applied-ai-018 commited on
Commit
1b3a16e
·
verified ·
1 Parent(s): 14cbefa

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/13.attention.dense.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step20/zero/13.attention.dense.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step20/zero/4.input_layernorm.weight/fp32.pt +3 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_batch_norm_impl_index_native.h +21 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_ops.h +39 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_init_dropout_state_native.h +22 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h +91 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cuda_dispatch.h +28 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_add_compositeexplicitautograd_dispatch.h +30 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_ceil.h +44 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cosh_cpu_dispatch.h +24 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_native.h +21 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_tensors_ops.h +39 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_index_put_impl.h +44 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dual_copy_native.h +22 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_neg_view_copy_compositeexplicitautograd_dispatch.h +24 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_native.h +23 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_saturate_weight_to_fp16_native.h +21 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h +25 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma.h +39 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_floatlist_ops.h +39 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cpu_dispatch.h +23 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unique.h +39 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h +91 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_differentiable_backward_ops.h +28 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/align_tensors_compositeimplicitautograd_dispatch.h +23 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_meta_dispatch.h +25 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/argmax_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/atan_native.h +29 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh.h +44 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/choose_qparams_optimized.h +30 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/chunk_native.h +22 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/col2im.h +91 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/col2im_ops.h +39 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/concat.h +53 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/concat_ops.h +61 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv3d_compositeimplicitautograd_dispatch.h +26 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_transpose1d_compositeimplicitautograd_dispatch.h +24 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/ctc_loss_compositeimplicitautograd_dispatch.h +24 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu_native.h +22 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_scatter_native.h +22 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/eq_native.h +31 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_native.h +21 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h +28 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn.h +91 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill.h +63 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/from_file_ops.h +39 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler.h +30 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hspmm_ops.h +39 -0
ckpts/universal/global_step20/zero/13.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1b700716d9bf22f3201a39e4e33a5099557ad4b4d384840cc52983748617720
3
+ size 16778411
ckpts/universal/global_step20/zero/13.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65fcbbee9265268864f47afe33e9ac94b1c941ac82da6a12065cad89bb7b79c2
3
+ size 16778317
ckpts/universal/global_step20/zero/4.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6195377c894d5852ae678b05472c5b45022951957df9c31c84814787fd4947c6
3
+ size 9293
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_batch_norm_impl_index_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,int64_t> _batch_norm_impl_index(const at::Tensor & input, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double momentum, double eps, bool cudnn_enabled);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _cdist_backward {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_cdist_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist);
26
+ };
27
+
28
+ struct TORCH_API _cdist_backward_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, double, const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_cdist_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_cdist_backward.out(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_init_dropout_state_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _cudnn_init_dropout_state_out(double dropout, bool train, int64_t dropout_seed, at::Tensor & out);
20
+ TORCH_API at::Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_cudnn_rnn_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
27
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
32
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask);
33
+ }
34
+ }
35
+
36
+ // aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
38
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> _cudnn_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
43
+ return at::_ops::_cudnn_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
44
+ }
45
+ }
46
+
47
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
48
+ inline void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
49
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
54
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
55
+ }
56
+ }
57
+
58
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
59
+ inline void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
60
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
65
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, c10::fromIntArrayRefSlow(batch_sizes), dropout_state, reserve, output_mask, out0, out1, out2, out3);
66
+ }
67
+ }
68
+
69
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
70
+ inline void _cudnn_rnn_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
71
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ void _cudnn_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
76
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
77
+ }
78
+ }
79
+
80
+ // aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
81
+ inline void _cudnn_rnn_backward_symint_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
82
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ void _cudnn_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
87
+ return at::_ops::_cudnn_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cuda_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _fft_c2c(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward);
21
+ TORCH_API at::Tensor _fft_c2c_symint(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward);
22
+ TORCH_API at::Tensor & _fft_c2c_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward);
23
+ TORCH_API at::Tensor & _fft_c2c_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out);
24
+ TORCH_API at::Tensor & _fft_c2c_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward);
25
+ TORCH_API at::Tensor & _fft_c2c_symint_outf(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out);
26
+
27
+ } // namespace cuda
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_add_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API void _foreach_add_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_add_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
22
+ TORCH_API void _foreach_add_out(at::TensorList out, at::TensorList self, at::TensorList other, const at::Scalar & alpha=1);
23
+ TORCH_API void _foreach_add_outf(at::TensorList self, at::TensorList other, const at::Scalar & alpha, at::TensorList out);
24
+ TORCH_API void _foreach_add_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_add_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
26
+ TORCH_API void _foreach_add_out(at::TensorList out, at::TensorList self, const at::Tensor & other, const at::Scalar & alpha=1);
27
+ TORCH_API void _foreach_add_outf(at::TensorList self, const at::Tensor & other, const at::Scalar & alpha, at::TensorList out);
28
+
29
+ } // namespace compositeexplicitautograd
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_ceil.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_ceil_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_ceil(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_ceil(at::TensorList self) {
27
+ return at::_ops::_foreach_ceil::call(self);
28
+ }
29
+
30
+ // aten::_foreach_ceil_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_ceil_(at::TensorList self) {
32
+ return at::_ops::_foreach_ceil_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_ceil.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_ceil_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_ceil_out::call(self, out);
38
+ }
39
+ // aten::_foreach_ceil.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_ceil_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_ceil_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_cosh_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_cosh(at::TensorList self);
21
+ TORCH_API void _foreach_cosh_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _functional_assert_async_msg_cpu(const at::Tensor & self, c10::string_view assert_msg, const at::Tensor & dep_token);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_histogramdd_from_bin_tensors_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _histogramdd_from_bin_tensors {
18
+ using schema = at::Tensor (const at::Tensor &, at::TensorList, const c10::optional<at::Tensor> &, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_histogramdd_from_bin_tensors")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_histogramdd_from_bin_tensors(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, at::TensorList bins, const c10::optional<at::Tensor> & weight, bool density);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::TensorList bins, const c10::optional<at::Tensor> & weight, bool density);
26
+ };
27
+
28
+ struct TORCH_API _histogramdd_from_bin_tensors_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::TensorList, const c10::optional<at::Tensor> &, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_histogramdd_from_bin_tensors")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_histogramdd_from_bin_tensors.out(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, at::TensorList bins, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::TensorList bins, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_index_put_impl.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_index_put_impl_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!)
26
+ inline at::Tensor & _index_put_impl_(at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false, bool unsafe=false) {
27
+ return at::_ops::_index_put_impl_::call(self, indices, values, accumulate, unsafe);
28
+ }
29
+
30
+ // aten::_index_put_impl.out(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _index_put_impl_out(at::Tensor & out, const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false, bool unsafe=false) {
32
+ return at::_ops::_index_put_impl_out::call(self, indices, values, accumulate, unsafe, out);
33
+ }
34
+ // aten::_index_put_impl.out(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _index_put_impl_outf(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate, bool unsafe, at::Tensor & out) {
36
+ return at::_ops::_index_put_impl_out::call(self, indices, values, accumulate, unsafe, out);
37
+ }
38
+
39
+ // aten::_index_put_impl(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor
40
+ inline at::Tensor _index_put_impl(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, const at::Tensor & values, bool accumulate=false, bool unsafe=false) {
41
+ return at::_ops::_index_put_impl::call(self, indices, values, accumulate, unsafe);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_dual_copy_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _make_dual_copy_out(const at::Tensor & primal, const at::Tensor & tangent, int64_t level, at::Tensor & out);
20
+ TORCH_API at::Tensor _make_dual_copy(const at::Tensor & primal, const at::Tensor & tangent, int64_t level);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_neg_view_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _neg_view_copy_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & _neg_view_copy_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _pin_memory_out(const at::Tensor & self, c10::optional<at::Device> device, at::Tensor & out);
20
+ TORCH_API at::Tensor _pin_memory_cuda(const at::Tensor & self, c10::optional<at::Device> device=c10::nullopt);
21
+ TORCH_API at::Tensor _pin_memory_nested(const at::Tensor & self, c10::optional<at::Device> device=c10::nullopt);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_saturate_weight_to_fp16_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _saturate_weight_to_fp16(const at::Tensor & weight);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_sum_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self);
21
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::ScalarType dtype);
22
+ TORCH_API at::Tensor _sparse_sum(const at::Tensor & self, at::IntArrayRef dim, at::ScalarType dtype);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_standard_gamma_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_standard_gamma(Tensor self, Generator? generator=None) -> Tensor
26
+ inline at::Tensor _standard_gamma(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt) {
27
+ return at::_ops::_standard_gamma::call(self, generator);
28
+ }
29
+
30
+ // aten::_standard_gamma.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _standard_gamma_out(at::Tensor & out, const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt) {
32
+ return at::_ops::_standard_gamma_out::call(self, generator, out);
33
+ }
34
+ // aten::_standard_gamma.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _standard_gamma_outf(const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out) {
36
+ return at::_ops::_standard_gamma_out::call(self, generator, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_floatlist_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _test_optional_floatlist {
18
+ using schema = at::Tensor (const at::Tensor &, c10::optional<at::ArrayRef<double>>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_test_optional_floatlist")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_test_optional_floatlist(Tensor values, float[]? addends) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends);
26
+ };
27
+
28
+ struct TORCH_API _test_optional_floatlist_out {
29
+ using schema = at::Tensor & (const at::Tensor &, c10::optional<at::ArrayRef<double>>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_test_optional_floatlist")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_test_optional_floatlist.out(Tensor values, float[]? addends, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & values, c10::optional<at::ArrayRef<double>> addends, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _to_sparse_csr(const at::Tensor & self, c10::optional<int64_t> dense_dim=c10::nullopt);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_unique.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_unique_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _unique(const at::Tensor & self, bool sorted=true, bool return_inverse=false) {
27
+ return at::_ops::_unique::call(self, sorted, return_inverse);
28
+ }
29
+
30
+ // aten::_unique.out(Tensor self, bool sorted=True, bool return_inverse=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _unique_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, bool sorted=true, bool return_inverse=false) {
32
+ return at::_ops::_unique_out::call(self, sorted, return_inverse, out0, out1);
33
+ }
34
+ // aten::_unique.out(Tensor self, bool sorted=True, bool return_inverse=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &> _unique_outf(const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1) {
36
+ return at::_ops::_unique_out::call(self, sorted, return_inverse, out0, out1);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
27
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
32
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
38
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
43
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
49
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & _upsample_bicubic2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
54
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_bicubic2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
60
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & _upsample_bicubic2d_aa_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
65
+ return at::_ops::_upsample_bicubic2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
70
+ inline at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
71
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
76
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
81
+ inline at::Tensor _upsample_bicubic2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
82
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
87
+ return at::_ops::_upsample_bicubic2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_differentiable_backward_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _weight_norm_differentiable_backward {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_weight_norm_differentiable_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim);
25
+ static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_w, const at::Tensor & saved_v, const at::Tensor & saved_g, const at::Tensor & saved_norms, int64_t dim);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/align_tensors_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> align_tensors(at::TensorList tensors);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_meta_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor amin(const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
21
+ TORCH_API at::Tensor & amin_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
22
+ TORCH_API at::Tensor & amin_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, at::Tensor & out);
23
+
24
+ } // namespace meta
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/argmax_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor argmax(const at::Tensor & self, c10::optional<int64_t> dim=c10::nullopt, bool keepdim=false);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/atan_native.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/atan_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_atan_out : public at::meta::structured_atan {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor atan_sparse(const at::Tensor & self);
23
+ TORCH_API at::Tensor & atan_sparse_out(const at::Tensor & self, at::Tensor & out);
24
+ TORCH_API at::Tensor & atan_sparse_(at::Tensor & self);
25
+ TORCH_API at::Tensor atan_sparse_csr(const at::Tensor & self);
26
+ TORCH_API at::Tensor & atan_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
27
+ TORCH_API at::Tensor & atan_sparse_csr_(at::Tensor & self);
28
+ } // namespace native
29
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/atanh_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::atanh(Tensor self) -> Tensor
26
+ inline at::Tensor atanh(const at::Tensor & self) {
27
+ return at::_ops::atanh::call(self);
28
+ }
29
+
30
+ // aten::atanh_(Tensor(a!) self) -> Tensor(a!)
31
+ inline at::Tensor & atanh_(at::Tensor & self) {
32
+ return at::_ops::atanh_::call(self);
33
+ }
34
+
35
+ // aten::atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & atanh_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::atanh_out::call(self, out);
38
+ }
39
+ // aten::atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & atanh_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::atanh_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor avg_pool3d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/choose_qparams_optimized.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/choose_qparams_optimized_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> choose_qparams_optimized(const at::Tensor & input, int64_t numel, int64_t n_bins, double ratio, int64_t bit_width) {
27
+ return at::_ops::choose_qparams_optimized::call(input, numel, n_bins, ratio, bit_width);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/chunk_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::vector<at::Tensor> chunk(const at::Tensor & self, int64_t chunks, int64_t dim=0);
20
+ TORCH_API ::std::vector<at::Tensor> chunk_nested_tensor(const at::Tensor & self, int64_t chunks, int64_t dim=0);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/col2im.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/col2im_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & col2im_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
27
+ return at::_ops::col2im_out::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride, out);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & col2im_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
32
+ return at::_ops::col2im_out::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride, out);
33
+ }
34
+ }
35
+
36
+ // aten::col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)
37
+ inline at::Tensor & col2im_outf(const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
38
+ return at::_ops::col2im_out::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride, out);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & col2im_outf(const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
43
+ return at::_ops::col2im_out::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride, out);
44
+ }
45
+ }
46
+
47
+ // aten::col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & col2im_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
49
+ return at::_ops::col2im_out::call(self, output_size, kernel_size, dilation, padding, stride, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & col2im_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
54
+ return at::_ops::col2im_out::call(self, output_size, kernel_size, dilation, padding, stride, out);
55
+ }
56
+ }
57
+
58
+ // aten::col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & col2im_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
60
+ return at::_ops::col2im_out::call(self, output_size, kernel_size, dilation, padding, stride, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & col2im_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out) {
65
+ return at::_ops::col2im_out::call(self, output_size, kernel_size, dilation, padding, stride, out);
66
+ }
67
+ }
68
+
69
+ // aten::col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
70
+ inline at::Tensor col2im(const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
71
+ return at::_ops::col2im::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor col2im(const at::Tensor & self, at::IntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
76
+ return at::_ops::col2im::call(self, c10::fromIntArrayRefSlow(output_size), kernel_size, dilation, padding, stride);
77
+ }
78
+ }
79
+
80
+ // aten::col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor
81
+ inline at::Tensor col2im_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
82
+ return at::_ops::col2im::call(self, output_size, kernel_size, dilation, padding, stride);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor col2im(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride) {
87
+ return at::_ops::col2im::call(self, output_size, kernel_size, dilation, padding, stride);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/col2im_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API col2im_out {
18
+ using schema = at::Tensor & (const at::Tensor &, c10::SymIntArrayRef, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::col2im")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API col2im {
29
+ using schema = at::Tensor (const at::Tensor &, c10::SymIntArrayRef, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef, at::IntArrayRef);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::col2im")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::SymIntArrayRef output_size, at::IntArrayRef kernel_size, at::IntArrayRef dilation, at::IntArrayRef padding, at::IntArrayRef stride);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/concat.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/concat_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::concat(Tensor[] tensors, int dim=0) -> Tensor
26
+ inline at::Tensor concat(at::TensorList tensors, int64_t dim=0) {
27
+ return at::_ops::concat::call(tensors, dim);
28
+ }
29
+
30
+ // aten::concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & concat_out(at::Tensor & out, at::TensorList tensors, int64_t dim=0) {
32
+ return at::_ops::concat_out::call(tensors, dim, out);
33
+ }
34
+ // aten::concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & concat_outf(at::TensorList tensors, int64_t dim, at::Tensor & out) {
36
+ return at::_ops::concat_out::call(tensors, dim, out);
37
+ }
38
+
39
+ // aten::concat.names(Tensor[] tensors, Dimname dim) -> Tensor
40
+ inline at::Tensor concat(at::TensorList tensors, at::Dimname dim) {
41
+ return at::_ops::concat_names::call(tensors, dim);
42
+ }
43
+
44
+ // aten::concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
45
+ inline at::Tensor & concat_out(at::Tensor & out, at::TensorList tensors, at::Dimname dim) {
46
+ return at::_ops::concat_names_out::call(tensors, dim, out);
47
+ }
48
+ // aten::concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)
49
+ inline at::Tensor & concat_outf(at::TensorList tensors, at::Dimname dim, at::Tensor & out) {
50
+ return at::_ops::concat_names_out::call(tensors, dim, out);
51
+ }
52
+
53
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/concat_ops.h ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API concat {
18
+ using schema = at::Tensor (at::TensorList, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concat")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concat(Tensor[] tensors, int dim=0) -> Tensor")
24
+ static at::Tensor call(at::TensorList tensors, int64_t dim);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim);
26
+ };
27
+
28
+ struct TORCH_API concat_out {
29
+ using schema = at::Tensor & (at::TensorList, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concat")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(at::TensorList tensors, int64_t dim, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, int64_t dim, at::Tensor & out);
37
+ };
38
+
39
+ struct TORCH_API concat_names {
40
+ using schema = at::Tensor (at::TensorList, at::Dimname);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concat")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concat.names(Tensor[] tensors, Dimname dim) -> Tensor")
46
+ static at::Tensor call(at::TensorList tensors, at::Dimname dim);
47
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim);
48
+ };
49
+
50
+ struct TORCH_API concat_names_out {
51
+ using schema = at::Tensor & (at::TensorList, at::Dimname, at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::concat")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names_out")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)")
57
+ static at::Tensor & call(at::TensorList tensors, at::Dimname dim, at::Tensor & out);
58
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, at::Dimname dim, at::Tensor & out);
59
+ };
60
+
61
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv3d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor conv3d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1);
21
+ TORCH_API at::Tensor conv3d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
22
+ TORCH_API at::Tensor conv3d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1);
23
+ TORCH_API at::Tensor conv3d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
24
+
25
+ } // namespace compositeimplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_transpose1d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor conv_transpose1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef output_padding=0, int64_t groups=1, at::IntArrayRef dilation=1);
21
+ TORCH_API at::Tensor conv_transpose1d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef output_padding=c10::SymInt(0), c10::SymInt groups=1, c10::SymIntArrayRef dilation=c10::SymInt(1));
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/ctc_loss_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor ctc_loss(const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, int64_t blank=0, int64_t reduction=at::Reduction::Mean, bool zero_infinity=false);
21
+ TORCH_API at::Tensor ctc_loss(const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, int64_t blank=0, int64_t reduction=at::Reduction::Mean, bool zero_infinity=false);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & cudnn_convolution_relu_out_symint(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
20
+ TORCH_API at::Tensor cudnn_convolution_relu(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/diagonal_scatter_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & diagonal_scatter_out(const at::Tensor & self, const at::Tensor & src, int64_t offset, int64_t dim1, int64_t dim2, at::Tensor & out);
20
+ TORCH_API at::Tensor diagonal_scatter(const at::Tensor & self, const at::Tensor & src, int64_t offset=0, int64_t dim1=0, int64_t dim2=1);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/eq_native.h ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/eq_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_eq_Scalar_out : public at::meta::structured_eq_Scalar {
20
+ void impl(const at::Tensor & self, const at::Scalar & other, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor eq_scalar_nested(const at::Tensor & self, const at::Scalar & other);
23
+ TORCH_API at::Tensor eq_quantized_cpu(const at::Tensor & self, const at::Scalar & other);
24
+ TORCH_API at::Tensor & eq_out_quantized_cpu(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
25
+ struct TORCH_API structured_eq_Tensor_out : public at::meta::structured_eq_Tensor {
26
+ void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
27
+ };
28
+ TORCH_API at::Tensor eq_quantized_cpu(const at::Tensor & self, const at::Tensor & other);
29
+ TORCH_API at::Tensor & eq_out_quantized_cpu(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
30
+ } // namespace native
31
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fbgemm_linear_fp16_weight_fp32_activation(const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API fbgemm_linear_fp16_weight_fp32_activation {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fbgemm_linear_fp16_weight_fp32_activation")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const at::Tensor & packed_weight, const at::Tensor & bias);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fft_rfftn_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fft_rfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor
26
+ inline at::Tensor fft_rfftn(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
27
+ return at::_ops::fft_rfftn::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor fft_rfftn(const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
32
+ return at::_ops::fft_rfftn::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm);
33
+ }
34
+ }
35
+
36
+ // aten::fft_rfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor
37
+ inline at::Tensor fft_rfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
38
+ return at::_ops::fft_rfftn::call(self, s, dim, norm);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor fft_rfftn(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
43
+ return at::_ops::fft_rfftn::call(self, s, dim, norm);
44
+ }
45
+ }
46
+
47
+ // aten::fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & fft_rfftn_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
49
+ return at::_ops::fft_rfftn_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & fft_rfftn_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
54
+ return at::_ops::fft_rfftn_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
55
+ }
56
+ }
57
+
58
+ // aten::fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & fft_rfftn_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
60
+ return at::_ops::fft_rfftn_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & fft_rfftn_outf(const at::Tensor & self, at::OptionalIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
65
+ return at::_ops::fft_rfftn_out::call(self, s.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*s)) : c10::nullopt, dim, norm, out);
66
+ }
67
+ }
68
+
69
+ // aten::fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & fft_rfftn_symint_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
71
+ return at::_ops::fft_rfftn_out::call(self, s, dim, norm, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & fft_rfftn_out(at::Tensor & out, const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt) {
76
+ return at::_ops::fft_rfftn_out::call(self, s, dim, norm, out);
77
+ }
78
+ }
79
+
80
+ // aten::fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & fft_rfftn_symint_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
82
+ return at::_ops::fft_rfftn_out::call(self, s, dim, norm, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & fft_rfftn_outf(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out) {
87
+ return at::_ops::fft_rfftn_out::call(self, s, dim, norm, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fill.h ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fill_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fill.Scalar(Tensor self, Scalar value) -> Tensor
26
+ inline at::Tensor fill(const at::Tensor & self, const at::Scalar & value) {
27
+ return at::_ops::fill_Scalar::call(self, value);
28
+ }
29
+
30
+ // aten::fill.Tensor(Tensor self, Tensor value) -> Tensor
31
+ inline at::Tensor fill(const at::Tensor & self, const at::Tensor & value) {
32
+ return at::_ops::fill_Tensor::call(self, value);
33
+ }
34
+
35
+ // aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)
36
+ inline at::Tensor & fill_(at::Tensor & self, const at::Scalar & value) {
37
+ return at::_ops::fill__Scalar::call(self, value);
38
+ }
39
+
40
+ // aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)
41
+ inline at::Tensor & fill_(at::Tensor & self, const at::Tensor & value) {
42
+ return at::_ops::fill__Tensor::call(self, value);
43
+ }
44
+
45
+ // aten::fill.Scalar_out(Tensor self, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
46
+ inline at::Tensor & fill_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & value) {
47
+ return at::_ops::fill_Scalar_out::call(self, value, out);
48
+ }
49
+ // aten::fill.Scalar_out(Tensor self, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
50
+ inline at::Tensor & fill_outf(const at::Tensor & self, const at::Scalar & value, at::Tensor & out) {
51
+ return at::_ops::fill_Scalar_out::call(self, value, out);
52
+ }
53
+
54
+ // aten::fill.Tensor_out(Tensor self, Tensor value, *, Tensor(a!) out) -> Tensor(a!)
55
+ inline at::Tensor & fill_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & value) {
56
+ return at::_ops::fill_Tensor_out::call(self, value, out);
57
+ }
58
+ // aten::fill.Tensor_out(Tensor self, Tensor value, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & fill_outf(const at::Tensor & self, const at::Tensor & value, at::Tensor & out) {
60
+ return at::_ops::fill_Tensor_out::call(self, value, out);
61
+ }
62
+
63
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/from_file_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API from_file {
18
+ using schema = at::Tensor (c10::string_view, c10::optional<bool>, c10::optional<int64_t>, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::from_file")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
24
+ static at::Tensor call(c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ };
27
+
28
+ struct TORCH_API from_file_out {
29
+ using schema = at::Tensor & (c10::string_view, c10::optional<bool>, c10::optional<int64_t>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::from_file")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "from_file.out(str filename, bool? shared=None, int? size=0, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/grid_sampler_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor
26
+ inline at::Tensor grid_sampler(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
27
+ return at::_ops::grid_sampler::call(input, grid, interpolation_mode, padding_mode, align_corners);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hspmm_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API hspmm_out {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hspmm")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hspmm.out(Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & mat1, const at::Tensor & mat2, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & mat1, const at::Tensor & mat2, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API hspmm {
29
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hspmm")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hspmm(Tensor mat1, Tensor mat2) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & mat1, const at::Tensor & mat2);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & mat1, const at::Tensor & mat2);
37
+ };
38
+
39
+ }} // namespace at::_ops