diff --git "a/venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby.py" "b/venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby.py" @@ -0,0 +1,3344 @@ +from datetime import datetime +import decimal +from decimal import Decimal +import re + +import numpy as np +import pytest + +from pandas.errors import ( + PerformanceWarning, + SpecificationError, +) +import pandas.util._test_decorators as td + +from pandas.core.dtypes.common import is_string_dtype + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + Grouper, + Index, + Interval, + MultiIndex, + RangeIndex, + Series, + Timedelta, + Timestamp, + date_range, + to_datetime, +) +import pandas._testing as tm +from pandas.core.arrays import BooleanArray +import pandas.core.common as com + +pytestmark = pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning") + + +def test_repr(): + # GH18203 + result = repr(Grouper(key="A", level="B")) + expected = "Grouper(key='A', level='B', axis=0, sort=False, dropna=True)" + assert result == expected + + +def test_groupby_std_datetimelike(warn_copy_on_write): + # GH#48481 + tdi = pd.timedelta_range("1 Day", periods=10000) + ser = Series(tdi) + ser[::5] *= 2 # get different std for different groups + + df = ser.to_frame("A").copy() + + df["B"] = ser + Timestamp(0) + df["C"] = ser + Timestamp(0, tz="UTC") + df.iloc[-1] = pd.NaT # last group includes NaTs + + gb = df.groupby(list(range(5)) * 2000) + + result = gb.std() + + # Note: this does not _exactly_ match what we would get if we did + # [gb.get_group(i).std() for i in gb.groups] + # but it _does_ match the floating point error we get doing the + # same operation on int64 data xref GH#51332 + td1 = Timedelta("2887 days 11:21:02.326710176") + td4 = Timedelta("2886 days 00:42:34.664668096") + exp_ser = Series([td1 * 2, td1, td1, td1, td4], index=np.arange(5)) + expected = DataFrame({"A": exp_ser, "B": exp_ser, "C": exp_ser}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) +def test_basic_aggregations(dtype): + data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) + + index = np.arange(9) + np.random.default_rng(2).shuffle(index) + data = data.reindex(index) + + grouped = data.groupby(lambda x: x // 3, group_keys=False) + + for k, v in grouped: + assert len(v) == 3 + + msg = "using SeriesGroupBy.mean" + with tm.assert_produces_warning(FutureWarning, match=msg): + agged = grouped.aggregate(np.mean) + assert agged[1] == 1 + + msg = "using SeriesGroupBy.mean" + with tm.assert_produces_warning(FutureWarning, match=msg): + expected = grouped.agg(np.mean) + tm.assert_series_equal(agged, expected) # shorthand + tm.assert_series_equal(agged, grouped.mean()) + result = grouped.sum() + msg = "using SeriesGroupBy.sum" + with tm.assert_produces_warning(FutureWarning, match=msg): + expected = grouped.agg(np.sum) + tm.assert_series_equal(result, expected) + + expected = grouped.apply(lambda x: x * x.sum()) + transformed = grouped.transform(lambda x: x * x.sum()) + assert transformed[7] == 12 + tm.assert_series_equal(transformed, expected) + + value_grouped = data.groupby(data) + msg = "using SeriesGroupBy.mean" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = value_grouped.aggregate(np.mean) + tm.assert_series_equal(result, agged, check_index_type=False) + + # complex agg + msg = "using SeriesGroupBy.[mean|std]" + with tm.assert_produces_warning(FutureWarning, match=msg): + agged = grouped.aggregate([np.mean, np.std]) + + msg = r"nested renamer is not supported" + with pytest.raises(SpecificationError, match=msg): + grouped.aggregate({"one": np.mean, "two": np.std}) + + group_constants = {0: 10, 1: 20, 2: 30} + msg = ( + "Pinning the groupby key to each group in SeriesGroupBy.agg is deprecated, " + "and cases that relied on it will raise in a future version" + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + # GH#41090 + agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) + assert agged[1] == 21 + + # corner cases + msg = "Must produce aggregated value" + # exception raised is type Exception + with pytest.raises(Exception, match=msg): + grouped.aggregate(lambda x: x * 2) + + +def test_groupby_nonobject_dtype(multiindex_dataframe_random_data): + key = multiindex_dataframe_random_data.index.codes[0] + grouped = multiindex_dataframe_random_data.groupby(key) + result = grouped.sum() + + expected = multiindex_dataframe_random_data.groupby(key.astype("O")).sum() + assert result.index.dtype == np.int8 + assert expected.index.dtype == np.int64 + tm.assert_frame_equal(result, expected, check_index_type=False) + + +def test_groupby_nonobject_dtype_mixed(): + # GH 3911, mixed frame non-conversion + df = DataFrame( + { + "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], + "B": ["one", "one", "two", "three", "two", "two", "one", "three"], + "C": np.random.default_rng(2).standard_normal(8), + "D": np.array(np.random.default_rng(2).standard_normal(8), dtype="float32"), + } + ) + df["value"] = range(len(df)) + + def max_value(group): + return group.loc[group["value"].idxmax()] + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + applied = df.groupby("A").apply(max_value) + result = applied.dtypes + expected = df.dtypes + tm.assert_series_equal(result, expected) + + +def test_inconsistent_return_type(): + # GH5592 + # inconsistent return type + df = DataFrame( + { + "A": ["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], + "B": Series(np.arange(7), dtype="int64"), + "C": date_range("20130101", periods=7), + } + ) + + def f_0(grp): + return grp.iloc[0] + + expected = df.groupby("A").first()[["B"]] + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("A").apply(f_0)[["B"]] + tm.assert_frame_equal(result, expected) + + def f_1(grp): + if grp.name == "Tiger": + return None + return grp.iloc[0] + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("A").apply(f_1)[["B"]] + e = expected.copy() + e.loc["Tiger"] = np.nan + tm.assert_frame_equal(result, e) + + def f_2(grp): + if grp.name == "Pony": + return None + return grp.iloc[0] + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("A").apply(f_2)[["B"]] + e = expected.copy() + e.loc["Pony"] = np.nan + tm.assert_frame_equal(result, e) + + # 5592 revisited, with datetimes + def f_3(grp): + if grp.name == "Pony": + return None + return grp.iloc[0] + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("A").apply(f_3)[["C"]] + e = df.groupby("A").first()[["C"]] + e.loc["Pony"] = pd.NaT + tm.assert_frame_equal(result, e) + + # scalar outputs + def f_4(grp): + if grp.name == "Pony": + return None + return grp.iloc[0].loc["C"] + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("A").apply(f_4) + e = df.groupby("A").first()["C"].copy() + e.loc["Pony"] = np.nan + e.name = None + tm.assert_series_equal(result, e) + + +def test_pass_args_kwargs(ts, tsframe): + def f(x, q=None, axis=0): + return np.percentile(x, q, axis=axis) + + g = lambda x: np.percentile(x, 80, axis=0) + + # Series + ts_grouped = ts.groupby(lambda x: x.month) + agg_result = ts_grouped.agg(np.percentile, 80, axis=0) + apply_result = ts_grouped.apply(np.percentile, 80, axis=0) + trans_result = ts_grouped.transform(np.percentile, 80, axis=0) + + agg_expected = ts_grouped.quantile(0.8) + trans_expected = ts_grouped.transform(g) + + tm.assert_series_equal(apply_result, agg_expected) + tm.assert_series_equal(agg_result, agg_expected) + tm.assert_series_equal(trans_result, trans_expected) + + agg_result = ts_grouped.agg(f, q=80) + apply_result = ts_grouped.apply(f, q=80) + trans_result = ts_grouped.transform(f, q=80) + tm.assert_series_equal(agg_result, agg_expected) + tm.assert_series_equal(apply_result, agg_expected) + tm.assert_series_equal(trans_result, trans_expected) + + # DataFrame + for as_index in [True, False]: + df_grouped = tsframe.groupby(lambda x: x.month, as_index=as_index) + warn = None if as_index else FutureWarning + msg = "A grouping .* was excluded from the result" + with tm.assert_produces_warning(warn, match=msg): + agg_result = df_grouped.agg(np.percentile, 80, axis=0) + with tm.assert_produces_warning(warn, match=msg): + apply_result = df_grouped.apply(DataFrame.quantile, 0.8) + with tm.assert_produces_warning(warn, match=msg): + expected = df_grouped.quantile(0.8) + tm.assert_frame_equal(apply_result, expected, check_names=False) + tm.assert_frame_equal(agg_result, expected) + + apply_result = df_grouped.apply(DataFrame.quantile, [0.4, 0.8]) + with tm.assert_produces_warning(warn, match=msg): + expected_seq = df_grouped.quantile([0.4, 0.8]) + tm.assert_frame_equal(apply_result, expected_seq, check_names=False) + + with tm.assert_produces_warning(warn, match=msg): + agg_result = df_grouped.agg(f, q=80) + with tm.assert_produces_warning(warn, match=msg): + apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) + tm.assert_frame_equal(agg_result, expected) + tm.assert_frame_equal(apply_result, expected, check_names=False) + + +@pytest.mark.parametrize("as_index", [True, False]) +def test_pass_args_kwargs_duplicate_columns(tsframe, as_index): + # go through _aggregate_frame with self.axis == 0 and duplicate columns + tsframe.columns = ["A", "B", "A", "C"] + gb = tsframe.groupby(lambda x: x.month, as_index=as_index) + + warn = None if as_index else FutureWarning + msg = "A grouping .* was excluded from the result" + with tm.assert_produces_warning(warn, match=msg): + res = gb.agg(np.percentile, 80, axis=0) + + ex_data = { + 1: tsframe[tsframe.index.month == 1].quantile(0.8), + 2: tsframe[tsframe.index.month == 2].quantile(0.8), + } + expected = DataFrame(ex_data).T + if not as_index: + # TODO: try to get this more consistent? + expected.index = Index(range(2)) + + tm.assert_frame_equal(res, expected) + + +def test_len(): + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) + assert len(grouped) == len(df) + + grouped = df.groupby([lambda x: x.year, lambda x: x.month]) + expected = len({(x.year, x.month) for x in df.index}) + assert len(grouped) == expected + + +def test_len_nan_group(): + # issue 11016 + df = DataFrame({"a": [np.nan] * 3, "b": [1, 2, 3]}) + assert len(df.groupby("a")) == 0 + assert len(df.groupby("b")) == 3 + assert len(df.groupby(["a", "b"])) == 3 + + +def test_basic_regression(): + # regression + result = Series([1.0 * x for x in list(range(1, 10)) * 10]) + + data = np.random.default_rng(2).random(1100) * 10.0 + groupings = Series(data) + + grouped = result.groupby(groupings) + grouped.mean() + + +@pytest.mark.parametrize( + "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] +) +def test_with_na_groups(dtype): + index = Index(np.arange(10)) + values = Series(np.ones(10), index, dtype=dtype) + labels = Series( + [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], + index=index, + ) + + # this SHOULD be an int + grouped = values.groupby(labels) + agged = grouped.agg(len) + expected = Series([4, 2], index=["bar", "foo"]) + + tm.assert_series_equal(agged, expected, check_dtype=False) + + # assert issubclass(agged.dtype.type, np.integer) + + # explicitly return a float from my function + def f(x): + return float(len(x)) + + agged = grouped.agg(f) + expected = Series([4.0, 2.0], index=["bar", "foo"]) + + tm.assert_series_equal(agged, expected) + + +def test_indices_concatenation_order(): + # GH 2808 + + def f1(x): + y = x[(x.b % 2) == 1] ** 2 + if y.empty: + multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) + res = DataFrame(columns=["a"], index=multiindex) + return res + else: + y = y.set_index(["b", "c"]) + return y + + def f2(x): + y = x[(x.b % 2) == 1] ** 2 + if y.empty: + return DataFrame() + else: + y = y.set_index(["b", "c"]) + return y + + def f3(x): + y = x[(x.b % 2) == 1] ** 2 + if y.empty: + multiindex = MultiIndex( + levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] + ) + res = DataFrame(columns=["a", "b"], index=multiindex) + return res + else: + return y + + df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) + + df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) + + depr_msg = "The behavior of array concatenation with empty entries is deprecated" + + # correct result + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result1 = df.groupby("a").apply(f1) + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result2 = df2.groupby("a").apply(f1) + tm.assert_frame_equal(result1, result2) + + # should fail (not the same number of levels) + msg = "Cannot concat indices that do not have the same number of levels" + with pytest.raises(AssertionError, match=msg): + df.groupby("a").apply(f2) + with pytest.raises(AssertionError, match=msg): + df2.groupby("a").apply(f2) + + # should fail (incorrect shape) + with pytest.raises(AssertionError, match=msg): + df.groupby("a").apply(f3) + with pytest.raises(AssertionError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + df2.groupby("a").apply(f3) + + +def test_attr_wrapper(ts): + grouped = ts.groupby(lambda x: x.weekday()) + + result = grouped.std() + expected = grouped.agg(lambda x: np.std(x, ddof=1)) + tm.assert_series_equal(result, expected) + + # this is pretty cool + result = grouped.describe() + expected = {name: gp.describe() for name, gp in grouped} + expected = DataFrame(expected).T + tm.assert_frame_equal(result, expected) + + # get attribute + result = grouped.dtype + expected = grouped.agg(lambda x: x.dtype) + tm.assert_series_equal(result, expected) + + # make sure raises error + msg = "'SeriesGroupBy' object has no attribute 'foo'" + with pytest.raises(AttributeError, match=msg): + getattr(grouped, "foo") + + +def test_frame_groupby(tsframe): + grouped = tsframe.groupby(lambda x: x.weekday()) + + # aggregate + aggregated = grouped.aggregate("mean") + assert len(aggregated) == 5 + assert len(aggregated.columns) == 4 + + # by string + tscopy = tsframe.copy() + tscopy["weekday"] = [x.weekday() for x in tscopy.index] + stragged = tscopy.groupby("weekday").aggregate("mean") + tm.assert_frame_equal(stragged, aggregated, check_names=False) + + # transform + grouped = tsframe.head(30).groupby(lambda x: x.weekday()) + transformed = grouped.transform(lambda x: x - x.mean()) + assert len(transformed) == 30 + assert len(transformed.columns) == 4 + + # transform propagate + transformed = grouped.transform(lambda x: x.mean()) + for name, group in grouped: + mean = group.mean() + for idx in group.index: + tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) + + # iterate + for weekday, group in grouped: + assert group.index[0].weekday() == weekday + + # groups / group_indices + groups = grouped.groups + indices = grouped.indices + + for k, v in groups.items(): + samething = tsframe.index.take(indices[k]) + assert (samething == v).all() + + +def test_frame_groupby_columns(tsframe): + mapping = {"A": 0, "B": 0, "C": 1, "D": 1} + msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + grouped = tsframe.groupby(mapping, axis=1) + + # aggregate + aggregated = grouped.aggregate("mean") + assert len(aggregated) == len(tsframe) + assert len(aggregated.columns) == 2 + + # transform + tf = lambda x: x - x.mean() + msg = "The 'axis' keyword in DataFrame.groupby is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + groupedT = tsframe.T.groupby(mapping, axis=0) + tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) + + # iterate + for k, v in grouped: + assert len(v.columns) == 2 + + +def test_frame_set_name_single(df): + grouped = df.groupby("A") + + result = grouped.mean(numeric_only=True) + assert result.index.name == "A" + + result = df.groupby("A", as_index=False).mean(numeric_only=True) + assert result.index.name != "A" + + result = grouped[["C", "D"]].agg("mean") + assert result.index.name == "A" + + result = grouped.agg({"C": "mean", "D": "std"}) + assert result.index.name == "A" + + result = grouped["C"].mean() + assert result.index.name == "A" + result = grouped["C"].agg("mean") + assert result.index.name == "A" + result = grouped["C"].agg(["mean", "std"]) + assert result.index.name == "A" + + msg = r"nested renamer is not supported" + with pytest.raises(SpecificationError, match=msg): + grouped["C"].agg({"foo": "mean", "bar": "std"}) + + +def test_multi_func(df): + col1 = df["A"] + col2 = df["B"] + + grouped = df.groupby([col1.get, col2.get]) + agged = grouped.mean(numeric_only=True) + expected = df.groupby(["A", "B"]).mean() + + # TODO groupby get drops names + tm.assert_frame_equal( + agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False + ) + + # some "groups" with no data + df = DataFrame( + { + "v1": np.random.default_rng(2).standard_normal(6), + "v2": np.random.default_rng(2).standard_normal(6), + "k1": np.array(["b", "b", "b", "a", "a", "a"]), + "k2": np.array(["1", "1", "1", "2", "2", "2"]), + }, + index=["one", "two", "three", "four", "five", "six"], + ) + # only verify that it works for now + grouped = df.groupby(["k1", "k2"]) + grouped.agg("sum") + + +def test_multi_key_multiple_functions(df): + grouped = df.groupby(["A", "B"])["C"] + + agged = grouped.agg(["mean", "std"]) + expected = DataFrame({"mean": grouped.agg("mean"), "std": grouped.agg("std")}) + tm.assert_frame_equal(agged, expected) + + +def test_frame_multi_key_function_list(): + data = DataFrame( + { + "A": [ + "foo", + "foo", + "foo", + "foo", + "bar", + "bar", + "bar", + "bar", + "foo", + "foo", + "foo", + ], + "B": [ + "one", + "one", + "one", + "two", + "one", + "one", + "one", + "two", + "two", + "two", + "one", + ], + "D": np.random.default_rng(2).standard_normal(11), + "E": np.random.default_rng(2).standard_normal(11), + "F": np.random.default_rng(2).standard_normal(11), + } + ) + + grouped = data.groupby(["A", "B"]) + funcs = ["mean", "std"] + agged = grouped.agg(funcs) + expected = pd.concat( + [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], + keys=["D", "E", "F"], + axis=1, + ) + assert isinstance(agged.index, MultiIndex) + assert isinstance(expected.index, MultiIndex) + tm.assert_frame_equal(agged, expected) + + +def test_frame_multi_key_function_list_partial_failure(): + data = DataFrame( + { + "A": [ + "foo", + "foo", + "foo", + "foo", + "bar", + "bar", + "bar", + "bar", + "foo", + "foo", + "foo", + ], + "B": [ + "one", + "one", + "one", + "two", + "one", + "one", + "one", + "two", + "two", + "two", + "one", + ], + "C": [ + "dull", + "dull", + "shiny", + "dull", + "dull", + "shiny", + "shiny", + "dull", + "shiny", + "shiny", + "shiny", + ], + "D": np.random.default_rng(2).standard_normal(11), + "E": np.random.default_rng(2).standard_normal(11), + "F": np.random.default_rng(2).standard_normal(11), + } + ) + + grouped = data.groupby(["A", "B"]) + funcs = ["mean", "std"] + msg = re.escape("agg function failed [how->mean,dtype->") + with pytest.raises(TypeError, match=msg): + grouped.agg(funcs) + + +@pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) +def test_groupby_multiple_columns(df, op): + data = df + grouped = data.groupby(["A", "B"]) + + result1 = op(grouped) + + keys = [] + values = [] + for n1, gp1 in data.groupby("A"): + for n2, gp2 in gp1.groupby("B"): + keys.append((n1, n2)) + values.append(op(gp2.loc[:, ["C", "D"]])) + + mi = MultiIndex.from_tuples(keys, names=["A", "B"]) + expected = pd.concat(values, axis=1).T + expected.index = mi + + # a little bit crude + for col in ["C", "D"]: + result_col = op(grouped[col]) + pivoted = result1[col] + exp = expected[col] + tm.assert_series_equal(result_col, exp) + tm.assert_series_equal(pivoted, exp) + + # test single series works the same + result = data["C"].groupby([data["A"], data["B"]]).mean() + expected = data.groupby(["A", "B"]).mean()["C"] + + tm.assert_series_equal(result, expected) + + +def test_as_index_select_column(): + # GH 5764 + df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) + result = df.groupby("A", as_index=False)["B"].get_group(1) + expected = Series([2, 4], name="B") + tm.assert_series_equal(result, expected) + + result = df.groupby("A", as_index=False, group_keys=True)["B"].apply( + lambda x: x.cumsum() + ) + expected = Series( + [2, 6, 6], name="B", index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) + ) + tm.assert_series_equal(result, expected) + + +def test_obj_arg_get_group_deprecated(): + depr_msg = "obj is deprecated" + + df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]}) + expected = df.iloc[df.groupby("b").indices.get(4)] + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + result = df.groupby("b").get_group(4, obj=df) + tm.assert_frame_equal(result, expected) + + +def test_groupby_as_index_select_column_sum_empty_df(): + # GH 35246 + df = DataFrame(columns=Index(["A", "B", "C"], name="alpha")) + left = df.groupby(by="A", as_index=False)["B"].sum(numeric_only=False) + + expected = DataFrame(columns=df.columns[:2], index=range(0)) + # GH#50744 - Columns after selection shouldn't retain names + expected.columns.names = [None] + tm.assert_frame_equal(left, expected) + + +def test_groupby_as_index_agg(df): + grouped = df.groupby("A", as_index=False) + + # single-key + + result = grouped[["C", "D"]].agg("mean") + expected = grouped.mean(numeric_only=True) + tm.assert_frame_equal(result, expected) + + result2 = grouped.agg({"C": "mean", "D": "sum"}) + expected2 = grouped.mean(numeric_only=True) + expected2["D"] = grouped.sum()["D"] + tm.assert_frame_equal(result2, expected2) + + grouped = df.groupby("A", as_index=True) + + msg = r"nested renamer is not supported" + with pytest.raises(SpecificationError, match=msg): + grouped["C"].agg({"Q": "sum"}) + + # multi-key + + grouped = df.groupby(["A", "B"], as_index=False) + + result = grouped.agg("mean") + expected = grouped.mean() + tm.assert_frame_equal(result, expected) + + result2 = grouped.agg({"C": "mean", "D": "sum"}) + expected2 = grouped.mean() + expected2["D"] = grouped.sum()["D"] + tm.assert_frame_equal(result2, expected2) + + expected3 = grouped["C"].sum() + expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) + msg = "Passing a dictionary to SeriesGroupBy.agg is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result3 = grouped["C"].agg({"Q": "sum"}) + tm.assert_frame_equal(result3, expected3) + + # GH7115 & GH8112 & GH8582 + df = DataFrame( + np.random.default_rng(2).integers(0, 100, (50, 3)), + columns=["jim", "joe", "jolie"], + ) + ts = Series(np.random.default_rng(2).integers(5, 10, 50), name="jim") + + gr = df.groupby(ts) + gr.nth(0) # invokes set_selection_from_grouper internally + + msg = "The behavior of DataFrame.sum with axis=None is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False): + res = gr.apply(sum) + with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False): + alt = df.groupby(ts).apply(sum) + tm.assert_frame_equal(res, alt) + + for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: + gr = df.groupby(ts, as_index=False) + left = getattr(gr, attr)() + + gr = df.groupby(ts.values, as_index=True) + right = getattr(gr, attr)().reset_index(drop=True) + + tm.assert_frame_equal(left, right) + + +def test_ops_not_as_index(reduction_func): + # GH 10355, 21090 + # Using as_index=False should not modify grouped column + + if reduction_func in ("corrwith", "nth", "ngroup"): + pytest.skip(f"GH 5755: Test not applicable for {reduction_func}") + + df = DataFrame( + np.random.default_rng(2).integers(0, 5, size=(100, 2)), columns=["a", "b"] + ) + expected = getattr(df.groupby("a"), reduction_func)() + if reduction_func == "size": + expected = expected.rename("size") + expected = expected.reset_index() + + if reduction_func != "size": + # 32 bit compat -> groupby preserves dtype whereas reset_index casts to int64 + expected["a"] = expected["a"].astype(df["a"].dtype) + + g = df.groupby("a", as_index=False) + + result = getattr(g, reduction_func)() + tm.assert_frame_equal(result, expected) + + result = g.agg(reduction_func) + tm.assert_frame_equal(result, expected) + + result = getattr(g["b"], reduction_func)() + tm.assert_frame_equal(result, expected) + + result = g["b"].agg(reduction_func) + tm.assert_frame_equal(result, expected) + + +def test_as_index_series_return_frame(df): + grouped = df.groupby("A", as_index=False) + grouped2 = df.groupby(["A", "B"], as_index=False) + + result = grouped["C"].agg("sum") + expected = grouped.agg("sum").loc[:, ["A", "C"]] + assert isinstance(result, DataFrame) + tm.assert_frame_equal(result, expected) + + result2 = grouped2["C"].agg("sum") + expected2 = grouped2.agg("sum").loc[:, ["A", "B", "C"]] + assert isinstance(result2, DataFrame) + tm.assert_frame_equal(result2, expected2) + + result = grouped["C"].sum() + expected = grouped.sum().loc[:, ["A", "C"]] + assert isinstance(result, DataFrame) + tm.assert_frame_equal(result, expected) + + result2 = grouped2["C"].sum() + expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] + assert isinstance(result2, DataFrame) + tm.assert_frame_equal(result2, expected2) + + +def test_as_index_series_column_slice_raises(df): + # GH15072 + grouped = df.groupby("A", as_index=False) + msg = r"Column\(s\) C already selected" + + with pytest.raises(IndexError, match=msg): + grouped["C"].__getitem__("D") + + +def test_groupby_as_index_cython(df): + data = df + + # single-key + grouped = data.groupby("A", as_index=False) + result = grouped.mean(numeric_only=True) + expected = data.groupby(["A"]).mean(numeric_only=True) + expected.insert(0, "A", expected.index) + expected.index = RangeIndex(len(expected)) + tm.assert_frame_equal(result, expected) + + # multi-key + grouped = data.groupby(["A", "B"], as_index=False) + result = grouped.mean() + expected = data.groupby(["A", "B"]).mean() + + arrays = list(zip(*expected.index.values)) + expected.insert(0, "A", arrays[0]) + expected.insert(1, "B", arrays[1]) + expected.index = RangeIndex(len(expected)) + tm.assert_frame_equal(result, expected) + + +def test_groupby_as_index_series_scalar(df): + grouped = df.groupby(["A", "B"], as_index=False) + + # GH #421 + + result = grouped["C"].agg(len) + expected = grouped.agg(len).loc[:, ["A", "B", "C"]] + tm.assert_frame_equal(result, expected) + + +def test_groupby_as_index_corner(df, ts): + msg = "as_index=False only valid with DataFrame" + with pytest.raises(TypeError, match=msg): + ts.groupby(lambda x: x.weekday(), as_index=False) + + msg = "as_index=False only valid for axis=0" + depr_msg = "DataFrame.groupby with axis=1 is deprecated" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + df.groupby(lambda x: x.lower(), as_index=False, axis=1) + + +def test_groupby_multiple_key(): + df = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) + agged = grouped.sum() + tm.assert_almost_equal(df.values, agged.values) + + depr_msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + grouped = df.T.groupby( + [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 + ) + + agged = grouped.agg(lambda x: x.sum()) + tm.assert_index_equal(agged.index, df.columns) + tm.assert_almost_equal(df.T.values, agged.values) + + agged = grouped.agg(lambda x: x.sum()) + tm.assert_almost_equal(df.T.values, agged.values) + + +def test_groupby_multi_corner(df): + # test that having an all-NA column doesn't mess you up + df = df.copy() + df["bad"] = np.nan + agged = df.groupby(["A", "B"]).mean() + + expected = df.groupby(["A", "B"]).mean() + expected["bad"] = np.nan + + tm.assert_frame_equal(agged, expected) + + +def test_raises_on_nuisance(df): + grouped = df.groupby("A") + msg = re.escape("agg function failed [how->mean,dtype->") + with pytest.raises(TypeError, match=msg): + grouped.agg("mean") + with pytest.raises(TypeError, match=msg): + grouped.mean() + + df = df.loc[:, ["A", "C", "D"]] + df["E"] = datetime.now() + grouped = df.groupby("A") + msg = "datetime64 type does not support sum operations" + with pytest.raises(TypeError, match=msg): + grouped.agg("sum") + with pytest.raises(TypeError, match=msg): + grouped.sum() + + # won't work with axis = 1 + depr_msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) + msg = "does not support reduction 'sum'" + with pytest.raises(TypeError, match=msg): + grouped.agg(lambda x: x.sum(0, numeric_only=False)) + + +@pytest.mark.parametrize( + "agg_function", + ["max", "min"], +) +def test_keep_nuisance_agg(df, agg_function): + # GH 38815 + grouped = df.groupby("A") + result = getattr(grouped, agg_function)() + expected = result.copy() + expected.loc["bar", "B"] = getattr(df.loc[df["A"] == "bar", "B"], agg_function)() + expected.loc["foo", "B"] = getattr(df.loc[df["A"] == "foo", "B"], agg_function)() + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "agg_function", + ["sum", "mean", "prod", "std", "var", "sem", "median"], +) +@pytest.mark.parametrize("numeric_only", [True, False]) +def test_omit_nuisance_agg(df, agg_function, numeric_only): + # GH 38774, GH 38815 + grouped = df.groupby("A") + + no_drop_nuisance = ("var", "std", "sem", "mean", "prod", "median") + if agg_function in no_drop_nuisance and not numeric_only: + # Added numeric_only as part of GH#46560; these do not drop nuisance + # columns when numeric_only is False + if agg_function in ("std", "sem"): + klass = ValueError + msg = "could not convert string to float: 'one'" + else: + klass = TypeError + msg = re.escape(f"agg function failed [how->{agg_function},dtype->") + with pytest.raises(klass, match=msg): + getattr(grouped, agg_function)(numeric_only=numeric_only) + else: + result = getattr(grouped, agg_function)(numeric_only=numeric_only) + if not numeric_only and agg_function == "sum": + # sum is successful on column B + columns = ["A", "B", "C", "D"] + else: + columns = ["A", "C", "D"] + expected = getattr(df.loc[:, columns].groupby("A"), agg_function)( + numeric_only=numeric_only + ) + tm.assert_frame_equal(result, expected) + + +def test_raise_on_nuisance_python_single(df): + # GH 38815 + grouped = df.groupby("A") + with pytest.raises(ValueError, match="could not convert"): + grouped.skew() + + +def test_raise_on_nuisance_python_multiple(three_group): + grouped = three_group.groupby(["A", "B"]) + msg = re.escape("agg function failed [how->mean,dtype->") + with pytest.raises(TypeError, match=msg): + grouped.agg("mean") + with pytest.raises(TypeError, match=msg): + grouped.mean() + + +def test_empty_groups_corner(multiindex_dataframe_random_data): + # handle empty groups + df = DataFrame( + { + "k1": np.array(["b", "b", "b", "a", "a", "a"]), + "k2": np.array(["1", "1", "1", "2", "2", "2"]), + "k3": ["foo", "bar"] * 3, + "v1": np.random.default_rng(2).standard_normal(6), + "v2": np.random.default_rng(2).standard_normal(6), + } + ) + + grouped = df.groupby(["k1", "k2"]) + result = grouped[["v1", "v2"]].agg("mean") + expected = grouped.mean(numeric_only=True) + tm.assert_frame_equal(result, expected) + + grouped = multiindex_dataframe_random_data[3:5].groupby(level=0) + agged = grouped.apply(lambda x: x.mean()) + agged_A = grouped["A"].apply("mean") + tm.assert_series_equal(agged["A"], agged_A) + assert agged.index.name == "first" + + +def test_nonsense_func(): + df = DataFrame([0]) + msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" + with pytest.raises(TypeError, match=msg): + df.groupby(lambda x: x + "foo") + + +def test_wrap_aggregated_output_multindex(multiindex_dataframe_random_data): + df = multiindex_dataframe_random_data.T + df["baz", "two"] = "peekaboo" + + keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] + msg = re.escape("agg function failed [how->mean,dtype->") + with pytest.raises(TypeError, match=msg): + df.groupby(keys).agg("mean") + agged = df.drop(columns=("baz", "two")).groupby(keys).agg("mean") + assert isinstance(agged.columns, MultiIndex) + + def aggfun(ser): + if ser.name == ("foo", "one"): + raise TypeError("Test error message") + return ser.sum() + + with pytest.raises(TypeError, match="Test error message"): + df.groupby(keys).aggregate(aggfun) + + +def test_groupby_level_apply(multiindex_dataframe_random_data): + result = multiindex_dataframe_random_data.groupby(level=0).count() + assert result.index.name == "first" + result = multiindex_dataframe_random_data.groupby(level=1).count() + assert result.index.name == "second" + + result = multiindex_dataframe_random_data["A"].groupby(level=0).count() + assert result.index.name == "first" + + +def test_groupby_level_mapper(multiindex_dataframe_random_data): + deleveled = multiindex_dataframe_random_data.reset_index() + + mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} + mapper1 = {"one": 0, "two": 0, "three": 1} + + result0 = multiindex_dataframe_random_data.groupby(mapper0, level=0).sum() + result1 = multiindex_dataframe_random_data.groupby(mapper1, level=1).sum() + + mapped_level0 = np.array( + [mapper0.get(x) for x in deleveled["first"]], dtype=np.int64 + ) + mapped_level1 = np.array( + [mapper1.get(x) for x in deleveled["second"]], dtype=np.int64 + ) + expected0 = multiindex_dataframe_random_data.groupby(mapped_level0).sum() + expected1 = multiindex_dataframe_random_data.groupby(mapped_level1).sum() + expected0.index.name, expected1.index.name = "first", "second" + + tm.assert_frame_equal(result0, expected0) + tm.assert_frame_equal(result1, expected1) + + +def test_groupby_level_nonmulti(): + # GH 1313, GH 13901 + s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) + expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) + + result = s.groupby(level=0).sum() + tm.assert_series_equal(result, expected) + result = s.groupby(level=[0]).sum() + tm.assert_series_equal(result, expected) + result = s.groupby(level=-1).sum() + tm.assert_series_equal(result, expected) + result = s.groupby(level=[-1]).sum() + tm.assert_series_equal(result, expected) + + msg = "level > 0 or level < -1 only valid with MultiIndex" + with pytest.raises(ValueError, match=msg): + s.groupby(level=1) + with pytest.raises(ValueError, match=msg): + s.groupby(level=-2) + msg = "No group keys passed!" + with pytest.raises(ValueError, match=msg): + s.groupby(level=[]) + msg = "multiple levels only valid with MultiIndex" + with pytest.raises(ValueError, match=msg): + s.groupby(level=[0, 0]) + with pytest.raises(ValueError, match=msg): + s.groupby(level=[0, 1]) + msg = "level > 0 or level < -1 only valid with MultiIndex" + with pytest.raises(ValueError, match=msg): + s.groupby(level=[1]) + + +def test_groupby_complex(): + # GH 12902 + a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) + expected = Series((1 + 2j, 5 + 10j)) + + result = a.groupby(level=0).sum() + tm.assert_series_equal(result, expected) + + +def test_groupby_complex_mean(): + # GH 26475 + df = DataFrame( + [ + {"a": 2, "b": 1 + 2j}, + {"a": 1, "b": 1 + 1j}, + {"a": 1, "b": 1 + 2j}, + ] + ) + result = df.groupby("b").mean() + expected = DataFrame( + [[1.0], [1.5]], + index=Index([(1 + 1j), (1 + 2j)], name="b"), + columns=Index(["a"]), + ) + tm.assert_frame_equal(result, expected) + + +def test_groupby_complex_numbers(using_infer_string): + # GH 17927 + df = DataFrame( + [ + {"a": 1, "b": 1 + 1j}, + {"a": 1, "b": 1 + 2j}, + {"a": 4, "b": 1}, + ] + ) + dtype = "string[pyarrow_numpy]" if using_infer_string else object + expected = DataFrame( + np.array([1, 1, 1], dtype=np.int64), + index=Index([(1 + 1j), (1 + 2j), (1 + 0j)], name="b"), + columns=Index(["a"], dtype=dtype), + ) + result = df.groupby("b", sort=False).count() + tm.assert_frame_equal(result, expected) + + # Sorted by the magnitude of the complex numbers + expected.index = Index([(1 + 0j), (1 + 1j), (1 + 2j)], name="b") + result = df.groupby("b", sort=True).count() + tm.assert_frame_equal(result, expected) + + +def test_groupby_series_indexed_differently(): + s1 = Series( + [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], + index=Index(["a", "b", "c", "d", "e", "f", "g"]), + ) + s2 = Series( + [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) + ) + + grouped = s1.groupby(s2) + agged = grouped.mean() + exp = s1.groupby(s2.reindex(s1.index).get).mean() + tm.assert_series_equal(agged, exp) + + +def test_groupby_with_hier_columns(): + tuples = list( + zip( + *[ + ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + ) + ) + index = MultiIndex.from_tuples(tuples) + columns = MultiIndex.from_tuples( + [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] + ) + df = DataFrame( + np.random.default_rng(2).standard_normal((8, 4)), index=index, columns=columns + ) + + result = df.groupby(level=0).mean() + tm.assert_index_equal(result.columns, columns) + + depr_msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + gb = df.groupby(level=0, axis=1) + result = gb.mean() + tm.assert_index_equal(result.index, df.index) + + result = df.groupby(level=0).agg("mean") + tm.assert_index_equal(result.columns, columns) + + result = df.groupby(level=0).apply(lambda x: x.mean()) + tm.assert_index_equal(result.columns, columns) + + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + gb = df.groupby(level=0, axis=1) + result = gb.agg(lambda x: x.mean(1)) + tm.assert_index_equal(result.columns, Index(["A", "B"])) + tm.assert_index_equal(result.index, df.index) + + # add a nuisance column + sorted_columns, _ = columns.sortlevel(0) + df["A", "foo"] = "bar" + result = df.groupby(level=0).mean(numeric_only=True) + tm.assert_index_equal(result.columns, df.columns[:-1]) + + +def test_grouping_ndarray(df): + grouped = df.groupby(df["A"].values) + result = grouped.sum() + expected = df.groupby(df["A"].rename(None)).sum() + tm.assert_frame_equal(result, expected) + + +def test_groupby_wrong_multi_labels(): + index = Index([0, 1, 2, 3, 4], name="index") + data = DataFrame( + { + "foo": ["foo1", "foo1", "foo2", "foo1", "foo3"], + "bar": ["bar1", "bar2", "bar2", "bar1", "bar1"], + "baz": ["baz1", "baz1", "baz1", "baz2", "baz2"], + "spam": ["spam2", "spam3", "spam2", "spam1", "spam1"], + "data": [20, 30, 40, 50, 60], + }, + index=index, + ) + + grouped = data.groupby(["foo", "bar", "baz", "spam"]) + + result = grouped.agg("mean") + expected = grouped.mean() + tm.assert_frame_equal(result, expected) + + +def test_groupby_series_with_name(df): + result = df.groupby(df["A"]).mean(numeric_only=True) + result2 = df.groupby(df["A"], as_index=False).mean(numeric_only=True) + assert result.index.name == "A" + assert "A" in result2 + + result = df.groupby([df["A"], df["B"]]).mean() + result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() + assert result.index.names == ("A", "B") + assert "A" in result2 + assert "B" in result2 + + +def test_seriesgroupby_name_attr(df): + # GH 6265 + result = df.groupby("A")["C"] + assert result.count().name == "C" + assert result.mean().name == "C" + + testFunc = lambda x: np.sum(x) * 2 + assert result.agg(testFunc).name == "C" + + +def test_consistency_name(): + # GH 12363 + + df = DataFrame( + { + "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], + "B": ["one", "one", "two", "two", "two", "two", "one", "two"], + "C": np.random.default_rng(2).standard_normal(8) + 1.0, + "D": np.arange(8), + } + ) + + expected = df.groupby(["A"]).B.count() + result = df.B.groupby(df.A).count() + tm.assert_series_equal(result, expected) + + +def test_groupby_name_propagation(df): + # GH 6124 + def summarize(df, name=None): + return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) + + def summarize_random_name(df): + # Provide a different name for each Series. In this case, groupby + # should not attempt to propagate the Series name since they are + # inconsistent. + return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + metrics = df.groupby("A").apply(summarize) + assert metrics.columns.name is None + with tm.assert_produces_warning(DeprecationWarning, match=msg): + metrics = df.groupby("A").apply(summarize, "metrics") + assert metrics.columns.name == "metrics" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + metrics = df.groupby("A").apply(summarize_random_name) + assert metrics.columns.name is None + + +def test_groupby_nonstring_columns(): + df = DataFrame([np.arange(10) for x in range(10)]) + grouped = df.groupby(0) + result = grouped.mean() + expected = df.groupby(df[0]).mean() + tm.assert_frame_equal(result, expected) + + +def test_groupby_mixed_type_columns(): + # GH 13432, unorderable types in py3 + df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) + expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) + + result = df.groupby("A").first() + tm.assert_frame_equal(result, expected) + + result = df.groupby("A").sum() + tm.assert_frame_equal(result, expected) + + +def test_cython_grouper_series_bug_noncontig(): + arr = np.empty((100, 100)) + arr.fill(np.nan) + obj = Series(arr[:, 0]) + inds = np.tile(range(10), 10) + + result = obj.groupby(inds).agg(Series.median) + assert result.isna().all() + + +def test_series_grouper_noncontig_index(): + index = Index(["a" * 10] * 100) + + values = Series(np.random.default_rng(2).standard_normal(50), index=index[::2]) + labels = np.random.default_rng(2).integers(0, 5, 50) + + # it works! + grouped = values.groupby(labels) + + # accessing the index elements causes segfault + f = lambda x: len(set(map(id, x.index))) + grouped.agg(f) + + +def test_convert_objects_leave_decimal_alone(): + s = Series(range(5)) + labels = np.array(["a", "b", "c", "d", "e"], dtype="O") + + def convert_fast(x): + return Decimal(str(x.mean())) + + def convert_force_pure(x): + # base will be length 0 + assert len(x.values.base) > 0 + return Decimal(str(x.mean())) + + grouped = s.groupby(labels) + + result = grouped.agg(convert_fast) + assert result.dtype == np.object_ + assert isinstance(result.iloc[0], Decimal) + + result = grouped.agg(convert_force_pure) + assert result.dtype == np.object_ + assert isinstance(result.iloc[0], Decimal) + + +def test_groupby_dtype_inference_empty(): + # GH 6733 + df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) + assert df["x"].dtype == np.float64 + + result = df.groupby("x").first() + exp_index = Index([], name="x", dtype=np.float64) + expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) + tm.assert_frame_equal(result, expected, by_blocks=True) + + +def test_groupby_unit64_float_conversion(): + # GH: 30859 groupby converts unit64 to floats sometimes + df = DataFrame({"first": [1], "second": [1], "value": [16148277970000000000]}) + result = df.groupby(["first", "second"])["value"].max() + expected = Series( + [16148277970000000000], + MultiIndex.from_product([[1], [1]], names=["first", "second"]), + name="value", + ) + tm.assert_series_equal(result, expected) + + +def test_groupby_list_infer_array_like(df): + result = df.groupby(list(df["A"])).mean(numeric_only=True) + expected = df.groupby(df["A"]).mean(numeric_only=True) + tm.assert_frame_equal(result, expected, check_names=False) + + with pytest.raises(KeyError, match=r"^'foo'$"): + df.groupby(list(df["A"][:-1])) + + # pathological case of ambiguity + df = DataFrame( + { + "foo": [0, 1], + "bar": [3, 4], + "val": np.random.default_rng(2).standard_normal(2), + } + ) + + result = df.groupby(["foo", "bar"]).mean() + expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] + + +def test_groupby_keys_same_size_as_index(): + # GH 11185 + freq = "s" + index = date_range( + start=Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq + ) + df = DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) + result = df.groupby([Grouper(level=0, freq=freq), "metric"]).mean() + expected = df.set_index([df.index, "metric"]).astype(float) + + tm.assert_frame_equal(result, expected) + + +def test_groupby_one_row(): + # GH 11741 + msg = r"^'Z'$" + df1 = DataFrame( + np.random.default_rng(2).standard_normal((1, 4)), columns=list("ABCD") + ) + with pytest.raises(KeyError, match=msg): + df1.groupby("Z") + df2 = DataFrame( + np.random.default_rng(2).standard_normal((2, 4)), columns=list("ABCD") + ) + with pytest.raises(KeyError, match=msg): + df2.groupby("Z") + + +def test_groupby_nat_exclude(): + # GH 6992 + df = DataFrame( + { + "values": np.random.default_rng(2).standard_normal(8), + "dt": [ + np.nan, + Timestamp("2013-01-01"), + np.nan, + Timestamp("2013-02-01"), + np.nan, + Timestamp("2013-02-01"), + np.nan, + Timestamp("2013-01-01"), + ], + "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], + } + ) + grouped = df.groupby("dt") + + expected = [Index([1, 7]), Index([3, 5])] + keys = sorted(grouped.groups.keys()) + assert len(keys) == 2 + for k, e in zip(keys, expected): + # grouped.groups keys are np.datetime64 with system tz + # not to be affected by tz, only compare values + tm.assert_index_equal(grouped.groups[k], e) + + # confirm obj is not filtered + tm.assert_frame_equal(grouped._grouper.groupings[0].obj, df) + assert grouped.ngroups == 2 + + expected = { + Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), + Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), + } + + for k in grouped.indices: + tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) + + tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) + tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) + + with pytest.raises(KeyError, match=r"^NaT$"): + grouped.get_group(pd.NaT) + + nan_df = DataFrame( + {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} + ) + assert nan_df["nan"].dtype == "float64" + assert nan_df["nat"].dtype == "datetime64[ns]" + + for key in ["nan", "nat"]: + grouped = nan_df.groupby(key) + assert grouped.groups == {} + assert grouped.ngroups == 0 + assert grouped.indices == {} + with pytest.raises(KeyError, match=r"^nan$"): + grouped.get_group(np.nan) + with pytest.raises(KeyError, match=r"^NaT$"): + grouped.get_group(pd.NaT) + + +def test_groupby_two_group_keys_all_nan(): + # GH #36842: Grouping over two group keys shouldn't raise an error + df = DataFrame({"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 2]}) + result = df.groupby(["a", "b"]).indices + assert result == {} + + +def test_groupby_2d_malformed(): + d = DataFrame(index=range(2)) + d["group"] = ["g1", "g2"] + d["zeros"] = [0, 0] + d["ones"] = [1, 1] + d["label"] = ["l1", "l2"] + tmp = d.groupby(["group"]).mean(numeric_only=True) + res_values = np.array([[0.0, 1.0], [0.0, 1.0]]) + tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) + tm.assert_numpy_array_equal(tmp.values, res_values) + + +def test_int32_overflow(): + B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) + A = np.arange(25000) + df = DataFrame( + { + "A": A, + "B": B, + "C": A, + "D": B, + "E": np.random.default_rng(2).standard_normal(25000), + } + ) + + left = df.groupby(["A", "B", "C", "D"]).sum() + right = df.groupby(["D", "C", "B", "A"]).sum() + assert len(left) == len(right) + + +def test_groupby_sort_multi(): + df = DataFrame( + { + "a": ["foo", "bar", "baz"], + "b": [3, 2, 1], + "c": [0, 1, 2], + "d": np.random.default_rng(2).standard_normal(3), + } + ) + + tups = [tuple(row) for row in df[["a", "b", "c"]].values] + tups = com.asarray_tuplesafe(tups) + result = df.groupby(["a", "b", "c"], sort=True).sum() + tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) + + tups = [tuple(row) for row in df[["c", "a", "b"]].values] + tups = com.asarray_tuplesafe(tups) + result = df.groupby(["c", "a", "b"], sort=True).sum() + tm.assert_numpy_array_equal(result.index.values, tups) + + tups = [tuple(x) for x in df[["b", "c", "a"]].values] + tups = com.asarray_tuplesafe(tups) + result = df.groupby(["b", "c", "a"], sort=True).sum() + tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) + + df = DataFrame( + { + "a": [0, 1, 2, 0, 1, 2], + "b": [0, 0, 0, 1, 1, 1], + "d": np.random.default_rng(2).standard_normal(6), + } + ) + grouped = df.groupby(["a", "b"])["d"] + result = grouped.sum() + + def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): + tups = [tuple(row) for row in df[keys].values] + tups = com.asarray_tuplesafe(tups) + expected = f(df.groupby(tups)[field]) + for k, v in expected.items(): + assert result[k] == v + + _check_groupby(df, result, ["a", "b"], "d") + + +def test_dont_clobber_name_column(): + df = DataFrame( + {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} + ) + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + result = df.groupby("key", group_keys=False).apply(lambda x: x) + tm.assert_frame_equal(result, df) + + +def test_skip_group_keys(): + tsf = DataFrame( + np.random.default_rng(2).standard_normal((10, 4)), + columns=Index(list("ABCD"), dtype=object), + index=date_range("2000-01-01", periods=10, freq="B"), + ) + + grouped = tsf.groupby(lambda x: x.month, group_keys=False) + result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) + + pieces = [group.sort_values(by="A")[:3] for key, group in grouped] + + expected = pd.concat(pieces) + tm.assert_frame_equal(result, expected) + + grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) + result = grouped.apply(lambda x: x.sort_values()[:3]) + + pieces = [group.sort_values()[:3] for key, group in grouped] + + expected = pd.concat(pieces) + tm.assert_series_equal(result, expected) + + +def test_no_nonsense_name(float_frame): + # GH #995 + s = float_frame["C"].copy() + s.name = None + + result = s.groupby(float_frame["A"]).agg("sum") + assert result.name is None + + +def test_multifunc_sum_bug(): + # GH #1065 + x = DataFrame(np.arange(9).reshape(3, 3)) + x["test"] = 0 + x["fl"] = [1.3, 1.5, 1.6] + + grouped = x.groupby("test") + result = grouped.agg({"fl": "sum", 2: "size"}) + assert result["fl"].dtype == np.float64 + + +def test_handle_dict_return_value(df): + def f(group): + return {"max": group.max(), "min": group.min()} + + def g(group): + return Series({"max": group.max(), "min": group.min()}) + + result = df.groupby("A")["C"].apply(f) + expected = df.groupby("A")["C"].apply(g) + + assert isinstance(result, Series) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) +def test_set_group_name(df, grouper, using_infer_string): + def f(group): + assert group.name is not None + return group + + def freduce(group): + assert group.name is not None + if using_infer_string and grouper == "A" and is_string_dtype(group.dtype): + with pytest.raises(TypeError, match="does not support"): + group.sum() + else: + return group.sum() + + def freducex(x): + return freduce(x) + + grouped = df.groupby(grouper, group_keys=False) + + # make sure all these work + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + grouped.apply(f) + grouped.aggregate(freduce) + grouped.aggregate({"C": freduce, "D": freduce}) + grouped.transform(f) + + grouped["C"].apply(f) + grouped["C"].aggregate(freduce) + grouped["C"].aggregate([freduce, freducex]) + grouped["C"].transform(f) + + +def test_group_name_available_in_inference_pass(): + # gh-15062 + df = DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) + + names = [] + + def f(group): + names.append(group.name) + return group.copy() + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + df.groupby("a", sort=False, group_keys=False).apply(f) + + expected_names = [0, 1, 2] + assert names == expected_names + + +def test_no_dummy_key_names(df): + # see gh-1291 + result = df.groupby(df["A"].values).sum() + assert result.index.name is None + + result = df.groupby([df["A"].values, df["B"].values]).sum() + assert result.index.names == (None, None) + + +def test_groupby_sort_multiindex_series(): + # series multiindex groupby sort argument was not being passed through + # _compress_group_index + # GH 9444 + index = MultiIndex( + levels=[[1, 2], [1, 2]], + codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], + names=["a", "b"], + ) + mseries = Series([0, 1, 2, 3, 4, 5], index=index) + index = MultiIndex( + levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] + ) + mseries_result = Series([0, 2, 4], index=index) + + result = mseries.groupby(level=["a", "b"], sort=False).first() + tm.assert_series_equal(result, mseries_result) + result = mseries.groupby(level=["a", "b"], sort=True).first() + tm.assert_series_equal(result, mseries_result.sort_index()) + + +def test_groupby_reindex_inside_function(): + periods = 1000 + ind = date_range(start="2012/1/1", freq="5min", periods=periods) + df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) + + def agg_before(func, fix=False): + """ + Run an aggregate func on the subset of data. + """ + + def _func(data): + d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() + if fix: + data[data.index[0]] + if len(d) == 0: + return None + return func(d) + + return _func + + grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) + closure_bad = grouped.agg({"high": agg_before(np.max)}) + closure_good = grouped.agg({"high": agg_before(np.max, True)}) + + tm.assert_frame_equal(closure_bad, closure_good) + + +def test_groupby_multiindex_missing_pair(): + # GH9049 + df = DataFrame( + { + "group1": ["a", "a", "a", "b"], + "group2": ["c", "c", "d", "c"], + "value": [1, 1, 1, 5], + } + ) + df = df.set_index(["group1", "group2"]) + df_grouped = df.groupby(level=["group1", "group2"], sort=True) + + res = df_grouped.agg("sum") + idx = MultiIndex.from_tuples( + [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] + ) + exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) + + tm.assert_frame_equal(res, exp) + + +def test_groupby_multiindex_not_lexsorted(): + # GH 11640 + + # define the lexsorted version + lexsorted_mi = MultiIndex.from_tuples( + [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] + ) + lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) + assert lexsorted_df.columns._is_lexsorted() + + # define the non-lexsorted version + not_lexsorted_df = DataFrame( + columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] + ) + not_lexsorted_df = not_lexsorted_df.pivot_table( + index="a", columns=["b", "c"], values="d" + ) + not_lexsorted_df = not_lexsorted_df.reset_index() + assert not not_lexsorted_df.columns._is_lexsorted() + + expected = lexsorted_df.groupby("a").mean() + with tm.assert_produces_warning(PerformanceWarning): + result = not_lexsorted_df.groupby("a").mean() + tm.assert_frame_equal(expected, result) + + # a transforming function should work regardless of sort + # GH 14776 + df = DataFrame( + {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} + ).set_index(["x", "y"]) + assert not df.index._is_lexsorted() + + for level in [0, 1, [0, 1]]: + for sort in [False, True]: + result = df.groupby(level=level, sort=sort, group_keys=False).apply( + DataFrame.drop_duplicates + ) + expected = df + tm.assert_frame_equal(expected, result) + + result = ( + df.sort_index() + .groupby(level=level, sort=sort, group_keys=False) + .apply(DataFrame.drop_duplicates) + ) + expected = df.sort_index() + tm.assert_frame_equal(expected, result) + + +def test_index_label_overlaps_location(): + # checking we don't have any label/location confusion in the + # wake of GH5375 + df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) + g = df.groupby(list("ababb")) + actual = g.filter(lambda x: len(x) > 2) + expected = df.iloc[[1, 3, 4]] + tm.assert_frame_equal(actual, expected) + + ser = df[0] + g = ser.groupby(list("ababb")) + actual = g.filter(lambda x: len(x) > 2) + expected = ser.take([1, 3, 4]) + tm.assert_series_equal(actual, expected) + + # and again, with a generic Index of floats + df.index = df.index.astype(float) + g = df.groupby(list("ababb")) + actual = g.filter(lambda x: len(x) > 2) + expected = df.iloc[[1, 3, 4]] + tm.assert_frame_equal(actual, expected) + + ser = df[0] + g = ser.groupby(list("ababb")) + actual = g.filter(lambda x: len(x) > 2) + expected = ser.take([1, 3, 4]) + tm.assert_series_equal(actual, expected) + + +def test_transform_doesnt_clobber_ints(): + # GH 7972 + n = 6 + x = np.arange(n) + df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) + df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) + + gb = df.groupby("a") + result = gb.transform("mean") + + gb2 = df2.groupby("a") + expected = gb2.transform("mean") + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "sort_column", + ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], +) +@pytest.mark.parametrize( + "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] +) +def test_groupby_preserves_sort(sort_column, group_column): + # Test to ensure that groupby always preserves sort order of original + # object. Issue #8588 and #9651 + + df = DataFrame( + { + "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], + "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], + "ints": [8, 7, 4, 5, 2, 9, 1, 1], + "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], + "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], + } + ) + + # Try sorting on different types and with different group types + + df = df.sort_values(by=sort_column) + g = df.groupby(group_column) + + def test_sort(x): + tm.assert_frame_equal(x, x.sort_values(by=sort_column)) + + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + g.apply(test_sort) + + +def test_pivot_table_values_key_error(): + # This test is designed to replicate the error in issue #14938 + df = DataFrame( + { + "eventDate": date_range(datetime.today(), periods=20, freq="ME").tolist(), + "thename": range(20), + } + ) + + df["year"] = df.set_index("eventDate").index.year + df["month"] = df.set_index("eventDate").index.month + + with pytest.raises(KeyError, match="'badname'"): + df.reset_index().pivot_table( + index="year", columns="month", values="badname", aggfunc="count" + ) + + +@pytest.mark.parametrize("columns", ["C", ["C"]]) +@pytest.mark.parametrize("keys", [["A"], ["A", "B"]]) +@pytest.mark.parametrize( + "values", + [ + [True], + [0], + [0.0], + ["a"], + Categorical([0]), + [to_datetime(0)], + date_range(0, 1, 1, tz="US/Eastern"), + pd.period_range("2016-01-01", periods=3, freq="D"), + pd.array([0], dtype="Int64"), + pd.array([0], dtype="Float64"), + pd.array([False], dtype="boolean"), + ], + ids=[ + "bool", + "int", + "float", + "str", + "cat", + "dt64", + "dt64tz", + "period", + "Int64", + "Float64", + "boolean", + ], +) +@pytest.mark.parametrize("method", ["attr", "agg", "apply"]) +@pytest.mark.parametrize( + "op", ["idxmax", "idxmin", "min", "max", "sum", "prod", "skew"] +) +def test_empty_groupby( + columns, keys, values, method, op, using_array_manager, dropna, using_infer_string +): + # GH8093 & GH26411 + override_dtype = None + + if isinstance(values, BooleanArray) and op in ["sum", "prod"]: + # We expect to get Int64 back for these + override_dtype = "Int64" + + if isinstance(values[0], bool) and op in ("prod", "sum"): + # sum/product of bools is an integer + override_dtype = "int64" + + df = DataFrame({"A": values, "B": values, "C": values}, columns=list("ABC")) + + if hasattr(values, "dtype"): + # check that we did the construction right + assert (df.dtypes == values.dtype).all() + + df = df.iloc[:0] + + gb = df.groupby(keys, group_keys=False, dropna=dropna, observed=False)[columns] + + def get_result(**kwargs): + if method == "attr": + return getattr(gb, op)(**kwargs) + else: + return getattr(gb, method)(op, **kwargs) + + def get_categorical_invalid_expected(): + # Categorical is special without 'observed=True', we get an NaN entry + # corresponding to the unobserved group. If we passed observed=True + # to groupby, expected would just be 'df.set_index(keys)[columns]' + # as below + lev = Categorical([0], dtype=values.dtype) + if len(keys) != 1: + idx = MultiIndex.from_product([lev, lev], names=keys) + else: + # all columns are dropped, but we end up with one row + # Categorical is special without 'observed=True' + idx = Index(lev, name=keys[0]) + + if using_infer_string: + columns = Index([], dtype="string[pyarrow_numpy]") + else: + columns = [] + expected = DataFrame([], columns=columns, index=idx) + return expected + + is_per = isinstance(df.dtypes.iloc[0], pd.PeriodDtype) + is_dt64 = df.dtypes.iloc[0].kind == "M" + is_cat = isinstance(values, Categorical) + + if ( + isinstance(values, Categorical) + and not values.ordered + and op in ["min", "max", "idxmin", "idxmax"] + ): + if op in ["min", "max"]: + msg = f"Cannot perform {op} with non-ordered Categorical" + klass = TypeError + else: + msg = f"Can't get {op} of an empty group due to unobserved categories" + klass = ValueError + with pytest.raises(klass, match=msg): + get_result() + + if op in ["min", "max", "idxmin", "idxmax"] and isinstance(columns, list): + # i.e. DataframeGroupBy, not SeriesGroupBy + result = get_result(numeric_only=True) + expected = get_categorical_invalid_expected() + tm.assert_equal(result, expected) + return + + if op in ["prod", "sum", "skew"]: + # ops that require more than just ordered-ness + if is_dt64 or is_cat or is_per: + # GH#41291 + # datetime64 -> prod and sum are invalid + if is_dt64: + msg = "datetime64 type does not support" + elif is_per: + msg = "Period type does not support" + else: + msg = "category type does not support" + if op == "skew": + msg = "|".join([msg, "does not support reduction 'skew'"]) + with pytest.raises(TypeError, match=msg): + get_result() + + if not isinstance(columns, list): + # i.e. SeriesGroupBy + return + elif op == "skew": + # TODO: test the numeric_only=True case + return + else: + # i.e. op in ["prod", "sum"]: + # i.e. DataFrameGroupBy + # ops that require more than just ordered-ness + # GH#41291 + result = get_result(numeric_only=True) + + # with numeric_only=True, these are dropped, and we get + # an empty DataFrame back + expected = df.set_index(keys)[[]] + if is_cat: + expected = get_categorical_invalid_expected() + tm.assert_equal(result, expected) + return + + result = get_result() + expected = df.set_index(keys)[columns] + if op in ["idxmax", "idxmin"]: + expected = expected.astype(df.index.dtype) + if override_dtype is not None: + expected = expected.astype(override_dtype) + if len(keys) == 1: + expected.index.name = keys[0] + tm.assert_equal(result, expected) + + +def test_empty_groupby_apply_nonunique_columns(): + # GH#44417 + df = DataFrame(np.random.default_rng(2).standard_normal((0, 4))) + df[3] = df[3].astype(np.int64) + df.columns = [0, 1, 2, 0] + gb = df.groupby(df[1], group_keys=False) + msg = "DataFrameGroupBy.apply operated on the grouping columns" + with tm.assert_produces_warning(DeprecationWarning, match=msg): + res = gb.apply(lambda x: x) + assert (res.dtypes == df.dtypes).all() + + +def test_tuple_as_grouping(): + # https://github.com/pandas-dev/pandas/issues/18314 + df = DataFrame( + { + ("a", "b"): [1, 1, 1, 1], + "a": [2, 2, 2, 2], + "b": [2, 2, 2, 2], + "c": [1, 1, 1, 1], + } + ) + + with pytest.raises(KeyError, match=r"('a', 'b')"): + df[["a", "b", "c"]].groupby(("a", "b")) + + result = df.groupby(("a", "b"))["c"].sum() + expected = Series([4], name="c", index=Index([1], name=("a", "b"))) + tm.assert_series_equal(result, expected) + + +def test_tuple_correct_keyerror(): + # https://github.com/pandas-dev/pandas/issues/18798 + df = DataFrame(1, index=range(3), columns=MultiIndex.from_product([[1, 2], [3, 4]])) + with pytest.raises(KeyError, match=r"^\(7, 8\)$"): + df.groupby((7, 8)).mean() + + +def test_groupby_agg_ohlc_non_first(): + # GH 21716 + df = DataFrame( + [[1], [1]], + columns=Index(["foo"], name="mycols"), + index=date_range("2018-01-01", periods=2, freq="D", name="dti"), + ) + + expected = DataFrame( + [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], + columns=MultiIndex.from_tuples( + ( + ("foo", "sum", "foo"), + ("foo", "ohlc", "open"), + ("foo", "ohlc", "high"), + ("foo", "ohlc", "low"), + ("foo", "ohlc", "close"), + ), + names=["mycols", None, None], + ), + index=date_range("2018-01-01", periods=2, freq="D", name="dti"), + ) + + result = df.groupby(Grouper(freq="D")).agg(["sum", "ohlc"]) + + tm.assert_frame_equal(result, expected) + + +def test_groupby_multiindex_nat(): + # GH 9236 + values = [ + (pd.NaT, "a"), + (datetime(2012, 1, 2), "a"), + (datetime(2012, 1, 2), "b"), + (datetime(2012, 1, 3), "a"), + ] + mi = MultiIndex.from_tuples(values, names=["date", None]) + ser = Series([3, 2, 2.5, 4], index=mi) + + result = ser.groupby(level=1).mean() + expected = Series([3.0, 2.5], index=["a", "b"]) + tm.assert_series_equal(result, expected) + + +def test_groupby_empty_list_raises(): + # GH 5289 + values = zip(range(10), range(10)) + df = DataFrame(values, columns=["apple", "b"]) + msg = "Grouper and axis must be same length" + with pytest.raises(ValueError, match=msg): + df.groupby([[]]) + + +def test_groupby_multiindex_series_keys_len_equal_group_axis(): + # GH 25704 + index_array = [["x", "x"], ["a", "b"], ["k", "k"]] + index_names = ["first", "second", "third"] + ri = MultiIndex.from_arrays(index_array, names=index_names) + s = Series(data=[1, 2], index=ri) + result = s.groupby(["first", "third"]).sum() + + index_array = [["x"], ["k"]] + index_names = ["first", "third"] + ei = MultiIndex.from_arrays(index_array, names=index_names) + expected = Series([3], index=ei) + + tm.assert_series_equal(result, expected) + + +def test_groupby_groups_in_BaseGrouper(): + # GH 26326 + # Test if DataFrame grouped with a pandas.Grouper has correct groups + mi = MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"]) + df = DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi) + result = df.groupby([Grouper(level="alpha"), "beta"]) + expected = df.groupby(["alpha", "beta"]) + assert result.groups == expected.groups + + result = df.groupby(["beta", Grouper(level="alpha")]) + expected = df.groupby(["beta", "alpha"]) + assert result.groups == expected.groups + + +@pytest.mark.parametrize("group_name", ["x", ["x"]]) +def test_groupby_axis_1(group_name): + # GH 27614 + df = DataFrame( + np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20] + ) + df.index.name = "y" + df.columns.name = "x" + + depr_msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + gb = df.groupby(group_name, axis=1) + + results = gb.sum() + expected = df.T.groupby(group_name).sum().T + tm.assert_frame_equal(results, expected) + + # test on MI column + iterables = [["bar", "baz", "foo"], ["one", "two"]] + mi = MultiIndex.from_product(iterables=iterables, names=["x", "x1"]) + df = DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + gb = df.groupby(group_name, axis=1) + results = gb.sum() + expected = df.T.groupby(group_name).sum().T + tm.assert_frame_equal(results, expected) + + +@pytest.mark.parametrize( + "op, expected", + [ + ( + "shift", + { + "time": [ + None, + None, + Timestamp("2019-01-01 12:00:00"), + Timestamp("2019-01-01 12:30:00"), + None, + None, + ] + }, + ), + ( + "bfill", + { + "time": [ + Timestamp("2019-01-01 12:00:00"), + Timestamp("2019-01-01 12:30:00"), + Timestamp("2019-01-01 14:00:00"), + Timestamp("2019-01-01 14:30:00"), + Timestamp("2019-01-01 14:00:00"), + Timestamp("2019-01-01 14:30:00"), + ] + }, + ), + ( + "ffill", + { + "time": [ + Timestamp("2019-01-01 12:00:00"), + Timestamp("2019-01-01 12:30:00"), + Timestamp("2019-01-01 12:00:00"), + Timestamp("2019-01-01 12:30:00"), + Timestamp("2019-01-01 14:00:00"), + Timestamp("2019-01-01 14:30:00"), + ] + }, + ), + ], +) +def test_shift_bfill_ffill_tz(tz_naive_fixture, op, expected): + # GH19995, GH27992: Check that timezone does not drop in shift, bfill, and ffill + tz = tz_naive_fixture + data = { + "id": ["A", "B", "A", "B", "A", "B"], + "time": [ + Timestamp("2019-01-01 12:00:00"), + Timestamp("2019-01-01 12:30:00"), + None, + None, + Timestamp("2019-01-01 14:00:00"), + Timestamp("2019-01-01 14:30:00"), + ], + } + df = DataFrame(data).assign(time=lambda x: x.time.dt.tz_localize(tz)) + + grouped = df.groupby("id") + result = getattr(grouped, op)() + expected = DataFrame(expected).assign(time=lambda x: x.time.dt.tz_localize(tz)) + tm.assert_frame_equal(result, expected) + + +def test_groupby_only_none_group(): + # see GH21624 + # this was crashing with "ValueError: Length of passed values is 1, index implies 0" + df = DataFrame({"g": [None], "x": 1}) + actual = df.groupby("g")["x"].transform("sum") + expected = Series([np.nan], name="x") + + tm.assert_series_equal(actual, expected) + + +def test_groupby_duplicate_index(): + # GH#29189 the groupby call here used to raise + ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0]) + gb = ser.groupby(level=0) + + result = gb.mean() + expected = Series([2, 5.5, 8], index=[2.0, 4.0, 5.0]) + tm.assert_series_equal(result, expected) + + +def test_group_on_empty_multiindex(transformation_func, request): + # GH 47787 + # With one row, those are transforms so the schema should be the same + df = DataFrame( + data=[[1, Timestamp("today"), 3, 4]], + columns=["col_1", "col_2", "col_3", "col_4"], + ) + df["col_3"] = df["col_3"].astype(int) + df["col_4"] = df["col_4"].astype(int) + df = df.set_index(["col_1", "col_2"]) + if transformation_func == "fillna": + args = ("ffill",) + else: + args = () + warn = FutureWarning if transformation_func == "fillna" else None + warn_msg = "DataFrameGroupBy.fillna is deprecated" + with tm.assert_produces_warning(warn, match=warn_msg): + result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args) + with tm.assert_produces_warning(warn, match=warn_msg): + expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0] + if transformation_func in ("diff", "shift"): + expected = expected.astype(int) + tm.assert_equal(result, expected) + + warn_msg = "SeriesGroupBy.fillna is deprecated" + with tm.assert_produces_warning(warn, match=warn_msg): + result = ( + df["col_3"] + .iloc[:0] + .groupby(["col_1"]) + .transform(transformation_func, *args) + ) + warn_msg = "SeriesGroupBy.fillna is deprecated" + with tm.assert_produces_warning(warn, match=warn_msg): + expected = ( + df["col_3"] + .groupby(["col_1"]) + .transform(transformation_func, *args) + .iloc[:0] + ) + if transformation_func in ("diff", "shift"): + expected = expected.astype(int) + tm.assert_equal(result, expected) + + +def test_groupby_crash_on_nunique(axis): + # Fix following 30253 + dti = date_range("2016-01-01", periods=2, name="foo") + df = DataFrame({("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]}) + df.columns.names = ("bar", "baz") + df.index = dti + + axis_number = df._get_axis_number(axis) + if not axis_number: + df = df.T + msg = "The 'axis' keyword in DataFrame.groupby is deprecated" + else: + msg = "DataFrame.groupby with axis=1 is deprecated" + + with tm.assert_produces_warning(FutureWarning, match=msg): + gb = df.groupby(axis=axis_number, level=0) + result = gb.nunique() + + expected = DataFrame({"A": [1, 2], "D": [1, 1]}, index=dti) + expected.columns.name = "bar" + if not axis_number: + expected = expected.T + + tm.assert_frame_equal(result, expected) + + if axis_number == 0: + # same thing, but empty columns + with tm.assert_produces_warning(FutureWarning, match=msg): + gb2 = df[[]].groupby(axis=axis_number, level=0) + exp = expected[[]] + else: + # same thing, but empty rows + with tm.assert_produces_warning(FutureWarning, match=msg): + gb2 = df.loc[[]].groupby(axis=axis_number, level=0) + # default for empty when we can't infer a dtype is float64 + exp = expected.loc[[]].astype(np.float64) + + res = gb2.nunique() + tm.assert_frame_equal(res, exp) + + +def test_groupby_list_level(): + # GH 9790 + expected = DataFrame(np.arange(0, 9).reshape(3, 3), dtype=float) + result = expected.groupby(level=[0]).mean() + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "max_seq_items, expected", + [ + (5, "{0: [0], 1: [1], 2: [2], 3: [3], 4: [4]}"), + (4, "{0: [0], 1: [1], 2: [2], 3: [3], ...}"), + (1, "{0: [0], ...}"), + ], +) +def test_groups_repr_truncates(max_seq_items, expected): + # GH 1135 + df = DataFrame(np.random.default_rng(2).standard_normal((5, 1))) + df["a"] = df.index + + with pd.option_context("display.max_seq_items", max_seq_items): + result = df.groupby("a").groups.__repr__() + assert result == expected + + result = df.groupby(np.array(df.a)).groups.__repr__() + assert result == expected + + +def test_group_on_two_row_multiindex_returns_one_tuple_key(): + # GH 18451 + df = DataFrame([{"a": 1, "b": 2, "c": 99}, {"a": 1, "b": 2, "c": 88}]) + df = df.set_index(["a", "b"]) + + grp = df.groupby(["a", "b"]) + result = grp.indices + expected = {(1, 2): np.array([0, 1], dtype=np.int64)} + + assert len(result) == 1 + key = (1, 2) + assert (result[key] == expected[key]).all() + + +@pytest.mark.parametrize( + "klass, attr, value", + [ + (DataFrame, "level", "a"), + (DataFrame, "as_index", False), + (DataFrame, "sort", False), + (DataFrame, "group_keys", False), + (DataFrame, "observed", True), + (DataFrame, "dropna", False), + (Series, "level", "a"), + (Series, "as_index", False), + (Series, "sort", False), + (Series, "group_keys", False), + (Series, "observed", True), + (Series, "dropna", False), + ], +) +def test_subsetting_columns_keeps_attrs(klass, attr, value): + # GH 9959 - When subsetting columns, don't drop attributes + df = DataFrame({"a": [1], "b": [2], "c": [3]}) + if attr != "axis": + df = df.set_index("a") + + expected = df.groupby("a", **{attr: value}) + result = expected[["b"]] if klass is DataFrame else expected["b"] + assert getattr(result, attr) == getattr(expected, attr) + + +def test_subsetting_columns_axis_1(): + # GH 37725 + df = DataFrame({"A": [1], "B": [2], "C": [3]}) + msg = "DataFrame.groupby with axis=1 is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + g = df.groupby([0, 0, 1], axis=1) + match = "Cannot subset columns when using axis=1" + with pytest.raises(ValueError, match=match): + g[["A", "B"]].sum() + + +@pytest.mark.parametrize("func", ["sum", "any", "shift"]) +def test_groupby_column_index_name_lost(func): + # GH: 29764 groupby loses index sometimes + expected = Index(["a"], name="idx") + df = DataFrame([[1]], columns=expected) + df_grouped = df.groupby([1]) + result = getattr(df_grouped, func)().columns + tm.assert_index_equal(result, expected) + + +@pytest.mark.parametrize( + "infer_string", + [ + False, + pytest.param(True, marks=td.skip_if_no("pyarrow")), + ], +) +def test_groupby_duplicate_columns(infer_string): + # GH: 31735 + if infer_string: + pytest.importorskip("pyarrow") + df = DataFrame( + {"A": ["f", "e", "g", "h"], "B": ["a", "b", "c", "d"], "C": [1, 2, 3, 4]} + ).astype(object) + df.columns = ["A", "B", "B"] + with pd.option_context("future.infer_string", infer_string): + result = df.groupby([0, 0, 0, 0]).min() + expected = DataFrame( + [["e", "a", 1]], index=np.array([0]), columns=["A", "B", "B"], dtype=object + ) + tm.assert_frame_equal(result, expected) + + +def test_groupby_series_with_tuple_name(): + # GH 37755 + ser = Series([1, 2, 3, 4], index=[1, 1, 2, 2], name=("a", "a")) + ser.index.name = ("b", "b") + result = ser.groupby(level=0).last() + expected = Series([2, 4], index=[1, 2], name=("a", "a")) + expected.index.name = ("b", "b") + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "func, values", [("sum", [97.0, 98.0]), ("mean", [24.25, 24.5])] +) +def test_groupby_numerical_stability_sum_mean(func, values): + # GH#38778 + data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] + df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) + result = getattr(df.groupby("group"), func)() + expected = DataFrame({"a": values, "b": values}, index=Index([1, 2], name="group")) + tm.assert_frame_equal(result, expected) + + +def test_groupby_numerical_stability_cumsum(): + # GH#38934 + data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] + df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) + result = df.groupby("group").cumsum() + exp_data = ( + [1e16] * 2 + [1e16 + 96, 1e16 + 98] + [5e15 + 97, 5e15 + 98] + [97.0, 98.0] + ) + expected = DataFrame({"a": exp_data, "b": exp_data}) + tm.assert_frame_equal(result, expected, check_exact=True) + + +def test_groupby_cumsum_skipna_false(): + # GH#46216 don't propagate np.nan above the diagonal + arr = np.random.default_rng(2).standard_normal((5, 5)) + df = DataFrame(arr) + for i in range(5): + df.iloc[i, i] = np.nan + + df["A"] = 1 + gb = df.groupby("A") + + res = gb.cumsum(skipna=False) + + expected = df[[0, 1, 2, 3, 4]].cumsum(skipna=False) + tm.assert_frame_equal(res, expected) + + +def test_groupby_cumsum_timedelta64(): + # GH#46216 don't ignore is_datetimelike in libgroupby.group_cumsum + dti = date_range("2016-01-01", periods=5) + ser = Series(dti) - dti[0] + ser[2] = pd.NaT + + df = DataFrame({"A": 1, "B": ser}) + gb = df.groupby("A") + + res = gb.cumsum(numeric_only=False, skipna=True) + exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, ser[4], ser[4] * 2]}) + tm.assert_frame_equal(res, exp) + + res = gb.cumsum(numeric_only=False, skipna=False) + exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, pd.NaT, pd.NaT]}) + tm.assert_frame_equal(res, exp) + + +def test_groupby_mean_duplicate_index(rand_series_with_duplicate_datetimeindex): + dups = rand_series_with_duplicate_datetimeindex + result = dups.groupby(level=0).mean() + expected = dups.groupby(dups.index).mean() + tm.assert_series_equal(result, expected) + + +def test_groupby_all_nan_groups_drop(): + # GH 15036 + s = Series([1, 2, 3], [np.nan, np.nan, np.nan]) + result = s.groupby(s.index).sum() + expected = Series([], index=Index([], dtype=np.float64), dtype=np.int64) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("numeric_only", [True, False]) +def test_groupby_empty_multi_column(as_index, numeric_only): + # GH 15106 & GH 41998 + df = DataFrame(data=[], columns=["A", "B", "C"]) + gb = df.groupby(["A", "B"], as_index=as_index) + result = gb.sum(numeric_only=numeric_only) + if as_index: + index = MultiIndex([[], []], [[], []], names=["A", "B"]) + columns = ["C"] if not numeric_only else [] + else: + index = RangeIndex(0) + columns = ["A", "B", "C"] if not numeric_only else ["A", "B"] + expected = DataFrame([], columns=columns, index=index) + tm.assert_frame_equal(result, expected) + + +def test_groupby_aggregation_non_numeric_dtype(): + # GH #43108 + df = DataFrame( + [["M", [1]], ["M", [1]], ["W", [10]], ["W", [20]]], columns=["MW", "v"] + ) + + expected = DataFrame( + { + "v": [[1, 1], [10, 20]], + }, + index=Index(["M", "W"], dtype="object", name="MW"), + ) + + gb = df.groupby(by=["MW"]) + result = gb.sum() + tm.assert_frame_equal(result, expected) + + +def test_groupby_aggregation_multi_non_numeric_dtype(): + # GH #42395 + df = DataFrame( + { + "x": [1, 0, 1, 1, 0], + "y": [Timedelta(i, "days") for i in range(1, 6)], + "z": [Timedelta(i * 10, "days") for i in range(1, 6)], + } + ) + + expected = DataFrame( + { + "y": [Timedelta(i, "days") for i in range(7, 9)], + "z": [Timedelta(i * 10, "days") for i in range(7, 9)], + }, + index=Index([0, 1], dtype="int64", name="x"), + ) + + gb = df.groupby(by=["x"]) + result = gb.sum() + tm.assert_frame_equal(result, expected) + + +def test_groupby_aggregation_numeric_with_non_numeric_dtype(): + # GH #43108 + df = DataFrame( + { + "x": [1, 0, 1, 1, 0], + "y": [Timedelta(i, "days") for i in range(1, 6)], + "z": list(range(1, 6)), + } + ) + + expected = DataFrame( + {"y": [Timedelta(7, "days"), Timedelta(8, "days")], "z": [7, 8]}, + index=Index([0, 1], dtype="int64", name="x"), + ) + + gb = df.groupby(by=["x"]) + result = gb.sum() + tm.assert_frame_equal(result, expected) + + +def test_groupby_filtered_df_std(): + # GH 16174 + dicts = [ + {"filter_col": False, "groupby_col": True, "bool_col": True, "float_col": 10.5}, + {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 20.5}, + {"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 30.5}, + ] + df = DataFrame(dicts) + + df_filter = df[df["filter_col"] == True] # noqa: E712 + dfgb = df_filter.groupby("groupby_col") + result = dfgb.std() + expected = DataFrame( + [[0.0, 0.0, 7.071068]], + columns=["filter_col", "bool_col", "float_col"], + index=Index([True], name="groupby_col"), + ) + tm.assert_frame_equal(result, expected) + + +def test_datetime_categorical_multikey_groupby_indices(): + # GH 26859 + df = DataFrame( + { + "a": Series(list("abc")), + "b": Series( + to_datetime(["2018-01-01", "2018-02-01", "2018-03-01"]), + dtype="category", + ), + "c": Categorical.from_codes([-1, 0, 1], categories=[0, 1]), + } + ) + result = df.groupby(["a", "b"], observed=False).indices + expected = { + ("a", Timestamp("2018-01-01 00:00:00")): np.array([0]), + ("b", Timestamp("2018-02-01 00:00:00")): np.array([1]), + ("c", Timestamp("2018-03-01 00:00:00")): np.array([2]), + } + assert result == expected + + +def test_rolling_wrong_param_min_period(): + # GH34037 + name_l = ["Alice"] * 5 + ["Bob"] * 5 + val_l = [np.nan, np.nan, 1, 2, 3] + [np.nan, 1, 2, 3, 4] + test_df = DataFrame([name_l, val_l]).T + test_df.columns = ["name", "val"] + + result_error_msg = r"__init__\(\) got an unexpected keyword argument 'min_period'" + with pytest.raises(TypeError, match=result_error_msg): + test_df.groupby("name")["val"].rolling(window=2, min_period=1).sum() + + +@pytest.mark.parametrize( + "dtype", + [ + object, + pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")), + ], +) +def test_by_column_values_with_same_starting_value(dtype): + # GH29635 + df = DataFrame( + { + "Name": ["Thomas", "Thomas", "Thomas John"], + "Credit": [1200, 1300, 900], + "Mood": Series(["sad", "happy", "happy"], dtype=dtype), + } + ) + aggregate_details = {"Mood": Series.mode, "Credit": "sum"} + + result = df.groupby(["Name"]).agg(aggregate_details) + expected_result = DataFrame( + { + "Mood": [["happy", "sad"], "happy"], + "Credit": [2500, 900], + "Name": ["Thomas", "Thomas John"], + } + ).set_index("Name") + + tm.assert_frame_equal(result, expected_result) + + +def test_groupby_none_in_first_mi_level(): + # GH#47348 + arr = [[None, 1, 0, 1], [2, 3, 2, 3]] + ser = Series(1, index=MultiIndex.from_arrays(arr, names=["a", "b"])) + result = ser.groupby(level=[0, 1]).sum() + expected = Series( + [1, 2], MultiIndex.from_tuples([(0.0, 2), (1.0, 3)], names=["a", "b"]) + ) + tm.assert_series_equal(result, expected) + + +def test_groupby_none_column_name(): + # GH#47348 + df = DataFrame({None: [1, 1, 2, 2], "b": [1, 1, 2, 3], "c": [4, 5, 6, 7]}) + result = df.groupby(by=[None]).sum() + expected = DataFrame({"b": [2, 5], "c": [9, 13]}, index=Index([1, 2], name=None)) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("selection", [None, "a", ["a"]]) +def test_single_element_list_grouping(selection): + # GH#42795, GH#53500 + df = DataFrame({"a": [1, 2], "b": [np.nan, 5], "c": [np.nan, 2]}, index=["x", "y"]) + grouped = df.groupby(["a"]) if selection is None else df.groupby(["a"])[selection] + result = [key for key, _ in grouped] + + expected = [(1,), (2,)] + assert result == expected + + +def test_groupby_string_dtype(): + # GH 40148 + df = DataFrame({"str_col": ["a", "b", "c", "a"], "num_col": [1, 2, 3, 2]}) + df["str_col"] = df["str_col"].astype("string") + expected = DataFrame( + { + "str_col": [ + "a", + "b", + "c", + ], + "num_col": [1.5, 2.0, 3.0], + } + ) + expected["str_col"] = expected["str_col"].astype("string") + grouped = df.groupby("str_col", as_index=False) + result = grouped.mean() + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "level_arg, multiindex", [([0], False), ((0,), False), ([0], True), ((0,), True)] +) +def test_single_element_listlike_level_grouping_deprecation(level_arg, multiindex): + # GH 51583 + df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}, index=["x", "y"]) + if multiindex: + df = df.set_index(["a", "b"]) + depr_msg = ( + "Creating a Groupby object with a length-1 list-like " + "level parameter will yield indexes as tuples in a future version. " + "To keep indexes as scalars, create Groupby objects with " + "a scalar level parameter instead." + ) + with tm.assert_produces_warning(FutureWarning, match=depr_msg): + [key for key, _ in df.groupby(level=level_arg)] + + +@pytest.mark.parametrize("func", ["sum", "cumsum", "cumprod", "prod"]) +def test_groupby_avoid_casting_to_float(func): + # GH#37493 + val = 922337203685477580 + df = DataFrame({"a": 1, "b": [val]}) + result = getattr(df.groupby("a"), func)() - val + expected = DataFrame({"b": [0]}, index=Index([1], name="a")) + if func in ["cumsum", "cumprod"]: + expected = expected.reset_index(drop=True) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("func, val", [("sum", 3), ("prod", 2)]) +def test_groupby_sum_support_mask(any_numeric_ea_dtype, func, val): + # GH#37493 + df = DataFrame({"a": 1, "b": [1, 2, pd.NA]}, dtype=any_numeric_ea_dtype) + result = getattr(df.groupby("a"), func)() + expected = DataFrame( + {"b": [val]}, + index=Index([1], name="a", dtype=any_numeric_ea_dtype), + dtype=any_numeric_ea_dtype, + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("val, dtype", [(111, "int"), (222, "uint")]) +def test_groupby_overflow(val, dtype): + # GH#37493 + df = DataFrame({"a": 1, "b": [val, val]}, dtype=f"{dtype}8") + result = df.groupby("a").sum() + expected = DataFrame( + {"b": [val * 2]}, + index=Index([1], name="a", dtype=f"{dtype}8"), + dtype=f"{dtype}64", + ) + tm.assert_frame_equal(result, expected) + + result = df.groupby("a").cumsum() + expected = DataFrame({"b": [val, val * 2]}, dtype=f"{dtype}64") + tm.assert_frame_equal(result, expected) + + result = df.groupby("a").prod() + expected = DataFrame( + {"b": [val * val]}, + index=Index([1], name="a", dtype=f"{dtype}8"), + dtype=f"{dtype}64", + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("skipna, val", [(True, 3), (False, pd.NA)]) +def test_groupby_cumsum_mask(any_numeric_ea_dtype, skipna, val): + # GH#37493 + df = DataFrame({"a": 1, "b": [1, pd.NA, 2]}, dtype=any_numeric_ea_dtype) + result = df.groupby("a").cumsum(skipna=skipna) + expected = DataFrame( + {"b": [1, pd.NA, val]}, + dtype=any_numeric_ea_dtype, + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "val_in, index, val_out", + [ + ( + [1.0, 2.0, 3.0, 4.0, 5.0], + ["foo", "foo", "bar", "baz", "blah"], + [3.0, 4.0, 5.0, 3.0], + ), + ( + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], + ["foo", "foo", "bar", "baz", "blah", "blah"], + [3.0, 4.0, 11.0, 3.0], + ), + ], +) +def test_groupby_index_name_in_index_content(val_in, index, val_out): + # GH 48567 + series = Series(data=val_in, name="values", index=Index(index, name="blah")) + result = series.groupby("blah").sum() + expected = Series( + data=val_out, + name="values", + index=Index(["bar", "baz", "blah", "foo"], name="blah"), + ) + tm.assert_series_equal(result, expected) + + result = series.to_frame().groupby("blah").sum() + expected = expected.to_frame() + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("n", [1, 10, 32, 100, 1000]) +def test_sum_of_booleans(n): + # GH 50347 + df = DataFrame({"groupby_col": 1, "bool": [True] * n}) + df["bool"] = df["bool"].eq(True) + result = df.groupby("groupby_col").sum() + expected = DataFrame({"bool": [n]}, index=Index([1], name="groupby_col")) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.filterwarnings( + "ignore:invalid value encountered in remainder:RuntimeWarning" +) +@pytest.mark.parametrize("method", ["head", "tail", "nth", "first", "last"]) +def test_groupby_method_drop_na(method): + # GH 21755 + df = DataFrame({"A": ["a", np.nan, "b", np.nan, "c"], "B": range(5)}) + + if method == "nth": + result = getattr(df.groupby("A"), method)(n=0) + else: + result = getattr(df.groupby("A"), method)() + + if method in ["first", "last"]: + expected = DataFrame({"B": [0, 2, 4]}).set_index( + Series(["a", "b", "c"], name="A") + ) + else: + expected = DataFrame({"A": ["a", "b", "c"], "B": [0, 2, 4]}, index=[0, 2, 4]) + tm.assert_frame_equal(result, expected) + + +def test_groupby_reduce_period(): + # GH#51040 + pi = pd.period_range("2016-01-01", periods=100, freq="D") + grps = list(range(10)) * 10 + ser = pi.to_series() + gb = ser.groupby(grps) + + with pytest.raises(TypeError, match="Period type does not support sum operations"): + gb.sum() + with pytest.raises( + TypeError, match="Period type does not support cumsum operations" + ): + gb.cumsum() + with pytest.raises(TypeError, match="Period type does not support prod operations"): + gb.prod() + with pytest.raises( + TypeError, match="Period type does not support cumprod operations" + ): + gb.cumprod() + + res = gb.max() + expected = ser[-10:] + expected.index = Index(range(10), dtype=int) + tm.assert_series_equal(res, expected) + + res = gb.min() + expected = ser[:10] + expected.index = Index(range(10), dtype=int) + tm.assert_series_equal(res, expected) + + +def test_obj_with_exclusions_duplicate_columns(): + # GH#50806 + df = DataFrame([[0, 1, 2, 3]]) + df.columns = [0, 1, 2, 0] + gb = df.groupby(df[1]) + result = gb._obj_with_exclusions + expected = df.take([0, 2, 3], axis=1) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("numeric_only", [True, False]) +def test_groupby_numeric_only_std_no_result(numeric_only): + # GH 51080 + dicts_non_numeric = [{"a": "foo", "b": "bar"}, {"a": "car", "b": "dar"}] + df = DataFrame(dicts_non_numeric) + dfgb = df.groupby("a", as_index=False, sort=False) + + if numeric_only: + result = dfgb.std(numeric_only=True) + expected_df = DataFrame(["foo", "car"], columns=["a"]) + tm.assert_frame_equal(result, expected_df) + else: + with pytest.raises( + ValueError, match="could not convert string to float: 'bar'" + ): + dfgb.std(numeric_only=numeric_only) + + +def test_grouping_with_categorical_interval_columns(): + # GH#34164 + df = DataFrame({"x": [0.1, 0.2, 0.3, -0.4, 0.5], "w": ["a", "b", "a", "c", "a"]}) + qq = pd.qcut(df["x"], q=np.linspace(0, 1, 5)) + result = df.groupby([qq, "w"], observed=False)["x"].agg("mean") + categorical_index_level_1 = Categorical( + [ + Interval(-0.401, 0.1, closed="right"), + Interval(0.1, 0.2, closed="right"), + Interval(0.2, 0.3, closed="right"), + Interval(0.3, 0.5, closed="right"), + ], + ordered=True, + ) + index_level_2 = ["a", "b", "c"] + mi = MultiIndex.from_product( + [categorical_index_level_1, index_level_2], names=["x", "w"] + ) + expected = Series( + np.array( + [ + 0.1, + np.nan, + -0.4, + np.nan, + 0.2, + np.nan, + 0.3, + np.nan, + np.nan, + 0.5, + np.nan, + np.nan, + ] + ), + index=mi, + name="x", + ) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("bug_var", [1, "a"]) +def test_groupby_sum_on_nan_should_return_nan(bug_var): + # GH 24196 + df = DataFrame({"A": [bug_var, bug_var, bug_var, np.nan]}) + dfgb = df.groupby(lambda x: x) + result = dfgb.sum(min_count=1) + + expected_df = DataFrame([bug_var, bug_var, bug_var, None], columns=["A"]) + tm.assert_frame_equal(result, expected_df) + + +@pytest.mark.parametrize( + "method", + [ + "count", + "corr", + "cummax", + "cummin", + "cumprod", + "describe", + "rank", + "quantile", + "diff", + "shift", + "all", + "any", + "idxmin", + "idxmax", + "ffill", + "bfill", + "pct_change", + ], +) +def test_groupby_selection_with_methods(df, method): + # some methods which require DatetimeIndex + rng = date_range("2014", periods=len(df)) + df.index = rng + + g = df.groupby(["A"])[["C"]] + g_exp = df[["C"]].groupby(df["A"]) + # TODO check groupby with > 1 col ? + + res = getattr(g, method)() + exp = getattr(g_exp, method)() + + # should always be frames! + tm.assert_frame_equal(res, exp) + + +def test_groupby_selection_other_methods(df): + # some methods which require DatetimeIndex + rng = date_range("2014", periods=len(df)) + df.columns.name = "foo" + df.index = rng + + g = df.groupby(["A"])[["C"]] + g_exp = df[["C"]].groupby(df["A"]) + + # methods which aren't just .foo() + warn_msg = "DataFrameGroupBy.fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + tm.assert_frame_equal(g.fillna(0), g_exp.fillna(0)) + msg = "DataFrameGroupBy.dtypes is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + tm.assert_frame_equal(g.dtypes, g_exp.dtypes) + tm.assert_frame_equal(g.apply(lambda x: x.sum()), g_exp.apply(lambda x: x.sum())) + + tm.assert_frame_equal(g.resample("D").mean(), g_exp.resample("D").mean()) + tm.assert_frame_equal(g.resample("D").ohlc(), g_exp.resample("D").ohlc()) + + tm.assert_frame_equal( + g.filter(lambda x: len(x) == 3), g_exp.filter(lambda x: len(x) == 3) + ) + + +def test_groupby_with_Time_Grouper(unit): + idx2 = to_datetime( + [ + "2016-08-31 22:08:12.000", + "2016-08-31 22:09:12.200", + "2016-08-31 22:20:12.400", + ] + ).as_unit(unit) + + test_data = DataFrame( + {"quant": [1.0, 1.0, 3.0], "quant2": [1.0, 1.0, 3.0], "time2": idx2} + ) + + time2 = date_range("2016-08-31 22:08:00", periods=13, freq="1min", unit=unit) + expected_output = DataFrame( + { + "time2": time2, + "quant": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], + "quant2": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], + } + ) + + gb = test_data.groupby(Grouper(key="time2", freq="1min")) + result = gb.count().reset_index() + + tm.assert_frame_equal(result, expected_output) + + +def test_groupby_series_with_datetimeindex_month_name(): + # GH 48509 + s = Series([0, 1, 0], index=date_range("2022-01-01", periods=3), name="jan") + result = s.groupby(s).count() + expected = Series([2, 1], name="jan") + expected.index.name = "jan" + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize("test_series", [True, False]) +@pytest.mark.parametrize( + "kwarg, value, name, warn", + [ + ("by", "a", 1, None), + ("by", ["a"], 1, FutureWarning), + ("by", ["a"], (1,), None), + ("level", 0, 1, None), + ("level", [0], 1, FutureWarning), + ("level", [0], (1,), None), + ], +) +def test_depr_get_group_len_1_list_likes(test_series, kwarg, value, name, warn): + # GH#25971 + obj = DataFrame({"b": [3, 4, 5]}, index=Index([1, 1, 2], name="a")) + if test_series: + obj = obj["b"] + gb = obj.groupby(**{kwarg: value}) + msg = "you will need to pass a length-1 tuple" + with tm.assert_produces_warning(warn, match=msg): + result = gb.get_group(name) + if test_series: + expected = Series([3, 4], index=Index([1, 1], name="a"), name="b") + else: + expected = DataFrame({"b": [3, 4]}, index=Index([1, 1], name="a")) + tm.assert_equal(result, expected) + + +def test_groupby_ngroup_with_nan(): + # GH#50100 + df = DataFrame({"a": Categorical([np.nan]), "b": [1]}) + result = df.groupby(["a", "b"], dropna=False, observed=False).ngroup() + expected = Series([0]) + tm.assert_series_equal(result, expected) + + +def test_get_group_axis_1(): + # GH#54858 + df = DataFrame( + { + "col1": [0, 3, 2, 3], + "col2": [4, 1, 6, 7], + "col3": [3, 8, 2, 10], + "col4": [1, 13, 6, 15], + "col5": [-4, 5, 6, -7], + } + ) + with tm.assert_produces_warning(FutureWarning, match="deprecated"): + grouped = df.groupby(axis=1, by=[1, 2, 3, 2, 1]) + result = grouped.get_group(1) + expected = DataFrame( + { + "col1": [0, 3, 2, 3], + "col5": [-4, 5, 6, -7], + } + ) + tm.assert_frame_equal(result, expected) + + +def test_groupby_ffill_with_duplicated_index(): + # GH#43412 + df = DataFrame({"a": [1, 2, 3, 4, np.nan, np.nan]}, index=[0, 1, 2, 0, 1, 2]) + + result = df.groupby(level=0).ffill() + expected = DataFrame({"a": [1, 2, 3, 4, 2, 3]}, index=[0, 1, 2, 0, 1, 2]) + tm.assert_frame_equal(result, expected, check_dtype=False) + + +@pytest.mark.parametrize("test_series", [True, False]) +def test_decimal_na_sort(test_series): + # GH#54847 + # We catch both TypeError and decimal.InvalidOperation exceptions in safe_sort. + # If this next assert raises, we can just catch TypeError + assert not isinstance(decimal.InvalidOperation, TypeError) + df = DataFrame( + { + "key": [Decimal(1), Decimal(1), None, None], + "value": [Decimal(2), Decimal(3), Decimal(4), Decimal(5)], + } + ) + gb = df.groupby("key", dropna=False) + if test_series: + gb = gb["value"] + result = gb._grouper.result_index + expected = Index([Decimal(1), None], name="key") + tm.assert_index_equal(result, expected)