graph mode the value will always be set to True.
|
1009 |
+
training (`bool`, *optional*, defaults to `False`):
|
1010 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
1011 |
+
behaviors between training and evaluation).
|
1012 |
+
"""
|
1013 |
+
|
1014 |
+
if input_ids is not None and inputs_embeds is not None:
|
1015 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1016 |
+
elif input_ids is not None:
|
1017 |
+
input_shape = shape_list(input_ids)
|
1018 |
+
elif inputs_embeds is not None:
|
1019 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
1020 |
+
else:
|
1021 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1022 |
+
|
1023 |
+
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
|
1024 |
+
|
1025 |
+
# embed positions
|
1026 |
+
if position_ids is None:
|
1027 |
+
positions = self.embed_positions(input_shape, past_key_values_length)
|
1028 |
+
else:
|
1029 |
+
positions = self.embed_positions(input_shape, position_ids=position_ids)
|
1030 |
+
|
1031 |
+
if inputs_embeds is None:
|
1032 |
+
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
|
1033 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1034 |
+
|
1035 |
+
hidden_states = inputs_embeds
|
1036 |
+
|
1037 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1038 |
+
if input_shape[-1] > 1:
|
1039 |
+
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
|
1040 |
+
else:
|
1041 |
+
combined_attention_mask = _expand_mask(
|
1042 |
+
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
if attention_mask is not None:
|
1046 |
+
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
|
1047 |
+
|
1048 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1049 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1050 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
|
1051 |
+
|
1052 |
+
hidden_states = self.dropout(hidden_states + positions, training=training)
|
1053 |
+
|
1054 |
+
# decoder layers
|
1055 |
+
all_hidden_states = () if output_hidden_states else None
|
1056 |
+
all_self_attns = () if output_attentions else None
|
1057 |
+
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
|
1058 |
+
present_key_values = () if use_cache else None
|
1059 |
+
|
1060 |
+
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
|
1061 |
+
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
|
1062 |
+
if attn_mask is not None:
|
1063 |
+
tf.debugging.assert_equal(
|
1064 |
+
shape_list(attn_mask)[0],
|
1065 |
+
len(self.layers),
|
1066 |
+
message=(
|
1067 |
+
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
|
1068 |
+
f" {shape_list(attn_mask)[0]}."
|
1069 |
+
),
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1073 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1074 |
+
if output_hidden_states:
|
1075 |
+
all_hidden_states += (hidden_states,)
|
1076 |
+
dropout_probability = random.uniform(0, 1)
|
1077 |
+
|
1078 |
+
if training and (dropout_probability < self.layerdrop):
|
1079 |
+
continue
|
1080 |
+
|
1081 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1082 |
+
|
1083 |
+
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
|
1084 |
+
hidden_states,
|
1085 |
+
attention_mask=combined_attention_mask,
|
1086 |
+
encoder_hidden_states=encoder_hidden_states,
|
1087 |
+
encoder_attention_mask=encoder_attention_mask,
|
1088 |
+
layer_head_mask=head_mask[idx] if head_mask is not None else None,
|
1089 |
+
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1090 |
+
past_key_value=past_key_value,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
if use_cache:
|
1094 |
+
present_key_values += (present_key_value,)
|
1095 |
+
|
1096 |
+
if output_attentions:
|
1097 |
+
all_self_attns += (layer_self_attn,)
|
1098 |
+
|
1099 |
+
if encoder_hidden_states is not None:
|
1100 |
+
all_cross_attns += (layer_cross_attn,)
|
1101 |
+
|
1102 |
+
hidden_states = self.layer_norm(hidden_states)
|
1103 |
+
|
1104 |
+
if output_hidden_states:
|
1105 |
+
all_hidden_states += (hidden_states,)
|
1106 |
+
|
1107 |
+
if not return_dict:
|
1108 |
+
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
|
1109 |
+
else:
|
1110 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
1111 |
+
last_hidden_state=hidden_states,
|
1112 |
+
past_key_values=present_key_values,
|
1113 |
+
hidden_states=all_hidden_states,
|
1114 |
+
attentions=all_self_attns,
|
1115 |
+
cross_attentions=all_cross_attns,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
def build(self, input_shape=None):
|
1119 |
+
if self.built:
|
1120 |
+
return
|
1121 |
+
self.built = True
|
1122 |
+
if getattr(self, "embed_positions", None) is not None:
|
1123 |
+
with tf.name_scope(self.embed_positions.name):
|
1124 |
+
self.embed_positions.build(None)
|
1125 |
+
if getattr(self, "layer_norm", None) is not None:
|
1126 |
+
with tf.name_scope(self.layer_norm.name):
|
1127 |
+
self.layer_norm.build([None, None, self.config.d_model])
|
1128 |
+
if getattr(self, "layers", None) is not None:
|
1129 |
+
for layer in self.layers:
|
1130 |
+
with tf.name_scope(layer.name):
|
1131 |
+
layer.build(None)
|
1132 |
+
|
1133 |
+
|
1134 |
+
@keras_serializable
|
1135 |
+
class TFPegasusMainLayer(keras.layers.Layer):
|
1136 |
+
config_class = PegasusConfig
|
1137 |
+
|
1138 |
+
def __init__(self, config: PegasusConfig, **kwargs):
|
1139 |
+
super().__init__(**kwargs)
|
1140 |
+
|
1141 |
+
self.config = config
|
1142 |
+
self.shared = keras.layers.Embedding(
|
1143 |
+
input_dim=config.vocab_size,
|
1144 |
+
output_dim=config.d_model,
|
1145 |
+
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
|
1146 |
+
name="model.shared",
|
1147 |
+
)
|
1148 |
+
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
|
1149 |
+
self.shared.load_weight_prefix = "model.shared"
|
1150 |
+
|
1151 |
+
self.encoder = TFPegasusEncoder(config, self.shared, name="encoder")
|
1152 |
+
self.decoder = TFPegasusDecoder(config, self.shared, name="decoder")
|
1153 |
+
|
1154 |
+
def get_input_embeddings(self):
|
1155 |
+
return self.shared
|
1156 |
+
|
1157 |
+
def set_input_embeddings(self, new_embeddings):
|
1158 |
+
self.shared = new_embeddings
|
1159 |
+
self.encoder.embed_tokens = self.shared
|
1160 |
+
self.decoder.embed_tokens = self.shared
|
1161 |
+
|
1162 |
+
@unpack_inputs
|
1163 |
+
def call(
|
1164 |
+
self,
|
1165 |
+
input_ids: tf.Tensor | None = None,
|
1166 |
+
attention_mask: tf.Tensor | None = None,
|
1167 |
+
decoder_input_ids: tf.Tensor | None = None,
|
1168 |
+
decoder_attention_mask: tf.Tensor | None = None,
|
1169 |
+
decoder_position_ids: tf.Tensor | None = None,
|
1170 |
+
head_mask: tf.Tensor | None = None,
|
1171 |
+
decoder_head_mask: tf.Tensor | None = None,
|
1172 |
+
cross_attn_head_mask: tf.Tensor | None = None,
|
1173 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1174 |
+
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
|
1175 |
+
inputs_embeds: tf.Tensor | None = None,
|
1176 |
+
decoder_inputs_embeds: tf.Tensor | None = None,
|
1177 |
+
use_cache: Optional[bool] = None,
|
1178 |
+
output_attentions: Optional[bool] = None,
|
1179 |
+
output_hidden_states: Optional[bool] = None,
|
1180 |
+
return_dict: Optional[bool] = None,
|
1181 |
+
training: Optional[bool] = False,
|
1182 |
+
**kwargs,
|
1183 |
+
):
|
1184 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1185 |
+
use_cache = False
|
1186 |
+
|
1187 |
+
output_hidden_states = (
|
1188 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
if encoder_outputs is None:
|
1192 |
+
encoder_outputs = self.encoder(
|
1193 |
+
input_ids=input_ids,
|
1194 |
+
attention_mask=attention_mask,
|
1195 |
+
head_mask=head_mask,
|
1196 |
+
inputs_embeds=inputs_embeds,
|
1197 |
+
output_attentions=output_attentions,
|
1198 |
+
output_hidden_states=output_hidden_states,
|
1199 |
+
return_dict=return_dict,
|
1200 |
+
training=training,
|
1201 |
+
)
|
1202 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
|
1203 |
+
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
|
1204 |
+
encoder_outputs = TFBaseModelOutput(
|
1205 |
+
last_hidden_state=encoder_outputs[0],
|
1206 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1207 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1208 |
+
)
|
1209 |
+
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
|
1210 |
+
elif not return_dict and not isinstance(encoder_outputs, tuple):
|
1211 |
+
encoder_outputs = encoder_outputs.to_tuple()
|
1212 |
+
|
1213 |
+
decoder_outputs = self.decoder(
|
1214 |
+
decoder_input_ids,
|
1215 |
+
attention_mask=decoder_attention_mask,
|
1216 |
+
position_ids=decoder_position_ids,
|
1217 |
+
encoder_hidden_states=encoder_outputs[0],
|
1218 |
+
encoder_attention_mask=attention_mask,
|
1219 |
+
head_mask=decoder_head_mask,
|
1220 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1221 |
+
past_key_values=past_key_values,
|
1222 |
+
inputs_embeds=decoder_inputs_embeds,
|
1223 |
+
use_cache=use_cache,
|
1224 |
+
output_attentions=output_attentions,
|
1225 |
+
output_hidden_states=output_hidden_states,
|
1226 |
+
return_dict=return_dict,
|
1227 |
+
training=training,
|
1228 |
+
)
|
1229 |
+
|
1230 |
+
if not return_dict:
|
1231 |
+
return decoder_outputs + encoder_outputs
|
1232 |
+
|
1233 |
+
return TFSeq2SeqModelOutput(
|
1234 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1235 |
+
past_key_values=decoder_outputs.past_key_values,
|
1236 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1237 |
+
decoder_attentions=decoder_outputs.attentions,
|
1238 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1239 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1240 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1241 |
+
encoder_attentions=encoder_outputs.attentions,
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
def build(self, input_shape=None):
|
1245 |
+
if self.built:
|
1246 |
+
return
|
1247 |
+
self.built = True
|
1248 |
+
# The shared/tied weights expect to be in the model base namespace
|
1249 |
+
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
|
1250 |
+
# the current one.
|
1251 |
+
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
|
1252 |
+
self.shared.build(None)
|
1253 |
+
if getattr(self, "encoder", None) is not None:
|
1254 |
+
with tf.name_scope(self.encoder.name):
|
1255 |
+
self.encoder.build(None)
|
1256 |
+
if getattr(self, "decoder", None) is not None:
|
1257 |
+
with tf.name_scope(self.decoder.name):
|
1258 |
+
self.decoder.build(None)
|
1259 |
+
|
1260 |
+
|
1261 |
+
@add_start_docstrings(
|
1262 |
+
"The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
|
1263 |
+
PEGASUS_START_DOCSTRING,
|
1264 |
+
)
|
1265 |
+
class TFPegasusModel(TFPegasusPreTrainedModel):
|
1266 |
+
def __init__(self, config: PegasusConfig, *inputs, **kwargs):
|
1267 |
+
super().__init__(config, *inputs, **kwargs)
|
1268 |
+
|
1269 |
+
self.model = TFPegasusMainLayer(config, name="model")
|
1270 |
+
|
1271 |
+
def get_encoder(self):
|
1272 |
+
return self.model.encoder
|
1273 |
+
|
1274 |
+
def get_decoder(self):
|
1275 |
+
return self.model.decoder
|
1276 |
+
|
1277 |
+
@unpack_inputs
|
1278 |
+
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1279 |
+
@add_code_sample_docstrings(
|
1280 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1281 |
+
output_type=TFSeq2SeqModelOutput,
|
1282 |
+
config_class=_CONFIG_FOR_DOC,
|
1283 |
+
)
|
1284 |
+
def call(
|
1285 |
+
self,
|
1286 |
+
input_ids: TFModelInputType | None = None,
|
1287 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1288 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1289 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1290 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1291 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1292 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1293 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1294 |
+
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
|
1295 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1296 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1297 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1298 |
+
use_cache: Optional[bool] = None,
|
1299 |
+
output_attentions: Optional[bool] = None,
|
1300 |
+
output_hidden_states: Optional[bool] = None,
|
1301 |
+
return_dict: Optional[bool] = None,
|
1302 |
+
training: bool = False,
|
1303 |
+
**kwargs,
|
1304 |
+
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
|
1305 |
+
outputs = self.model(
|
1306 |
+
input_ids=input_ids,
|
1307 |
+
attention_mask=attention_mask,
|
1308 |
+
decoder_input_ids=decoder_input_ids,
|
1309 |
+
decoder_attention_mask=decoder_attention_mask,
|
1310 |
+
decoder_position_ids=decoder_position_ids,
|
1311 |
+
head_mask=head_mask,
|
1312 |
+
decoder_head_mask=decoder_head_mask,
|
1313 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1314 |
+
encoder_outputs=encoder_outputs,
|
1315 |
+
past_key_values=past_key_values,
|
1316 |
+
inputs_embeds=inputs_embeds,
|
1317 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1318 |
+
use_cache=use_cache,
|
1319 |
+
output_attentions=output_attentions,
|
1320 |
+
output_hidden_states=output_hidden_states,
|
1321 |
+
return_dict=return_dict,
|
1322 |
+
training=training,
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
return outputs
|
1326 |
+
|
1327 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
|
1328 |
+
def serving_output(self, output):
|
1329 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1330 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1331 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1332 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1333 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1334 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1335 |
+
|
1336 |
+
return TFSeq2SeqModelOutput(
|
1337 |
+
last_hidden_state=output.last_hidden_state,
|
1338 |
+
past_key_values=pkv,
|
1339 |
+
decoder_hidden_states=dec_hs,
|
1340 |
+
decoder_attentions=dec_attns,
|
1341 |
+
cross_attentions=cross_attns,
|
1342 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1343 |
+
encoder_hidden_states=enc_hs,
|
1344 |
+
encoder_attentions=enc_attns,
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
def build(self, input_shape=None):
|
1348 |
+
if self.built:
|
1349 |
+
return
|
1350 |
+
self.built = True
|
1351 |
+
if getattr(self, "model", None) is not None:
|
1352 |
+
with tf.name_scope(self.model.name):
|
1353 |
+
self.model.build(None)
|
1354 |
+
|
1355 |
+
|
1356 |
+
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
|
1357 |
+
class BiasLayer(keras.layers.Layer):
|
1358 |
+
"""
|
1359 |
+
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
|
1360 |
+
so all weights have to be registered in a layer.
|
1361 |
+
"""
|
1362 |
+
|
1363 |
+
def __init__(self, shape, initializer, trainable, name, **kwargs):
|
1364 |
+
super().__init__(name=name, **kwargs)
|
1365 |
+
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
|
1366 |
+
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
|
1367 |
+
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
|
1368 |
+
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
|
1369 |
+
|
1370 |
+
def call(self, x):
|
1371 |
+
return x + self.bias
|
1372 |
+
|
1373 |
+
|
1374 |
+
@add_start_docstrings(
|
1375 |
+
"The PEGASUS Model with a language modeling head. Can be used for summarization.",
|
1376 |
+
PEGASUS_START_DOCSTRING,
|
1377 |
+
)
|
1378 |
+
class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLanguageModelingLoss):
|
1379 |
+
_keys_to_ignore_on_load_unexpected = [
|
1380 |
+
r"model.encoder.embed_tokens.weight",
|
1381 |
+
r"model.decoder.embed_tokens.weight",
|
1382 |
+
]
|
1383 |
+
|
1384 |
+
def __init__(self, config, *inputs, **kwargs):
|
1385 |
+
super().__init__(config, *inputs, **kwargs)
|
1386 |
+
self.model = TFPegasusMainLayer(config, name="model")
|
1387 |
+
self.use_cache = config.use_cache
|
1388 |
+
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
|
1389 |
+
self.bias_layer = BiasLayer(
|
1390 |
+
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
def get_decoder(self):
|
1394 |
+
return self.model.decoder
|
1395 |
+
|
1396 |
+
def get_encoder(self):
|
1397 |
+
return self.model.encoder
|
1398 |
+
|
1399 |
+
def get_output_embeddings(self):
|
1400 |
+
return self.get_input_embeddings()
|
1401 |
+
|
1402 |
+
def set_output_embeddings(self, value):
|
1403 |
+
self.set_input_embeddings(value)
|
1404 |
+
|
1405 |
+
def get_bias(self):
|
1406 |
+
return {"final_logits_bias": self.bias_layer.bias}
|
1407 |
+
|
1408 |
+
def set_bias(self, value):
|
1409 |
+
# Replaces the existing layers containing bias for correct (de)serialization.
|
1410 |
+
vocab_size = value["final_logits_bias"].shape[-1]
|
1411 |
+
self.bias_layer = BiasLayer(
|
1412 |
+
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
|
1413 |
+
)
|
1414 |
+
self.bias_layer.bias.assign(value["final_logits_bias"])
|
1415 |
+
|
1416 |
+
@unpack_inputs
|
1417 |
+
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
|
1418 |
+
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1419 |
+
@add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
|
1420 |
+
def call(
|
1421 |
+
self,
|
1422 |
+
input_ids: TFModelInputType | None = None,
|
1423 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1424 |
+
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
|
1425 |
+
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
1426 |
+
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
|
1427 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1428 |
+
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
|
1429 |
+
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
|
1430 |
+
encoder_outputs: Optional[TFBaseModelOutput] = None,
|
1431 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1432 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1433 |
+
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1434 |
+
use_cache: Optional[bool] = None,
|
1435 |
+
output_attentions: Optional[bool] = None,
|
1436 |
+
output_hidden_states: Optional[bool] = None,
|
1437 |
+
return_dict: Optional[bool] = None,
|
1438 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1439 |
+
training: bool = False,
|
1440 |
+
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
|
1441 |
+
"""
|
1442 |
+
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1443 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1444 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1445 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1446 |
+
|
1447 |
+
Returns:
|
1448 |
+
|
1449 |
+
"""
|
1450 |
+
|
1451 |
+
if labels is not None:
|
1452 |
+
labels = tf.where(
|
1453 |
+
labels == self.config.pad_token_id,
|
1454 |
+
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
|
1455 |
+
labels,
|
1456 |
+
)
|
1457 |
+
use_cache = False
|
1458 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1459 |
+
decoder_input_ids = shift_tokens_right(
|
1460 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
outputs = self.model(
|
1464 |
+
input_ids,
|
1465 |
+
attention_mask=attention_mask,
|
1466 |
+
decoder_input_ids=decoder_input_ids,
|
1467 |
+
encoder_outputs=encoder_outputs,
|
1468 |
+
decoder_attention_mask=decoder_attention_mask,
|
1469 |
+
decoder_position_ids=decoder_position_ids,
|
1470 |
+
head_mask=head_mask,
|
1471 |
+
decoder_head_mask=decoder_head_mask,
|
1472 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1473 |
+
past_key_values=past_key_values,
|
1474 |
+
inputs_embeds=inputs_embeds,
|
1475 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1476 |
+
use_cache=use_cache,
|
1477 |
+
output_attentions=output_attentions,
|
1478 |
+
output_hidden_states=output_hidden_states,
|
1479 |
+
return_dict=return_dict,
|
1480 |
+
training=training,
|
1481 |
+
)
|
1482 |
+
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
|
1483 |
+
lm_logits = self.bias_layer(lm_logits)
|
1484 |
+
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
|
1485 |
+
|
1486 |
+
if not return_dict:
|
1487 |
+
output = (lm_logits,) + outputs[1:]
|
1488 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1489 |
+
return TFSeq2SeqLMOutput(
|
1490 |
+
loss=masked_lm_loss,
|
1491 |
+
logits=lm_logits,
|
1492 |
+
past_key_values=outputs.past_key_values, # index 1 of d outputs
|
1493 |
+
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
|
1494 |
+
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
|
1495 |
+
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
|
1496 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
|
1497 |
+
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
|
1498 |
+
encoder_attentions=outputs.encoder_attentions, # 2 of e out
|
1499 |
+
)
|
1500 |
+
|
1501 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
|
1502 |
+
def serving_output(self, output):
|
1503 |
+
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
|
1504 |
+
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
|
1505 |
+
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
|
1506 |
+
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
|
1507 |
+
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
|
1508 |
+
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
|
1509 |
+
|
1510 |
+
return TFSeq2SeqLMOutput(
|
1511 |
+
logits=output.logits,
|
1512 |
+
past_key_values=pkv,
|
1513 |
+
decoder_hidden_states=dec_hs,
|
1514 |
+
decoder_attentions=dec_attns,
|
1515 |
+
cross_attentions=cross_attns,
|
1516 |
+
encoder_last_hidden_state=output.encoder_last_hidden_state,
|
1517 |
+
encoder_hidden_states=enc_hs,
|
1518 |
+
encoder_attentions=enc_attns,
|
1519 |
+
)
|
1520 |
+
|
1521 |
+
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
|
1522 |
+
def prepare_inputs_for_generation(
|
1523 |
+
self,
|
1524 |
+
decoder_input_ids,
|
1525 |
+
past_key_values=None,
|
1526 |
+
attention_mask=None,
|
1527 |
+
decoder_attention_mask=None,
|
1528 |
+
head_mask=None,
|
1529 |
+
decoder_head_mask=None,
|
1530 |
+
cross_attn_head_mask=None,
|
1531 |
+
use_cache=None,
|
1532 |
+
encoder_outputs=None,
|
1533 |
+
**kwargs,
|
1534 |
+
):
|
1535 |
+
# cut decoder_input_ids if past_key_values is used
|
1536 |
+
if past_key_values is not None:
|
1537 |
+
decoder_input_ids = decoder_input_ids[:, -1:]
|
1538 |
+
|
1539 |
+
if decoder_attention_mask is not None: # xla
|
1540 |
+
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
|
1541 |
+
elif past_key_values is not None: # no xla + past_key_values
|
1542 |
+
decoder_position_ids = past_key_values[0][0].shape[2]
|
1543 |
+
else: # no xla + no past_key_values
|
1544 |
+
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
|
1545 |
+
|
1546 |
+
return {
|
1547 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1548 |
+
"encoder_outputs": encoder_outputs,
|
1549 |
+
"past_key_values": past_key_values,
|
1550 |
+
"decoder_input_ids": decoder_input_ids,
|
1551 |
+
"attention_mask": attention_mask,
|
1552 |
+
"decoder_attention_mask": decoder_attention_mask,
|
1553 |
+
"decoder_position_ids": decoder_position_ids,
|
1554 |
+
"head_mask": head_mask,
|
1555 |
+
"decoder_head_mask": decoder_head_mask,
|
1556 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1557 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1558 |
+
}
|
1559 |
+
|
1560 |
+
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
|
1561 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1562 |
+
|
1563 |
+
def build(self, input_shape=None):
|
1564 |
+
if self.built:
|
1565 |
+
return
|
1566 |
+
self.built = True
|
1567 |
+
if getattr(self, "model", None) is not None:
|
1568 |
+
with tf.name_scope(self.model.name):
|
1569 |
+
self.model.build(None)
|
1570 |
+
if getattr(self, "bias_layer", None) is not None:
|
1571 |
+
with tf.name_scope(self.bias_layer.name):
|
1572 |
+
self.bias_layer.build(None)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Google and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import os
|
16 |
+
from shutil import copyfile
|
17 |
+
from typing import Any, Dict, List, Optional, Tuple
|
18 |
+
|
19 |
+
import sentencepiece as spm
|
20 |
+
|
21 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
SPIECE_UNDERLINE = "▁"
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
# TODO ArthurZ refactor this to only use the added_tokens_encoder
|
34 |
+
class PegasusTokenizer(PreTrainedTokenizer):
|
35 |
+
r"""
|
36 |
+
Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
37 |
+
|
38 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
39 |
+
this superclass for more information regarding those methods.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
44 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
45 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
46 |
+
The token used for padding, for example when batching sequences of different lengths.
|
47 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
48 |
+
The end of sequence token.
|
49 |
+
|
50 |
+
<Tip>
|
51 |
+
|
52 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
53 |
+
The token used is the `sep_token`.
|
54 |
+
|
55 |
+
</Tip>
|
56 |
+
|
57 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
+
token instead.
|
60 |
+
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
|
61 |
+
The token used for masking single token values. This is the token used when training this model with masked
|
62 |
+
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
|
63 |
+
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
|
64 |
+
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
65 |
+
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
|
66 |
+
The token used for masking whole target sentences. This is the token used when training this model with gap
|
67 |
+
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
|
68 |
+
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
|
69 |
+
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
70 |
+
additional_special_tokens (`List[str]`, *optional*):
|
71 |
+
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
|
72 |
+
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
|
73 |
+
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
|
74 |
+
that uses the tokens 2 - 104 only for pretraining
|
75 |
+
sp_model_kwargs (`dict`, *optional*):
|
76 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
77 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
78 |
+
to set:
|
79 |
+
|
80 |
+
- `enable_sampling`: Enable subword regularization.
|
81 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
82 |
+
|
83 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
84 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
85 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
86 |
+
using forward-filtering-and-backward-sampling algorithm.
|
87 |
+
|
88 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
89 |
+
BPE-dropout.
|
90 |
+
"""
|
91 |
+
|
92 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
93 |
+
model_input_names = ["input_ids", "attention_mask"]
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_file,
|
98 |
+
pad_token="<pad>",
|
99 |
+
eos_token="</s>",
|
100 |
+
unk_token="<unk>",
|
101 |
+
mask_token="<mask_2>",
|
102 |
+
mask_token_sent="<mask_1>",
|
103 |
+
additional_special_tokens=None,
|
104 |
+
offset=103, # entries 2 - 104 are only used for pretraining
|
105 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
106 |
+
**kwargs,
|
107 |
+
) -> None:
|
108 |
+
self.offset = offset
|
109 |
+
if additional_special_tokens is not None:
|
110 |
+
if not isinstance(additional_special_tokens, list):
|
111 |
+
raise TypeError(
|
112 |
+
f"additional_special_tokens should be of type {type(list)}, but is"
|
113 |
+
f" {type(additional_special_tokens)}"
|
114 |
+
)
|
115 |
+
additional_special_tokens_extended = (
|
116 |
+
([mask_token_sent] + additional_special_tokens)
|
117 |
+
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
|
118 |
+
else additional_special_tokens
|
119 |
+
)
|
120 |
+
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
|
121 |
+
additional_special_tokens_extended += [
|
122 |
+
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
|
123 |
+
]
|
124 |
+
|
125 |
+
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
|
126 |
+
raise ValueError(
|
127 |
+
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
|
128 |
+
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
|
129 |
+
)
|
130 |
+
additional_special_tokens = additional_special_tokens_extended
|
131 |
+
else:
|
132 |
+
additional_special_tokens_extended = []
|
133 |
+
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
|
134 |
+
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
|
135 |
+
|
136 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
137 |
+
self.mask_token_sent = mask_token_sent
|
138 |
+
self.vocab_file = vocab_file
|
139 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
140 |
+
self.sp_model.Load(vocab_file)
|
141 |
+
|
142 |
+
_added_tokens_decoder = {
|
143 |
+
0: AddedToken(str(pad_token), special=True),
|
144 |
+
1: AddedToken(str(eos_token), special=True),
|
145 |
+
}
|
146 |
+
|
147 |
+
if self.mask_token_sent is not None:
|
148 |
+
_added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True)
|
149 |
+
_added_tokens_decoder[3] = AddedToken(str(mask_token), special=True)
|
150 |
+
|
151 |
+
for i in range(2, self.offset):
|
152 |
+
_added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"<unk_{i}>", special=True)
|
153 |
+
|
154 |
+
# Force update as we want to make sure vocab is enforced (same as fast)
|
155 |
+
self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {})
|
156 |
+
self._added_tokens_decoder.update(_added_tokens_decoder)
|
157 |
+
|
158 |
+
super().__init__(
|
159 |
+
eos_token=eos_token,
|
160 |
+
unk_token=unk_token,
|
161 |
+
mask_token=mask_token,
|
162 |
+
pad_token=pad_token,
|
163 |
+
mask_token_sent=mask_token_sent,
|
164 |
+
offset=offset,
|
165 |
+
additional_special_tokens=additional_special_tokens,
|
166 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
167 |
+
**kwargs,
|
168 |
+
)
|
169 |
+
|
170 |
+
@property
|
171 |
+
def vocab_size(self) -> int:
|
172 |
+
return len(self.sp_model) + self.offset
|
173 |
+
|
174 |
+
def get_vocab(self) -> Dict[str, int]:
|
175 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
176 |
+
vocab.update(self.added_tokens_encoder)
|
177 |
+
return vocab
|
178 |
+
|
179 |
+
def __getstate__(self):
|
180 |
+
state = self.__dict__.copy()
|
181 |
+
state["sp_model"] = None
|
182 |
+
return state
|
183 |
+
|
184 |
+
def __setstate__(self, d):
|
185 |
+
self.__dict__ = d
|
186 |
+
|
187 |
+
# for backward compatibility
|
188 |
+
if not hasattr(self, "sp_model_kwargs"):
|
189 |
+
self.sp_model_kwargs = {}
|
190 |
+
|
191 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
192 |
+
self.sp_model.Load(self.vocab_file)
|
193 |
+
|
194 |
+
def _tokenize(self, text: str) -> List[str]:
|
195 |
+
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
196 |
+
return self.sp_model.encode(text, out_type=str)
|
197 |
+
|
198 |
+
def _convert_token_to_id(self, token: str) -> int:
|
199 |
+
"""Converts a token (str) to an id using the vocab."""
|
200 |
+
sp_id = self.sp_model.piece_to_id(token)
|
201 |
+
return sp_id + self.offset
|
202 |
+
|
203 |
+
def _convert_id_to_token(self, index: int) -> str:
|
204 |
+
"""Converts an index (integer) to a token (str) using the vocab."""
|
205 |
+
if index < self.offset:
|
206 |
+
return self.sp_model.IdToPiece(index)
|
207 |
+
token = self.sp_model.IdToPiece(index - self.offset)
|
208 |
+
return token
|
209 |
+
|
210 |
+
def convert_tokens_to_string(self, tokens):
|
211 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
212 |
+
current_sub_tokens = []
|
213 |
+
out_string = ""
|
214 |
+
for token in tokens:
|
215 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
216 |
+
if token in self.all_special_tokens:
|
217 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
218 |
+
current_sub_tokens = []
|
219 |
+
else:
|
220 |
+
current_sub_tokens.append(token)
|
221 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
222 |
+
return out_string.strip()
|
223 |
+
|
224 |
+
def num_special_tokens_to_add(self, pair=False):
|
225 |
+
"""Just EOS"""
|
226 |
+
return 1
|
227 |
+
|
228 |
+
def _special_token_mask(self, seq):
|
229 |
+
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
|
230 |
+
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
|
231 |
+
|
232 |
+
return [1 if x in all_special_ids else 0 for x in seq]
|
233 |
+
|
234 |
+
def get_special_tokens_mask(
|
235 |
+
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
236 |
+
) -> List[int]:
|
237 |
+
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
|
238 |
+
if already_has_special_tokens:
|
239 |
+
return self._special_token_mask(token_ids_0)
|
240 |
+
elif token_ids_1 is None:
|
241 |
+
return self._special_token_mask(token_ids_0) + [1]
|
242 |
+
else:
|
243 |
+
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
|
244 |
+
|
245 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
246 |
+
"""
|
247 |
+
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
|
248 |
+
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
|
249 |
+
|
250 |
+
- single sequence: `X </s>`
|
251 |
+
- pair of sequences: `A B </s>` (not intended use)
|
252 |
+
|
253 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
254 |
+
separator.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
token_ids_0 (`List[int]`):
|
258 |
+
List of IDs to which the special tokens will be added.
|
259 |
+
token_ids_1 (`List[int]`, *optional*):
|
260 |
+
Optional second list of IDs for sequence pairs.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
264 |
+
"""
|
265 |
+
if token_ids_1 is None:
|
266 |
+
return token_ids_0 + [self.eos_token_id]
|
267 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
268 |
+
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
269 |
+
|
270 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
271 |
+
if not os.path.isdir(save_directory):
|
272 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
273 |
+
return
|
274 |
+
out_vocab_file = os.path.join(
|
275 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
276 |
+
)
|
277 |
+
|
278 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
279 |
+
copyfile(self.vocab_file, out_vocab_file)
|
280 |
+
elif not os.path.isfile(self.vocab_file):
|
281 |
+
with open(out_vocab_file, "wb") as fi:
|
282 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
283 |
+
fi.write(content_spiece_model)
|
284 |
+
|
285 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/pegasus/tokenization_pegasus_fast.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Google and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model PEGASUS."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import is_sentencepiece_available, logging
|
24 |
+
|
25 |
+
|
26 |
+
if is_sentencepiece_available():
|
27 |
+
from .tokenization_pegasus import PegasusTokenizer
|
28 |
+
else:
|
29 |
+
PegasusTokenizer = None
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
SPIECE_UNDERLINE = "▁"
|
36 |
+
|
37 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
|
38 |
+
|
39 |
+
|
40 |
+
class PegasusTokenizerFast(PreTrainedTokenizerFast):
|
41 |
+
r"""
|
42 |
+
Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
43 |
+
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
|
44 |
+
|
45 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
46 |
+
refer to this superclass for more information regarding those methods.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_file (`str`):
|
50 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
51 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
52 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
53 |
+
The token used for padding, for example when batching sequences of different lengths.
|
54 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
55 |
+
The end of sequence token.
|
56 |
+
|
57 |
+
<Tip>
|
58 |
+
|
59 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
60 |
+
The token used is the `sep_token`.
|
61 |
+
|
62 |
+
</Tip>
|
63 |
+
|
64 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
65 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
66 |
+
token instead.
|
67 |
+
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
|
68 |
+
The token used for masking single token values. This is the token used when training this model with masked
|
69 |
+
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
|
70 |
+
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
|
71 |
+
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
72 |
+
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
|
73 |
+
The token used for masking whole target sentences. This is the token used when training this model with gap
|
74 |
+
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
|
75 |
+
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
|
76 |
+
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
|
77 |
+
additional_special_tokens (`List[str]`, *optional*):
|
78 |
+
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
|
79 |
+
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
|
80 |
+
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
|
81 |
+
that uses the tokens 2 - 104 only for pretraining
|
82 |
+
"""
|
83 |
+
|
84 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
85 |
+
slow_tokenizer_class = PegasusTokenizer
|
86 |
+
model_input_names = ["input_ids", "attention_mask"]
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
vocab_file=None,
|
91 |
+
tokenizer_file=None,
|
92 |
+
pad_token="<pad>",
|
93 |
+
eos_token="</s>",
|
94 |
+
unk_token="<unk>",
|
95 |
+
mask_token="<mask_2>",
|
96 |
+
mask_token_sent="<mask_1>",
|
97 |
+
additional_special_tokens=None,
|
98 |
+
offset=103, # entries 2 - 104 are only used for pretraining
|
99 |
+
**kwargs,
|
100 |
+
):
|
101 |
+
self.offset = offset
|
102 |
+
|
103 |
+
if additional_special_tokens is not None:
|
104 |
+
if not isinstance(additional_special_tokens, list):
|
105 |
+
raise TypeError(
|
106 |
+
f"additional_special_tokens should be of type {type(list)}, but is"
|
107 |
+
f" {type(additional_special_tokens)}"
|
108 |
+
)
|
109 |
+
|
110 |
+
additional_special_tokens_extended = (
|
111 |
+
([mask_token_sent] + additional_special_tokens)
|
112 |
+
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
|
113 |
+
else additional_special_tokens
|
114 |
+
)
|
115 |
+
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
|
116 |
+
additional_special_tokens_extended += [
|
117 |
+
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
|
118 |
+
]
|
119 |
+
|
120 |
+
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
|
121 |
+
raise ValueError(
|
122 |
+
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
|
123 |
+
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
|
124 |
+
)
|
125 |
+
additional_special_tokens = additional_special_tokens_extended
|
126 |
+
else:
|
127 |
+
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
|
128 |
+
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
|
129 |
+
|
130 |
+
# pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token
|
131 |
+
# is different from default, we must rebuild the vocab
|
132 |
+
from_slow = kwargs.pop("from_slow", None)
|
133 |
+
from_slow = from_slow or str(pad_token) != "<pad>" or str(eos_token) != "</s>" or str(unk_token) != "<unk>"
|
134 |
+
|
135 |
+
kwargs.pop("added_tokens_decoder", {})
|
136 |
+
|
137 |
+
super().__init__(
|
138 |
+
vocab_file,
|
139 |
+
tokenizer_file=tokenizer_file,
|
140 |
+
pad_token=pad_token,
|
141 |
+
eos_token=eos_token,
|
142 |
+
unk_token=unk_token,
|
143 |
+
mask_token=mask_token,
|
144 |
+
mask_token_sent=mask_token_sent,
|
145 |
+
offset=offset,
|
146 |
+
additional_special_tokens=additional_special_tokens,
|
147 |
+
from_slow=from_slow,
|
148 |
+
**kwargs,
|
149 |
+
)
|
150 |
+
self.vocab_file = vocab_file
|
151 |
+
|
152 |
+
@property
|
153 |
+
def can_save_slow_tokenizer(self) -> bool:
|
154 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
155 |
+
|
156 |
+
def _special_token_mask(self, seq):
|
157 |
+
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
|
158 |
+
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
|
159 |
+
|
160 |
+
if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
|
161 |
+
raise ValueError(
|
162 |
+
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
|
163 |
+
f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
|
164 |
+
)
|
165 |
+
|
166 |
+
return [1 if x in all_special_ids else 0 for x in seq]
|
167 |
+
|
168 |
+
def get_special_tokens_mask(
|
169 |
+
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
|
170 |
+
) -> List[int]:
|
171 |
+
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
|
172 |
+
if already_has_special_tokens:
|
173 |
+
return self._special_token_mask(token_ids_0)
|
174 |
+
elif token_ids_1 is None:
|
175 |
+
return self._special_token_mask(token_ids_0) + [1]
|
176 |
+
else:
|
177 |
+
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
|
178 |
+
|
179 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
180 |
+
"""
|
181 |
+
Build model inputs from a sequence by adding eos to the end. no bos token is added to the front.
|
182 |
+
|
183 |
+
- single sequence: `X </s>`
|
184 |
+
- pair of sequences: `A B </s>` (not intended use)
|
185 |
+
|
186 |
+
Args:
|
187 |
+
token_ids_0 (`List[int]`):
|
188 |
+
List of IDs to which the special tokens will be added
|
189 |
+
token_ids_1 (`List[int]`, *optional*):
|
190 |
+
Optional second list of IDs for sequence pairs.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
194 |
+
"""
|
195 |
+
if token_ids_1 is None:
|
196 |
+
return token_ids_0 + [self.eos_token_id]
|
197 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
198 |
+
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
199 |
+
|
200 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
201 |
+
if not self.can_save_slow_tokenizer:
|
202 |
+
raise ValueError(
|
203 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
204 |
+
"tokenizer."
|
205 |
+
)
|
206 |
+
|
207 |
+
if not os.path.isdir(save_directory):
|
208 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
209 |
+
return
|
210 |
+
out_vocab_file = os.path.join(
|
211 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
212 |
+
)
|
213 |
+
|
214 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
215 |
+
copyfile(self.vocab_file, out_vocab_file)
|
216 |
+
|
217 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__init__.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_poolformer": [
|
21 |
+
"POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"PoolFormerConfig",
|
23 |
+
"PoolFormerOnnxConfig",
|
24 |
+
]
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_vision_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["feature_extraction_poolformer"] = ["PoolFormerFeatureExtractor"]
|
34 |
+
_import_structure["image_processing_poolformer"] = ["PoolFormerImageProcessor"]
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_torch_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_poolformer"] = [
|
43 |
+
"POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
44 |
+
"PoolFormerForImageClassification",
|
45 |
+
"PoolFormerModel",
|
46 |
+
"PoolFormerPreTrainedModel",
|
47 |
+
]
|
48 |
+
|
49 |
+
|
50 |
+
if TYPE_CHECKING:
|
51 |
+
from .configuration_poolformer import (
|
52 |
+
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
53 |
+
PoolFormerConfig,
|
54 |
+
PoolFormerOnnxConfig,
|
55 |
+
)
|
56 |
+
|
57 |
+
try:
|
58 |
+
if not is_vision_available():
|
59 |
+
raise OptionalDependencyNotAvailable()
|
60 |
+
except OptionalDependencyNotAvailable:
|
61 |
+
pass
|
62 |
+
else:
|
63 |
+
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
|
64 |
+
from .image_processing_poolformer import PoolFormerImageProcessor
|
65 |
+
|
66 |
+
try:
|
67 |
+
if not is_torch_available():
|
68 |
+
raise OptionalDependencyNotAvailable()
|
69 |
+
except OptionalDependencyNotAvailable:
|
70 |
+
pass
|
71 |
+
else:
|
72 |
+
from .modeling_poolformer import (
|
73 |
+
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
74 |
+
PoolFormerForImageClassification,
|
75 |
+
PoolFormerModel,
|
76 |
+
PoolFormerPreTrainedModel,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
else:
|
81 |
+
import sys
|
82 |
+
|
83 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/configuration_poolformer.cpython-310.pyc
ADDED
Binary file (5.37 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/convert_poolformer_original_to_pytorch.cpython-310.pyc
ADDED
Binary file (5.42 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/feature_extraction_poolformer.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/image_processing_poolformer.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/modeling_poolformer.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/configuration_poolformer.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PoolFormer model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfig
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class PoolFormerConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a
|
35 |
+
PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the PoolFormer
|
37 |
+
[sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
num_channels (`int`, *optional*, defaults to 3):
|
45 |
+
The number of channels in the input image.
|
46 |
+
patch_size (`int`, *optional*, defaults to 16):
|
47 |
+
The size of the input patch.
|
48 |
+
stride (`int`, *optional*, defaults to 16):
|
49 |
+
The stride of the input patch.
|
50 |
+
pool_size (`int`, *optional*, defaults to 3):
|
51 |
+
The size of the pooling window.
|
52 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
53 |
+
The ratio of the number of channels in the output of the MLP to the number of channels in the input.
|
54 |
+
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
|
55 |
+
The depth of each encoder block.
|
56 |
+
hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`):
|
57 |
+
The hidden sizes of each encoder block.
|
58 |
+
patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`):
|
59 |
+
The size of the input patch for each encoder block.
|
60 |
+
strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`):
|
61 |
+
The stride of the input patch for each encoder block.
|
62 |
+
padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`):
|
63 |
+
The padding of the input patch for each encoder block.
|
64 |
+
num_encoder_blocks (`int`, *optional*, defaults to 4):
|
65 |
+
The number of encoder blocks.
|
66 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout rate for the dropout layers.
|
68 |
+
hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
69 |
+
The activation function for the hidden layers.
|
70 |
+
use_layer_scale (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to use layer scale.
|
72 |
+
layer_scale_init_value (`float`, *optional*, defaults to 1e-05):
|
73 |
+
The initial value for the layer scale.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The initializer range for the weights.
|
76 |
+
|
77 |
+
Example:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import PoolFormerConfig, PoolFormerModel
|
81 |
+
|
82 |
+
>>> # Initializing a PoolFormer sail/poolformer_s12 style configuration
|
83 |
+
>>> configuration = PoolFormerConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration
|
86 |
+
>>> model = PoolFormerModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```
|
91 |
+
"""
|
92 |
+
|
93 |
+
model_type = "poolformer"
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
num_channels=3,
|
98 |
+
patch_size=16,
|
99 |
+
stride=16,
|
100 |
+
pool_size=3,
|
101 |
+
mlp_ratio=4.0,
|
102 |
+
depths=[2, 2, 6, 2],
|
103 |
+
hidden_sizes=[64, 128, 320, 512],
|
104 |
+
patch_sizes=[7, 3, 3, 3],
|
105 |
+
strides=[4, 2, 2, 2],
|
106 |
+
padding=[2, 1, 1, 1],
|
107 |
+
num_encoder_blocks=4,
|
108 |
+
drop_path_rate=0.0,
|
109 |
+
hidden_act="gelu",
|
110 |
+
use_layer_scale=True,
|
111 |
+
layer_scale_init_value=1e-5,
|
112 |
+
initializer_range=0.02,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
self.num_channels = num_channels
|
116 |
+
self.patch_size = patch_size
|
117 |
+
self.stride = stride
|
118 |
+
self.padding = padding
|
119 |
+
self.pool_size = pool_size
|
120 |
+
self.hidden_sizes = hidden_sizes
|
121 |
+
self.mlp_ratio = mlp_ratio
|
122 |
+
self.depths = depths
|
123 |
+
self.patch_sizes = patch_sizes
|
124 |
+
self.strides = strides
|
125 |
+
self.num_encoder_blocks = num_encoder_blocks
|
126 |
+
self.drop_path_rate = drop_path_rate
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.use_layer_scale = use_layer_scale
|
129 |
+
self.layer_scale_init_value = layer_scale_init_value
|
130 |
+
self.initializer_range = initializer_range
|
131 |
+
super().__init__(**kwargs)
|
132 |
+
|
133 |
+
|
134 |
+
class PoolFormerOnnxConfig(OnnxConfig):
|
135 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
136 |
+
|
137 |
+
@property
|
138 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
139 |
+
return OrderedDict(
|
140 |
+
[
|
141 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
142 |
+
]
|
143 |
+
)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def atol_for_validation(self) -> float:
|
147 |
+
return 2e-3
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert PoolFormer checkpoints from the original repository. URL: https://github.com/sail-sg/poolformer"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import json
|
19 |
+
from collections import OrderedDict
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def replace_key_with_offset(key, offset, original_name, new_name):
|
36 |
+
"""
|
37 |
+
Replaces the key by subtracting the offset from the original layer number
|
38 |
+
"""
|
39 |
+
to_find = original_name.split(".")[0]
|
40 |
+
key_list = key.split(".")
|
41 |
+
orig_block_num = int(key_list[key_list.index(to_find) - 2])
|
42 |
+
layer_num = int(key_list[key_list.index(to_find) - 1])
|
43 |
+
new_block_num = orig_block_num - offset
|
44 |
+
|
45 |
+
key = key.replace(f"{orig_block_num}.{layer_num}.{original_name}", f"block.{new_block_num}.{layer_num}.{new_name}")
|
46 |
+
return key
|
47 |
+
|
48 |
+
|
49 |
+
def rename_keys(state_dict):
|
50 |
+
new_state_dict = OrderedDict()
|
51 |
+
total_embed_found, patch_emb_offset = 0, 0
|
52 |
+
for key, value in state_dict.items():
|
53 |
+
if key.startswith("network"):
|
54 |
+
key = key.replace("network", "poolformer.encoder")
|
55 |
+
if "proj" in key:
|
56 |
+
# Works for the first embedding as well as the internal embedding layers
|
57 |
+
if key.endswith("bias") and "patch_embed" not in key:
|
58 |
+
patch_emb_offset += 1
|
59 |
+
to_replace = key[: key.find("proj")]
|
60 |
+
key = key.replace(to_replace, f"patch_embeddings.{total_embed_found}.")
|
61 |
+
key = key.replace("proj", "projection")
|
62 |
+
if key.endswith("bias"):
|
63 |
+
total_embed_found += 1
|
64 |
+
if "patch_embeddings" in key:
|
65 |
+
key = "poolformer.encoder." + key
|
66 |
+
if "mlp.fc1" in key:
|
67 |
+
key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc1", "output.conv1")
|
68 |
+
if "mlp.fc2" in key:
|
69 |
+
key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc2", "output.conv2")
|
70 |
+
if "norm1" in key:
|
71 |
+
key = replace_key_with_offset(key, patch_emb_offset, "norm1", "before_norm")
|
72 |
+
if "norm2" in key:
|
73 |
+
key = replace_key_with_offset(key, patch_emb_offset, "norm2", "after_norm")
|
74 |
+
if "layer_scale_1" in key:
|
75 |
+
key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_1", "layer_scale_1")
|
76 |
+
if "layer_scale_2" in key:
|
77 |
+
key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_2", "layer_scale_2")
|
78 |
+
if "head" in key:
|
79 |
+
key = key.replace("head", "classifier")
|
80 |
+
new_state_dict[key] = value
|
81 |
+
return new_state_dict
|
82 |
+
|
83 |
+
|
84 |
+
# We will verify our results on a COCO image
|
85 |
+
def prepare_img():
|
86 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
87 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
88 |
+
|
89 |
+
return image
|
90 |
+
|
91 |
+
|
92 |
+
@torch.no_grad()
|
93 |
+
def convert_poolformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
|
94 |
+
"""
|
95 |
+
Copy/paste/tweak model's weights to our PoolFormer structure.
|
96 |
+
"""
|
97 |
+
|
98 |
+
# load default PoolFormer configuration
|
99 |
+
config = PoolFormerConfig()
|
100 |
+
|
101 |
+
# set attributes based on model_name
|
102 |
+
repo_id = "huggingface/label-files"
|
103 |
+
size = model_name[-3:]
|
104 |
+
config.num_labels = 1000
|
105 |
+
filename = "imagenet-1k-id2label.json"
|
106 |
+
expected_shape = (1, 1000)
|
107 |
+
|
108 |
+
# set config attributes
|
109 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
110 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
111 |
+
config.id2label = id2label
|
112 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
113 |
+
if size == "s12":
|
114 |
+
config.depths = [2, 2, 6, 2]
|
115 |
+
config.hidden_sizes = [64, 128, 320, 512]
|
116 |
+
config.mlp_ratio = 4.0
|
117 |
+
crop_pct = 0.9
|
118 |
+
elif size == "s24":
|
119 |
+
config.depths = [4, 4, 12, 4]
|
120 |
+
config.hidden_sizes = [64, 128, 320, 512]
|
121 |
+
config.mlp_ratio = 4.0
|
122 |
+
crop_pct = 0.9
|
123 |
+
elif size == "s36":
|
124 |
+
config.depths = [6, 6, 18, 6]
|
125 |
+
config.hidden_sizes = [64, 128, 320, 512]
|
126 |
+
config.mlp_ratio = 4.0
|
127 |
+
config.layer_scale_init_value = 1e-6
|
128 |
+
crop_pct = 0.9
|
129 |
+
elif size == "m36":
|
130 |
+
config.depths = [6, 6, 18, 6]
|
131 |
+
config.hidden_sizes = [96, 192, 384, 768]
|
132 |
+
config.mlp_ratio = 4.0
|
133 |
+
config.layer_scale_init_value = 1e-6
|
134 |
+
crop_pct = 0.95
|
135 |
+
elif size == "m48":
|
136 |
+
config.depths = [8, 8, 24, 8]
|
137 |
+
config.hidden_sizes = [96, 192, 384, 768]
|
138 |
+
config.mlp_ratio = 4.0
|
139 |
+
config.layer_scale_init_value = 1e-6
|
140 |
+
crop_pct = 0.95
|
141 |
+
else:
|
142 |
+
raise ValueError(f"Size {size} not supported")
|
143 |
+
|
144 |
+
# load image processor
|
145 |
+
image_processor = PoolFormerImageProcessor(crop_pct=crop_pct)
|
146 |
+
|
147 |
+
# Prepare image
|
148 |
+
image = prepare_img()
|
149 |
+
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
|
150 |
+
|
151 |
+
logger.info(f"Converting model {model_name}...")
|
152 |
+
|
153 |
+
# load original state dict
|
154 |
+
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
155 |
+
|
156 |
+
# rename keys
|
157 |
+
state_dict = rename_keys(state_dict)
|
158 |
+
|
159 |
+
# create HuggingFace model and load state dict
|
160 |
+
model = PoolFormerForImageClassification(config)
|
161 |
+
model.load_state_dict(state_dict)
|
162 |
+
model.eval()
|
163 |
+
|
164 |
+
# Define image processor
|
165 |
+
image_processor = PoolFormerImageProcessor(crop_pct=crop_pct)
|
166 |
+
pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values
|
167 |
+
|
168 |
+
# forward pass
|
169 |
+
outputs = model(pixel_values)
|
170 |
+
logits = outputs.logits
|
171 |
+
|
172 |
+
# define expected logit slices for different models
|
173 |
+
if size == "s12":
|
174 |
+
expected_slice = torch.tensor([-0.3045, -0.6758, -0.4869])
|
175 |
+
elif size == "s24":
|
176 |
+
expected_slice = torch.tensor([0.4402, -0.1374, -0.8045])
|
177 |
+
elif size == "s36":
|
178 |
+
expected_slice = torch.tensor([-0.6080, -0.5133, -0.5898])
|
179 |
+
elif size == "m36":
|
180 |
+
expected_slice = torch.tensor([0.3952, 0.2263, -1.2668])
|
181 |
+
elif size == "m48":
|
182 |
+
expected_slice = torch.tensor([0.1167, -0.0656, -0.3423])
|
183 |
+
else:
|
184 |
+
raise ValueError(f"Size {size} not supported")
|
185 |
+
|
186 |
+
# verify logits
|
187 |
+
assert logits.shape == expected_shape
|
188 |
+
assert torch.allclose(logits[0, :3], expected_slice, atol=1e-2)
|
189 |
+
|
190 |
+
# finally, save model and image processor
|
191 |
+
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
|
192 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
193 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
194 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
195 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
196 |
+
|
197 |
+
|
198 |
+
if __name__ == "__main__":
|
199 |
+
parser = argparse.ArgumentParser()
|
200 |
+
|
201 |
+
parser.add_argument(
|
202 |
+
"--model_name",
|
203 |
+
default="poolformer_s12",
|
204 |
+
type=str,
|
205 |
+
help="Name of the model you'd like to convert.",
|
206 |
+
)
|
207 |
+
parser.add_argument(
|
208 |
+
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
|
212 |
+
)
|
213 |
+
args = parser.parse_args()
|
214 |
+
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/feature_extraction_poolformer.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Feature extractor class for PoolFormer."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from ...utils import logging
|
20 |
+
from .image_processing_poolformer import PoolFormerImageProcessor
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class PoolFormerFeatureExtractor(PoolFormerImageProcessor):
|
27 |
+
def __init__(self, *args, **kwargs) -> None:
|
28 |
+
warnings.warn(
|
29 |
+
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
|
30 |
+
" Please use PoolFormerImageProcessor instead.",
|
31 |
+
FutureWarning,
|
32 |
+
)
|
33 |
+
super().__init__(*args, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/poolformer/image_processing_poolformer.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for PoolFormer."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import (
|
23 |
+
get_resize_output_image_size,
|
24 |
+
resize,
|
25 |
+
to_channel_dimension_format,
|
26 |
+
)
|
27 |
+
from ...image_utils import (
|
28 |
+
IMAGENET_DEFAULT_MEAN,
|
29 |
+
IMAGENET_DEFAULT_STD,
|
30 |
+
ChannelDimension,
|
31 |
+
ImageInput,
|
32 |
+
PILImageResampling,
|
33 |
+
infer_channel_dimension_format,
|
34 |
+
is_scaled_image,
|
35 |
+
make_list_of_images,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
validate_kwargs,
|
39 |
+
validate_preprocess_arguments,
|
40 |
+
)
|
41 |
+
from ...utils import TensorType, is_vision_available, logging
|
42 |
+
|
43 |
+
|
44 |
+
if is_vision_available():
|
45 |
+
import PIL
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
class PoolFormerImageProcessor(BaseImageProcessor):
|
52 |
+
r"""
|
53 |
+
Constructs a PoolFormer image processor.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
58 |
+
`do_resize` in the `preprocess` method.
|
59 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
60 |
+
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is
|
61 |
+
unset:
|
62 |
+
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
|
63 |
+
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
|
64 |
+
aspect ratio.
|
65 |
+
|
66 |
+
If crop_pct is set:
|
67 |
+
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
|
68 |
+
int(floor(w/crop_pct)))`
|
69 |
+
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
|
70 |
+
whilst maintaining the aspect ratio.
|
71 |
+
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
|
72 |
+
whilst maintaining the aspect ratio.
|
73 |
+
crop_pct (`float`, *optional*, defaults to 0.9):
|
74 |
+
Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess`
|
75 |
+
method.
|
76 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
77 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
78 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
|
80 |
+
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess`
|
81 |
+
method.
|
82 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
|
83 |
+
Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can
|
84 |
+
be overridden by the `crop_size` parameter in the `preprocess` method.
|
85 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
86 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
87 |
+
`preprocess` method.
|
88 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
90 |
+
parameter in the `preprocess` method.
|
91 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
92 |
+
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
|
93 |
+
`preprocess` method.
|
94 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
95 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
96 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
97 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
98 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
99 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
100 |
+
"""
|
101 |
+
|
102 |
+
model_input_names = ["pixel_values"]
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
do_resize: bool = True,
|
107 |
+
size: Dict[str, int] = None,
|
108 |
+
crop_pct: int = 0.9,
|
109 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
110 |
+
do_center_crop: bool = True,
|
111 |
+
crop_size: Dict[str, int] = None,
|
112 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
113 |
+
do_rescale: bool = True,
|
114 |
+
do_normalize: bool = True,
|
115 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
116 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
117 |
+
**kwargs,
|
118 |
+
) -> None:
|
119 |
+
super().__init__(**kwargs)
|
120 |
+
size = size if size is not None else {"shortest_edge": 224}
|
121 |
+
size = get_size_dict(size, default_to_square=False)
|
122 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
123 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
124 |
+
|
125 |
+
self.do_resize = do_resize
|
126 |
+
self.size = size
|
127 |
+
self.crop_pct = crop_pct
|
128 |
+
self.resample = resample
|
129 |
+
self.do_center_crop = do_center_crop
|
130 |
+
self.crop_size = crop_size
|
131 |
+
self.do_rescale = do_rescale
|
132 |
+
self.rescale_factor = rescale_factor
|
133 |
+
self.do_normalize = do_normalize
|
134 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
|
135 |
+
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
|
136 |
+
self._valid_processor_keys = [
|
137 |
+
"images",
|
138 |
+
"do_resize",
|
139 |
+
"size",
|
140 |
+
"crop_pct",
|
141 |
+
"resample",
|
142 |
+
"do_center_crop",
|
143 |
+
"crop_size",
|
144 |
+
"do_rescale",
|
145 |
+
"rescale_factor",
|
146 |
+
"do_normalize",
|
147 |
+
"image_mean",
|
148 |
+
"image_std",
|
149 |
+
"return_tensors",
|
150 |
+
"data_format",
|
151 |
+
"input_data_format",
|
152 |
+
]
|
153 |
+
|
154 |
+
def resize(
|
155 |
+
self,
|
156 |
+
image: np.ndarray,
|
157 |
+
size: Dict[str, int],
|
158 |
+
crop_pct: Optional[float] = None,
|
159 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
160 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
161 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
162 |
+
**kwargs,
|
163 |
+
) -> np.ndarray:
|
164 |
+
"""
|
165 |
+
Resize an image.
|
166 |
+
|
167 |
+
If crop_pct is unset:
|
168 |
+
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
|
169 |
+
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
|
170 |
+
aspect ratio.
|
171 |
+
|
172 |
+
if crop_pct is set:
|
173 |
+
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
|
174 |
+
int(floor(w/crop_pct)))`
|
175 |
+
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
|
176 |
+
whilst maintaining the aspect ratio.
|
177 |
+
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
|
178 |
+
whilst maintaining the aspect ratio.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
image (`np.ndarray`):
|
182 |
+
Image to resize.
|
183 |
+
size (`Dict[str, int]`):
|
184 |
+
Size of the output image.
|
185 |
+
crop_pct (`float`, *optional*):
|
186 |
+
Percentage of the image that will be cropped from the center. If set, the image is resized
|
187 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
188 |
+
Resampling filter to use when resizing the image.
|
189 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
190 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
191 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
192 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
193 |
+
"""
|
194 |
+
size = get_size_dict(size, default_to_square=False)
|
195 |
+
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
|
196 |
+
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
|
197 |
+
if crop_pct is not None:
|
198 |
+
if "shortest_edge" in size:
|
199 |
+
scale_size = int(size["shortest_edge"] / crop_pct)
|
200 |
+
elif "height" in size and "width" in size:
|
201 |
+
if size["height"] == size["width"]:
|
202 |
+
scale_size = int(size["height"] / crop_pct)
|
203 |
+
else:
|
204 |
+
scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct))
|
205 |
+
else:
|
206 |
+
raise ValueError("Invalid size for resize: {}".format(size))
|
207 |
+
|
208 |
+
output_size = get_resize_output_image_size(
|
209 |
+
image, size=scale_size, default_to_square=False, input_data_format=input_data_format
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
if "shortest_edge" in size:
|
213 |
+
output_size = get_resize_output_image_size(
|
214 |
+
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
|
215 |
+
)
|
216 |
+
elif "height" in size and "width" in size:
|
217 |
+
output_size = (size["height"], size["width"])
|
218 |
+
else:
|
219 |
+
raise ValueError("Invalid size for resize: {}".format(size))
|
220 |
+
|
221 |
+
return resize(
|
222 |
+
image,
|
223 |
+
size=output_size,
|
224 |
+
resample=resample,
|
225 |
+
data_format=data_format,
|
226 |
+
input_data_format=input_data_format,
|
227 |
+
**kwargs,
|
228 |
+
)
|
229 |
+
|
230 |
+
def preprocess(
|
231 |
+
self,
|
232 |
+
images: ImageInput,
|
233 |
+
do_resize: bool = None,
|
234 |
+
size: Dict[str, int] = None,
|
235 |
+
crop_pct: int = None,
|
236 |
+
resample: PILImageResampling = None,
|
237 |
+
do_center_crop: bool = None,
|
238 |
+
crop_size: Dict[str, int] = None,
|
239 |
+
do_rescale: bool = None,
|
240 |
+
rescale_factor: float = None,
|
241 |
+
do_normalize: bool = None,
|
242 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
243 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
244 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
245 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
246 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
247 |
+
**kwargs,
|
248 |
+
) -> PIL.Image.Image:
|
249 |
+
"""
|
250 |
+
Preprocess an image or batch of images.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
images (`ImageInput`):
|
254 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
255 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
256 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
257 |
+
Whether to resize the image.
|
258 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
259 |
+
Size of the image after applying resize.
|
260 |
+
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
|
261 |
+
Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`.
|
262 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
263 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
|
264 |
+
has an effect if `do_resize` is set to `True`.
|
265 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
266 |
+
Whether to center crop the image.
|
267 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
268 |
+
Size of the image after applying center crop.
|
269 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
270 |
+
Whether to rescale the image values between [0 - 1].
|
271 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
272 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
273 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
274 |
+
Whether to normalize the image.
|
275 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
276 |
+
Image mean.
|
277 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
278 |
+
Image standard deviation.
|
279 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
280 |
+
The type of tensors to return. Can be one of:
|
281 |
+
- Unset: Return a list of `np.ndarray`.
|
282 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
283 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
284 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
285 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
286 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
287 |
+
The channel dimension format for the output image. Can be one of:
|
288 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
289 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
290 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
291 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
292 |
+
from the input image. Can be one of:
|
293 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
294 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
295 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
296 |
+
"""
|
297 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
298 |
+
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
|
299 |
+
resample = resample if resample is not None else self.resample
|
300 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
301 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
302 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
303 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
304 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
305 |
+
image_std = image_std if image_std is not None else self.image_std
|
306 |
+
|
307 |
+
size = size if size is not None else self.size
|
308 |
+
size = get_size_dict(size, default_to_square=False)
|
309 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
310 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
311 |
+
|
312 |
+
images = make_list_of_images(images)
|
313 |
+
|
314 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
315 |
+
|
316 |
+
if not valid_images(images):
|
317 |
+
raise ValueError(
|
318 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
319 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
320 |
+
)
|
321 |
+
validate_preprocess_arguments(
|
322 |
+
do_rescale=do_rescale,
|
323 |
+
rescale_factor=rescale_factor,
|
324 |
+
do_normalize=do_normalize,
|
325 |
+
image_mean=image_mean,
|
326 |
+
image_std=image_std,
|
327 |
+
do_center_crop=do_center_crop,
|
328 |
+
crop_size=crop_size,
|
329 |
+
do_resize=do_resize,
|
330 |
+
size=size,
|
331 |
+
resample=resample,
|
332 |
+
)
|
333 |
+
|
334 |
+
# All transformations expect numpy arrays.
|
335 |
+
images = [to_numpy_array(image) for image in images]
|
336 |
+
|
337 |
+
if is_scaled_image(images[0]) and do_rescale:
|
338 |
+
logger.warning_once(
|
339 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
340 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
341 |
+
)
|
342 |
+
|
343 |
+
if input_data_format is None:
|
344 |
+
# We assume that all images have the same channel dimension format.
|
345 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
346 |
+
|
347 |
+
if do_resize:
|
348 |
+
images = [
|
349 |
+
self.resize(
|
350 |
+
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
|
351 |
+
)
|
352 |
+
for image in images
|
353 |
+
]
|
354 |
+
|
355 |
+
if do_center_crop:
|
356 |
+
images = [
|
357 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
358 |
+
]
|
359 |
+
|
360 |
+
if do_rescale:
|
361 |
+
images = [
|
362 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
363 |
+
for image in images
|
364 |
+
]
|
365 |
+
|
366 |
+
if do_normalize:
|
367 |
+
images = [
|
368 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
369 |
+
for image in images
|
370 |
+
]
|
371 |
+
|
372 |
+
images = [
|
373 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
374 |
+
]
|
375 |
+
|
376 |
+
data = {"pixel_values": images}
|
377 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|